Commit | Line | Data |
---|---|---|
3e8ad6bd JF |
1 | /** @file\r |
2 | CPU MP Initialize Library common functions.\r | |
3 | \r | |
4 | Copyright (c) 2016, Intel Corporation. All rights reserved.<BR>\r | |
5 | This program and the accompanying materials\r | |
6 | are licensed and made available under the terms and conditions of the BSD License\r | |
7 | which accompanies this distribution. The full text of the license may be found at\r | |
8 | http://opensource.org/licenses/bsd-license.php\r | |
9 | \r | |
10 | THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r | |
11 | WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r | |
12 | \r | |
13 | **/\r | |
14 | \r | |
15 | #include "MpLib.h"\r | |
16 | \r | |
93ca4c0f JF |
17 | EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;\r |
18 | \r | |
7c3f2a12 JF |
19 | /**\r |
20 | The function will check if BSP Execute Disable is enabled.\r | |
21 | DxeIpl may have enabled Execute Disable for BSP,\r | |
22 | APs need to get the status and sync up the settings.\r | |
23 | \r | |
24 | @retval TRUE BSP Execute Disable is enabled.\r | |
25 | @retval FALSE BSP Execute Disable is not enabled.\r | |
26 | **/\r | |
27 | BOOLEAN\r | |
28 | IsBspExecuteDisableEnabled (\r | |
29 | VOID\r | |
30 | )\r | |
31 | {\r | |
32 | UINT32 Eax;\r | |
33 | CPUID_EXTENDED_CPU_SIG_EDX Edx;\r | |
34 | MSR_IA32_EFER_REGISTER EferMsr;\r | |
35 | BOOLEAN Enabled;\r | |
36 | \r | |
37 | Enabled = FALSE;\r | |
38 | AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);\r | |
39 | if (Eax >= CPUID_EXTENDED_CPU_SIG) {\r | |
40 | AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);\r | |
41 | //\r | |
42 | // CPUID 0x80000001\r | |
43 | // Bit 20: Execute Disable Bit available.\r | |
44 | //\r | |
45 | if (Edx.Bits.NX != 0) {\r | |
46 | EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);\r | |
47 | //\r | |
48 | // MSR 0xC0000080\r | |
49 | // Bit 11: Execute Disable Bit enable.\r | |
50 | //\r | |
51 | if (EferMsr.Bits.NXE != 0) {\r | |
52 | Enabled = TRUE;\r | |
53 | }\r | |
54 | }\r | |
55 | }\r | |
56 | \r | |
57 | return Enabled;\r | |
58 | }\r | |
59 | \r | |
03a1a925 JF |
60 | /**\r |
61 | Get the Application Processors state.\r | |
62 | \r | |
63 | @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r | |
64 | \r | |
65 | @return The AP status\r | |
66 | **/\r | |
67 | CPU_STATE\r | |
68 | GetApState (\r | |
69 | IN CPU_AP_DATA *CpuData\r | |
70 | )\r | |
71 | {\r | |
72 | return CpuData->State;\r | |
73 | }\r | |
74 | \r | |
75 | /**\r | |
76 | Set the Application Processors state.\r | |
77 | \r | |
78 | @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r | |
79 | @param[in] State The AP status\r | |
80 | **/\r | |
81 | VOID\r | |
82 | SetApState (\r | |
83 | IN CPU_AP_DATA *CpuData,\r | |
84 | IN CPU_STATE State\r | |
85 | )\r | |
86 | {\r | |
87 | AcquireSpinLock (&CpuData->ApLock);\r | |
88 | CpuData->State = State;\r | |
89 | ReleaseSpinLock (&CpuData->ApLock);\r | |
90 | }\r | |
3e8ad6bd | 91 | \r |
68cb9330 JF |
92 | /**\r |
93 | Save the volatile registers required to be restored following INIT IPI.\r | |
94 | \r | |
95 | @param[out] VolatileRegisters Returns buffer saved the volatile resisters\r | |
