]> git.proxmox.com Git - mirror_edk2.git/blame - UefiCpuPkg/Library/MpInitLib/MpLib.c
UefiCpuPkg/MpInitLib: Keep compatible with former AP counting solution.
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
CommitLineData
3e8ad6bd
JF
1/** @file\r
2 CPU MP Initialize Library common functions.\r
3\r
844b2d07 4 Copyright (c) 2016 - 2017, Intel Corporation. All rights reserved.<BR>\r
3e8ad6bd
JF
5 This program and the accompanying materials\r
6 are licensed and made available under the terms and conditions of the BSD License\r
7 which accompanies this distribution. The full text of the license may be found at\r
8 http://opensource.org/licenses/bsd-license.php\r
9\r
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13**/\r
14\r
15#include "MpLib.h"\r
16\r
93ca4c0f
JF
17EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;\r
18\r
7c3f2a12
JF
19/**\r
20 The function will check if BSP Execute Disable is enabled.\r
844b2d07
JF
21\r
22 DxeIpl may have enabled Execute Disable for BSP, APs need to\r
23 get the status and sync up the settings.\r
24 If BSP's CR0.Paging is not set, BSP execute Disble feature is\r
25 not working actually.\r
7c3f2a12
JF
26\r
27 @retval TRUE BSP Execute Disable is enabled.\r
28 @retval FALSE BSP Execute Disable is not enabled.\r
29**/\r
30BOOLEAN\r
31IsBspExecuteDisableEnabled (\r
32 VOID\r
33 )\r
34{\r
35 UINT32 Eax;\r
36 CPUID_EXTENDED_CPU_SIG_EDX Edx;\r
37 MSR_IA32_EFER_REGISTER EferMsr;\r
38 BOOLEAN Enabled;\r
844b2d07 39 IA32_CR0 Cr0;\r
7c3f2a12
JF
40\r
41 Enabled = FALSE;\r
844b2d07
JF
42 Cr0.UintN = AsmReadCr0 ();\r
43 if (Cr0.Bits.PG != 0) {\r
7c3f2a12 44 //\r
844b2d07 45 // If CR0 Paging bit is set\r
7c3f2a12 46 //\r
844b2d07
JF
47 AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);\r
48 if (Eax >= CPUID_EXTENDED_CPU_SIG) {\r
49 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);\r
7c3f2a12 50 //\r
844b2d07
JF
51 // CPUID 0x80000001\r
52 // Bit 20: Execute Disable Bit available.\r
7c3f2a12 53 //\r
844b2d07
JF
54 if (Edx.Bits.NX != 0) {\r
55 EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);\r
56 //\r
57 // MSR 0xC0000080\r
58 // Bit 11: Execute Disable Bit enable.\r
59 //\r
60 if (EferMsr.Bits.NXE != 0) {\r
61 Enabled = TRUE;\r
62 }\r
7c3f2a12
JF
63 }\r
64 }\r
65 }\r
66\r
67 return Enabled;\r
68}\r
69\r
41be0da5
JF
70/**\r
71 Worker function for SwitchBSP().\r
72\r
73 Worker function for SwitchBSP(), assigned to the AP which is intended\r
74 to become BSP.\r
75\r
76 @param[in] Buffer Pointer to CPU MP Data\r
77**/\r
78VOID\r
79EFIAPI\r
80FutureBSPProc (\r
81 IN VOID *Buffer\r
82 )\r
83{\r
84 CPU_MP_DATA *DataInHob;\r
85\r
86 DataInHob = (CPU_MP_DATA *) Buffer;\r
87 AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);\r
88}\r
89\r
03a1a925
JF
90/**\r
91 Get the Application Processors state.\r
92\r
93 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
94\r
95 @return The AP status\r
96**/\r
97CPU_STATE\r
98GetApState (\r
99 IN CPU_AP_DATA *CpuData\r
100 )\r
101{\r
102 return CpuData->State;\r
103}\r
104\r
105/**\r
106 Set the Application Processors state.\r
107\r
108 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
109 @param[in] State The AP status\r
110**/\r
111VOID\r
112SetApState (\r
113 IN CPU_AP_DATA *CpuData,\r
114 IN CPU_STATE State\r
115 )\r
116{\r
117 AcquireSpinLock (&CpuData->ApLock);\r
118 CpuData->State = State;\r
119 ReleaseSpinLock (&CpuData->ApLock);\r
120}\r
3e8ad6bd 121\r
ffab2442 122/**\r
f70174d6 123 Save BSP's local APIC timer setting.\r
ffab2442
JF
124\r
125 @param[in] CpuMpData Pointer to CPU MP Data\r
126**/\r
127VOID\r
128SaveLocalApicTimerSetting (\r
129 IN CPU_MP_DATA *CpuMpData\r
130 )\r
131{\r
132 //\r
133 // Record the current local APIC timer setting of BSP\r
134 //\r
135 GetApicTimerState (\r
136 &CpuMpData->DivideValue,\r
137 &CpuMpData->PeriodicMode,\r
138 &CpuMpData->Vector\r
139 );\r
140 CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();\r
141 CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();\r
142}\r
143\r
144/**\r
145 Sync local APIC timer setting from BSP to AP.\r
146\r
147 @param[in] CpuMpData Pointer to CPU MP Data\r
148**/\r
149VOID\r
150SyncLocalApicTimerSetting (\r
151 IN CPU_MP_DATA *CpuMpData\r
152 )\r
153{\r
154 //\r
155 // Sync local APIC timer setting from BSP to AP\r
156 //\r
157 InitializeApicTimer (\r
158 CpuMpData->DivideValue,\r
159 CpuMpData->CurrentTimerCount,\r
160 CpuMpData->PeriodicMode,\r
161 CpuMpData->Vector\r
162 );\r
163 //\r
164 // Disable AP's local APIC timer interrupt\r
165 //\r
166 DisableApicTimerInterrupt ();\r
167}\r
168\r
68cb9330
JF
169/**\r
170 Save the volatile registers required to be restored following INIT IPI.\r
171\r
172 @param[out] VolatileRegisters Returns buffer saved the volatile resisters\r
173**/\r
174VOID\r
175SaveVolatileRegisters (\r
176 OUT CPU_VOLATILE_REGISTERS *VolatileRegisters\r
177 )\r
178{\r
179 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
180\r
181 VolatileRegisters->Cr0 = AsmReadCr0 ();\r
182 VolatileRegisters->Cr3 = AsmReadCr3 ();\r
183 VolatileRegisters->Cr4 = AsmReadCr4 ();\r
184\r
185 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
186 if (VersionInfoEdx.Bits.DE != 0) {\r
187 //\r
188 // If processor supports Debugging Extensions feature\r
189 // by CPUID.[EAX=01H]:EDX.BIT2\r
190 //\r
191 VolatileRegisters->Dr0 = AsmReadDr0 ();\r
192 VolatileRegisters->Dr1 = AsmReadDr1 ();\r
193 VolatileRegisters->Dr2 = AsmReadDr2 ();\r
194 VolatileRegisters->Dr3 = AsmReadDr3 ();\r
195 VolatileRegisters->Dr6 = AsmReadDr6 ();\r
196 VolatileRegisters->Dr7 = AsmReadDr7 ();\r
197 }\r
198}\r
199\r
200/**\r
201 Restore the volatile registers following INIT IPI.\r
202\r
203 @param[in] VolatileRegisters Pointer to volatile resisters\r
204 @param[in] IsRestoreDr TRUE: Restore DRx if supported\r
205 FALSE: Do not restore DRx\r
206**/\r
207VOID\r
208RestoreVolatileRegisters (\r
209 IN CPU_VOLATILE_REGISTERS *VolatileRegisters,\r
210 IN BOOLEAN IsRestoreDr\r
211 )\r
212{\r
213 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
214\r
215 AsmWriteCr0 (VolatileRegisters->Cr0);\r
216 AsmWriteCr3 (VolatileRegisters->Cr3);\r
217 AsmWriteCr4 (VolatileRegisters->Cr4);\r
218\r
219 if (IsRestoreDr) {\r
220 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
221 if (VersionInfoEdx.Bits.DE != 0) {\r
222 //\r
223 // If processor supports Debugging Extensions feature\r
224 // by CPUID.[EAX=01H]:EDX.BIT2\r
225 //\r
226 AsmWriteDr0 (VolatileRegisters->Dr0);\r
227 AsmWriteDr1 (VolatileRegisters->Dr1);\r
228 AsmWriteDr2 (VolatileRegisters->Dr2);\r
229 AsmWriteDr3 (VolatileRegisters->Dr3);\r
230 AsmWriteDr6 (VolatileRegisters->Dr6);\r
231 AsmWriteDr7 (VolatileRegisters->Dr7);\r
232 }\r
233 }\r
234}\r
235\r
9ebcf0f4
JF
236/**\r
237 Detect whether Mwait-monitor feature is supported.\r
238\r
239 @retval TRUE Mwait-monitor feature is supported.\r
240 @retval FALSE Mwait-monitor feature is not supported.\r
241**/\r
242BOOLEAN\r
243IsMwaitSupport (\r
244 VOID\r
245 )\r
246{\r
247 CPUID_VERSION_INFO_ECX VersionInfoEcx;\r
248\r
249 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);\r
250 return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;\r
251}\r
252\r
253/**\r
254 Get AP loop mode.\r
255\r
256 @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.\r
257\r
258 @return The AP loop mode.\r
259**/\r
260UINT8\r
261GetApLoopMode (\r
262 OUT UINT32 *MonitorFilterSize\r
263 )\r
264{\r
265 UINT8 ApLoopMode;\r
266 CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;\r
267\r
268 ASSERT (MonitorFilterSize != NULL);\r
269\r
270 ApLoopMode = PcdGet8 (PcdCpuApLoopMode);\r
271 ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);\r
272 if (ApLoopMode == ApInMwaitLoop) {\r
273 if (!IsMwaitSupport ()) {\r
274 //\r
275 // If processor does not support MONITOR/MWAIT feature,\r
276 // force AP in Hlt-loop mode\r
277 //\r
278 ApLoopMode = ApInHltLoop;\r
279 }\r
280 }\r
281\r
282 if (ApLoopMode != ApInMwaitLoop) {\r
283 *MonitorFilterSize = sizeof (UINT32);\r
284 } else {\r
285 //\r
286 // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes\r
287 // CPUID.[EAX=05H].EDX: C-states supported using MWAIT\r
288 //\r
289 AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);\r
290 *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;\r
291 }\r
292\r
293 return ApLoopMode;\r
294}\r
b8b04307 295\r
8a2d564b
JF
296/**\r
297 Sort the APIC ID of all processors.\r
298\r
299 This function sorts the APIC ID of all processors so that processor number is\r
300 assigned in the ascending order of APIC ID which eases MP debugging.\r
301\r
302 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
303**/\r
304VOID\r
305SortApicId (\r
