]> git.proxmox.com Git - mirror_edk2.git/blame - UefiCpuPkg/Library/MpInitLib/MpLib.c
UefiCpuPkg/MpInitLib: Fix S3 resume hang issue.
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
CommitLineData
3e8ad6bd
JF
1/** @file\r
2 CPU MP Initialize Library common functions.\r
3\r
a2ea6894 4 Copyright (c) 2016 - 2018, Intel Corporation. All rights reserved.<BR>\r
3e8ad6bd
JF
5 This program and the accompanying materials\r
6 are licensed and made available under the terms and conditions of the BSD License\r
7 which accompanies this distribution. The full text of the license may be found at\r
8 http://opensource.org/licenses/bsd-license.php\r
9\r
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13**/\r
14\r
15#include "MpLib.h"\r
16\r
93ca4c0f
JF
17EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;\r
18\r
7c3f2a12
JF
19/**\r
20 The function will check if BSP Execute Disable is enabled.\r
844b2d07
JF
21\r
22 DxeIpl may have enabled Execute Disable for BSP, APs need to\r
23 get the status and sync up the settings.\r
24 If BSP's CR0.Paging is not set, BSP execute Disble feature is\r
25 not working actually.\r
7c3f2a12
JF
26\r
27 @retval TRUE BSP Execute Disable is enabled.\r
28 @retval FALSE BSP Execute Disable is not enabled.\r
29**/\r
30BOOLEAN\r
31IsBspExecuteDisableEnabled (\r
32 VOID\r
33 )\r
34{\r
35 UINT32 Eax;\r
36 CPUID_EXTENDED_CPU_SIG_EDX Edx;\r
37 MSR_IA32_EFER_REGISTER EferMsr;\r
38 BOOLEAN Enabled;\r
844b2d07 39 IA32_CR0 Cr0;\r
7c3f2a12
JF
40\r
41 Enabled = FALSE;\r
844b2d07
JF
42 Cr0.UintN = AsmReadCr0 ();\r
43 if (Cr0.Bits.PG != 0) {\r
7c3f2a12 44 //\r
844b2d07 45 // If CR0 Paging bit is set\r
7c3f2a12 46 //\r
844b2d07
JF
47 AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);\r
48 if (Eax >= CPUID_EXTENDED_CPU_SIG) {\r
49 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);\r
7c3f2a12 50 //\r
844b2d07
JF
51 // CPUID 0x80000001\r
52 // Bit 20: Execute Disable Bit available.\r
7c3f2a12 53 //\r
844b2d07
JF
54 if (Edx.Bits.NX != 0) {\r
55 EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);\r
56 //\r
57 // MSR 0xC0000080\r
58 // Bit 11: Execute Disable Bit enable.\r
59 //\r
60 if (EferMsr.Bits.NXE != 0) {\r
61 Enabled = TRUE;\r
62 }\r
7c3f2a12
JF
63 }\r
64 }\r
65 }\r
66\r
67 return Enabled;\r
68}\r
69\r
41be0da5
JF
70/**\r
71 Worker function for SwitchBSP().\r
72\r
73 Worker function for SwitchBSP(), assigned to the AP which is intended\r
74 to become BSP.\r
75\r
76 @param[in] Buffer Pointer to CPU MP Data\r
77**/\r
78VOID\r
79EFIAPI\r
80FutureBSPProc (\r
81 IN VOID *Buffer\r
82 )\r
83{\r
84 CPU_MP_DATA *DataInHob;\r
85\r
86 DataInHob = (CPU_MP_DATA *) Buffer;\r
87 AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);\r
88}\r
89\r
03a1a925
JF
90/**\r
91 Get the Application Processors state.\r
92\r
93 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
94\r
95 @return The AP status\r
96**/\r
97CPU_STATE\r
98GetApState (\r
99 IN CPU_AP_DATA *CpuData\r
100 )\r
101{\r
102 return CpuData->State;\r
103}\r
104\r
105/**\r
106 Set the Application Processors state.\r
107\r
108 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
109 @param[in] State The AP status\r
110**/\r
111VOID\r
112SetApState (\r
113 IN CPU_AP_DATA *CpuData,\r
114 IN CPU_STATE State\r
115 )\r
116{\r
117 AcquireSpinLock (&CpuData->ApLock);\r
118 CpuData->State = State;\r
119 ReleaseSpinLock (&CpuData->ApLock);\r
120}\r
3e8ad6bd 121\r
ffab2442 122/**\r
f70174d6 123 Save BSP's local APIC timer setting.\r
ffab2442
JF
124\r
125 @param[in] CpuMpData Pointer to CPU MP Data\r
126**/\r
127VOID\r
128SaveLocalApicTimerSetting (\r
129 IN CPU_MP_DATA *CpuMpData\r
130 )\r
131{\r
132 //\r
133 // Record the current local APIC timer setting of BSP\r
134 //\r
135 GetApicTimerState (\r
136 &CpuMpData->DivideValue,\r
137 &CpuMpData->PeriodicMode,\r
138 &CpuMpData->Vector\r
139 );\r
140 CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();\r
141 CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();\r
142}\r
143\r
144/**\r
145 Sync local APIC timer setting from BSP to AP.\r
146\r
147 @param[in] CpuMpData Pointer to CPU MP Data\r
148**/\r
149VOID\r
150SyncLocalApicTimerSetting (\r
151 IN CPU_MP_DATA *CpuMpData\r
152 )\r
153{\r
154 //\r
155 // Sync local APIC timer setting from BSP to AP\r
156 //\r
157 InitializeApicTimer (\r
158 CpuMpData->DivideValue,\r
159 CpuMpData->CurrentTimerCount,\r
160 CpuMpData->PeriodicMode,\r
161 CpuMpData->Vector\r
162 );\r
163 //\r
164 // Disable AP's local APIC timer interrupt\r
165 //\r
166 DisableApicTimerInterrupt ();\r
167}\r
168\r
68cb9330
JF
169/**\r
170 Save the volatile registers required to be restored following INIT IPI.\r
171\r
172 @param[out] VolatileRegisters Returns buffer saved the volatile resisters\r
173**/\r
174VOID\r
175SaveVolatileRegisters (\r
176 OUT CPU_VOLATILE_REGISTERS *VolatileRegisters\r
177 )\r
178{\r
179 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
180\r
181 VolatileRegisters->Cr0 = AsmReadCr0 ();\r
182 VolatileRegisters->Cr3 = AsmReadCr3 ();\r
183 VolatileRegisters->Cr4 = AsmReadCr4 ();\r
184\r
185 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
186 if (VersionInfoEdx.Bits.DE != 0) {\r
187 //\r
188 // If processor supports Debugging Extensions feature\r
189 // by CPUID.[EAX=01H]:EDX.BIT2\r
190 //\r
191 VolatileRegisters->Dr0 = AsmReadDr0 ();\r
192 VolatileRegisters->Dr1 = AsmReadDr1 ();\r
193 VolatileRegisters->Dr2 = AsmReadDr2 ();\r
194 VolatileRegisters->Dr3 = AsmReadDr3 ();\r
195 VolatileRegisters->Dr6 = AsmReadDr6 ();\r
196 VolatileRegisters->Dr7 = AsmReadDr7 ();\r
197 }\r
e9415e48
JW
198\r
199 AsmReadGdtr (&VolatileRegisters->Gdtr);\r
200 AsmReadIdtr (&VolatileRegisters->Idtr);\r
201 VolatileRegisters->Tr = AsmReadTr ();\r
68cb9330
JF
202}\r
203\r
204/**\r
205 Restore the volatile registers following INIT IPI.\r
206\r
207 @param[in] VolatileRegisters Pointer to volatile resisters\r
208 @param[in] IsRestoreDr TRUE: Restore DRx if supported\r
209 FALSE: Do not restore DRx\r
210**/\r
211VOID\r
212RestoreVolatileRegisters (\r
213 IN CPU_VOLATILE_REGISTERS *VolatileRegisters,\r
214 IN BOOLEAN IsRestoreDr\r
215 )\r
216{\r
217 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
e9415e48 218 IA32_TSS_DESCRIPTOR *Tss;\r
68cb9330
JF
219\r
220 AsmWriteCr0 (VolatileRegisters->Cr0);\r
221 AsmWriteCr3 (VolatileRegisters->Cr3);\r
222 AsmWriteCr4 (VolatileRegisters->Cr4);\r
223\r
224 if (IsRestoreDr) {\r
225 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
226 if (VersionInfoEdx.Bits.DE != 0) {\r
227 //\r
228 // If processor supports Debugging Extensions feature\r
229 // by CPUID.[EAX=01H]:EDX.BIT2\r
230 //\r
231 AsmWriteDr0 (VolatileRegisters->Dr0);\r
232 AsmWriteDr1 (VolatileRegisters->Dr1);\r
233 AsmWriteDr2 (VolatileRegisters->Dr2);\r
234 AsmWriteDr3 (VolatileRegisters->Dr3);\r
235 AsmWriteDr6 (VolatileRegisters->Dr6);\r
236 AsmWriteDr7 (VolatileRegisters->Dr7);\r
237 }\r
238 }\r
e9415e48
JW
239\r
240 AsmWriteGdtr (&VolatileRegisters->Gdtr);\r
241 AsmWriteIdtr (&VolatileRegisters->Idtr);\r
242 if (VolatileRegisters->Tr != 0 &&\r
243 VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) {\r
244 Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +\r
245 VolatileRegisters->Tr);\r
d69ba6a7 246 if (Tss->Bits.P == 1) {\r
e9415e48
JW
247 Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case\r
248 AsmWriteTr (VolatileRegisters->Tr);\r
249 }\r
250 }\r
68cb9330
JF
251}\r
252\r
9ebcf0f4
JF
253/**\r
254 Detect whether Mwait-monitor feature is supported.\r
255\r
256 @retval TRUE Mwait-monitor feature is supported.\r
257 @retval FALSE Mwait-monitor feature is not supported.\r
258**/\r
259BOOLEAN\r
260IsMwaitSupport (\r
261 VOID\r
262 )\r
263{\r
264 CPUID_VERSION_INFO_ECX VersionInfoEcx;\r
265\r
266 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);\r
267 return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;\r
268}\r
269\r
270/**\r
271 Get AP loop mode.\r
272\r
273 @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.\r
274\r
275 @return The AP loop mode.\r
276**/\r
277UINT8\r
278GetApLoopMode (\r
279 OUT UINT32 *MonitorFilterSize\r
280 )\r
281{\r
282 UINT8 ApLoopMode;\r
283 CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;\r
284\r
285 ASSERT (MonitorFilterSize != NULL);\r
286\r
287 ApLoopMode = PcdGet8 (PcdCpuApLoopMode);\r
288 ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);\r
289 if (ApLoopMode == ApInMwaitLoop) {\r
290 if (!IsMwaitSupport ()) {\r
291 //\r
292 // If processor does not support MONITOR/MWAIT feature,\r
293 // force AP in Hlt-loop mode\r
294 //\r
295 ApLoopMode = ApInHltLoop;\r
296 }\r
297 }\r
298\r
299 if (ApLoopMode != ApInMwaitLoop) {\r
300 *MonitorFilterSize = sizeof (UINT32);\r
301 } else {\r
302 //\r
303 // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes\r
304 // CPUID.[EAX=05H].EDX: C-states supported using MWAIT\r
305 //\r
306 AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);\r
307 *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;\r
308 }\r
309\r
310 return ApLoopMode;\r
311}\r
b8b04307 312\r
8a2d564b
JF
313/**\r
314 Sort the APIC ID of all processors.\r
315\r
316 This function sorts the APIC ID of all processors so that processor number is\r
317 assigned in the ascending order of APIC ID which eases MP debugging.\r
318\r
319 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
320**/\r
321VOID\r
322SortApicId (\r
323 IN CPU_MP_DATA *CpuMpData\r
324 )\r
325{\r
326 UINTN Index1;\r
327 UINTN Index2;\r
328 UINTN Index3;\r
329 UINT32 ApicId;\r
31a1e4da 330 CPU_INFO_IN_HOB CpuInfo;\r