96 | **/\r | |
97 | VOID\r | |
98 | SaveVolatileRegisters (\r | |
99 | OUT CPU_VOLATILE_REGISTERS *VolatileRegisters\r | |
100 | )\r | |
101 | {\r | |
102 | CPUID_VERSION_INFO_EDX VersionInfoEdx;\r | |
103 | \r | |
104 | VolatileRegisters->Cr0 = AsmReadCr0 ();\r | |
105 | VolatileRegisters->Cr3 = AsmReadCr3 ();\r | |
106 | VolatileRegisters->Cr4 = AsmReadCr4 ();\r | |
107 | \r | |
108 | AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r | |
109 | if (VersionInfoEdx.Bits.DE != 0) {\r | |
110 | //\r | |
111 | // If processor supports Debugging Extensions feature\r | |
112 | // by CPUID.[EAX=01H]:EDX.BIT2\r | |
113 | //\r | |
114 | VolatileRegisters->Dr0 = AsmReadDr0 ();\r | |
115 | VolatileRegisters->Dr1 = AsmReadDr1 ();\r | |
116 | VolatileRegisters->Dr2 = AsmReadDr2 ();\r | |
117 | VolatileRegisters->Dr3 = AsmReadDr3 ();\r | |
118 | VolatileRegisters->Dr6 = AsmReadDr6 ();\r | |
119 | VolatileRegisters->Dr7 = AsmReadDr7 ();\r | |
120 | }\r | |
121 | }\r | |
122 | \r | |
123 | /**\r | |
124 | Restore the volatile registers following INIT IPI.\r | |
125 | \r | |
126 | @param[in] VolatileRegisters Pointer to volatile resisters\r | |
127 | @param[in] IsRestoreDr TRUE: Restore DRx if supported\r | |
128 | FALSE: Do not restore DRx\r | |
129 | **/\r | |
130 | VOID\r | |
131 | RestoreVolatileRegisters (\r | |
132 | IN CPU_VOLATILE_REGISTERS *VolatileRegisters,\r | |
133 | IN BOOLEAN IsRestoreDr\r | |
134 | )\r | |
135 | {\r | |
136 | CPUID_VERSION_INFO_EDX VersionInfoEdx;\r | |
137 | \r | |
138 | AsmWriteCr0 (VolatileRegisters->Cr0);\r | |
139 | AsmWriteCr3 (VolatileRegisters->Cr3);\r | |
140 | AsmWriteCr4 (VolatileRegisters->Cr4);\r | |
141 | \r | |
142 | if (IsRestoreDr) {\r | |
143 | AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r | |
144 | if (VersionInfoEdx.Bits.DE != 0) {\r | |
145 | //\r | |
146 | // If processor supports Debugging Extensions feature\r | |
147 | // by CPUID.[EAX=01H]:EDX.BIT2\r | |
148 | //\r | |
149 | AsmWriteDr0 (VolatileRegisters->Dr0);\r | |
150 | AsmWriteDr1 (VolatileRegisters->Dr1);\r | |
151 | AsmWriteDr2 (VolatileRegisters->Dr2);\r | |
152 | AsmWriteDr3 (VolatileRegisters->Dr3);\r | |
153 | AsmWriteDr6 (VolatileRegisters->Dr6);\r | |
154 | AsmWriteDr7 (VolatileRegisters->Dr7);\r | |
155 | }\r | |
156 | }\r | |
157 | }\r | |
158 | \r | |
9ebcf0f4 JF |
159 | /**\r |
160 | Detect whether Mwait-monitor feature is supported.\r | |
161 | \r | |
162 | @retval TRUE Mwait-monitor feature is supported.\r | |
163 | @retval FALSE Mwait-monitor feature is not supported.\r | |
164 | **/\r | |
165 | BOOLEAN\r | |
166 | IsMwaitSupport (\r | |
167 | VOID\r | |
168 | )\r | |
169 | {\r | |
170 | CPUID_VERSION_INFO_ECX VersionInfoEcx;\r | |
171 | \r | |
172 | AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);\r | |
173 | return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;\r | |
174 | }\r | |
175 | \r | |
176 | /**\r | |
177 | Get AP loop mode.\r | |
178 | \r | |
179 | @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.\r | |
180 | \r | |
181 | @return The AP loop mode.\r | |
182 | **/\r | |
183 | UINT8\r | |
184 | GetApLoopMode (\r | |
185 | OUT UINT32 *MonitorFilterSize\r | |