306 IN CPU_MP_DATA *CpuMpData\r
307 )\r
308{\r
309 UINTN Index1;\r
310 UINTN Index2;\r
311 UINTN Index3;\r
312 UINT32 ApicId;\r
31a1e4da 313 CPU_INFO_IN_HOB CpuInfo;\r
8a2d564b
JF
314 UINT32 ApCount;\r
315 CPU_INFO_IN_HOB *CpuInfoInHob;\r
316\r
317 ApCount = CpuMpData->CpuCount - 1;\r
31a1e4da 318 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
8a2d564b
JF
319 if (ApCount != 0) {\r
320 for (Index1 = 0; Index1 < ApCount; Index1++) {\r
321 Index3 = Index1;\r
322 //\r
323 // Sort key is the hardware default APIC ID\r
324 //\r
31a1e4da 325 ApicId = CpuInfoInHob[Index1].ApicId;\r
8a2d564b 326 for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {\r
31a1e4da 327 if (ApicId > CpuInfoInHob[Index2].ApicId) {\r
8a2d564b 328 Index3 = Index2;\r
31a1e4da 329 ApicId = CpuInfoInHob[Index2].ApicId;\r
8a2d564b
JF
330 }\r
331 }\r
332 if (Index3 != Index1) {\r
31a1e4da 333 CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));\r
8a2d564b 334 CopyMem (\r
31a1e4da
JF
335 &CpuInfoInHob[Index3],\r
336 &CpuInfoInHob[Index1],\r
337 sizeof (CPU_INFO_IN_HOB)\r
8a2d564b 338 );\r
31a1e4da 339 CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));\r
8a2d564b
JF
340 }\r
341 }\r
342\r
343 //\r
344 // Get the processor number for the BSP\r
345 //\r
346 ApicId = GetInitialApicId ();\r
347 for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {\r
31a1e4da 348 if (CpuInfoInHob[Index1].ApicId == ApicId) {\r
8a2d564b
JF
349 CpuMpData->BspNumber = (UINT32) Index1;\r
350 break;\r
351 }\r
352 }\r
8a2d564b
JF
353 }\r
354}\r
355\r
fe627769
JF
356/**\r
357 Enable x2APIC mode on APs.\r
358\r
359 @param[in, out] Buffer Pointer to private data buffer.\r
360**/\r
361VOID\r
362EFIAPI\r
363ApFuncEnableX2Apic (\r
364 IN OUT VOID *Buffer\r
365 )\r
366{\r
367 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
368}\r
369\r
b8b04307
JF
370/**\r
371 Do sync on APs.\r
372\r
373 @param[in, out] Buffer Pointer to private data buffer.\r
374**/\r
375VOID\r
376EFIAPI\r
377ApInitializeSync (\r
378 IN OUT VOID *Buffer\r
379 )\r
380{\r
381 CPU_MP_DATA *CpuMpData;\r
382\r
383 CpuMpData = (CPU_MP_DATA *) Buffer;\r
384 //\r
b8b04307
JF
385 // Load microcode on AP\r
386 //\r
387 MicrocodeDetect (CpuMpData);\r
cb811673
JF
388 //\r
389 // Sync BSP's MTRR table to AP\r
390 //\r
391 MtrrSetAllMtrrs (&CpuMpData->MtrrTable);\r
b8b04307
JF
392}\r
393\r
394/**\r
395 Find the current Processor number by APIC ID.\r
396\r
367284e7
DB
397 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
398 @param[out] ProcessorNumber Return the pocessor number found\r
b8b04307
JF
399\r
400 @retval EFI_SUCCESS ProcessorNumber is found and returned.\r
401 @retval EFI_NOT_FOUND ProcessorNumber is not found.\r
402**/\r
403EFI_STATUS\r
404GetProcessorNumber (\r
405 IN CPU_MP_DATA *CpuMpData,\r
406 OUT UINTN *ProcessorNumber\r
407 )\r
408{\r
409 UINTN TotalProcessorNumber;\r
410 UINTN Index;\r
31a1e4da
JF
411 CPU_INFO_IN_HOB *CpuInfoInHob;\r
412\r
413 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
b8b04307
JF
414\r
415 TotalProcessorNumber = CpuMpData->CpuCount;\r
416 for (Index = 0; Index < TotalProcessorNumber; Index ++) {\r
31a1e4da 417 if (CpuInfoInHob[Index].ApicId == GetApicId ()) {\r
b8b04307
JF
418 *ProcessorNumber = Index;\r
419 return EFI_SUCCESS;\r
420 }\r
421 }\r
422 return EFI_NOT_FOUND;\r
423}\r
424\r
03434dff
JF
425/**\r
426 This function will get CPU count in the system.\r
427\r
428 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
429\r
430 @return CPU count detected\r
431**/\r
432UINTN\r
433CollectProcessorCount (\r
434 IN CPU_MP_DATA *CpuMpData\r
435 )\r
436{\r
59a119f0
JF
437 UINTN Index;\r
438\r
03434dff
JF
439 //\r
440 // Send 1st broadcast IPI to APs to wakeup APs\r
441 //\r
442 CpuMpData->InitFlag = ApInitConfig;\r
443 CpuMpData->X2ApicEnable = FALSE;\r
444 WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL);\r
03434dff
JF
445 CpuMpData->InitFlag = ApInitDone;\r
446 ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));\r
447 //\r
448 // Wait for all APs finished the initialization\r
449 //\r
450 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
451 CpuPause ();\r
452 }\r
453\r
71d8226a
JF
454 if (CpuMpData->CpuCount > 255) {\r
455 //\r
456 // If there are more than 255 processor found, force to enable X2APIC\r
457 //\r
458 CpuMpData->X2ApicEnable = TRUE;\r
459 }\r
fe627769
JF
460 if (CpuMpData->X2ApicEnable) {\r
461 DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));\r
462 //\r
463 // Wakeup all APs to enable x2APIC mode\r
464 //\r
465 WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL);\r
466 //\r
467 // Wait for all known APs finished\r
468 //\r
469 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
470 CpuPause ();\r
471 }\r
472 //\r
473 // Enable x2APIC on BSP\r
474 //\r
475 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
59a119f0
JF
476 //\r
477 // Set BSP/Aps state to IDLE\r
478 //\r
479 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
480 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
481 }\r
fe627769
JF
482 }\r
483 DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));\r
8a2d564b
JF
484 //\r
485 // Sort BSP/Aps by CPU APIC ID in ascending order\r
486 //\r
487 SortApicId (CpuMpData);\r
488\r
03434dff
JF
489 DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));\r
490\r
491 return CpuMpData->CpuCount;\r
492}\r
493\r
367284e7 494/**\r
03a1a925
JF
495 Initialize CPU AP Data when AP is wakeup at the first time.\r
496\r
497 @param[in, out] CpuMpData Pointer to PEI CPU MP Data\r
498 @param[in] ProcessorNumber The handle number of processor\r
499 @param[in] BistData Processor BIST data\r
367284e7 500 @param[in] ApTopOfStack Top of AP stack\r
03a1a925
JF
501\r
502**/\r
503VOID\r
504InitializeApData (\r
505 IN OUT CPU_MP_DATA *CpuMpData,\r
506 IN UINTN ProcessorNumber,\r
845c5be1 507 IN UINT32 BistData,\r
dd3fa0cd 508 IN UINT64 ApTopOfStack\r
03a1a925
JF
509 )\r
510{\r
31a1e4da
JF
511 CPU_INFO_IN_HOB *CpuInfoInHob;\r
512\r
513 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
514 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
515 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
516 CpuInfoInHob[ProcessorNumber].Health = BistData;\r
dd3fa0cd 517 CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;\r
31a1e4da 518\r
03a1a925 519 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
03a1a925 520 CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;\r
31a1e4da 521 if (CpuInfoInHob[ProcessorNumber].InitialApicId >= 0xFF) {\r
03a1a925
JF
522 //\r
523 // Set x2APIC mode if there are any logical processor reporting\r
524 // an Initial APIC ID of 255 or greater.\r
525 //\r
526 AcquireSpinLock(&CpuMpData->MpLock);\r
527 CpuMpData->X2ApicEnable = TRUE;\r
528 ReleaseSpinLock(&CpuMpData->MpLock);\r
529 }\r
530\r
531 InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);\r
532 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
533}\r
534\r
b8b04307
JF
535/**\r
536 This function will be called from AP reset code if BSP uses WakeUpAP.\r
537\r
538 @param[in] ExchangeInfo Pointer to the MP exchange info buffer\r
539 @param[in] NumApsExecuting Number of current executing AP\r
540**/\r
541VOID\r
542EFIAPI\r
543ApWakeupFunction (\r
544 IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,\r
37676b9f 545 IN UINTN ApIndex\r
b8b04307
JF
546 )\r
547{\r
548 CPU_MP_DATA *CpuMpData;\r
549 UINTN ProcessorNumber;\r
550 EFI_AP_PROCEDURE Procedure;\r
551 VOID *Parameter;\r
552 UINT32 BistData;\r
553 volatile UINT32 *ApStartupSignalBuffer;\r
31a1e4da 554 CPU_INFO_IN_HOB *CpuInfoInHob;\r
dd3fa0cd 555 UINT64 ApTopOfStack;\r
c6b0feb3 556 UINTN CurrentApicMode;\r
b8b04307
JF
557\r
558 //\r
559 // AP finished assembly code and begin to execute C code\r
560 //\r
561 CpuMpData = ExchangeInfo->CpuMpData;\r
562\r
ffab2442
JF
563 //\r
564 // AP's local APIC settings will be lost after received INIT IPI\r
565 // We need to re-initialize them at here\r
566 //\r
567 ProgramVirtualWireMode ();\r
568 SyncLocalApicTimerSetting (CpuMpData);\r
b8b04307 569\r
c6b0feb3 570 CurrentApicMode = GetApicMode ();\r
b8b04307
JF
571 while (TRUE) {\r
572 if (CpuMpData->InitFlag == ApInitConfig) {\r
573 //\r
574 // Add CPU number\r
575 //\r
576 InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);\r
37676b9f 577 ProcessorNumber = ApIndex;\r
b8b04307
JF
578 //\r
579 // This is first time AP wakeup, get BIST information from AP stack\r
580 //\r
845c5be1 581 ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;\r
dd3fa0cd 582 BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));\r
b8b04307
JF
583 //\r
584 // Do some AP initialize sync\r
585 //\r
586 ApInitializeSync (CpuMpData);\r
587 //\r