8a2d564b
JF
331 UINT32 ApCount;\r
332 CPU_INFO_IN_HOB *CpuInfoInHob;\r
bafa76ef 333 volatile UINT32 *StartupApSignal;\r
8a2d564b
JF
334\r
335 ApCount = CpuMpData->CpuCount - 1;\r
31a1e4da 336 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
8a2d564b
JF
337 if (ApCount != 0) {\r
338 for (Index1 = 0; Index1 < ApCount; Index1++) {\r
339 Index3 = Index1;\r
340 //\r
341 // Sort key is the hardware default APIC ID\r
342 //\r
31a1e4da 343 ApicId = CpuInfoInHob[Index1].ApicId;\r
8a2d564b 344 for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {\r
31a1e4da 345 if (ApicId > CpuInfoInHob[Index2].ApicId) {\r
8a2d564b 346 Index3 = Index2;\r
31a1e4da 347 ApicId = CpuInfoInHob[Index2].ApicId;\r
8a2d564b
JF
348 }\r
349 }\r
350 if (Index3 != Index1) {\r
31a1e4da 351 CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));\r
8a2d564b 352 CopyMem (\r
31a1e4da
JF
353 &CpuInfoInHob[Index3],\r
354 &CpuInfoInHob[Index1],\r
355 sizeof (CPU_INFO_IN_HOB)\r
8a2d564b 356 );\r
31a1e4da 357 CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));\r
bafa76ef
SZ
358\r
359 //\r
360 // Also exchange the StartupApSignal.\r
361 //\r
362 StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal;\r
363 CpuMpData->CpuData[Index3].StartupApSignal =\r
364 CpuMpData->CpuData[Index1].StartupApSignal;\r
365 CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;\r
8a2d564b
JF
366 }\r
367 }\r
368\r
369 //\r
370 // Get the processor number for the BSP\r
371 //\r
372 ApicId = GetInitialApicId ();\r
373 for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {\r
31a1e4da 374 if (CpuInfoInHob[Index1].ApicId == ApicId) {\r
8a2d564b
JF
375 CpuMpData->BspNumber = (UINT32) Index1;\r
376 break;\r
377 }\r
378 }\r
8a2d564b
JF
379 }\r
380}\r
381\r
fe627769
JF
382/**\r
383 Enable x2APIC mode on APs.\r
384\r
385 @param[in, out] Buffer Pointer to private data buffer.\r
386**/\r
387VOID\r
388EFIAPI\r
389ApFuncEnableX2Apic (\r
390 IN OUT VOID *Buffer\r
391 )\r
392{\r
393 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
394}\r
395\r
b8b04307
JF
396/**\r
397 Do sync on APs.\r
398\r
399 @param[in, out] Buffer Pointer to private data buffer.\r
400**/\r
401VOID\r
402EFIAPI\r
403ApInitializeSync (\r
404 IN OUT VOID *Buffer\r
405 )\r
406{\r
407 CPU_MP_DATA *CpuMpData;\r
408\r
409 CpuMpData = (CPU_MP_DATA *) Buffer;\r
410 //\r
b8b04307
JF
411 // Load microcode on AP\r
412 //\r
2a089134 413 MicrocodeDetect (CpuMpData, FALSE);\r
cb811673
JF
414 //\r
415 // Sync BSP's MTRR table to AP\r
416 //\r
417 MtrrSetAllMtrrs (&CpuMpData->MtrrTable);\r
b8b04307
JF
418}\r
419\r
420/**\r
421 Find the current Processor number by APIC ID.\r
422\r
367284e7
DB
423 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
424 @param[out] ProcessorNumber Return the pocessor number found\r
b8b04307
JF
425\r
426 @retval EFI_SUCCESS ProcessorNumber is found and returned.\r
427 @retval EFI_NOT_FOUND ProcessorNumber is not found.\r
428**/\r
429EFI_STATUS\r
430GetProcessorNumber (\r
431 IN CPU_MP_DATA *CpuMpData,\r
432 OUT UINTN *ProcessorNumber\r
433 )\r
434{\r
435 UINTN TotalProcessorNumber;\r
436 UINTN Index;\r
31a1e4da
JF
437 CPU_INFO_IN_HOB *CpuInfoInHob;\r
438\r
439 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
b8b04307
JF
440\r
441 TotalProcessorNumber = CpuMpData->CpuCount;\r
442 for (Index = 0; Index < TotalProcessorNumber; Index ++) {\r
31a1e4da 443 if (CpuInfoInHob[Index].ApicId == GetApicId ()) {\r
b8b04307
JF
444 *ProcessorNumber = Index;\r
445 return EFI_SUCCESS;\r
446 }\r
447 }\r
448 return EFI_NOT_FOUND;\r
449}\r
450\r
03434dff
JF
451/**\r
452 This function will get CPU count in the system.\r
453\r
454 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
455\r
456 @return CPU count detected\r
457**/\r
458UINTN\r
459CollectProcessorCount (\r
460 IN CPU_MP_DATA *CpuMpData\r
461 )\r
462{\r
59a119f0
JF
463 UINTN Index;\r
464\r
03434dff
JF
465 //\r
466 // Send 1st broadcast IPI to APs to wakeup APs\r
467 //\r
468 CpuMpData->InitFlag = ApInitConfig;\r
469 CpuMpData->X2ApicEnable = FALSE;\r
470 WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL);\r
03434dff
JF
471 CpuMpData->InitFlag = ApInitDone;\r
472 ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));\r
473 //\r
474 // Wait for all APs finished the initialization\r
475 //\r
476 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
477 CpuPause ();\r
478 }\r
479\r
71d8226a
JF
480 if (CpuMpData->CpuCount > 255) {\r
481 //\r
482 // If there are more than 255 processor found, force to enable X2APIC\r
483 //\r
484 CpuMpData->X2ApicEnable = TRUE;\r
485 }\r
fe627769
JF
486 if (CpuMpData->X2ApicEnable) {\r
487 DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));\r
488 //\r
489 // Wakeup all APs to enable x2APIC mode\r
490 //\r
491 WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL);\r
492 //\r
493 // Wait for all known APs finished\r
494 //\r
495 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
496 CpuPause ();\r
497 }\r
498 //\r
499 // Enable x2APIC on BSP\r
500 //\r
501 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
59a119f0
JF
502 //\r
503 // Set BSP/Aps state to IDLE\r
504 //\r
505 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
506 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
507 }\r
fe627769
JF
508 }\r
509 DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));\r
8a2d564b
JF
510 //\r
511 // Sort BSP/Aps by CPU APIC ID in ascending order\r
512 //\r
513 SortApicId (CpuMpData);\r
514\r
03434dff
JF
515 DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));\r
516\r
517 return CpuMpData->CpuCount;\r
518}\r
519\r
367284e7 520/**\r
03a1a925
JF
521 Initialize CPU AP Data when AP is wakeup at the first time.\r
522\r
523 @param[in, out] CpuMpData Pointer to PEI CPU MP Data\r
524 @param[in] ProcessorNumber The handle number of processor\r
525 @param[in] BistData Processor BIST data\r
367284e7 526 @param[in] ApTopOfStack Top of AP stack\r
03a1a925
JF
527\r
528**/\r
529VOID\r
530InitializeApData (\r
531 IN OUT CPU_MP_DATA *CpuMpData,\r
532 IN UINTN ProcessorNumber,\r
845c5be1 533 IN UINT32 BistData,\r
dd3fa0cd 534 IN UINT64 ApTopOfStack\r
03a1a925
JF
535 )\r
536{\r
31a1e4da
JF
537 CPU_INFO_IN_HOB *CpuInfoInHob;\r
538\r
539 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
540 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
541 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
542 CpuInfoInHob[ProcessorNumber].Health = BistData;\r
dd3fa0cd 543 CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;\r
31a1e4da 544\r
03a1a925 545 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
03a1a925 546 CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;\r
31a1e4da 547 if (CpuInfoInHob[ProcessorNumber].InitialApicId >= 0xFF) {\r
03a1a925
JF
548 //\r
549 // Set x2APIC mode if there are any logical processor reporting\r
550 // an Initial APIC ID of 255 or greater.\r
551 //\r
552 AcquireSpinLock(&CpuMpData->MpLock);\r
553 CpuMpData->X2ApicEnable = TRUE;\r
554 ReleaseSpinLock(&CpuMpData->MpLock);\r
555 }\r
556\r
557 InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);\r
558 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
559}\r
560\r
b8b04307
JF
561/**\r
562 This function will be called from AP reset code if BSP uses WakeUpAP.\r
563\r
564 @param[in] ExchangeInfo Pointer to the MP exchange info buffer\r
9fcea114 565 @param[in] ApIndex Number of current executing AP\r
b8b04307
JF
566**/\r
567VOID\r
568EFIAPI\r
569ApWakeupFunction (\r
570 IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,\r
37676b9f 571 IN UINTN ApIndex\r
b8b04307
JF
572 )\r
573{\r
574 CPU_MP_DATA *CpuMpData;\r
575 UINTN ProcessorNumber;\r
576 EFI_AP_PROCEDURE Procedure;\r
577 VOID *Parameter;\r
578 UINT32 BistData;\r
579 volatile UINT32 *ApStartupSignalBuffer;\r
31a1e4da 580 CPU_INFO_IN_HOB *CpuInfoInHob;\r
dd3fa0cd 581 UINT64 ApTopOfStack;\r
c6b0feb3 582 UINTN CurrentApicMode;\r
b8b04307
JF
583\r
584 //\r
585 // AP finished assembly code and begin to execute C code\r
586 //\r
587 CpuMpData = ExchangeInfo->CpuMpData;\r
588\r
ffab2442
JF
589 //\r
590 // AP's local APIC settings will be lost after received INIT IPI\r
591 // We need to re-initialize them at here\r
592 //\r
593 ProgramVirtualWireMode ();\r
a2ea6894
RN
594 //\r
595 // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.\r
596 //\r
597 DisableLvtInterrupts ();\r
ffab2442 598 SyncLocalApicTimerSetting (CpuMpData);\r
b8b04307 599\r
c6b0feb3 600 CurrentApicMode = GetApicMode ();\r
b8b04307
JF
601 while (TRUE) {\r
602 if (CpuMpData->InitFlag == ApInitConfig) {\r
603 //\r
604 // Add CPU number\r
605 //\r
606 InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);\r
37676b9f 607 ProcessorNumber = ApIndex;\r
b8b04307
JF
608 //\r
609 // This is first time AP wakeup, get BIST information from AP stack\r
610 //\r
845c5be1 611 ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;\r
dd3fa0cd 612 BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));\r
b8b04307
JF
613 //\r
614 // Do some AP initialize sync\r
615 //\r
616 ApInitializeSync (CpuMpData);\r
617 //\r
c563077a
RN
618 // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,\r
619 // to initialize AP in InitConfig path.\r
620 // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.\r
b8b04307
JF
621 //\r
622 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);\r
845c5be1 623 InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);\r
b8b04307
JF
624 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
625 } else {\r
626 //\r
627 // Execute AP function if AP is ready\r