186 | )\r | |
187 | {\r | |
188 | UINT8 ApLoopMode;\r | |
189 | CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;\r | |
190 | \r | |
191 | ASSERT (MonitorFilterSize != NULL);\r | |
192 | \r | |
193 | ApLoopMode = PcdGet8 (PcdCpuApLoopMode);\r | |
194 | ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);\r | |
195 | if (ApLoopMode == ApInMwaitLoop) {\r | |
196 | if (!IsMwaitSupport ()) {\r | |
197 | //\r | |
198 | // If processor does not support MONITOR/MWAIT feature,\r | |
199 | // force AP in Hlt-loop mode\r | |
200 | //\r | |
201 | ApLoopMode = ApInHltLoop;\r | |
202 | }\r | |
203 | }\r | |
204 | \r | |
205 | if (ApLoopMode != ApInMwaitLoop) {\r | |
206 | *MonitorFilterSize = sizeof (UINT32);\r | |
207 | } else {\r | |
208 | //\r | |
209 | // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes\r | |
210 | // CPUID.[EAX=05H].EDX: C-states supported using MWAIT\r | |
211 | //\r | |
212 | AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);\r | |
213 | *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;\r | |
214 | }\r | |
215 | \r | |
216 | return ApLoopMode;\r | |
217 | }\r | |
b8b04307 JF |
218 | \r |
219 | /**\r | |
220 | Do sync on APs.\r | |
221 | \r | |
222 | @param[in, out] Buffer Pointer to private data buffer.\r | |
223 | **/\r | |
224 | VOID\r | |
225 | EFIAPI\r | |
226 | ApInitializeSync (\r | |
227 | IN OUT VOID *Buffer\r | |
228 | )\r | |
229 | {\r | |
230 | CPU_MP_DATA *CpuMpData;\r | |
231 | \r | |
232 | CpuMpData = (CPU_MP_DATA *) Buffer;\r | |
233 | //\r | |
234 | // Sync BSP's MTRR table to AP\r | |
235 | //\r | |
236 | MtrrSetAllMtrrs (&CpuMpData->MtrrTable);\r | |
237 | //\r | |
238 | // Load microcode on AP\r | |
239 | //\r | |
240 | MicrocodeDetect (CpuMpData);\r | |
241 | }\r | |
242 | \r | |
243 | /**\r | |
244 | Find the current Processor number by APIC ID.\r | |
245 | \r | |
246 | @param[in] CpuMpData Pointer to PEI CPU MP Data\r | |
247 | @param[in] ProcessorNumber Return the pocessor number found\r | |
248 | \r | |
249 | @retval EFI_SUCCESS ProcessorNumber is found and returned.\r | |
250 | @retval EFI_NOT_FOUND ProcessorNumber is not found.\r | |
251 | **/\r | |
252 | EFI_STATUS\r | |
253 | GetProcessorNumber (\r | |
254 | IN CPU_MP_DATA *CpuMpData,\r | |
255 | OUT UINTN *ProcessorNumber\r | |
256 | )\r | |
257 | {\r | |
258 | UINTN TotalProcessorNumber;\r | |
259 | UINTN Index;\r | |
260 | \r | |
261 | TotalProcessorNumber = CpuMpData->CpuCount;\r | |
262 | for (Index = 0; Index < TotalProcessorNumber; Index ++) {\r | |
263 | if (CpuMpData->CpuData[Index].ApicId == GetApicId ()) {\r | |
264 | *ProcessorNumber = Index;\r | |
265 | return EFI_SUCCESS;\r | |
266 | }\r | |
267 | }\r | |
268 | return EFI_NOT_FOUND;\r | |
269 | }\r | |
270 | \r | |
03a1a925 JF |
271 | /*\r |
272 | Initialize CPU AP Data when AP is wakeup at the first time.\r | |
273 | \r | |
274 | @param[in, out] CpuMpData Pointer to PEI CPU MP Data\r | |
275 | @param[in] ProcessorNumber The handle number of processor\r | |
276 | @param[in] BistData Processor BIST data\r | |
277 | \r | |
278 | **/\r | |
279 | VOID\r | |
280 | InitializeApData (\r | |
281 | IN OUT CPU_MP_DATA *CpuMpData,\r | |
282 | IN UINTN ProcessorNumber,\r | |