588 // Sync BSP's Control registers to APs\r
589 //\r
590 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);\r
845c5be1 591 InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);\r
b8b04307
JF
592 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
593 } else {\r
594 //\r
595 // Execute AP function if AP is ready\r
596 //\r
597 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
598 //\r
599 // Clear AP start-up signal when AP waken up\r
600 //\r
601 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
602 InterlockedCompareExchange32 (\r
603 (UINT32 *) ApStartupSignalBuffer,\r
604 WAKEUP_AP_SIGNAL,\r
605 0\r
606 );\r
607 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
608 //\r
609 // Restore AP's volatile registers saved\r
610 //\r
611 RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);\r
612 }\r
613\r
614 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {\r
615 Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;\r
616 Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;\r
617 if (Procedure != NULL) {\r
618 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);\r
619 //\r
43c9fdcc
JF
620 // Enable source debugging on AP function\r
621 // \r
622 EnableDebugAgent ();\r
623 //\r
b8b04307
JF
624 // Invoke AP function here\r
625 //\r
626 Procedure (Parameter);\r
31a1e4da 627 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
41be0da5
JF
628 if (CpuMpData->SwitchBspFlag) {\r
629 //\r
630 // Re-get the processor number due to BSP/AP maybe exchange in AP function\r
631 //\r
632 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
633 CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;\r
634 CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;\r
b3775af2
JF
635 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
636 CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;\r
41be0da5 637 } else {\r
c6b0feb3
JF
638 if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||\r
639 CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {\r
640 if (CurrentApicMode != GetApicMode ()) {\r
641 //\r
642 // If APIC mode change happened during AP function execution,\r
643 // we do not support APIC ID value changed.\r
644 //\r
645 ASSERT (FALSE);\r
646 CpuDeadLoop ();\r
647 } else {\r
648 //\r
649 // Re-get the CPU APICID and Initial APICID if they are changed\r
650 //\r
651 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
652 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
653 }\r
654 }\r
41be0da5 655 }\r
b8b04307
JF
656 }\r
657 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);\r
658 }\r
659 }\r
660\r
661 //\r
662 // AP finished executing C code\r
663 //\r
664 InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);\r
0594ec41 665 InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);\r
b8b04307
JF
666\r
667 //\r
668 // Place AP is specified loop mode\r
669 //\r
670 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
671 //\r
672 // Save AP volatile registers\r
673 //\r
674 SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);\r
675 //\r
676 // Place AP in HLT-loop\r
677 //\r
678 while (TRUE) {\r
679 DisableInterrupts ();\r
680 CpuSleep ();\r
681 CpuPause ();\r
682 }\r
683 }\r
684 while (TRUE) {\r
685 DisableInterrupts ();\r
686 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
687 //\r
688 // Place AP in MWAIT-loop\r
689 //\r
690 AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);\r
691 if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {\r
692 //\r
693 // Check AP start-up signal again.\r
694 // If AP start-up signal is not set, place AP into\r
695 // the specified C-state\r
696 //\r
697 AsmMwait (CpuMpData->ApTargetCState << 4, 0);\r
698 }\r
699 } else if (CpuMpData->ApLoopMode == ApInRunLoop) {\r
700 //\r
701 // Place AP in Run-loop\r
702 //\r
703 CpuPause ();\r
704 } else {\r
705 ASSERT (FALSE);\r
706 }\r
707\r
708 //\r
709 // If AP start-up signal is written, AP is waken up\r
710 // otherwise place AP in loop again\r
711 //\r
712 if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {\r
713 break;\r
714 }\r
715 }\r
716 }\r
717}\r
718\r
96f5920d
JF
719/**\r
720 Wait for AP wakeup and write AP start-up signal till AP is waken up.\r
721\r
722 @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal\r
723**/\r
724VOID\r
725WaitApWakeup (\r
726 IN volatile UINT32 *ApStartupSignalBuffer\r
727 )\r
728{\r
729 //\r
730 // If AP is waken up, StartupApSignal should be cleared.\r
731 // Otherwise, write StartupApSignal again till AP waken up.\r
732 //\r
733 while (InterlockedCompareExchange32 (\r
734 (UINT32 *) ApStartupSignalBuffer,\r
735 WAKEUP_AP_SIGNAL,\r
736 WAKEUP_AP_SIGNAL\r
737 ) != 0) {\r
738 CpuPause ();\r
739 }\r
740}\r
741\r
7c3f2a12
JF
742/**\r
743 This function will fill the exchange info structure.\r
744\r
745 @param[in] CpuMpData Pointer to CPU MP Data\r
746\r
747**/\r
748VOID\r
749FillExchangeInfoData (\r
750 IN CPU_MP_DATA *CpuMpData\r
751 )\r
752{\r
753 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
754\r
755 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
756 ExchangeInfo->Lock = 0;\r
757 ExchangeInfo->StackStart = CpuMpData->Buffer;\r
758 ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;\r
759 ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;\r
760 ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;\r
761\r
762 ExchangeInfo->CodeSegment = AsmReadCs ();\r
763 ExchangeInfo->DataSegment = AsmReadDs ();\r
764\r
765 ExchangeInfo->Cr3 = AsmReadCr3 ();\r
766\r
767 ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;\r
37676b9f 768 ExchangeInfo->ApIndex = 0;\r
0594ec41 769 ExchangeInfo->NumApsExecuting = 0;\r
46d4b885
JF
770 ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;\r
771 ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
7c3f2a12
JF
772 ExchangeInfo->CpuMpData = CpuMpData;\r
773\r
774 ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();\r
775\r
3b2928b4
MK
776 ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;\r
777\r
7c3f2a12
JF
778 //\r
779 // Get the BSP's data of GDT and IDT\r
780 //\r
781 AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);\r
782 AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);\r
783}\r
784\r
6e1987f1
LE
785/**\r
786 Helper function that waits until the finished AP count reaches the specified\r
787 limit, or the specified timeout elapses (whichever comes first).\r
788\r
789 @param[in] CpuMpData Pointer to CPU MP Data.\r
790 @param[in] FinishedApLimit The number of finished APs to wait for.\r
791 @param[in] TimeLimit The number of microseconds to wait for.\r
792**/\r
793VOID\r
794TimedWaitForApFinish (\r
795 IN CPU_MP_DATA *CpuMpData,\r
796 IN UINT32 FinishedApLimit,\r
797 IN UINT32 TimeLimit\r
798 );\r
799\r
a6b3d753
SZ
800/**\r
801 Get available system memory below 1MB by specified size.\r
802\r
803 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
804**/\r
805VOID\r
806BackupAndPrepareWakeupBuffer(\r
807 IN CPU_MP_DATA *CpuMpData\r
808 )\r
809{\r
810 CopyMem (\r
811 (VOID *) CpuMpData->BackupBuffer,\r
812 (VOID *) CpuMpData->WakeupBuffer,\r
813 CpuMpData->BackupBufferSize\r
814 );\r
815 CopyMem (\r
816 (VOID *) CpuMpData->WakeupBuffer,\r
817 (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,\r
818 CpuMpData->AddressMap.RendezvousFunnelSize\r
819 );\r
820}\r
821\r
822/**\r
823 Restore wakeup buffer data.\r
824\r
825 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
826**/\r
827VOID\r
828RestoreWakeupBuffer(\r
829 IN CPU_MP_DATA *CpuMpData\r
830 )\r
831{\r
832 CopyMem (\r
833 (VOID *) CpuMpData->WakeupBuffer,\r
834 (VOID *) CpuMpData->BackupBuffer,\r
835 CpuMpData->BackupBufferSize\r
836 );\r
837}\r
838\r
839/**\r
840 Allocate reset vector buffer.\r
841\r
842 @param[in, out] CpuMpData The pointer to CPU MP Data structure.\r
843**/\r
844VOID\r
845AllocateResetVector (\r
846 IN OUT CPU_MP_DATA *CpuMpData\r
847 )\r
848{\r
849 UINTN ApResetVectorSize;\r
850\r
851 if (CpuMpData->WakeupBuffer == (UINTN) -1) {\r
852 ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +\r
853 sizeof (MP_CPU_EXCHANGE_INFO);\r
854\r
855 CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);\r
856 CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)\r
857 (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);\r
858 }\r
859 BackupAndPrepareWakeupBuffer (CpuMpData);\r
860}\r
861\r
862/**\r
863 Free AP reset vector buffer.\r
864\r
865 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
866**/\r
867VOID\r
868FreeResetVector (\r
869 IN CPU_MP_DATA *CpuMpData\r
870 )\r
871{\r
872 RestoreWakeupBuffer (CpuMpData);\r
873}\r
874\r
96f5920d
JF
875/**\r
876 This function will be called by BSP to wakeup AP.\r
877\r
878 @param[in] CpuMpData Pointer to CPU MP Data\r