628 //\r
629 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
630 //\r
631 // Clear AP start-up signal when AP waken up\r
632 //\r
633 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
634 InterlockedCompareExchange32 (\r
635 (UINT32 *) ApStartupSignalBuffer,\r
636 WAKEUP_AP_SIGNAL,\r
637 0\r
638 );\r
639 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
640 //\r
641 // Restore AP's volatile registers saved\r
642 //\r
643 RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);\r
199de896
JW
644 } else {\r
645 //\r
646 // The CPU driver might not flush TLB for APs on spot after updating\r
647 // page attributes. AP in mwait loop mode needs to take care of it when\r
648 // woken up.\r
649 //\r
650 CpuFlushTlb ();\r
b8b04307
JF
651 }\r
652\r
653 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {\r
654 Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;\r
655 Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;\r
656 if (Procedure != NULL) {\r
657 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);\r
658 //\r
43c9fdcc 659 // Enable source debugging on AP function\r
7367cc6c 660 //\r
43c9fdcc
JF
661 EnableDebugAgent ();\r
662 //\r
b8b04307
JF
663 // Invoke AP function here\r
664 //\r
665 Procedure (Parameter);\r
31a1e4da 666 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
41be0da5
JF
667 if (CpuMpData->SwitchBspFlag) {\r
668 //\r
669 // Re-get the processor number due to BSP/AP maybe exchange in AP function\r
670 //\r
671 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
672 CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;\r
673 CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;\r
b3775af2
JF
674 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
675 CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;\r
41be0da5 676 } else {\r
c6b0feb3
JF
677 if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||\r
678 CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {\r
679 if (CurrentApicMode != GetApicMode ()) {\r
680 //\r
681 // If APIC mode change happened during AP function execution,\r
682 // we do not support APIC ID value changed.\r
683 //\r
684 ASSERT (FALSE);\r
685 CpuDeadLoop ();\r
686 } else {\r
687 //\r
688 // Re-get the CPU APICID and Initial APICID if they are changed\r
689 //\r
690 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
691 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
692 }\r
693 }\r
41be0da5 694 }\r
b8b04307
JF
695 }\r
696 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);\r
697 }\r
698 }\r
699\r
700 //\r
701 // AP finished executing C code\r
702 //\r
703 InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);\r
0594ec41 704 InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);\r
b8b04307
JF
705\r
706 //\r
707 // Place AP is specified loop mode\r
708 //\r
709 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
710 //\r
711 // Save AP volatile registers\r
712 //\r
713 SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);\r
714 //\r
715 // Place AP in HLT-loop\r
716 //\r
717 while (TRUE) {\r
718 DisableInterrupts ();\r
719 CpuSleep ();\r
720 CpuPause ();\r
721 }\r
722 }\r
723 while (TRUE) {\r
724 DisableInterrupts ();\r
725 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
726 //\r
727 // Place AP in MWAIT-loop\r
728 //\r
729 AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);\r
730 if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {\r
731 //\r
732 // Check AP start-up signal again.\r
733 // If AP start-up signal is not set, place AP into\r
734 // the specified C-state\r
735 //\r
736 AsmMwait (CpuMpData->ApTargetCState << 4, 0);\r
737 }\r
738 } else if (CpuMpData->ApLoopMode == ApInRunLoop) {\r
739 //\r
740 // Place AP in Run-loop\r
741 //\r
742 CpuPause ();\r
743 } else {\r
744 ASSERT (FALSE);\r
745 }\r
746\r
747 //\r
748 // If AP start-up signal is written, AP is waken up\r
749 // otherwise place AP in loop again\r
750 //\r
751 if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {\r
752 break;\r
753 }\r
754 }\r
755 }\r
756}\r
757\r
96f5920d
JF
758/**\r
759 Wait for AP wakeup and write AP start-up signal till AP is waken up.\r
760\r
761 @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal\r
762**/\r
763VOID\r
764WaitApWakeup (\r
765 IN volatile UINT32 *ApStartupSignalBuffer\r
766 )\r
767{\r
768 //\r
769 // If AP is waken up, StartupApSignal should be cleared.\r
770 // Otherwise, write StartupApSignal again till AP waken up.\r
771 //\r
772 while (InterlockedCompareExchange32 (\r
773 (UINT32 *) ApStartupSignalBuffer,\r
774 WAKEUP_AP_SIGNAL,\r
775 WAKEUP_AP_SIGNAL\r
776 ) != 0) {\r
777 CpuPause ();\r
778 }\r
779}\r
780\r
7c3f2a12
JF
781/**\r
782 This function will fill the exchange info structure.\r
783\r
784 @param[in] CpuMpData Pointer to CPU MP Data\r
785\r
786**/\r
787VOID\r
788FillExchangeInfoData (\r
789 IN CPU_MP_DATA *CpuMpData\r
790 )\r
791{\r
792 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
f32bfe6d
JW
793 UINTN Size;\r
794 IA32_SEGMENT_DESCRIPTOR *Selector;\r
7c3f2a12
JF
795\r
796 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
797 ExchangeInfo->Lock = 0;\r
798 ExchangeInfo->StackStart = CpuMpData->Buffer;\r
799 ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;\r
800 ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;\r
801 ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;\r
802\r
803 ExchangeInfo->CodeSegment = AsmReadCs ();\r
804 ExchangeInfo->DataSegment = AsmReadDs ();\r
805\r
806 ExchangeInfo->Cr3 = AsmReadCr3 ();\r
807\r
808 ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;\r
37676b9f 809 ExchangeInfo->ApIndex = 0;\r
0594ec41 810 ExchangeInfo->NumApsExecuting = 0;\r
46d4b885
JF
811 ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;\r
812 ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
7c3f2a12
JF
813 ExchangeInfo->CpuMpData = CpuMpData;\r
814\r
815 ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();\r
816\r
3b2928b4
MK
817 ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;\r
818\r
7c3f2a12
JF
819 //\r
820 // Get the BSP's data of GDT and IDT\r
821 //\r
822 AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);\r
823 AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);\r
f32bfe6d
JW
824\r
825 //\r
826 // Find a 32-bit code segment\r
827 //\r
828 Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;\r
829 Size = ExchangeInfo->GdtrProfile.Limit + 1;\r
830 while (Size > 0) {\r
831 if (Selector->Bits.L == 0 && Selector->Bits.Type >= 8) {\r
832 ExchangeInfo->ModeTransitionSegment =\r
833 (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);\r
834 break;\r
835 }\r
836 Selector += 1;\r
837 Size -= sizeof (IA32_SEGMENT_DESCRIPTOR);\r
838 }\r
839\r
840 //\r
841 // Copy all 32-bit code and 64-bit code into memory with type of\r
842 // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.\r
843 //\r
66833b2a 844 if (CpuMpData->WakeupBufferHigh != 0) {\r
f32bfe6d
JW
845 Size = CpuMpData->AddressMap.RendezvousFunnelSize -\r
846 CpuMpData->AddressMap.ModeTransitionOffset;\r
847 CopyMem (\r
66833b2a 848 (VOID *)CpuMpData->WakeupBufferHigh,\r
f32bfe6d
JW
849 CpuMpData->AddressMap.RendezvousFunnelAddress +\r
850 CpuMpData->AddressMap.ModeTransitionOffset,\r
851 Size\r
852 );\r
853\r
66833b2a 854 ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;\r
f32bfe6d
JW
855 } else {\r
856 ExchangeInfo->ModeTransitionMemory = (UINT32)\r
857 (ExchangeInfo->BufferStart + CpuMpData->AddressMap.ModeTransitionOffset);\r
858 }\r
69dfa8d8
JW
859\r
860 ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +\r
861 (UINT32)ExchangeInfo->ModeOffset -\r
862 (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;\r
863 ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;\r
7c3f2a12
JF
864}\r
865\r
6e1987f1
LE
866/**\r
867 Helper function that waits until the finished AP count reaches the specified\r
868 limit, or the specified timeout elapses (whichever comes first).\r
869\r
870 @param[in] CpuMpData Pointer to CPU MP Data.\r
871 @param[in] FinishedApLimit The number of finished APs to wait for.\r
872 @param[in] TimeLimit The number of microseconds to wait for.\r
873**/\r
874VOID\r
875TimedWaitForApFinish (\r
876 IN CPU_MP_DATA *CpuMpData,\r
877 IN UINT32 FinishedApLimit,\r
878 IN UINT32 TimeLimit\r
879 );\r
880\r
a6b3d753
SZ
881/**\r
882 Get available system memory below 1MB by specified size.\r
883\r
884 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
885**/\r
886VOID\r
887BackupAndPrepareWakeupBuffer(\r
888 IN CPU_MP_DATA *CpuMpData\r
889 )\r
890{\r
891 CopyMem (\r
892 (VOID *) CpuMpData->BackupBuffer,\r
893 (VOID *) CpuMpData->WakeupBuffer,\r
894 CpuMpData->BackupBufferSize\r
895 );\r
896 CopyMem (\r
897 (VOID *) CpuMpData->WakeupBuffer,\r
898 (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,\r
899 CpuMpData->AddressMap.RendezvousFunnelSize\r
900 );\r
901}\r
902\r
903/**\r
904 Restore wakeup buffer data.\r
905\r
906 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
907**/\r
908VOID\r
909RestoreWakeupBuffer(\r
910 IN CPU_MP_DATA *CpuMpData\r
911 )\r
912{\r
913 CopyMem (\r
914 (VOID *) CpuMpData->WakeupBuffer,\r
915 (VOID *) CpuMpData->BackupBuffer,\r
916 CpuMpData->BackupBufferSize\r
917 );\r
918}\r
919\r
920/**\r
921 Allocate reset vector buffer.\r
922\r
923 @param[in, out] CpuMpData The pointer to CPU MP Data structure.\r
924**/\r
925VOID\r
926AllocateResetVector (\r
927 IN OUT CPU_MP_DATA *CpuMpData\r
928 )\r
929{\r
930 UINTN ApResetVectorSize;\r
931\r
932 if (CpuMpData->WakeupBuffer == (UINTN) -1) {\r