283 | IN UINT32 BistData\r | |
284 | )\r | |
285 | {\r | |
286 | CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r | |
287 | CpuMpData->CpuData[ProcessorNumber].Health = BistData;\r | |
288 | CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;\r | |
289 | CpuMpData->CpuData[ProcessorNumber].ApicId = GetApicId ();\r | |
290 | CpuMpData->CpuData[ProcessorNumber].InitialApicId = GetInitialApicId ();\r | |
291 | if (CpuMpData->CpuData[ProcessorNumber].InitialApicId >= 0xFF) {\r | |
292 | //\r | |
293 | // Set x2APIC mode if there are any logical processor reporting\r | |
294 | // an Initial APIC ID of 255 or greater.\r | |
295 | //\r | |
296 | AcquireSpinLock(&CpuMpData->MpLock);\r | |
297 | CpuMpData->X2ApicEnable = TRUE;\r | |
298 | ReleaseSpinLock(&CpuMpData->MpLock);\r | |
299 | }\r | |
300 | \r | |
301 | InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);\r | |
302 | SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r | |
303 | }\r | |
304 | \r | |
b8b04307 JF |
305 | /**\r |
306 | This function will be called from AP reset code if BSP uses WakeUpAP.\r | |
307 | \r | |
308 | @param[in] ExchangeInfo Pointer to the MP exchange info buffer\r | |
309 | @param[in] NumApsExecuting Number of current executing AP\r | |
310 | **/\r | |
311 | VOID\r | |
312 | EFIAPI\r | |
313 | ApWakeupFunction (\r | |
314 | IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,\r | |
315 | IN UINTN NumApsExecuting\r | |
316 | )\r | |
317 | {\r | |
318 | CPU_MP_DATA *CpuMpData;\r | |
319 | UINTN ProcessorNumber;\r | |
320 | EFI_AP_PROCEDURE Procedure;\r | |
321 | VOID *Parameter;\r | |
322 | UINT32 BistData;\r | |
323 | volatile UINT32 *ApStartupSignalBuffer;\r | |
324 | \r | |
325 | //\r | |
326 | // AP finished assembly code and begin to execute C code\r | |
327 | //\r | |
328 | CpuMpData = ExchangeInfo->CpuMpData;\r | |
329 | \r | |
330 | ProgramVirtualWireMode (); \r | |
331 | \r | |
332 | while (TRUE) {\r | |
333 | if (CpuMpData->InitFlag == ApInitConfig) {\r | |
334 | //\r | |
335 | // Add CPU number\r | |
336 | //\r | |
337 | InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);\r | |
338 | ProcessorNumber = NumApsExecuting;\r | |
339 | //\r | |
340 | // This is first time AP wakeup, get BIST information from AP stack\r | |
341 | //\r | |
342 | BistData = *(UINT32 *) (CpuMpData->Buffer + ProcessorNumber * CpuMpData->CpuApStackSize - sizeof (UINTN));\r | |
343 | //\r | |
344 | // Do some AP initialize sync\r | |
345 | //\r | |
346 | ApInitializeSync (CpuMpData);\r | |
347 | //\r | |
348 | // Sync BSP's Control registers to APs\r | |
349 | //\r | |
350 | RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);\r | |
351 | InitializeApData (CpuMpData, ProcessorNumber, BistData);\r | |
352 | ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r | |
353 | } else {\r | |
354 | //\r | |
355 | // Execute AP function if AP is ready\r | |
356 | //\r | |
357 | GetProcessorNumber (CpuMpData, &ProcessorNumber);\r | |
358 | //\r | |
359 | // Clear AP start-up signal when AP waken up\r | |
360 | //\r | |
361 | ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r | |
362 | InterlockedCompareExchange32 (\r | |