879 @param[in] Broadcast TRUE: Send broadcast IPI to all APs\r
880 FALSE: Send IPI to AP by ApicId\r
881 @param[in] ProcessorNumber The handle number of specified processor\r
882 @param[in] Procedure The function to be invoked by AP\r
883 @param[in] ProcedureArgument The argument to be passed into AP function\r
884**/\r
885VOID\r
886WakeUpAP (\r
887 IN CPU_MP_DATA *CpuMpData,\r
888 IN BOOLEAN Broadcast,\r
889 IN UINTN ProcessorNumber,\r
890 IN EFI_AP_PROCEDURE Procedure, OPTIONAL\r
891 IN VOID *ProcedureArgument OPTIONAL\r
892 )\r
893{\r
894 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
895 UINTN Index;\r
896 CPU_AP_DATA *CpuData;\r
897 BOOLEAN ResetVectorRequired;\r
31a1e4da 898 CPU_INFO_IN_HOB *CpuInfoInHob;\r
96f5920d
JF
899\r
900 CpuMpData->FinishedCount = 0;\r
901 ResetVectorRequired = FALSE;\r
902\r
903 if (CpuMpData->ApLoopMode == ApInHltLoop ||\r
904 CpuMpData->InitFlag != ApInitDone) {\r
905 ResetVectorRequired = TRUE;\r
906 AllocateResetVector (CpuMpData);\r
907 FillExchangeInfoData (CpuMpData);\r
ffab2442 908 SaveLocalApicTimerSetting (CpuMpData);\r
96f5920d
JF
909 } else if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
910 //\r
911 // Get AP target C-state each time when waking up AP,\r
912 // for it maybe updated by platform again\r
913 //\r
914 CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);\r
915 }\r
916\r
917 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
918\r
919 if (Broadcast) {\r
920 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
921 if (Index != CpuMpData->BspNumber) {\r
922 CpuData = &CpuMpData->CpuData[Index];\r
923 CpuData->ApFunction = (UINTN) Procedure;\r
924 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
925 SetApState (CpuData, CpuStateReady);\r
926 if (CpuMpData->InitFlag != ApInitConfig) {\r
927 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
928 }\r
929 }\r
930 }\r
931 if (ResetVectorRequired) {\r
932 //\r
933 // Wakeup all APs\r
934 //\r
935 SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);\r
936 }\r
c1192210
JF
937 if (CpuMpData->InitFlag == ApInitConfig) {\r
938 //\r
86121874
ED
939 // Here support two methods to collect AP count through adjust\r
940 // PcdCpuApInitTimeOutInMicroSeconds values.\r
941 //\r
942 // one way is set a value to just let the first AP to start the\r
943 // initialization, then through the later while loop to wait all Aps\r
944 // finsh the initialization.\r
945 // The other way is set a value to let all APs finished the initialzation.\r
946 // In this case, the later while loop is useless.\r
947 //\r
948 TimedWaitForApFinish (\r
949 CpuMpData,\r
950 PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,\r
951 PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)\r
952 );\r
0594ec41
ED
953\r
954 while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {\r
955 CpuPause();\r
956 }\r
c1192210 957 } else {\r
96f5920d
JF
958 //\r
959 // Wait all APs waken up if this is not the 1st broadcast of SIPI\r
960 //\r
961 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
962 CpuData = &CpuMpData->CpuData[Index];\r
963 if (Index != CpuMpData->BspNumber) {\r
964 WaitApWakeup (CpuData->StartupApSignal);\r
965 }\r
966 }\r
967 }\r
968 } else {\r
969 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
970 CpuData->ApFunction = (UINTN) Procedure;\r
971 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
972 SetApState (CpuData, CpuStateReady);\r
973 //\r
974 // Wakeup specified AP\r
975 //\r
976 ASSERT (CpuMpData->InitFlag != ApInitConfig);\r
977 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
978 if (ResetVectorRequired) {\r
31a1e4da 979 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
96f5920d 980 SendInitSipiSipi (\r
31a1e4da 981 CpuInfoInHob[ProcessorNumber].ApicId,\r
96f5920d
JF
982 (UINT32) ExchangeInfo->BufferStart\r
983 );\r
984 }\r
985 //\r
986 // Wait specified AP waken up\r
987 //\r
988 WaitApWakeup (CpuData->StartupApSignal);\r
989 }\r
990\r
991 if (ResetVectorRequired) {\r
992 FreeResetVector (CpuMpData);\r
993 }\r
994}\r
995\r
08085f08
JF
996/**\r
997 Calculate timeout value and return the current performance counter value.\r
998\r
999 Calculate the number of performance counter ticks required for a timeout.\r
1000 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1001 as infinity.\r
1002\r
1003 @param[in] TimeoutInMicroseconds Timeout value in microseconds.\r
1004 @param[out] CurrentTime Returns the current value of the performance counter.\r
1005\r
1006 @return Expected time stamp counter for timeout.\r
1007 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1008 as infinity.\r
1009\r
1010**/\r
1011UINT64\r
1012CalculateTimeout (\r
1013 IN UINTN TimeoutInMicroseconds,\r
1014 OUT UINT64 *CurrentTime\r
1015 )\r
1016{\r
48cfb7c0
ED
1017 UINT64 TimeoutInSeconds;\r
1018 UINT64 TimestampCounterFreq;\r
1019\r
08085f08
JF
1020 //\r
1021 // Read the current value of the performance counter\r
1022 //\r
1023 *CurrentTime = GetPerformanceCounter ();\r
1024\r
1025 //\r
1026 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1027 // as infinity.\r
1028 //\r
1029 if (TimeoutInMicroseconds == 0) {\r
1030 return 0;\r
1031 }\r
1032\r
1033 //\r
1034 // GetPerformanceCounterProperties () returns the timestamp counter's frequency\r
48cfb7c0
ED
1035 // in Hz. \r
1036 //\r
1037 TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);\r
1038\r
08085f08 1039 //\r
48cfb7c0
ED
1040 // Check the potential overflow before calculate the number of ticks for the timeout value.\r
1041 //\r
1042 if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {\r
1043 //\r
1044 // Convert microseconds into seconds if direct multiplication overflows\r
1045 //\r
1046 TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);\r
1047 //\r
1048 // Assertion if the final tick count exceeds MAX_UINT64\r
1049 //\r
1050 ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);\r
1051 return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);\r
1052 } else {\r
1053 //\r
1054 // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide\r
1055 // it by 1,000,000, to get the number of ticks for the timeout value.\r
1056 //\r
1057 return DivU64x32 (\r
1058 MultU64x64 (\r
1059 TimestampCounterFreq,\r
1060 TimeoutInMicroseconds\r
1061 ),\r
1062 1000000\r
1063 );\r
1064 }\r
08085f08
JF
1065}\r
1066\r
1067/**\r
1068 Checks whether timeout expires.\r
1069\r
1070 Check whether the number of elapsed performance counter ticks required for\r
1071 a timeout condition has been reached.\r
1072 If Timeout is zero, which means infinity, return value is always FALSE.\r
1073\r
1074 @param[in, out] PreviousTime On input, the value of the performance counter\r
1075 when it was last read.\r
1076 On output, the current value of the performance\r
1077 counter\r
1078 @param[in] TotalTime The total amount of elapsed time in performance\r
1079 counter ticks.\r
1080 @param[in] Timeout The number of performance counter ticks required\r
1081 to reach a timeout condition.\r
1082\r
1083 @retval TRUE A timeout condition has been reached.\r
1084 @retval FALSE A timeout condition has not been reached.\r
1085\r
1086**/\r
1087BOOLEAN\r
1088CheckTimeout (\r
1089 IN OUT UINT64 *PreviousTime,\r
1090 IN UINT64 *TotalTime,\r
1091 IN UINT64 Timeout\r
1092 )\r
1093{\r
1094 UINT64 Start;\r
1095 UINT64 End;\r
1096 UINT64 CurrentTime;\r
1097 INT64 Delta;\r
1098 INT64 Cycle;\r
1099\r
1100 if (Timeout == 0) {\r
1101 return FALSE;\r
1102 }\r
1103 GetPerformanceCounterProperties (&Start, &End);\r
1104 Cycle = End - Start;\r
1105 if (Cycle < 0) {\r
1106 Cycle = -Cycle;\r
1107 }\r
1108 Cycle++;\r
1109 CurrentTime = GetPerformanceCounter();\r
1110 Delta = (INT64) (CurrentTime - *PreviousTime);\r
1111 if (Start > End) {\r
1112 Delta = -Delta;\r
1113 }\r
1114 if (Delta < 0) {\r
1115 Delta += Cycle;\r
1116 }\r
1117 *TotalTime += Delta;\r
1118 *PreviousTime = CurrentTime;\r
1119 if (*TotalTime > Timeout) {\r
1120 return TRUE;\r
1121 }\r
1122 return FALSE;\r
1123}\r
1124\r
6e1987f1
LE
1125/**\r
1126 Helper function that waits until the finished AP count reaches the specified\r
1127 limit, or the specified timeout elapses (whichever comes first).\r
1128\r
1129 @param[in] CpuMpData Pointer to CPU MP Data.\r
1130 @param[in] FinishedApLimit The number of finished APs to wait for.\r
1131 @param[in] TimeLimit The number of microseconds to wait for.\r
1132**/\r
1133VOID\r
1134TimedWaitForApFinish (\r
1135 IN CPU_MP_DATA *CpuMpData,\r
1136 IN UINT32 FinishedApLimit,\r
1137 IN UINT32 TimeLimit\r
1138 )\r
1139{\r
1140 //\r
1141 // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0\r
1142 // "infinity", so check for (TimeLimit == 0) explicitly.\r