933 ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +\r
934 sizeof (MP_CPU_EXCHANGE_INFO);\r
935\r
936 CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);\r
937 CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)\r
938 (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);\r
66833b2a
JW
939 CpuMpData->WakeupBufferHigh = GetModeTransitionBuffer (\r
940 CpuMpData->AddressMap.RendezvousFunnelSize -\r
941 CpuMpData->AddressMap.ModeTransitionOffset\r
942 );\r
a6b3d753
SZ
943 }\r
944 BackupAndPrepareWakeupBuffer (CpuMpData);\r
945}\r
946\r
947/**\r
948 Free AP reset vector buffer.\r
949\r
950 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
951**/\r
952VOID\r
953FreeResetVector (\r
954 IN CPU_MP_DATA *CpuMpData\r
955 )\r
956{\r
957 RestoreWakeupBuffer (CpuMpData);\r
958}\r
959\r
96f5920d
JF
960/**\r
961 This function will be called by BSP to wakeup AP.\r
962\r
963 @param[in] CpuMpData Pointer to CPU MP Data\r
964 @param[in] Broadcast TRUE: Send broadcast IPI to all APs\r
965 FALSE: Send IPI to AP by ApicId\r
966 @param[in] ProcessorNumber The handle number of specified processor\r
967 @param[in] Procedure The function to be invoked by AP\r
968 @param[in] ProcedureArgument The argument to be passed into AP function\r
969**/\r
970VOID\r
971WakeUpAP (\r
972 IN CPU_MP_DATA *CpuMpData,\r
973 IN BOOLEAN Broadcast,\r
974 IN UINTN ProcessorNumber,\r
975 IN EFI_AP_PROCEDURE Procedure, OPTIONAL\r
976 IN VOID *ProcedureArgument OPTIONAL\r
977 )\r
978{\r
979 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
980 UINTN Index;\r
981 CPU_AP_DATA *CpuData;\r
982 BOOLEAN ResetVectorRequired;\r
31a1e4da 983 CPU_INFO_IN_HOB *CpuInfoInHob;\r
96f5920d
JF
984\r
985 CpuMpData->FinishedCount = 0;\r
986 ResetVectorRequired = FALSE;\r
987\r
58942277 988 if (CpuMpData->WakeUpByInitSipiSipi ||\r
96f5920d
JF
989 CpuMpData->InitFlag != ApInitDone) {\r
990 ResetVectorRequired = TRUE;\r
991 AllocateResetVector (CpuMpData);\r
992 FillExchangeInfoData (CpuMpData);\r
ffab2442 993 SaveLocalApicTimerSetting (CpuMpData);\r
58942277
ED
994 }\r
995\r
996 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
96f5920d
JF
997 //\r
998 // Get AP target C-state each time when waking up AP,\r
999 // for it maybe updated by platform again\r
1000 //\r
1001 CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);\r
1002 }\r
1003\r
1004 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
1005\r
1006 if (Broadcast) {\r
1007 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1008 if (Index != CpuMpData->BspNumber) {\r
1009 CpuData = &CpuMpData->CpuData[Index];\r
1010 CpuData->ApFunction = (UINTN) Procedure;\r
1011 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
1012 SetApState (CpuData, CpuStateReady);\r
1013 if (CpuMpData->InitFlag != ApInitConfig) {\r
1014 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
1015 }\r
1016 }\r
1017 }\r
1018 if (ResetVectorRequired) {\r
1019 //\r
1020 // Wakeup all APs\r
1021 //\r
1022 SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);\r
1023 }\r
c1192210
JF
1024 if (CpuMpData->InitFlag == ApInitConfig) {\r
1025 //\r
86121874
ED
1026 // Here support two methods to collect AP count through adjust\r
1027 // PcdCpuApInitTimeOutInMicroSeconds values.\r
1028 //\r
1029 // one way is set a value to just let the first AP to start the\r
1030 // initialization, then through the later while loop to wait all Aps\r
1031 // finsh the initialization.\r
1032 // The other way is set a value to let all APs finished the initialzation.\r
1033 // In this case, the later while loop is useless.\r
1034 //\r
1035 TimedWaitForApFinish (\r
1036 CpuMpData,\r
1037 PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,\r
1038 PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)\r
1039 );\r
0594ec41
ED
1040\r
1041 while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {\r
1042 CpuPause();\r
1043 }\r
c1192210 1044 } else {\r
96f5920d
JF
1045 //\r
1046 // Wait all APs waken up if this is not the 1st broadcast of SIPI\r
1047 //\r
1048 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1049 CpuData = &CpuMpData->CpuData[Index];\r
1050 if (Index != CpuMpData->BspNumber) {\r
1051 WaitApWakeup (CpuData->StartupApSignal);\r
1052 }\r
1053 }\r
1054 }\r
1055 } else {\r
1056 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1057 CpuData->ApFunction = (UINTN) Procedure;\r
1058 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
1059 SetApState (CpuData, CpuStateReady);\r
1060 //\r
1061 // Wakeup specified AP\r
1062 //\r
1063 ASSERT (CpuMpData->InitFlag != ApInitConfig);\r
1064 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
1065 if (ResetVectorRequired) {\r
31a1e4da 1066 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
96f5920d 1067 SendInitSipiSipi (\r
31a1e4da 1068 CpuInfoInHob[ProcessorNumber].ApicId,\r
96f5920d
JF
1069 (UINT32) ExchangeInfo->BufferStart\r
1070 );\r
1071 }\r
1072 //\r
1073 // Wait specified AP waken up\r
1074 //\r
1075 WaitApWakeup (CpuData->StartupApSignal);\r
1076 }\r
1077\r
1078 if (ResetVectorRequired) {\r
1079 FreeResetVector (CpuMpData);\r
1080 }\r
58942277
ED
1081\r
1082 //\r
1083 // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with\r
1084 // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by\r
1085 // S3SmmInitDone Ppi.\r
1086 //\r
1087 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);\r
96f5920d
JF
1088}\r
1089\r
08085f08
JF
1090/**\r
1091 Calculate timeout value and return the current performance counter value.\r
1092\r
1093 Calculate the number of performance counter ticks required for a timeout.\r
1094 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1095 as infinity.\r
1096\r
1097 @param[in] TimeoutInMicroseconds Timeout value in microseconds.\r
1098 @param[out] CurrentTime Returns the current value of the performance counter.\r
1099\r
1100 @return Expected time stamp counter for timeout.\r
1101 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1102 as infinity.\r
1103\r
1104**/\r
1105UINT64\r
1106CalculateTimeout (\r
1107 IN UINTN TimeoutInMicroseconds,\r
1108 OUT UINT64 *CurrentTime\r
1109 )\r
1110{\r
48cfb7c0
ED
1111 UINT64 TimeoutInSeconds;\r
1112 UINT64 TimestampCounterFreq;\r
1113\r
08085f08
JF
1114 //\r
1115 // Read the current value of the performance counter\r
1116 //\r
1117 *CurrentTime = GetPerformanceCounter ();\r
1118\r
1119 //\r
1120 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1121 // as infinity.\r
1122 //\r
1123 if (TimeoutInMicroseconds == 0) {\r
1124 return 0;\r
1125 }\r
1126\r
1127 //\r
1128 // GetPerformanceCounterProperties () returns the timestamp counter's frequency\r
7367cc6c 1129 // in Hz.\r
48cfb7c0
ED
1130 //\r
1131 TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);\r
1132\r
08085f08 1133 //\r
48cfb7c0
ED
1134 // Check the potential overflow before calculate the number of ticks for the timeout value.\r
1135 //\r
1136 if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {\r
1137 //\r
1138 // Convert microseconds into seconds if direct multiplication overflows\r
1139 //\r
1140 TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);\r
1141 //\r
1142 // Assertion if the final tick count exceeds MAX_UINT64\r
1143 //\r
1144 ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);\r
1145 return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);\r
1146 } else {\r
1147 //\r
1148 // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide\r
1149 // it by 1,000,000, to get the number of ticks for the timeout value.\r
1150 //\r
1151 return DivU64x32 (\r
1152 MultU64x64 (\r
1153 TimestampCounterFreq,\r
1154 TimeoutInMicroseconds\r
1155 ),\r
1156 1000000\r
1157 );\r
1158 }\r
08085f08
JF
1159}\r
1160\r
1161/**\r
1162 Checks whether timeout expires.\r
1163\r
1164 Check whether the number of elapsed performance counter ticks required for\r
1165 a timeout condition has been reached.\r
1166 If Timeout is zero, which means infinity, return value is always FALSE.\r
1167\r
1168 @param[in, out] PreviousTime On input, the value of the performance counter\r
1169 when it was last read.\r
1170 On output, the current value of the performance\r
1171 counter\r
1172 @param[in] TotalTime The total amount of elapsed time in performance\r
1173 counter ticks.\r
1174 @param[in] Timeout The number of performance counter ticks required\r
1175 to reach a timeout condition.\r
1176\r
1177 @retval TRUE A timeout condition has been reached.\r
1178 @retval FALSE A timeout condition has not been reached.\r
1179\r
1180**/\r
1181BOOLEAN\r
1182CheckTimeout (\r
1183 IN OUT UINT64 *PreviousTime,\r
1184 IN UINT64 *TotalTime,\r
1185 IN UINT64 Timeout\r
1186 )\r
1187{\r
1188 UINT64 Start;\r
1189 UINT64 End;\r
1190 UINT64 CurrentTime;\r
1191 INT64 Delta;\r
1192 INT64 Cycle;\r
1193\r
1194 if (Timeout == 0) {\r
1195 return FALSE;\r
1196 }\r
1197 GetPerformanceCounterProperties (&Start, &End);\r
1198 Cycle = End - Start;\r
1199 if (Cycle < 0) {\r
1200 Cycle = -Cycle;\r
1201 }\r
1202 Cycle++;\r
1203 CurrentTime = GetPerformanceCounter();\r
1204 Delta = (INT64) (CurrentTime - *PreviousTime);\r
1205 if (Start > End) {\r
1206 Delta = -Delta;\r
1207 }\r
1208 if (Delta < 0) {\r
1209 Delta += Cycle;\r
1210 }\r
1211 *TotalTime += Delta;\r
1212 *PreviousTime = CurrentTime;\r
1213 if (*TotalTime > Timeout) {\r
1214 return TRUE;\r
1215 }\r
1216 return FALSE;\r
1217}\r
1218\r
6e1987f1
LE
1219/**\r
1220 Helper function that waits until the finished AP count reaches the specified\r
1221 limit, or the specified timeout elapses (whichever comes first).\r