363 | (UINT32 *) ApStartupSignalBuffer,\r | |
364 | WAKEUP_AP_SIGNAL,\r | |
365 | 0\r | |
366 | );\r | |
367 | if (CpuMpData->ApLoopMode == ApInHltLoop) {\r | |
368 | //\r | |
369 | // Restore AP's volatile registers saved\r | |
370 | //\r | |
371 | RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);\r | |
372 | }\r | |
373 | \r | |
374 | if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {\r | |
375 | Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;\r | |
376 | Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;\r | |
377 | if (Procedure != NULL) {\r | |
378 | SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);\r | |
379 | //\r | |
380 | // Invoke AP function here\r | |
381 | //\r | |
382 | Procedure (Parameter);\r | |
383 | //\r | |
384 | // Re-get the CPU APICID and Initial APICID\r | |
385 | //\r | |
386 | CpuMpData->CpuData[ProcessorNumber].ApicId = GetApicId ();\r | |
387 | CpuMpData->CpuData[ProcessorNumber].InitialApicId = GetInitialApicId ();\r | |
388 | }\r | |
389 | SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);\r | |
390 | }\r | |
391 | }\r | |
392 | \r | |
393 | //\r | |
394 | // AP finished executing C code\r | |
395 | //\r | |
396 | InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);\r | |
397 | \r | |
398 | //\r | |
399 | // Place AP is specified loop mode\r | |
400 | //\r | |
401 | if (CpuMpData->ApLoopMode == ApInHltLoop) {\r | |
402 | //\r | |
403 | // Save AP volatile registers\r | |
404 | //\r | |
405 | SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);\r | |
406 | //\r | |
407 | // Place AP in HLT-loop\r | |
408 | //\r | |
409 | while (TRUE) {\r | |
410 | DisableInterrupts ();\r | |
411 | CpuSleep ();\r | |
412 | CpuPause ();\r | |
413 | }\r | |
414 | }\r | |
415 | while (TRUE) {\r | |
416 | DisableInterrupts ();\r | |
417 | if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r | |
418 | //\r | |
419 | // Place AP in MWAIT-loop\r | |
420 | //\r | |
421 | AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);\r | |
422 | if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {\r | |
423 | //\r | |
424 | // Check AP start-up signal again.\r | |
425 | // If AP start-up signal is not set, place AP into\r | |
426 | // the specified C-state\r | |
427 | //\r | |
428 | AsmMwait (CpuMpData->ApTargetCState << 4, 0);\r | |
429 | }\r | |
430 | } else if (CpuMpData->ApLoopMode == ApInRunLoop) {\r | |
431 | //\r | |
432 | // Place AP in Run-loop\r | |
433 | //\r | |
434 | CpuPause ();\r | |
435 | } else {\r | |
436 | ASSERT (FALSE);\r | |
437 | }\r | |
438 | \r | |
439 | //\r | |
440 | // If AP start-up signal is written, AP is waken up\r | |
441 | // otherwise place AP in loop again\r | |
442 | //\r | |
443 | if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {\r | |
444 | break;\r | |
445 | }\r | |
446 | }\r | |
447 | }\r | |
448 | }\r | |
449 | \r | |
7c3f2a12 JF |
450 | /**\r |
451 | This function will fill the exchange info structure.\r | |
452 | \r | |
453 | @param[in] CpuMpData Pointer to CPU MP Data\r | |
454 | \r | |
455 | **/\r | |
456 | VOID\r | |
457 | FillExchangeInfoData (\r | |
458 | IN CPU_MP_DATA *CpuMpData\r | |
459 | )\r | |
460 | {\r | |