1143 //\r
1144 if (TimeLimit == 0) {\r
1145 return;\r
1146 }\r
1147\r
1148 CpuMpData->TotalTime = 0;\r
1149 CpuMpData->ExpectedTime = CalculateTimeout (\r
1150 TimeLimit,\r
1151 &CpuMpData->CurrentTime\r
1152 );\r
1153 while (CpuMpData->FinishedCount < FinishedApLimit &&\r
1154 !CheckTimeout (\r
1155 &CpuMpData->CurrentTime,\r
1156 &CpuMpData->TotalTime,\r
1157 CpuMpData->ExpectedTime\r
1158 )) {\r
1159 CpuPause ();\r
1160 }\r
1161\r
1162 if (CpuMpData->FinishedCount >= FinishedApLimit) {\r
1163 DEBUG ((\r
1164 DEBUG_VERBOSE,\r
1165 "%a: reached FinishedApLimit=%u in %Lu microseconds\n",\r
1166 __FUNCTION__,\r
1167 FinishedApLimit,\r
1168 DivU64x64Remainder (\r
1169 MultU64x32 (CpuMpData->TotalTime, 1000000),\r
1170 GetPerformanceCounterProperties (NULL, NULL),\r
1171 NULL\r
1172 )\r
1173 ));\r
1174 }\r
1175}\r
1176\r
08085f08
JF
1177/**\r
1178 Reset an AP to Idle state.\r
1179\r
1180 Any task being executed by the AP will be aborted and the AP\r
1181 will be waiting for a new task in Wait-For-SIPI state.\r
1182\r
1183 @param[in] ProcessorNumber The handle number of processor.\r
1184**/\r
1185VOID\r
1186ResetProcessorToIdleState (\r
1187 IN UINTN ProcessorNumber\r
1188 )\r
1189{\r
1190 CPU_MP_DATA *CpuMpData;\r
1191\r
1192 CpuMpData = GetCpuMpData ();\r
1193\r
cb33bde4 1194 CpuMpData->InitFlag = ApInitReconfig;\r
08085f08 1195 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL);\r
cb33bde4
JF
1196 while (CpuMpData->FinishedCount < 1) {\r
1197 CpuPause ();\r
1198 }\r
1199 CpuMpData->InitFlag = ApInitDone;\r
08085f08
JF
1200\r
1201 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
1202}\r
1203\r
1204/**\r
1205 Searches for the next waiting AP.\r
1206\r
1207 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().\r
1208\r
1209 @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.\r
1210\r
1211 @retval EFI_SUCCESS The next waiting AP has been found.\r
1212 @retval EFI_NOT_FOUND No waiting AP exists.\r
1213\r
1214**/\r
1215EFI_STATUS\r
1216GetNextWaitingProcessorNumber (\r
1217 OUT UINTN *NextProcessorNumber\r
1218 )\r
1219{\r
1220 UINTN ProcessorNumber;\r
1221 CPU_MP_DATA *CpuMpData;\r
1222\r
1223 CpuMpData = GetCpuMpData ();\r
1224\r
1225 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1226 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1227 *NextProcessorNumber = ProcessorNumber;\r
1228 return EFI_SUCCESS;\r
1229 }\r
1230 }\r
1231\r
1232 return EFI_NOT_FOUND;\r
1233}\r
1234\r
1235/** Checks status of specified AP.\r
1236\r
1237 This function checks whether the specified AP has finished the task assigned\r
1238 by StartupThisAP(), and whether timeout expires.\r
1239\r
1240 @param[in] ProcessorNumber The handle number of processor.\r
1241\r
1242 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().\r
1243 @retval EFI_TIMEOUT The timeout expires.\r
1244 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.\r
1245**/\r
1246EFI_STATUS\r
1247CheckThisAP (\r
1248 IN UINTN ProcessorNumber\r
1249 )\r
1250{\r
1251 CPU_MP_DATA *CpuMpData;\r
1252 CPU_AP_DATA *CpuData;\r
1253\r
1254 CpuMpData = GetCpuMpData ();\r
1255 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1256\r
1257 //\r
1258 // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.\r
1259 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
1260 // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.\r
1261 //\r
1262 //\r
1263 // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.\r
1264 //\r
1265 if (GetApState(CpuData) == CpuStateFinished) {\r
1266 if (CpuData->Finished != NULL) {\r
1267 *(CpuData->Finished) = TRUE;\r
1268 }\r
1269 SetApState (CpuData, CpuStateIdle);\r
1270 return EFI_SUCCESS;\r
1271 } else {\r
1272 //\r
1273 // If timeout expires for StartupThisAP(), report timeout.\r
1274 //\r
1275 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {\r
1276 if (CpuData->Finished != NULL) {\r
1277 *(CpuData->Finished) = FALSE;\r
1278 }\r
1279 //\r
1280 // Reset failed AP to idle state\r
1281 //\r
1282 ResetProcessorToIdleState (ProcessorNumber);\r
1283\r
1284 return EFI_TIMEOUT;\r
1285 }\r
1286 }\r
1287 return EFI_NOT_READY;\r
1288}\r
1289\r
1290/**\r
1291 Checks status of all APs.\r
1292\r
1293 This function checks whether all APs have finished task assigned by StartupAllAPs(),\r
1294 and whether timeout expires.\r
1295\r
1296 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().\r
1297 @retval EFI_TIMEOUT The timeout expires.\r
1298 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.\r
1299**/\r
1300EFI_STATUS\r
1301CheckAllAPs (\r
1302 VOID\r
1303 )\r
1304{\r
1305 UINTN ProcessorNumber;\r
1306 UINTN NextProcessorNumber;\r
1307 UINTN ListIndex;\r
1308 EFI_STATUS Status;\r
1309 CPU_MP_DATA *CpuMpData;\r
1310 CPU_AP_DATA *CpuData;\r
1311\r
1312 CpuMpData = GetCpuMpData ();\r
1313\r
1314 NextProcessorNumber = 0;\r
1315\r
1316 //\r
1317 // Go through all APs that are responsible for the StartupAllAPs().\r
1318 //\r
1319 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1320 if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1321 continue;\r
1322 }\r
1323\r
1324 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1325 //\r
1326 // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.\r
1327 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
1328 // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.\r
1329 //\r
1330 if (GetApState(CpuData) == CpuStateFinished) {\r
1331 CpuMpData->RunningCount ++;\r
1332 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
1333 SetApState(CpuData, CpuStateIdle);\r
1334\r
1335 //\r
1336 // If in Single Thread mode, then search for the next waiting AP for execution.\r
1337 //\r
1338 if (CpuMpData->SingleThread) {\r
1339 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);\r
1340\r
1341 if (!EFI_ERROR (Status)) {\r
1342 WakeUpAP (\r
1343 CpuMpData,\r
1344 FALSE,\r
1345 (UINT32) NextProcessorNumber,\r
1346 CpuMpData->Procedure,\r
1347 CpuMpData->ProcArguments\r
1348 );\r
1349 }\r
1350 }\r
1351 }\r
1352 }\r
1353\r
1354 //\r
1355 // If all APs finish, return EFI_SUCCESS.\r
1356 //\r
1357 if (CpuMpData->RunningCount == CpuMpData->StartCount) {\r
1358 return EFI_SUCCESS;\r
1359 }\r
1360\r
1361 //\r
1362 // If timeout expires, report timeout.\r
1363 //\r
1364 if (CheckTimeout (\r
1365 &CpuMpData->CurrentTime,\r
1366 &CpuMpData->TotalTime,\r
1367 CpuMpData->ExpectedTime)\r
1368 ) {\r
1369 //\r
1370 // If FailedCpuList is not NULL, record all failed APs in it.\r
1371 //\r
1372 if (CpuMpData->FailedCpuList != NULL) {\r
1373 *CpuMpData->FailedCpuList =\r
1374 AllocatePool ((CpuMpData->StartCount - CpuMpData->FinishedCount + 1) * sizeof (UINTN));\r
1375 ASSERT (*CpuMpData->FailedCpuList != NULL);\r
1376 }\r
1377 ListIndex = 0;\r
1378\r
1379 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1380 //\r
1381 // Check whether this processor is responsible for StartupAllAPs().\r
1382 //\r
1383 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1384 //\r
1385 // Reset failed APs to idle state\r
1386 //\r
1387 ResetProcessorToIdleState (ProcessorNumber);\r
1388 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
1389 if (CpuMpData->FailedCpuList != NULL) {\r
1390 (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;\r
1391 }\r
1392 }\r
1393 }\r
1394 if (CpuMpData->FailedCpuList != NULL) {\r
1395 (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;\r
1396 }\r
1397 return EFI_TIMEOUT;\r
1398 }\r
1399 return EFI_NOT_READY;\r
1400}\r
1401\r
3e8ad6bd
JF
1402/**\r
1403 MP Initialize Library initialization.\r
1404\r
1405 This service will allocate AP reset vector and wakeup all APs to do APs\r
1406 initialization.\r
1407\r
1408 This service must be invoked before all other MP Initialize Library\r
1409 service are invoked.\r
1410\r
1411 @retval EFI_SUCCESS MP initialization succeeds.\r
1412 @retval Others MP initialization fails.\r
1413\r
1414**/\r
1415EFI_STATUS\r
1416EFIAPI\r
1417MpInitLibInitialize (\r
1418 VOID\r
1419 )\r
1420{\r
6a2ee2bb
JF
1421 CPU_MP_DATA *OldCpuMpData;\r
1422 CPU_INFO_IN_HOB *CpuInfoInHob;\r
e59f8f6b
JF
1423 UINT32 MaxLogicalProcessorNumber;\r
1424 UINT32 ApStackSize;\r
f7f85d83 1425 MP_ASSEMBLY_ADDRESS_MAP AddressMap;\r
e59f8f6b 1426 UINTN BufferSize;\r
9ebcf0f4 1427 UINT32 MonitorFilterSize;\r
e59f8f6b
JF
1428 VOID *MpBuffer;\r
1429 UINTN Buffer;\r
1430 CPU_MP_DATA *CpuMpData;\r
9ebcf0f4 1431 UINT8 ApLoopMode;\r
e59f8f6b 1432 UINT8 *MonitorBuffer;\r
03a1a925 1433 UINTN Index;\r
f7f85d83 1434 UINTN ApResetVectorSize;\r
e59f8f6b 1435 UINTN BackupBufferAddr;\r
6a2ee2bb
JF
1436\r
1437 OldCpuMpData = GetCpuMpDataFromGuidedHob ();\r
1438 if (OldCpuMpData == NULL) {\r
1439 MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);\r