1222\r
1223 @param[in] CpuMpData Pointer to CPU MP Data.\r
1224 @param[in] FinishedApLimit The number of finished APs to wait for.\r
1225 @param[in] TimeLimit The number of microseconds to wait for.\r
1226**/\r
1227VOID\r
1228TimedWaitForApFinish (\r
1229 IN CPU_MP_DATA *CpuMpData,\r
1230 IN UINT32 FinishedApLimit,\r
1231 IN UINT32 TimeLimit\r
1232 )\r
1233{\r
1234 //\r
1235 // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0\r
1236 // "infinity", so check for (TimeLimit == 0) explicitly.\r
1237 //\r
1238 if (TimeLimit == 0) {\r
1239 return;\r
1240 }\r
1241\r
1242 CpuMpData->TotalTime = 0;\r
1243 CpuMpData->ExpectedTime = CalculateTimeout (\r
1244 TimeLimit,\r
1245 &CpuMpData->CurrentTime\r
1246 );\r
1247 while (CpuMpData->FinishedCount < FinishedApLimit &&\r
1248 !CheckTimeout (\r
1249 &CpuMpData->CurrentTime,\r
1250 &CpuMpData->TotalTime,\r
1251 CpuMpData->ExpectedTime\r
1252 )) {\r
1253 CpuPause ();\r
1254 }\r
1255\r
1256 if (CpuMpData->FinishedCount >= FinishedApLimit) {\r
1257 DEBUG ((\r
1258 DEBUG_VERBOSE,\r
1259 "%a: reached FinishedApLimit=%u in %Lu microseconds\n",\r
1260 __FUNCTION__,\r
1261 FinishedApLimit,\r
1262 DivU64x64Remainder (\r
1263 MultU64x32 (CpuMpData->TotalTime, 1000000),\r
1264 GetPerformanceCounterProperties (NULL, NULL),\r
1265 NULL\r
1266 )\r
1267 ));\r
1268 }\r
1269}\r
1270\r
08085f08
JF
1271/**\r
1272 Reset an AP to Idle state.\r
1273\r
1274 Any task being executed by the AP will be aborted and the AP\r
1275 will be waiting for a new task in Wait-For-SIPI state.\r
1276\r
1277 @param[in] ProcessorNumber The handle number of processor.\r
1278**/\r
1279VOID\r
1280ResetProcessorToIdleState (\r
1281 IN UINTN ProcessorNumber\r
1282 )\r
1283{\r
1284 CPU_MP_DATA *CpuMpData;\r
1285\r
1286 CpuMpData = GetCpuMpData ();\r
1287\r
cb33bde4 1288 CpuMpData->InitFlag = ApInitReconfig;\r
08085f08 1289 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL);\r
cb33bde4
JF
1290 while (CpuMpData->FinishedCount < 1) {\r
1291 CpuPause ();\r
1292 }\r
1293 CpuMpData->InitFlag = ApInitDone;\r
08085f08
JF
1294\r
1295 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
1296}\r
1297\r
1298/**\r
1299 Searches for the next waiting AP.\r
1300\r
1301 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().\r
1302\r
1303 @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.\r
1304\r
1305 @retval EFI_SUCCESS The next waiting AP has been found.\r
1306 @retval EFI_NOT_FOUND No waiting AP exists.\r
1307\r
1308**/\r
1309EFI_STATUS\r
1310GetNextWaitingProcessorNumber (\r
1311 OUT UINTN *NextProcessorNumber\r
1312 )\r
1313{\r
1314 UINTN ProcessorNumber;\r
1315 CPU_MP_DATA *CpuMpData;\r
1316\r
1317 CpuMpData = GetCpuMpData ();\r
1318\r
1319 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1320 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1321 *NextProcessorNumber = ProcessorNumber;\r
1322 return EFI_SUCCESS;\r
1323 }\r
1324 }\r
1325\r
1326 return EFI_NOT_FOUND;\r
1327}\r
1328\r
1329/** Checks status of specified AP.\r
1330\r
1331 This function checks whether the specified AP has finished the task assigned\r
1332 by StartupThisAP(), and whether timeout expires.\r
1333\r
1334 @param[in] ProcessorNumber The handle number of processor.\r
1335\r
1336 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().\r
1337 @retval EFI_TIMEOUT The timeout expires.\r
1338 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.\r
1339**/\r
1340EFI_STATUS\r
1341CheckThisAP (\r
1342 IN UINTN ProcessorNumber\r
1343 )\r
1344{\r
1345 CPU_MP_DATA *CpuMpData;\r
1346 CPU_AP_DATA *CpuData;\r
1347\r
1348 CpuMpData = GetCpuMpData ();\r
1349 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1350\r
1351 //\r
1352 // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.\r
1353 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
1354 // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.\r
1355 //\r
1356 //\r
1357 // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.\r
1358 //\r
1359 if (GetApState(CpuData) == CpuStateFinished) {\r
1360 if (CpuData->Finished != NULL) {\r
1361 *(CpuData->Finished) = TRUE;\r
1362 }\r
1363 SetApState (CpuData, CpuStateIdle);\r
1364 return EFI_SUCCESS;\r
1365 } else {\r
1366 //\r
1367 // If timeout expires for StartupThisAP(), report timeout.\r
1368 //\r
1369 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {\r
1370 if (CpuData->Finished != NULL) {\r
1371 *(CpuData->Finished) = FALSE;\r
1372 }\r
1373 //\r
1374 // Reset failed AP to idle state\r
1375 //\r
1376 ResetProcessorToIdleState (ProcessorNumber);\r
1377\r
1378 return EFI_TIMEOUT;\r
1379 }\r
1380 }\r
1381 return EFI_NOT_READY;\r
1382}\r
1383\r
1384/**\r
1385 Checks status of all APs.\r
1386\r
1387 This function checks whether all APs have finished task assigned by StartupAllAPs(),\r
1388 and whether timeout expires.\r
1389\r
1390 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().\r
1391 @retval EFI_TIMEOUT The timeout expires.\r
1392 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.\r
1393**/\r
1394EFI_STATUS\r
1395CheckAllAPs (\r
1396 VOID\r
1397 )\r
1398{\r
1399 UINTN ProcessorNumber;\r
1400 UINTN NextProcessorNumber;\r
1401 UINTN ListIndex;\r
1402 EFI_STATUS Status;\r
1403 CPU_MP_DATA *CpuMpData;\r
1404 CPU_AP_DATA *CpuData;\r
1405\r
1406 CpuMpData = GetCpuMpData ();\r
1407\r
1408 NextProcessorNumber = 0;\r
1409\r
1410 //\r
1411 // Go through all APs that are responsible for the StartupAllAPs().\r
1412 //\r
1413 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1414 if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1415 continue;\r
1416 }\r
1417\r
1418 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1419 //\r
1420 // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.\r
1421 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
1422 // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.\r
1423 //\r
1424 if (GetApState(CpuData) == CpuStateFinished) {\r
1425 CpuMpData->RunningCount ++;\r
1426 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
1427 SetApState(CpuData, CpuStateIdle);\r
1428\r
1429 //\r
1430 // If in Single Thread mode, then search for the next waiting AP for execution.\r
1431 //\r
1432 if (CpuMpData->SingleThread) {\r
1433 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);\r
1434\r
1435 if (!EFI_ERROR (Status)) {\r
1436 WakeUpAP (\r
1437 CpuMpData,\r
1438 FALSE,\r
1439 (UINT32) NextProcessorNumber,\r
1440 CpuMpData->Procedure,\r
1441 CpuMpData->ProcArguments\r
1442 );\r
1443 }\r
1444 }\r
1445 }\r
1446 }\r
1447\r
1448 //\r
1449 // If all APs finish, return EFI_SUCCESS.\r
1450 //\r
1451 if (CpuMpData->RunningCount == CpuMpData->StartCount) {\r
1452 return EFI_SUCCESS;\r
1453 }\r
1454\r
1455 //\r
1456 // If timeout expires, report timeout.\r
1457 //\r
1458 if (CheckTimeout (\r
1459 &CpuMpData->CurrentTime,\r
1460 &CpuMpData->TotalTime,\r
1461 CpuMpData->ExpectedTime)\r
1462 ) {\r
1463 //\r
1464 // If FailedCpuList is not NULL, record all failed APs in it.\r
1465 //\r
1466 if (CpuMpData->FailedCpuList != NULL) {\r
1467 *CpuMpData->FailedCpuList =\r
1468 AllocatePool ((CpuMpData->StartCount - CpuMpData->FinishedCount + 1) * sizeof (UINTN));\r
1469 ASSERT (*CpuMpData->FailedCpuList != NULL);\r
1470 }\r
1471 ListIndex = 0;\r
1472\r
1473 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1474 //\r
1475 // Check whether this processor is responsible for StartupAllAPs().\r
1476 //\r
1477 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1478 //\r
1479 // Reset failed APs to idle state\r
1480 //\r
1481 ResetProcessorToIdleState (ProcessorNumber);\r
1482 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
1483 if (CpuMpData->FailedCpuList != NULL) {\r
1484 (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;\r
1485 }\r
1486 }\r
1487 }\r
1488 if (CpuMpData->FailedCpuList != NULL) {\r
1489 (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;\r
1490 }\r
1491 return EFI_TIMEOUT;\r
1492 }\r
1493 return EFI_NOT_READY;\r
1494}\r
1495\r
3e8ad6bd
JF
1496/**\r
1497 MP Initialize Library initialization.\r
1498\r
1499 This service will allocate AP reset vector and wakeup all APs to do APs\r
1500 initialization.\r
1501\r
1502 This service must be invoked before all other MP Initialize Library\r
1503 service are invoked.\r
1504\r
1505 @retval EFI_SUCCESS MP initialization succeeds.\r
1506 @retval Others MP initialization fails.\r
1507\r
1508**/\r
1509EFI_STATUS\r
1510EFIAPI\r
1511MpInitLibInitialize (\r
1512 VOID\r
1513 )\r
1514{\r
6a2ee2bb
JF
1515 CPU_MP_DATA *OldCpuMpData;\r
1516 CPU_INFO_IN_HOB *CpuInfoInHob;\r
e59f8f6b
JF
1517 UINT32 MaxLogicalProcessorNumber;\r
1518 UINT32 ApStackSize;\r
f7f85d83 1519 MP_ASSEMBLY_ADDRESS_MAP AddressMap;\r
c563077a 1520 CPU_VOLATILE_REGISTERS VolatileRegisters;\r
e59f8f6b 1521 UINTN BufferSize;\r
9ebcf0f4 1522 UINT32 MonitorFilterSize;\r
e59f8f6b
JF
1523 VOID *MpBuffer;\r
1524 UINTN Buffer;\r
1525 CPU_MP_DATA *CpuMpData;\r
9ebcf0f4 1526 UINT8 ApLoopMode;\r
e59f8f6b 1527 UINT8 *MonitorBuffer;\r
03a1a925 1528 UINTN Index;\r
f7f85d83 1529 UINTN ApResetVectorSize;\r
e59f8f6b 1530 UINTN BackupBufferAddr;\r
c563077a 1531 UINTN ApIdtBase;\r
6936ee03 1532 VOID *MicrocodePatchInRam;\r
6a2ee2bb
JF
1533\r
1534 OldCpuMpData = GetCpuMpDataFromGuidedHob ();\r
1535 if (OldCpuMpData == NULL) {\r
1536 MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);\r
1537 } else {\r
1538 MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;\r
1539 }\r
14e8137c 1540 ASSERT (MaxLogicalProcessorNumber != 0);\r
f7f85d83
JF
1541\r
1542 AsmGetAddressMap (&AddressMap);\r