461 | volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r | |
462 | \r | |
463 | ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r | |
464 | ExchangeInfo->Lock = 0;\r | |
465 | ExchangeInfo->StackStart = CpuMpData->Buffer;\r | |
466 | ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;\r | |
467 | ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;\r | |
468 | ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;\r | |
469 | \r | |
470 | ExchangeInfo->CodeSegment = AsmReadCs ();\r | |
471 | ExchangeInfo->DataSegment = AsmReadDs ();\r | |
472 | \r | |
473 | ExchangeInfo->Cr3 = AsmReadCr3 ();\r | |
474 | \r | |
475 | ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;\r | |
476 | ExchangeInfo->NumApsExecuting = 0;\r | |
477 | ExchangeInfo->CpuMpData = CpuMpData;\r | |
478 | \r | |
479 | ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();\r | |
480 | \r | |
481 | //\r | |
482 | // Get the BSP's data of GDT and IDT\r | |
483 | //\r | |
484 | AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);\r | |
485 | AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);\r | |
486 | }\r | |
487 | \r | |
3e8ad6bd JF |
488 | /**\r |
489 | MP Initialize Library initialization.\r | |
490 | \r | |
491 | This service will allocate AP reset vector and wakeup all APs to do APs\r | |
492 | initialization.\r | |
493 | \r | |
494 | This service must be invoked before all other MP Initialize Library\r | |
495 | service are invoked.\r | |
496 | \r | |
497 | @retval EFI_SUCCESS MP initialization succeeds.\r | |
498 | @retval Others MP initialization fails.\r | |
499 | \r | |
500 | **/\r | |
501 | EFI_STATUS\r | |
502 | EFIAPI\r | |
503 | MpInitLibInitialize (\r | |
504 | VOID\r | |
505 | )\r | |
506 | {\r | |
e59f8f6b JF |
507 | UINT32 MaxLogicalProcessorNumber;\r |
508 | UINT32 ApStackSize;\r | |
f7f85d83 | 509 | MP_ASSEMBLY_ADDRESS_MAP AddressMap;\r |
e59f8f6b | 510 | UINTN BufferSize;\r |
9ebcf0f4 | 511 | UINT32 MonitorFilterSize;\r |
e59f8f6b JF |
512 | VOID *MpBuffer;\r |
513 | UINTN Buffer;\r | |
514 | CPU_MP_DATA *CpuMpData;\r | |
9ebcf0f4 | 515 | UINT8 ApLoopMode;\r |
e59f8f6b | 516 | UINT8 *MonitorBuffer;\r |
03a1a925 | 517 | UINTN Index;\r |
f7f85d83 | 518 | UINTN ApResetVectorSize;\r |
e59f8f6b JF |
519 | UINTN BackupBufferAddr;\r |
520 | MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);\r | |
f7f85d83 JF |
521 | \r |
522 | AsmGetAddressMap (&AddressMap);\r | |
523 | ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);\r | |
e59f8f6b | 524 | ApStackSize = PcdGet32(PcdCpuApStackSize);\r |
9ebcf0f4 JF |
525 | ApLoopMode = GetApLoopMode (&MonitorFilterSize);\r |
526 | \r | |
e59f8f6b JF |
527 | BufferSize = ApStackSize * MaxLogicalProcessorNumber;\r |
528 | BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;\r | |
529 | BufferSize += sizeof (CPU_MP_DATA);\r | |
530 | BufferSize += ApResetVectorSize;\r | |
531 | BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;\r | |
532 | MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));\r | |
533 | ASSERT (MpBuffer != NULL);\r | |
534 | ZeroMem (MpBuffer, BufferSize);\r | |
535 | Buffer = (UINTN) MpBuffer;\r | |
536 | \r | |
537 | MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);\r | |