1440 } else {\r
1441 MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;\r
1442 }\r
14e8137c 1443 ASSERT (MaxLogicalProcessorNumber != 0);\r
f7f85d83
JF
1444\r
1445 AsmGetAddressMap (&AddressMap);\r
1446 ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);\r
e59f8f6b 1447 ApStackSize = PcdGet32(PcdCpuApStackSize);\r
9ebcf0f4
JF
1448 ApLoopMode = GetApLoopMode (&MonitorFilterSize);\r
1449\r
e59f8f6b
JF
1450 BufferSize = ApStackSize * MaxLogicalProcessorNumber;\r
1451 BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;\r
1452 BufferSize += sizeof (CPU_MP_DATA);\r
1453 BufferSize += ApResetVectorSize;\r
1454 BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;\r
1455 MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));\r
1456 ASSERT (MpBuffer != NULL);\r
1457 ZeroMem (MpBuffer, BufferSize);\r
1458 Buffer = (UINTN) MpBuffer;\r
1459\r
1460 MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);\r
1461 BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;\r
1462 CpuMpData = (CPU_MP_DATA *) (BackupBufferAddr + ApResetVectorSize);\r
1463 CpuMpData->Buffer = Buffer;\r
1464 CpuMpData->CpuApStackSize = ApStackSize;\r
1465 CpuMpData->BackupBuffer = BackupBufferAddr;\r
1466 CpuMpData->BackupBufferSize = ApResetVectorSize;\r
e59f8f6b
JF
1467 CpuMpData->WakeupBuffer = (UINTN) -1;\r
1468 CpuMpData->CpuCount = 1;\r
1469 CpuMpData->BspNumber = 0;\r
1470 CpuMpData->WaitEvent = NULL;\r
41be0da5 1471 CpuMpData->SwitchBspFlag = FALSE;\r
e59f8f6b
JF
1472 CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);\r
1473 CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);\r
1e3f7a37
ED
1474 CpuMpData->MicrocodePatchAddress = PcdGet64 (PcdCpuMicrocodePatchAddress);\r
1475 CpuMpData->MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize);\r
e59f8f6b
JF
1476 InitializeSpinLock(&CpuMpData->MpLock);\r
1477 //\r
68cb9330
JF
1478 // Save BSP's Control registers to APs\r
1479 //\r
1480 SaveVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters);\r
1481 //\r
03a1a925
JF
1482 // Set BSP basic information\r
1483 //\r
845c5be1 1484 InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer);\r
03a1a925 1485 //\r
e59f8f6b
JF
1486 // Save assembly code information\r
1487 //\r
1488 CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));\r
1489 //\r
1490 // Finally set AP loop mode\r
1491 //\r
1492 CpuMpData->ApLoopMode = ApLoopMode;\r
1493 DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));\r
1494 //\r
03a1a925
JF
1495 // Set up APs wakeup signal buffer\r
1496 //\r
1497 for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {\r
1498 CpuMpData->CpuData[Index].StartupApSignal =\r
1499 (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);\r
1500 }\r
94f63c76
JF
1501 //\r
1502 // Load Microcode on BSP\r
1503 //\r
1504 MicrocodeDetect (CpuMpData);\r
1505 //\r
e59f8f6b
JF
1506 // Store BSP's MTRR setting\r
1507 //\r
1508 MtrrGetAllMtrrs (&CpuMpData->MtrrTable);\r
9d64a9fd
JF
1509 //\r
1510 // Enable the local APIC for Virtual Wire Mode.\r
1511 //\r
1512 ProgramVirtualWireMode ();\r
e59f8f6b 1513\r
6a2ee2bb 1514 if (OldCpuMpData == NULL) {\r
14e8137c
JF
1515 if (MaxLogicalProcessorNumber > 1) {\r
1516 //\r
1517 // Wakeup all APs and calculate the processor count in system\r
1518 //\r
1519 CollectProcessorCount (CpuMpData);\r
1520 }\r
6a2ee2bb
JF
1521 } else {\r
1522 //\r
1523 // APs have been wakeup before, just get the CPU Information\r
1524 // from HOB\r
1525 //\r
1526 CpuMpData->CpuCount = OldCpuMpData->CpuCount;\r
1527 CpuMpData->BspNumber = OldCpuMpData->BspNumber;\r
1528 CpuMpData->InitFlag = ApInitReconfig;\r
31a1e4da
JF
1529 CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;\r
1530 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
6a2ee2bb
JF
1531 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1532 InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);\r
71d8226a 1533 if (CpuInfoInHob[Index].InitialApicId >= 255 || Index > 254) {\r
6a2ee2bb
JF
1534 CpuMpData->X2ApicEnable = TRUE;\r
1535 }\r
31a1e4da 1536 CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;\r
6a2ee2bb
JF
1537 CpuMpData->CpuData[Index].ApFunction = 0;\r
1538 CopyMem (\r
1539 &CpuMpData->CpuData[Index].VolatileRegisters,\r
1540 &CpuMpData->CpuData[0].VolatileRegisters,\r
1541 sizeof (CPU_VOLATILE_REGISTERS)\r
1542 );\r
1543 }\r
14e8137c
JF
1544 if (MaxLogicalProcessorNumber > 1) {\r
1545 //\r
1546 // Wakeup APs to do some AP initialize sync\r
1547 //\r
1548 WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData);\r
1549 //\r
1550 // Wait for all APs finished initialization\r
1551 //\r
1552 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
1553 CpuPause ();\r
1554 }\r
1555 CpuMpData->InitFlag = ApInitDone;\r
1556 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1557 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
1558 }\r
6a2ee2bb
JF
1559 }\r
1560 }\r
93ca4c0f
JF
1561\r
1562 //\r
1563 // Initialize global data for MP support\r
1564 //\r
1565 InitMpGlobalData (CpuMpData);\r
1566\r
f7f85d83 1567 return EFI_SUCCESS;\r
3e8ad6bd
JF
1568}\r
1569\r
1570/**\r
1571 Gets detailed MP-related information on the requested processor at the\r
1572 instant this call is made. This service may only be called from the BSP.\r
1573\r
1574 @param[in] ProcessorNumber The handle number of processor.\r
1575 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for\r
1576 the requested processor is deposited.\r
1577 @param[out] HealthData Return processor health data.\r
1578\r
1579 @retval EFI_SUCCESS Processor information was returned.\r
1580 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
1581 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.\r
1582 @retval EFI_NOT_FOUND The processor with the handle specified by\r
1583 ProcessorNumber does not exist in the platform.\r
1584 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
1585\r
1586**/\r
1587EFI_STATUS\r
1588EFIAPI\r
1589MpInitLibGetProcessorInfo (\r
1590 IN UINTN ProcessorNumber,\r
1591 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,\r
1592 OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL\r
1593 )\r
1594{\r
ad52f25e
JF
1595 CPU_MP_DATA *CpuMpData;\r
1596 UINTN CallerNumber;\r
31a1e4da 1597 CPU_INFO_IN_HOB *CpuInfoInHob;\r
ad52f25e
JF
1598\r
1599 CpuMpData = GetCpuMpData ();\r
31a1e4da 1600 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
ad52f25e
JF
1601\r
1602 //\r
1603 // Check whether caller processor is BSP\r
1604 //\r
1605 MpInitLibWhoAmI (&CallerNumber);\r
1606 if (CallerNumber != CpuMpData->BspNumber) {\r
1607 return EFI_DEVICE_ERROR;\r
1608 }\r
1609\r
1610 if (ProcessorInfoBuffer == NULL) {\r
1611 return EFI_INVALID_PARAMETER;\r
1612 }\r
1613\r
1614 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1615 return EFI_NOT_FOUND;\r
1616 }\r
1617\r
31a1e4da 1618 ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;\r
ad52f25e
JF
1619 ProcessorInfoBuffer->StatusFlag = 0;\r
1620 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1621 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;\r
1622 }\r
1623 if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {\r
1624 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;\r
1625 }\r
1626 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
1627 ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;\r
1628 } else {\r
1629 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;\r
1630 }\r
1631\r
1632 //\r
1633 // Get processor location information\r
1634 //\r
262128e5 1635 GetProcessorLocationByApicId (\r
31a1e4da 1636 CpuInfoInHob[ProcessorNumber].ApicId,\r
73152f19
LD
1637 &ProcessorInfoBuffer->Location.Package,\r
1638 &ProcessorInfoBuffer->Location.Core,\r
1639 &ProcessorInfoBuffer->Location.Thread\r
1640 );\r
ad52f25e
JF
1641\r
1642 if (HealthData != NULL) {\r
31a1e4da 1643 HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;\r
ad52f25e
JF
1644 }\r
1645\r
1646 return EFI_SUCCESS;\r
3e8ad6bd 1647}\r
ad52f25e 1648\r
41be0da5
JF
1649/**\r
1650 Worker function to switch the requested AP to be the BSP from that point onward.\r
1651\r
1652 @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.\r
1653 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an\r
1654 enabled AP. Otherwise, it will be disabled.\r
1655\r
1656 @retval EFI_SUCCESS BSP successfully switched.\r
1657 @retval others Failed to switch BSP. \r
1658\r
1659**/\r
1660EFI_STATUS\r
1661SwitchBSPWorker (\r
1662 IN UINTN ProcessorNumber,\r
1663 IN BOOLEAN EnableOldBSP\r
1664 )\r
1665{\r
1666 CPU_MP_DATA *CpuMpData;\r
1667 UINTN CallerNumber;\r
1668 CPU_STATE State;\r
1669 MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;\r
a8d75a18 1670 BOOLEAN OldInterruptState;\r