1543 ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);\r
e59f8f6b 1544 ApStackSize = PcdGet32(PcdCpuApStackSize);\r
9ebcf0f4
JF
1545 ApLoopMode = GetApLoopMode (&MonitorFilterSize);\r
1546\r
c563077a
RN
1547 //\r
1548 // Save BSP's Control registers for APs\r
1549 //\r
1550 SaveVolatileRegisters (&VolatileRegisters);\r
1551\r
e59f8f6b
JF
1552 BufferSize = ApStackSize * MaxLogicalProcessorNumber;\r
1553 BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;\r
e59f8f6b 1554 BufferSize += ApResetVectorSize;\r
c563077a
RN
1555 BufferSize = ALIGN_VALUE (BufferSize, 8);\r
1556 BufferSize += VolatileRegisters.Idtr.Limit + 1;\r
1557 BufferSize += sizeof (CPU_MP_DATA);\r
e59f8f6b
JF
1558 BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;\r
1559 MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));\r
1560 ASSERT (MpBuffer != NULL);\r
1561 ZeroMem (MpBuffer, BufferSize);\r
1562 Buffer = (UINTN) MpBuffer;\r
1563\r
c563077a
RN
1564 //\r
1565 // The layout of the Buffer is as below:\r
1566 //\r
1567 // +--------------------+ <-- Buffer\r
1568 // AP Stacks (N)\r
1569 // +--------------------+ <-- MonitorBuffer\r
1570 // AP Monitor Filters (N)\r
1571 // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)\r
1572 // Backup Buffer\r
1573 // +--------------------+\r
1574 // Padding\r
1575 // +--------------------+ <-- ApIdtBase (8-byte boundary)\r
1576 // AP IDT All APs share one separate IDT. So AP can get address of CPU_MP_DATA from IDT Base.\r
1577 // +--------------------+ <-- CpuMpData\r
1578 // CPU_MP_DATA\r
1579 // +--------------------+ <-- CpuMpData->CpuData\r
1580 // CPU_AP_DATA (N)\r
1581 // +--------------------+ <-- CpuMpData->CpuInfoInHob\r
1582 // CPU_INFO_IN_HOB (N)\r
1583 // +--------------------+\r
1584 //\r
e59f8f6b
JF
1585 MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);\r
1586 BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;\r
c563077a
RN
1587 ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSize, 8);\r
1588 CpuMpData = (CPU_MP_DATA *) (ApIdtBase + VolatileRegisters.Idtr.Limit + 1);\r
e59f8f6b
JF
1589 CpuMpData->Buffer = Buffer;\r
1590 CpuMpData->CpuApStackSize = ApStackSize;\r
1591 CpuMpData->BackupBuffer = BackupBufferAddr;\r
1592 CpuMpData->BackupBufferSize = ApResetVectorSize;\r
e59f8f6b
JF
1593 CpuMpData->WakeupBuffer = (UINTN) -1;\r
1594 CpuMpData->CpuCount = 1;\r
1595 CpuMpData->BspNumber = 0;\r
1596 CpuMpData->WaitEvent = NULL;\r
41be0da5 1597 CpuMpData->SwitchBspFlag = FALSE;\r
e59f8f6b
JF
1598 CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);\r
1599 CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);\r
1e3f7a37 1600 CpuMpData->MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize);\r
6936ee03
ED
1601 //\r
1602 // If platform has more than one CPU, relocate microcode to memory to reduce\r
1603 // loading microcode time.\r
1604 //\r
1605 MicrocodePatchInRam = NULL;\r
1606 if (MaxLogicalProcessorNumber > 1) {\r
1607 MicrocodePatchInRam = AllocatePages (\r
1608 EFI_SIZE_TO_PAGES (\r
1609 (UINTN)CpuMpData->MicrocodePatchRegionSize\r
1610 )\r
1611 );\r
1612 }\r
1613 if (MicrocodePatchInRam == NULL) {\r
1614 //\r
1615 // there is only one processor, or no microcode patch is available, or\r
1616 // memory allocation failed\r
1617 //\r
1618 CpuMpData->MicrocodePatchAddress = PcdGet64 (PcdCpuMicrocodePatchAddress);\r
1619 } else {\r
1620 //\r
1621 // there are multiple processors, and a microcode patch is available, and\r
1622 // memory allocation succeeded\r
1623 //\r
1624 CopyMem (\r
1625 MicrocodePatchInRam,\r
1626 (VOID *)(UINTN)PcdGet64 (PcdCpuMicrocodePatchAddress),\r
1627 (UINTN)CpuMpData->MicrocodePatchRegionSize\r
1628 );\r
1629 CpuMpData->MicrocodePatchAddress = (UINTN)MicrocodePatchInRam;\r
1630 }\r
1631\r
e59f8f6b 1632 InitializeSpinLock(&CpuMpData->MpLock);\r
c563077a
RN
1633\r
1634 //\r
1635 // Make sure no memory usage outside of the allocated buffer.\r
e59f8f6b 1636 //\r
c563077a
RN
1637 ASSERT ((CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==\r
1638 Buffer + BufferSize);\r
1639\r
1640 //\r
1641 // Duplicate BSP's IDT to APs.\r
1642 // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1\r
68cb9330 1643 //\r
c563077a
RN
1644 CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);\r
1645 VolatileRegisters.Idtr.Base = ApIdtBase;\r
1646 CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));\r
68cb9330 1647 //\r
03a1a925
JF
1648 // Set BSP basic information\r
1649 //\r
f2655dcf 1650 InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);\r
03a1a925 1651 //\r
e59f8f6b
JF
1652 // Save assembly code information\r
1653 //\r
1654 CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));\r
1655 //\r
1656 // Finally set AP loop mode\r
1657 //\r
1658 CpuMpData->ApLoopMode = ApLoopMode;\r
1659 DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));\r
58942277
ED
1660\r
1661 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);\r
1662\r
e59f8f6b 1663 //\r
03a1a925
JF
1664 // Set up APs wakeup signal buffer\r
1665 //\r
1666 for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {\r
1667 CpuMpData->CpuData[Index].StartupApSignal =\r
1668 (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);\r
1669 }\r
94f63c76
JF
1670 //\r
1671 // Load Microcode on BSP\r
1672 //\r
2a089134 1673 MicrocodeDetect (CpuMpData, TRUE);\r
94f63c76 1674 //\r
e59f8f6b
JF
1675 // Store BSP's MTRR setting\r
1676 //\r
1677 MtrrGetAllMtrrs (&CpuMpData->MtrrTable);\r
9d64a9fd
JF
1678 //\r
1679 // Enable the local APIC for Virtual Wire Mode.\r
1680 //\r
1681 ProgramVirtualWireMode ();\r
e59f8f6b 1682\r
6a2ee2bb 1683 if (OldCpuMpData == NULL) {\r
14e8137c
JF
1684 if (MaxLogicalProcessorNumber > 1) {\r
1685 //\r
1686 // Wakeup all APs and calculate the processor count in system\r
1687 //\r
1688 CollectProcessorCount (CpuMpData);\r
1689 }\r
6a2ee2bb
JF
1690 } else {\r
1691 //\r
1692 // APs have been wakeup before, just get the CPU Information\r
1693 // from HOB\r
1694 //\r
1695 CpuMpData->CpuCount = OldCpuMpData->CpuCount;\r
1696 CpuMpData->BspNumber = OldCpuMpData->BspNumber;\r
1697 CpuMpData->InitFlag = ApInitReconfig;\r
31a1e4da
JF
1698 CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;\r
1699 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
6a2ee2bb
JF
1700 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1701 InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);\r
71d8226a 1702 if (CpuInfoInHob[Index].InitialApicId >= 255 || Index > 254) {\r
6a2ee2bb
JF
1703 CpuMpData->X2ApicEnable = TRUE;\r
1704 }\r
31a1e4da 1705 CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;\r
6a2ee2bb 1706 CpuMpData->CpuData[Index].ApFunction = 0;\r
c563077a 1707 CopyMem (&CpuMpData->CpuData[Index].VolatileRegisters, &VolatileRegisters, sizeof (CPU_VOLATILE_REGISTERS));\r
6a2ee2bb 1708 }\r
14e8137c
JF
1709 if (MaxLogicalProcessorNumber > 1) {\r
1710 //\r
1711 // Wakeup APs to do some AP initialize sync\r
1712 //\r
1713 WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData);\r
1714 //\r
1715 // Wait for all APs finished initialization\r
1716 //\r
1717 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
1718 CpuPause ();\r
1719 }\r
1720 CpuMpData->InitFlag = ApInitDone;\r
1721 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1722 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
1723 }\r
6a2ee2bb
JF
1724 }\r
1725 }\r
93ca4c0f
JF
1726\r
1727 //\r
1728 // Initialize global data for MP support\r
1729 //\r
1730 InitMpGlobalData (CpuMpData);\r
1731\r
f7f85d83 1732 return EFI_SUCCESS;\r
3e8ad6bd
JF
1733}\r
1734\r
1735/**\r
1736 Gets detailed MP-related information on the requested processor at the\r
1737 instant this call is made. This service may only be called from the BSP.\r
1738\r
1739 @param[in] ProcessorNumber The handle number of processor.\r
1740 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for\r
1741 the requested processor is deposited.\r
1742 @param[out] HealthData Return processor health data.\r
1743\r
1744 @retval EFI_SUCCESS Processor information was returned.\r
1745 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
1746 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.\r
1747 @retval EFI_NOT_FOUND The processor with the handle specified by\r
1748 ProcessorNumber does not exist in the platform.\r
1749 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
1750\r
1751**/\r
1752EFI_STATUS\r
1753EFIAPI\r
1754MpInitLibGetProcessorInfo (\r
1755 IN UINTN ProcessorNumber,\r
1756 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,\r
1757 OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL\r
1758 )\r
1759{\r
ad52f25e
JF
1760 CPU_MP_DATA *CpuMpData;\r
1761 UINTN CallerNumber;\r
31a1e4da 1762 CPU_INFO_IN_HOB *CpuInfoInHob;\r
ad52f25e
JF
1763\r
1764 CpuMpData = GetCpuMpData ();\r
31a1e4da 1765 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
ad52f25e
JF
1766\r
1767 //\r
1768 // Check whether caller processor is BSP\r
1769 //\r
1770 MpInitLibWhoAmI (&CallerNumber);\r
1771 if (CallerNumber != CpuMpData->BspNumber) {\r
1772 return EFI_DEVICE_ERROR;\r
1773 }\r
1774\r
1775 if (ProcessorInfoBuffer == NULL) {\r
1776 return EFI_INVALID_PARAMETER;\r
1777 }\r
1778\r
1779 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1780 return EFI_NOT_FOUND;\r
1781 }\r
1782\r
31a1e4da 1783 ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;\r
ad52f25e
JF
1784 ProcessorInfoBuffer->StatusFlag = 0;\r
1785 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1786 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;\r