538 | BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;\r | |
539 | CpuMpData = (CPU_MP_DATA *) (BackupBufferAddr + ApResetVectorSize);\r | |
540 | CpuMpData->Buffer = Buffer;\r | |
541 | CpuMpData->CpuApStackSize = ApStackSize;\r | |
542 | CpuMpData->BackupBuffer = BackupBufferAddr;\r | |
543 | CpuMpData->BackupBufferSize = ApResetVectorSize;\r | |
544 | CpuMpData->EndOfPeiFlag = FALSE;\r | |
545 | CpuMpData->WakeupBuffer = (UINTN) -1;\r | |
546 | CpuMpData->CpuCount = 1;\r | |
547 | CpuMpData->BspNumber = 0;\r | |
548 | CpuMpData->WaitEvent = NULL;\r | |
549 | CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);\r | |
550 | CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);\r | |
551 | InitializeSpinLock(&CpuMpData->MpLock);\r | |
552 | //\r | |
68cb9330 JF |
553 | // Save BSP's Control registers to APs\r |
554 | //\r | |
555 | SaveVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters);\r | |
556 | //\r | |
03a1a925 JF |
557 | // Set BSP basic information\r |
558 | //\r | |
559 | InitializeApData (CpuMpData, 0, 0);\r | |
560 | //\r | |
e59f8f6b JF |
561 | // Save assembly code information\r |
562 | //\r | |
563 | CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));\r | |
564 | //\r | |
565 | // Finally set AP loop mode\r | |
566 | //\r | |
567 | CpuMpData->ApLoopMode = ApLoopMode;\r | |
568 | DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));\r | |
569 | //\r | |
03a1a925 JF |
570 | // Set up APs wakeup signal buffer\r |
571 | //\r | |
572 | for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {\r | |
573 | CpuMpData->CpuData[Index].StartupApSignal =\r | |
574 | (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);\r | |
575 | }\r | |
94f63c76 JF |
576 | //\r |
577 | // Load Microcode on BSP\r | |
578 | //\r | |
579 | MicrocodeDetect (CpuMpData);\r | |
580 | //\r | |
e59f8f6b JF |
581 | // Store BSP's MTRR setting\r |
582 | //\r | |
583 | MtrrGetAllMtrrs (&CpuMpData->MtrrTable);\r | |
584 | \r | |
93ca4c0f JF |
585 | \r |
586 | //\r | |
587 | // Initialize global data for MP support\r | |
588 | //\r | |
589 | InitMpGlobalData (CpuMpData);\r | |
590 | \r | |
f7f85d83 | 591 | return EFI_SUCCESS;\r |
3e8ad6bd JF |
592 | }\r |
593 | \r | |
594 | /**\r | |
595 | Gets detailed MP-related information on the requested processor at the\r | |
596 | instant this call is made. This service may only be called from the BSP.\r | |
597 | \r | |
598 | @param[in] ProcessorNumber The handle number of processor.\r | |
599 | @param[out] ProcessorInfoBuffer A pointer to the buffer where information for\r | |
600 | the requested processor is deposited.\r | |
601 | @param[out] HealthData Return processor health data.\r | |
602 | \r | |
603 | @retval EFI_SUCCESS Processor information was returned.\r | |
604 | @retval EFI_DEVICE_ERROR The calling processor is an AP.\r | |
605 | @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.\r | |
606 | @retval EFI_NOT_FOUND The processor with the handle specified by\r | |
607 | ProcessorNumber does not exist in the platform.\r | |
608 | @retval EFI_NOT_READY MP Initialize Library is not initialized.\r | |
609 | \r | |
610 | **/\r | |
611 | EFI_STATUS\r | |
612 | EFIAPI\r | |