26b43433 1671 BOOLEAN OldTimerInterruptState;\r
a8d75a18 1672\r
26b43433
JF
1673 //\r
1674 // Save and Disable Local APIC timer interrupt\r
1675 //\r
1676 OldTimerInterruptState = GetApicTimerInterruptState ();\r
1677 DisableApicTimerInterrupt ();\r
a8d75a18
JF
1678 //\r
1679 // Before send both BSP and AP to a procedure to exchange their roles,\r
1680 // interrupt must be disabled. This is because during the exchange role\r
1681 // process, 2 CPU may use 1 stack. If interrupt happens, the stack will\r
1682 // be corrupted, since interrupt return address will be pushed to stack\r
1683 // by hardware.\r
1684 //\r
1685 OldInterruptState = SaveAndDisableInterrupts ();\r
1686\r
1687 //\r
1688 // Mask LINT0 & LINT1 for the old BSP\r
1689 //\r
1690 DisableLvtInterrupts ();\r
41be0da5
JF
1691\r
1692 CpuMpData = GetCpuMpData ();\r
1693\r
1694 //\r
1695 // Check whether caller processor is BSP\r
1696 //\r
1697 MpInitLibWhoAmI (&CallerNumber);\r
1698 if (CallerNumber != CpuMpData->BspNumber) {\r
5e72dacc 1699 return EFI_DEVICE_ERROR;\r
41be0da5
JF
1700 }\r
1701\r
1702 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1703 return EFI_NOT_FOUND;\r
1704 }\r
1705\r
1706 //\r
1707 // Check whether specified AP is disabled\r
1708 //\r
1709 State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);\r
1710 if (State == CpuStateDisabled) {\r
1711 return EFI_INVALID_PARAMETER;\r
1712 }\r
1713\r
1714 //\r
1715 // Check whether ProcessorNumber specifies the current BSP\r
1716 //\r
1717 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1718 return EFI_INVALID_PARAMETER;\r
1719 }\r
1720\r
1721 //\r
1722 // Check whether specified AP is busy\r
1723 //\r
1724 if (State == CpuStateBusy) {\r
1725 return EFI_NOT_READY;\r
1726 }\r
1727\r
1728 CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;\r
1729 CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;\r
1730 CpuMpData->SwitchBspFlag = TRUE;\r
b3775af2 1731 CpuMpData->NewBspNumber = ProcessorNumber;\r
41be0da5
JF
1732\r
1733 //\r
1734 // Clear the BSP bit of MSR_IA32_APIC_BASE\r
1735 //\r
1736 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1737 ApicBaseMsr.Bits.BSP = 0;\r
1738 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
1739\r
1740 //\r
1741 // Need to wakeUp AP (future BSP).\r
1742 //\r
1743 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData);\r
1744\r
1745 AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);\r
1746\r
1747 //\r
1748 // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP\r
1749 //\r
1750 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1751 ApicBaseMsr.Bits.BSP = 1;\r
1752 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
1753\r
1754 //\r
1755 // Wait for old BSP finished AP task\r
1756 //\r
1757 while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {\r
1758 CpuPause ();\r
1759 }\r
1760\r
1761 CpuMpData->SwitchBspFlag = FALSE;\r
1762 //\r
1763 // Set old BSP enable state\r
1764 //\r
1765 if (!EnableOldBSP) {\r
1766 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);\r
af8ba51a
JF
1767 } else {\r
1768 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);\r
41be0da5
JF
1769 }\r
1770 //\r
1771 // Save new BSP number\r
1772 //\r
1773 CpuMpData->BspNumber = (UINT32) ProcessorNumber;\r
1774\r
a8d75a18
JF
1775 //\r
1776 // Restore interrupt state.\r
1777 //\r
1778 SetInterruptState (OldInterruptState);\r
1779\r
26b43433
JF
1780 if (OldTimerInterruptState) {\r
1781 EnableApicTimerInterrupt ();\r
1782 }\r
a8d75a18 1783\r
41be0da5
JF
1784 return EFI_SUCCESS;\r
1785}\r
ad52f25e 1786\r
e37109bc
JF
1787/**\r
1788 Worker function to let the caller enable or disable an AP from this point onward.\r
1789 This service may only be called from the BSP.\r
1790\r
1791 @param[in] ProcessorNumber The handle number of AP.\r
1792 @param[in] EnableAP Specifies the new state for the processor for\r
1793 enabled, FALSE for disabled.\r
1794 @param[in] HealthFlag If not NULL, a pointer to a value that specifies\r
1795 the new health status of the AP.\r
1796\r
1797 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.\r
1798 @retval others Failed to Enable/Disable AP.\r
1799\r
1800**/\r
1801EFI_STATUS\r
1802EnableDisableApWorker (\r
1803 IN UINTN ProcessorNumber,\r
1804 IN BOOLEAN EnableAP,\r
1805 IN UINT32 *HealthFlag OPTIONAL\r
1806 )\r
1807{\r
1808 CPU_MP_DATA *CpuMpData;\r
1809 UINTN CallerNumber;\r
1810\r
1811 CpuMpData = GetCpuMpData ();\r
1812\r
1813 //\r
1814 // Check whether caller processor is BSP\r
1815 //\r
1816 MpInitLibWhoAmI (&CallerNumber);\r
1817 if (CallerNumber != CpuMpData->BspNumber) {\r
1818 return EFI_DEVICE_ERROR;\r
1819 }\r
1820\r
1821 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1822 return EFI_INVALID_PARAMETER;\r
1823 }\r
1824\r
1825 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1826 return EFI_NOT_FOUND;\r
1827 }\r
1828\r
1829 if (!EnableAP) {\r
1830 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);\r
1831 } else {\r
d5fdae96 1832 ResetProcessorToIdleState (ProcessorNumber);\r
e37109bc
JF
1833 }\r
1834\r
1835 if (HealthFlag != NULL) {\r
1836 CpuMpData->CpuData[ProcessorNumber].CpuHealthy =\r
1837 (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);\r
1838 }\r
1839\r
1840 return EFI_SUCCESS;\r
1841}\r
1842\r
3e8ad6bd
JF
1843/**\r
1844 This return the handle number for the calling processor. This service may be\r
1845 called from the BSP and APs.\r
1846\r
1847 @param[out] ProcessorNumber Pointer to the handle number of AP.\r
1848 The range is from 0 to the total number of\r
1849 logical processors minus 1. The total number of\r
1850 logical processors can be retrieved by\r
1851 MpInitLibGetNumberOfProcessors().\r
1852\r
1853 @retval EFI_SUCCESS The current processor handle number was returned\r
1854 in ProcessorNumber.\r
1855 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.\r
1856 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
1857\r
1858**/\r
1859EFI_STATUS\r
1860EFIAPI\r
1861MpInitLibWhoAmI (\r
1862 OUT UINTN *ProcessorNumber\r
1863 )\r
1864{\r
5c9e0997
JF
1865 CPU_MP_DATA *CpuMpData;\r
1866\r
1867 if (ProcessorNumber == NULL) {\r
1868 return EFI_INVALID_PARAMETER;\r
1869 }\r
1870\r
1871 CpuMpData = GetCpuMpData ();\r
1872\r
1873 return GetProcessorNumber (CpuMpData, ProcessorNumber);\r
3e8ad6bd 1874}\r
809213a6 1875\r
3e8ad6bd
JF
1876/**\r
1877 Retrieves the number of logical processor in the platform and the number of\r
1878 those logical processors that are enabled on this boot. This service may only\r
1879 be called from the BSP.\r
1880\r
1881 @param[out] NumberOfProcessors Pointer to the total number of logical\r
1882 processors in the system, including the BSP\r
1883 and disabled APs.\r
1884 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical\r
1885 processors that exist in system, including\r
1886 the BSP.\r
1887\r
1888 @retval EFI_SUCCESS The number of logical processors and enabled\r
1889 logical processors was retrieved.\r
1890 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
1891 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors\r
1892 is NULL.\r
1893 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
1894\r
1895**/\r
1896EFI_STATUS\r
1897EFIAPI\r
1898MpInitLibGetNumberOfProcessors (\r
1899 OUT UINTN *NumberOfProcessors, OPTIONAL\r
1900 OUT UINTN *NumberOfEnabledProcessors OPTIONAL\r
1901 )\r
1902{\r
809213a6
JF
1903 CPU_MP_DATA *CpuMpData;\r
1904 UINTN CallerNumber;\r
1905 UINTN ProcessorNumber;\r
1906 UINTN EnabledProcessorNumber;\r
1907 UINTN Index;\r
1908\r
1909 CpuMpData = GetCpuMpData ();\r
1910\r
1911 if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {\r
1912 return EFI_INVALID_PARAMETER;\r
1913 }\r
1914\r
1915 //\r
1916 // Check whether caller processor is BSP\r
1917 //\r
1918 MpInitLibWhoAmI (&CallerNumber);\r
1919 if (CallerNumber != CpuMpData->BspNumber) {\r
1920 return EFI_DEVICE_ERROR;\r
1921 }\r
1922\r
1923 ProcessorNumber = CpuMpData->CpuCount;\r
1924 EnabledProcessorNumber = 0;\r
1925 for (Index = 0; Index < ProcessorNumber; Index++) {\r
1926 if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {\r
1927 EnabledProcessorNumber ++;\r
1928 }\r
1929 }\r
1930\r
1931 if (NumberOfProcessors != NULL) {\r
1932 *NumberOfProcessors = ProcessorNumber;\r
1933 }\r
1934 if (NumberOfEnabledProcessors != NULL) {\r
1935 *NumberOfEnabledProcessors = EnabledProcessorNumber;\r
1936 }\r
1937\r
1938 return EFI_SUCCESS;\r
3e8ad6bd 1939}\r
6a2ee2bb 1940\r
809213a6 1941\r
86efe976
JF
1942/**\r
1943 Worker function to execute a caller provided function on all enabled APs.\r
1944\r
1945 @param[in] Procedure A pointer to the function to be run on\r
1946 enabled APs of the system.\r