1787 }\r
1788 if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {\r
1789 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;\r
1790 }\r
1791 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
1792 ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;\r
1793 } else {\r
1794 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;\r
1795 }\r
1796\r
1797 //\r
1798 // Get processor location information\r
1799 //\r
262128e5 1800 GetProcessorLocationByApicId (\r
31a1e4da 1801 CpuInfoInHob[ProcessorNumber].ApicId,\r
73152f19
LD
1802 &ProcessorInfoBuffer->Location.Package,\r
1803 &ProcessorInfoBuffer->Location.Core,\r
1804 &ProcessorInfoBuffer->Location.Thread\r
1805 );\r
ad52f25e
JF
1806\r
1807 if (HealthData != NULL) {\r
31a1e4da 1808 HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;\r
ad52f25e
JF
1809 }\r
1810\r
1811 return EFI_SUCCESS;\r
3e8ad6bd 1812}\r
ad52f25e 1813\r
41be0da5
JF
1814/**\r
1815 Worker function to switch the requested AP to be the BSP from that point onward.\r
1816\r
1817 @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.\r
1818 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an\r
1819 enabled AP. Otherwise, it will be disabled.\r
1820\r
1821 @retval EFI_SUCCESS BSP successfully switched.\r
7367cc6c 1822 @retval others Failed to switch BSP.\r
41be0da5
JF
1823\r
1824**/\r
1825EFI_STATUS\r
1826SwitchBSPWorker (\r
1827 IN UINTN ProcessorNumber,\r
1828 IN BOOLEAN EnableOldBSP\r
1829 )\r
1830{\r
1831 CPU_MP_DATA *CpuMpData;\r
1832 UINTN CallerNumber;\r
1833 CPU_STATE State;\r
1834 MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;\r
a8d75a18 1835 BOOLEAN OldInterruptState;\r
26b43433 1836 BOOLEAN OldTimerInterruptState;\r
a8d75a18 1837\r
26b43433
JF
1838 //\r
1839 // Save and Disable Local APIC timer interrupt\r
1840 //\r
1841 OldTimerInterruptState = GetApicTimerInterruptState ();\r
1842 DisableApicTimerInterrupt ();\r
a8d75a18
JF
1843 //\r
1844 // Before send both BSP and AP to a procedure to exchange their roles,\r
1845 // interrupt must be disabled. This is because during the exchange role\r
1846 // process, 2 CPU may use 1 stack. If interrupt happens, the stack will\r
1847 // be corrupted, since interrupt return address will be pushed to stack\r
1848 // by hardware.\r
1849 //\r
1850 OldInterruptState = SaveAndDisableInterrupts ();\r
1851\r
1852 //\r
1853 // Mask LINT0 & LINT1 for the old BSP\r
1854 //\r
1855 DisableLvtInterrupts ();\r
41be0da5
JF
1856\r
1857 CpuMpData = GetCpuMpData ();\r
1858\r
1859 //\r
1860 // Check whether caller processor is BSP\r
1861 //\r
1862 MpInitLibWhoAmI (&CallerNumber);\r
1863 if (CallerNumber != CpuMpData->BspNumber) {\r
5e72dacc 1864 return EFI_DEVICE_ERROR;\r
41be0da5
JF
1865 }\r
1866\r
1867 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1868 return EFI_NOT_FOUND;\r
1869 }\r
1870\r
1871 //\r
1872 // Check whether specified AP is disabled\r
1873 //\r
1874 State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);\r
1875 if (State == CpuStateDisabled) {\r
1876 return EFI_INVALID_PARAMETER;\r
1877 }\r
1878\r
1879 //\r
1880 // Check whether ProcessorNumber specifies the current BSP\r
1881 //\r
1882 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1883 return EFI_INVALID_PARAMETER;\r
1884 }\r
1885\r
1886 //\r
1887 // Check whether specified AP is busy\r
1888 //\r
1889 if (State == CpuStateBusy) {\r
1890 return EFI_NOT_READY;\r
1891 }\r
1892\r
1893 CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;\r
1894 CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;\r
1895 CpuMpData->SwitchBspFlag = TRUE;\r
b3775af2 1896 CpuMpData->NewBspNumber = ProcessorNumber;\r
41be0da5
JF
1897\r
1898 //\r
1899 // Clear the BSP bit of MSR_IA32_APIC_BASE\r
1900 //\r
1901 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1902 ApicBaseMsr.Bits.BSP = 0;\r
1903 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
1904\r
1905 //\r
1906 // Need to wakeUp AP (future BSP).\r
1907 //\r
1908 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData);\r
1909\r
1910 AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);\r
1911\r
1912 //\r
1913 // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP\r
1914 //\r
1915 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1916 ApicBaseMsr.Bits.BSP = 1;\r
1917 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
9c6961d5 1918 ProgramVirtualWireMode ();\r
41be0da5
JF
1919\r
1920 //\r
1921 // Wait for old BSP finished AP task\r
1922 //\r
1923 while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {\r
1924 CpuPause ();\r
1925 }\r
1926\r
1927 CpuMpData->SwitchBspFlag = FALSE;\r
1928 //\r
1929 // Set old BSP enable state\r
1930 //\r
1931 if (!EnableOldBSP) {\r
1932 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);\r
af8ba51a
JF
1933 } else {\r
1934 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);\r
41be0da5
JF
1935 }\r
1936 //\r
1937 // Save new BSP number\r
1938 //\r
1939 CpuMpData->BspNumber = (UINT32) ProcessorNumber;\r
1940\r
a8d75a18
JF
1941 //\r
1942 // Restore interrupt state.\r
1943 //\r
1944 SetInterruptState (OldInterruptState);\r
1945\r
26b43433
JF
1946 if (OldTimerInterruptState) {\r
1947 EnableApicTimerInterrupt ();\r
1948 }\r
a8d75a18 1949\r
41be0da5
JF
1950 return EFI_SUCCESS;\r
1951}\r
ad52f25e 1952\r
e37109bc
JF
1953/**\r
1954 Worker function to let the caller enable or disable an AP from this point onward.\r
1955 This service may only be called from the BSP.\r
1956\r
1957 @param[in] ProcessorNumber The handle number of AP.\r
1958 @param[in] EnableAP Specifies the new state for the processor for\r
1959 enabled, FALSE for disabled.\r
1960 @param[in] HealthFlag If not NULL, a pointer to a value that specifies\r
1961 the new health status of the AP.\r
1962\r
1963 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.\r
1964 @retval others Failed to Enable/Disable AP.\r
1965\r
1966**/\r
1967EFI_STATUS\r
1968EnableDisableApWorker (\r
1969 IN UINTN ProcessorNumber,\r
1970 IN BOOLEAN EnableAP,\r
1971 IN UINT32 *HealthFlag OPTIONAL\r
1972 )\r
1973{\r
1974 CPU_MP_DATA *CpuMpData;\r
1975 UINTN CallerNumber;\r
1976\r
1977 CpuMpData = GetCpuMpData ();\r
1978\r
1979 //\r
1980 // Check whether caller processor is BSP\r
1981 //\r
1982 MpInitLibWhoAmI (&CallerNumber);\r
1983 if (CallerNumber != CpuMpData->BspNumber) {\r
1984 return EFI_DEVICE_ERROR;\r
1985 }\r
1986\r
1987 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1988 return EFI_INVALID_PARAMETER;\r
1989 }\r
1990\r
1991 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1992 return EFI_NOT_FOUND;\r
1993 }\r
1994\r
1995 if (!EnableAP) {\r
1996 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);\r
1997 } else {\r
d5fdae96 1998 ResetProcessorToIdleState (ProcessorNumber);\r
e37109bc
JF
1999 }\r
2000\r
2001 if (HealthFlag != NULL) {\r
2002 CpuMpData->CpuData[ProcessorNumber].CpuHealthy =\r
2003 (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);\r
2004 }\r
2005\r
2006 return EFI_SUCCESS;\r
2007}\r
2008\r
3e8ad6bd
JF
2009/**\r
2010 This return the handle number for the calling processor. This service may be\r
2011 called from the BSP and APs.\r
2012\r
2013 @param[out] ProcessorNumber Pointer to the handle number of AP.\r
2014 The range is from 0 to the total number of\r
2015 logical processors minus 1. The total number of\r
2016 logical processors can be retrieved by\r
2017 MpInitLibGetNumberOfProcessors().\r
2018\r
2019 @retval EFI_SUCCESS The current processor handle number was returned\r
2020 in ProcessorNumber.\r
2021 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.\r
2022 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2023\r
2024**/\r
2025EFI_STATUS\r
2026EFIAPI\r
2027MpInitLibWhoAmI (\r
2028 OUT UINTN *ProcessorNumber\r
2029 )\r
2030{\r
5c9e0997
JF
2031 CPU_MP_DATA *CpuMpData;\r
2032\r
2033 if (ProcessorNumber == NULL) {\r
2034 return EFI_INVALID_PARAMETER;\r
2035 }\r
2036\r
2037 CpuMpData = GetCpuMpData ();\r
2038\r
2039 return GetProcessorNumber (CpuMpData, ProcessorNumber);\r
3e8ad6bd 2040}\r
809213a6 2041\r
3e8ad6bd
JF
2042/**\r
2043 Retrieves the number of logical processor in the platform and the number of\r
2044 those logical processors that are enabled on this boot. This service may only\r
2045 be called from the BSP.\r
2046\r
2047 @param[out] NumberOfProcessors Pointer to the total number of logical\r
2048 processors in the system, including the BSP\r
2049 and disabled APs.\r
2050 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical\r
2051 processors that exist in system, including\r
2052 the BSP.\r
2053\r
2054 @retval EFI_SUCCESS The number of logical processors and enabled\r
2055 logical processors was retrieved.\r
2056 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
2057 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors\r
2058 is NULL.\r
2059 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2060\r
2061**/\r
2062EFI_STATUS\r
2063EFIAPI\r
2064MpInitLibGetNumberOfProcessors (\r
2065 OUT UINTN *NumberOfProcessors, OPTIONAL\r
2066 OUT UINTN *NumberOfEnabledProcessors OPTIONAL\r
2067 )\r
2068{\r
809213a6
JF
2069 CPU_MP_DATA *CpuMpData;\r
2070 UINTN CallerNumber;\r
2071 UINTN ProcessorNumber;\r
2072 UINTN EnabledProcessorNumber;\r
2073 UINTN Index;\r
2074\r
2075 CpuMpData = GetCpuMpData ();\r
2076\r
2077 if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {\r
2078 return EFI_INVALID_PARAMETER;\r
2079 }\r
2080\r
2081 //\r
2082 // Check whether caller processor is BSP\r
2083 //\r
2084 MpInitLibWhoAmI (&CallerNumber);\r
2085 if (CallerNumber != CpuMpData->BspNumber) {\r