613 | MpInitLibGetProcessorInfo (\r | |
614 | IN UINTN ProcessorNumber,\r | |
615 | OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,\r | |
616 | OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL\r | |
617 | )\r | |
618 | {\r | |
619 | return EFI_UNSUPPORTED;\r | |
620 | }\r | |
621 | /**\r | |
622 | This return the handle number for the calling processor. This service may be\r | |
623 | called from the BSP and APs.\r | |
624 | \r | |
625 | @param[out] ProcessorNumber Pointer to the handle number of AP.\r | |
626 | The range is from 0 to the total number of\r | |
627 | logical processors minus 1. The total number of\r | |
628 | logical processors can be retrieved by\r | |
629 | MpInitLibGetNumberOfProcessors().\r | |
630 | \r | |
631 | @retval EFI_SUCCESS The current processor handle number was returned\r | |
632 | in ProcessorNumber.\r | |
633 | @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.\r | |
634 | @retval EFI_NOT_READY MP Initialize Library is not initialized.\r | |
635 | \r | |
636 | **/\r | |
637 | EFI_STATUS\r | |
638 | EFIAPI\r | |
639 | MpInitLibWhoAmI (\r | |
640 | OUT UINTN *ProcessorNumber\r | |
641 | )\r | |
642 | {\r | |
643 | return EFI_UNSUPPORTED;\r | |
644 | }\r | |
645 | /**\r | |
646 | Retrieves the number of logical processor in the platform and the number of\r | |
647 | those logical processors that are enabled on this boot. This service may only\r | |
648 | be called from the BSP.\r | |
649 | \r | |
650 | @param[out] NumberOfProcessors Pointer to the total number of logical\r | |
651 | processors in the system, including the BSP\r | |
652 | and disabled APs.\r | |
653 | @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical\r | |
654 | processors that exist in system, including\r | |
655 | the BSP.\r | |
656 | \r | |
657 | @retval EFI_SUCCESS The number of logical processors and enabled\r | |
658 | logical processors was retrieved.\r | |
659 | @retval EFI_DEVICE_ERROR The calling processor is an AP.\r | |
660 | @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors\r | |
661 | is NULL.\r | |
662 | @retval EFI_NOT_READY MP Initialize Library is not initialized.\r | |
663 | \r | |
664 | **/\r | |
665 | EFI_STATUS\r | |
666 | EFIAPI\r | |
667 | MpInitLibGetNumberOfProcessors (\r | |
668 | OUT UINTN *NumberOfProcessors, OPTIONAL\r | |
669 | OUT UINTN *NumberOfEnabledProcessors OPTIONAL\r | |
670 | )\r | |
671 | {\r | |
672 | return EFI_UNSUPPORTED;\r | |
673 | }\r | |
93ca4c0f JF |
674 | /**\r |
675 | Get pointer to CPU MP Data structure from GUIDed HOB.\r | |
676 | \r | |
677 | @return The pointer to CPU MP Data structure.\r | |
678 | **/\r | |
679 | CPU_MP_DATA *\r | |
680 | GetCpuMpDataFromGuidedHob (\r | |
681 | VOID\r | |
682 | )\r | |
683 | {\r | |
684 | EFI_HOB_GUID_TYPE *GuidHob;\r | |
685 | VOID *DataInHob;\r | |
686 | CPU_MP_DATA *CpuMpData;\r | |
687 | \r | |
688 | CpuMpData = NULL;\r | |
689 | GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);\r | |
690 | if (GuidHob != NULL) {\r | |
691 | DataInHob = GET_GUID_HOB_DATA (GuidHob);\r | |
692 | CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);\r | |
693 | }\r | |
694 | return CpuMpData;\r | |
695 | }\r |