1947 @param[in] SingleThread If TRUE, then all the enabled APs execute\r
1948 the function specified by Procedure one by\r
1949 one, in ascending order of processor handle\r
1950 number. If FALSE, then all the enabled APs\r
1951 execute the function specified by Procedure\r
1952 simultaneously.\r
1953 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
1954 service.\r
367284e7 1955 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
86efe976
JF
1956 APs to return from Procedure, either for\r
1957 blocking or non-blocking mode.\r
1958 @param[in] ProcedureArgument The parameter passed into Procedure for\r
1959 all APs.\r
1960 @param[out] FailedCpuList If all APs finish successfully, then its\r
1961 content is set to NULL. If not all APs\r
1962 finish before timeout expires, then its\r
1963 content is set to address of the buffer\r
1964 holding handle numbers of the failed APs.\r
1965\r
1966 @retval EFI_SUCCESS In blocking mode, all APs have finished before\r
1967 the timeout expired.\r
1968 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched\r
1969 to all enabled APs.\r
1970 @retval others Failed to Startup all APs.\r
1971\r
1972**/\r
1973EFI_STATUS\r
1974StartupAllAPsWorker (\r
1975 IN EFI_AP_PROCEDURE Procedure,\r
1976 IN BOOLEAN SingleThread,\r
1977 IN EFI_EVENT WaitEvent OPTIONAL,\r
1978 IN UINTN TimeoutInMicroseconds,\r
1979 IN VOID *ProcedureArgument OPTIONAL,\r
1980 OUT UINTN **FailedCpuList OPTIONAL\r
1981 )\r
1982{\r
1983 EFI_STATUS Status;\r
1984 CPU_MP_DATA *CpuMpData;\r
1985 UINTN ProcessorCount;\r
1986 UINTN ProcessorNumber;\r
1987 UINTN CallerNumber;\r
1988 CPU_AP_DATA *CpuData;\r
1989 BOOLEAN HasEnabledAp;\r
1990 CPU_STATE ApState;\r
1991\r
1992 CpuMpData = GetCpuMpData ();\r
1993\r
1994 if (FailedCpuList != NULL) {\r
1995 *FailedCpuList = NULL;\r
1996 }\r
1997\r
1998 if (CpuMpData->CpuCount == 1) {\r
1999 return EFI_NOT_STARTED;\r
2000 }\r
2001\r
2002 if (Procedure == NULL) {\r
2003 return EFI_INVALID_PARAMETER;\r
2004 }\r
2005\r
2006 //\r
2007 // Check whether caller processor is BSP\r
2008 //\r
2009 MpInitLibWhoAmI (&CallerNumber);\r
2010 if (CallerNumber != CpuMpData->BspNumber) {\r
2011 return EFI_DEVICE_ERROR;\r
2012 }\r
2013\r
2014 //\r
2015 // Update AP state\r
2016 //\r
2017 CheckAndUpdateApsStatus ();\r
2018\r
2019 ProcessorCount = CpuMpData->CpuCount;\r
2020 HasEnabledAp = FALSE;\r
2021 //\r
2022 // Check whether all enabled APs are idle.\r
2023 // If any enabled AP is not idle, return EFI_NOT_READY.\r
2024 //\r
2025 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2026 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2027 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2028 ApState = GetApState (CpuData);\r
2029 if (ApState != CpuStateDisabled) {\r
2030 HasEnabledAp = TRUE;\r
2031 if (ApState != CpuStateIdle) {\r
2032 //\r
2033 // If any enabled APs are busy, return EFI_NOT_READY.\r
2034 //\r
2035 return EFI_NOT_READY;\r
2036 }\r
2037 }\r
2038 }\r
2039 }\r
2040\r
2041 if (!HasEnabledAp) {\r
2042 //\r
2043 // If no enabled AP exists, return EFI_NOT_STARTED.\r
2044 //\r
2045 return EFI_NOT_STARTED;\r
2046 }\r
2047\r
2048 CpuMpData->StartCount = 0;\r
2049 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2050 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2051 CpuData->Waiting = FALSE;\r
2052 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2053 if (CpuData->State == CpuStateIdle) {\r
2054 //\r
2055 // Mark this processor as responsible for current calling.\r
2056 //\r
2057 CpuData->Waiting = TRUE;\r
2058 CpuMpData->StartCount++;\r
2059 }\r
2060 }\r
2061 }\r
2062\r
2063 CpuMpData->Procedure = Procedure;\r
2064 CpuMpData->ProcArguments = ProcedureArgument;\r
2065 CpuMpData->SingleThread = SingleThread;\r
2066 CpuMpData->FinishedCount = 0;\r
2067 CpuMpData->RunningCount = 0;\r
2068 CpuMpData->FailedCpuList = FailedCpuList;\r
2069 CpuMpData->ExpectedTime = CalculateTimeout (\r
2070 TimeoutInMicroseconds,\r
2071 &CpuMpData->CurrentTime\r
2072 );\r
2073 CpuMpData->TotalTime = 0;\r
2074 CpuMpData->WaitEvent = WaitEvent;\r
2075\r
2076 if (!SingleThread) {\r
2077 WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument);\r
2078 } else {\r
2079 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2080 if (ProcessorNumber == CallerNumber) {\r
2081 continue;\r
2082 }\r
2083 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
2084 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);\r
2085 break;\r
2086 }\r
2087 }\r
2088 }\r
2089\r
2090 Status = EFI_SUCCESS;\r
2091 if (WaitEvent == NULL) {\r
2092 do {\r
2093 Status = CheckAllAPs ();\r
2094 } while (Status == EFI_NOT_READY);\r
2095 }\r
2096\r
2097 return Status;\r
2098}\r
2099\r
20ae5774
JF
2100/**\r
2101 Worker function to let the caller get one enabled AP to execute a caller-provided\r
2102 function.\r
2103\r
2104 @param[in] Procedure A pointer to the function to be run on\r
2105 enabled APs of the system.\r
2106 @param[in] ProcessorNumber The handle number of the AP.\r
2107 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2108 service.\r
367284e7 2109 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
20ae5774
JF
2110 APs to return from Procedure, either for\r
2111 blocking or non-blocking mode.\r
2112 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2113 all APs.\r
2114 @param[out] Finished If AP returns from Procedure before the\r
2115 timeout expires, its content is set to TRUE.\r
2116 Otherwise, the value is set to FALSE.\r
2117\r
2118 @retval EFI_SUCCESS In blocking mode, specified AP finished before\r
2119 the timeout expires.\r
2120 @retval others Failed to Startup AP.\r
2121\r
2122**/\r
2123EFI_STATUS\r
2124StartupThisAPWorker (\r
2125 IN EFI_AP_PROCEDURE Procedure,\r
2126 IN UINTN ProcessorNumber,\r
2127 IN EFI_EVENT WaitEvent OPTIONAL,\r
2128 IN UINTN TimeoutInMicroseconds,\r
2129 IN VOID *ProcedureArgument OPTIONAL,\r
2130 OUT BOOLEAN *Finished OPTIONAL\r
2131 )\r
2132{\r
2133 EFI_STATUS Status;\r
2134 CPU_MP_DATA *CpuMpData;\r
2135 CPU_AP_DATA *CpuData;\r
2136 UINTN CallerNumber;\r
2137\r
2138 CpuMpData = GetCpuMpData ();\r
2139\r
2140 if (Finished != NULL) {\r
2141 *Finished = FALSE;\r
2142 }\r
2143\r
2144 //\r
2145 // Check whether caller processor is BSP\r
2146 //\r
2147 MpInitLibWhoAmI (&CallerNumber);\r
2148 if (CallerNumber != CpuMpData->BspNumber) {\r
2149 return EFI_DEVICE_ERROR;\r
2150 }\r
2151\r
2152 //\r
2153 // Check whether processor with the handle specified by ProcessorNumber exists\r
2154 //\r
2155 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
2156 return EFI_NOT_FOUND;\r
2157 }\r
2158\r
2159 //\r
2160 // Check whether specified processor is BSP\r
2161 //\r
2162 if (ProcessorNumber == CpuMpData->BspNumber) {\r
2163 return EFI_INVALID_PARAMETER;\r
2164 }\r
2165\r
2166 //\r
2167 // Check parameter Procedure\r
2168 //\r
2169 if (Procedure == NULL) {\r
2170 return EFI_INVALID_PARAMETER;\r
2171 }\r
2172\r
2173 //\r
2174 // Update AP state\r
2175 //\r
2176 CheckAndUpdateApsStatus ();\r
2177\r
2178 //\r
2179 // Check whether specified AP is disabled\r
2180 //\r
2181 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
2182 return EFI_INVALID_PARAMETER;\r
2183 }\r
2184\r
2185 //\r
2186 // If WaitEvent is not NULL, execute in non-blocking mode.\r
2187 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.\r
2188 // CheckAPsStatus() will check completion and timeout periodically.\r
2189 //\r
2190 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2191 CpuData->WaitEvent = WaitEvent;\r
2192 CpuData->Finished = Finished;\r
2193 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);\r
2194 CpuData->TotalTime = 0;\r
2195\r
2196 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);\r
2197\r
2198 //\r
2199 // If WaitEvent is NULL, execute in blocking mode.\r
2200 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.\r
2201 //\r
2202 Status = EFI_SUCCESS;\r
2203 if (WaitEvent == NULL) {\r
2204 do {\r
2205 Status = CheckThisAP (ProcessorNumber);\r
2206 } while (Status == EFI_NOT_READY);\r
2207 }\r
2208\r
2209 return Status;\r
2210}\r
2211\r
93ca4c0f
JF
2212/**\r
2213 Get pointer to CPU MP Data structure from GUIDed HOB.\r
2214\r
2215 @return The pointer to CPU MP Data structure.\r
2216**/\r
2217CPU_MP_DATA *\r
2218GetCpuMpDataFromGuidedHob (\r
2219 VOID\r
2220 )\r
2221{\r
2222 EFI_HOB_GUID_TYPE *GuidHob;\r
2223 VOID *DataInHob;\r
2224 CPU_MP_DATA *CpuMpData;\r
2225\r
2226 CpuMpData = NULL;\r
2227 GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);\r
2228 if (GuidHob != NULL) {\r
2229 DataInHob = GET_GUID_HOB_DATA (GuidHob);\r
2230 CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);\r
2231 }\r
2232 return CpuMpData;\r
2233}\r
42c37b3b 2234\r