2086 return EFI_DEVICE_ERROR;\r
2087 }\r
2088\r
2089 ProcessorNumber = CpuMpData->CpuCount;\r
2090 EnabledProcessorNumber = 0;\r
2091 for (Index = 0; Index < ProcessorNumber; Index++) {\r
2092 if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {\r
2093 EnabledProcessorNumber ++;\r
2094 }\r
2095 }\r
2096\r
2097 if (NumberOfProcessors != NULL) {\r
2098 *NumberOfProcessors = ProcessorNumber;\r
2099 }\r
2100 if (NumberOfEnabledProcessors != NULL) {\r
2101 *NumberOfEnabledProcessors = EnabledProcessorNumber;\r
2102 }\r
2103\r
2104 return EFI_SUCCESS;\r
3e8ad6bd 2105}\r
6a2ee2bb 2106\r
809213a6 2107\r
86efe976
JF
2108/**\r
2109 Worker function to execute a caller provided function on all enabled APs.\r
2110\r
2111 @param[in] Procedure A pointer to the function to be run on\r
2112 enabled APs of the system.\r
2113 @param[in] SingleThread If TRUE, then all the enabled APs execute\r
2114 the function specified by Procedure one by\r
2115 one, in ascending order of processor handle\r
2116 number. If FALSE, then all the enabled APs\r
2117 execute the function specified by Procedure\r
2118 simultaneously.\r
2119 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2120 service.\r
367284e7 2121 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
86efe976
JF
2122 APs to return from Procedure, either for\r
2123 blocking or non-blocking mode.\r
2124 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2125 all APs.\r
2126 @param[out] FailedCpuList If all APs finish successfully, then its\r
2127 content is set to NULL. If not all APs\r
2128 finish before timeout expires, then its\r
2129 content is set to address of the buffer\r
2130 holding handle numbers of the failed APs.\r
2131\r
2132 @retval EFI_SUCCESS In blocking mode, all APs have finished before\r
2133 the timeout expired.\r
2134 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched\r
2135 to all enabled APs.\r
2136 @retval others Failed to Startup all APs.\r
2137\r
2138**/\r
2139EFI_STATUS\r
2140StartupAllAPsWorker (\r
2141 IN EFI_AP_PROCEDURE Procedure,\r
2142 IN BOOLEAN SingleThread,\r
2143 IN EFI_EVENT WaitEvent OPTIONAL,\r
2144 IN UINTN TimeoutInMicroseconds,\r
2145 IN VOID *ProcedureArgument OPTIONAL,\r
2146 OUT UINTN **FailedCpuList OPTIONAL\r
2147 )\r
2148{\r
2149 EFI_STATUS Status;\r
2150 CPU_MP_DATA *CpuMpData;\r
2151 UINTN ProcessorCount;\r
2152 UINTN ProcessorNumber;\r
2153 UINTN CallerNumber;\r
2154 CPU_AP_DATA *CpuData;\r
2155 BOOLEAN HasEnabledAp;\r
2156 CPU_STATE ApState;\r
2157\r
2158 CpuMpData = GetCpuMpData ();\r
2159\r
2160 if (FailedCpuList != NULL) {\r
2161 *FailedCpuList = NULL;\r
2162 }\r
2163\r
2164 if (CpuMpData->CpuCount == 1) {\r
2165 return EFI_NOT_STARTED;\r
2166 }\r
2167\r
2168 if (Procedure == NULL) {\r
2169 return EFI_INVALID_PARAMETER;\r
2170 }\r
2171\r
2172 //\r
2173 // Check whether caller processor is BSP\r
2174 //\r
2175 MpInitLibWhoAmI (&CallerNumber);\r
2176 if (CallerNumber != CpuMpData->BspNumber) {\r
2177 return EFI_DEVICE_ERROR;\r
2178 }\r
2179\r
2180 //\r
2181 // Update AP state\r
2182 //\r
2183 CheckAndUpdateApsStatus ();\r
2184\r
2185 ProcessorCount = CpuMpData->CpuCount;\r
2186 HasEnabledAp = FALSE;\r
2187 //\r
2188 // Check whether all enabled APs are idle.\r
2189 // If any enabled AP is not idle, return EFI_NOT_READY.\r
2190 //\r
2191 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2192 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2193 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2194 ApState = GetApState (CpuData);\r
2195 if (ApState != CpuStateDisabled) {\r
2196 HasEnabledAp = TRUE;\r
2197 if (ApState != CpuStateIdle) {\r
2198 //\r
2199 // If any enabled APs are busy, return EFI_NOT_READY.\r
2200 //\r
2201 return EFI_NOT_READY;\r
2202 }\r
2203 }\r
2204 }\r
2205 }\r
2206\r
2207 if (!HasEnabledAp) {\r
2208 //\r
2209 // If no enabled AP exists, return EFI_NOT_STARTED.\r
2210 //\r
2211 return EFI_NOT_STARTED;\r
2212 }\r
2213\r
2214 CpuMpData->StartCount = 0;\r
2215 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2216 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2217 CpuData->Waiting = FALSE;\r
2218 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2219 if (CpuData->State == CpuStateIdle) {\r
2220 //\r
2221 // Mark this processor as responsible for current calling.\r
2222 //\r
2223 CpuData->Waiting = TRUE;\r
2224 CpuMpData->StartCount++;\r
2225 }\r
2226 }\r
2227 }\r
2228\r
2229 CpuMpData->Procedure = Procedure;\r
2230 CpuMpData->ProcArguments = ProcedureArgument;\r
2231 CpuMpData->SingleThread = SingleThread;\r
2232 CpuMpData->FinishedCount = 0;\r
2233 CpuMpData->RunningCount = 0;\r
2234 CpuMpData->FailedCpuList = FailedCpuList;\r
2235 CpuMpData->ExpectedTime = CalculateTimeout (\r
2236 TimeoutInMicroseconds,\r
2237 &CpuMpData->CurrentTime\r
2238 );\r
2239 CpuMpData->TotalTime = 0;\r
2240 CpuMpData->WaitEvent = WaitEvent;\r
2241\r
2242 if (!SingleThread) {\r
2243 WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument);\r
2244 } else {\r
2245 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2246 if (ProcessorNumber == CallerNumber) {\r
2247 continue;\r
2248 }\r
2249 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
2250 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);\r
2251 break;\r
2252 }\r
2253 }\r
2254 }\r
2255\r
2256 Status = EFI_SUCCESS;\r
2257 if (WaitEvent == NULL) {\r
2258 do {\r
2259 Status = CheckAllAPs ();\r
2260 } while (Status == EFI_NOT_READY);\r
2261 }\r
2262\r
2263 return Status;\r
2264}\r
2265\r
20ae5774
JF
2266/**\r
2267 Worker function to let the caller get one enabled AP to execute a caller-provided\r
2268 function.\r
2269\r
2270 @param[in] Procedure A pointer to the function to be run on\r
2271 enabled APs of the system.\r
2272 @param[in] ProcessorNumber The handle number of the AP.\r
2273 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2274 service.\r
367284e7 2275 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
20ae5774
JF
2276 APs to return from Procedure, either for\r
2277 blocking or non-blocking mode.\r
2278 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2279 all APs.\r
2280 @param[out] Finished If AP returns from Procedure before the\r
2281 timeout expires, its content is set to TRUE.\r
2282 Otherwise, the value is set to FALSE.\r
2283\r
2284 @retval EFI_SUCCESS In blocking mode, specified AP finished before\r
2285 the timeout expires.\r
2286 @retval others Failed to Startup AP.\r
2287\r
2288**/\r
2289EFI_STATUS\r
2290StartupThisAPWorker (\r
2291 IN EFI_AP_PROCEDURE Procedure,\r
2292 IN UINTN ProcessorNumber,\r
2293 IN EFI_EVENT WaitEvent OPTIONAL,\r
2294 IN UINTN TimeoutInMicroseconds,\r
2295 IN VOID *ProcedureArgument OPTIONAL,\r
2296 OUT BOOLEAN *Finished OPTIONAL\r
2297 )\r
2298{\r
2299 EFI_STATUS Status;\r
2300 CPU_MP_DATA *CpuMpData;\r
2301 CPU_AP_DATA *CpuData;\r
2302 UINTN CallerNumber;\r
2303\r
2304 CpuMpData = GetCpuMpData ();\r
2305\r
2306 if (Finished != NULL) {\r
2307 *Finished = FALSE;\r
2308 }\r
2309\r
2310 //\r
2311 // Check whether caller processor is BSP\r
2312 //\r
2313 MpInitLibWhoAmI (&CallerNumber);\r
2314 if (CallerNumber != CpuMpData->BspNumber) {\r
2315 return EFI_DEVICE_ERROR;\r
2316 }\r
2317\r
2318 //\r
2319 // Check whether processor with the handle specified by ProcessorNumber exists\r
2320 //\r
2321 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
2322 return EFI_NOT_FOUND;\r
2323 }\r
2324\r
2325 //\r
2326 // Check whether specified processor is BSP\r
2327 //\r
2328 if (ProcessorNumber == CpuMpData->BspNumber) {\r
2329 return EFI_INVALID_PARAMETER;\r
2330 }\r
2331\r
2332 //\r
2333 // Check parameter Procedure\r
2334 //\r
2335 if (Procedure == NULL) {\r
2336 return EFI_INVALID_PARAMETER;\r
2337 }\r
2338\r
2339 //\r
2340 // Update AP state\r
2341 //\r
2342 CheckAndUpdateApsStatus ();\r
2343\r
2344 //\r
2345 // Check whether specified AP is disabled\r
2346 //\r
2347 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
2348 return EFI_INVALID_PARAMETER;\r
2349 }\r
2350\r
2351 //\r
2352 // If WaitEvent is not NULL, execute in non-blocking mode.\r
2353 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.\r
2354 // CheckAPsStatus() will check completion and timeout periodically.\r
2355 //\r
2356 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2357 CpuData->WaitEvent = WaitEvent;\r
2358 CpuData->Finished = Finished;\r
2359 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);\r
2360 CpuData->TotalTime = 0;\r
2361\r
2362 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);\r
2363\r
2364 //\r
2365 // If WaitEvent is NULL, execute in blocking mode.\r
2366 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.\r
2367 //\r
2368 Status = EFI_SUCCESS;\r
2369 if (WaitEvent == NULL) {\r
2370 do {\r
2371 Status = CheckThisAP (ProcessorNumber);\r
2372 } while (Status == EFI_NOT_READY);\r
2373 }\r
2374\r
2375 return Status;\r
2376}\r
2377\r
93ca4c0f
JF
2378/**\r
2379 Get pointer to CPU MP Data structure from GUIDed HOB.\r
2380\r
2381 @return The pointer to CPU MP Data structure.\r
2382**/\r
2383CPU_MP_DATA *\r
2384GetCpuMpDataFromGuidedHob (\r
2385 VOID\r
2386 )\r
2387{\r
2388 EFI_HOB_GUID_TYPE *GuidHob;\r
2389 VOID *DataInHob;\r
2390 CPU_MP_DATA *CpuMpData;\r
2391\r
2392 CpuMpData = NULL;\r
2393 GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);\r
2394 if (GuidHob != NULL) {\r
2395 DataInHob = GET_GUID_HOB_DATA (GuidHob);\r
2396 CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);\r
2397 }\r
2398 return CpuMpData;\r
2399}\r
42c37b3b 2400\r