]> git.proxmox.com Git - mirror_edk2.git/blame - UefiCpuPkg/Library/MpInitLib/MpLib.c
UefiCpuPkg: Move ProgramVirtualWireMode() to MpInitLib
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
CommitLineData
3e8ad6bd
JF
1/** @file\r
2 CPU MP Initialize Library common functions.\r
3\r
844b2d07 4 Copyright (c) 2016 - 2017, Intel Corporation. All rights reserved.<BR>\r
3e8ad6bd
JF
5 This program and the accompanying materials\r
6 are licensed and made available under the terms and conditions of the BSD License\r
7 which accompanies this distribution. The full text of the license may be found at\r
8 http://opensource.org/licenses/bsd-license.php\r
9\r
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13**/\r
14\r
15#include "MpLib.h"\r
16\r
93ca4c0f
JF
17EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;\r
18\r
7c3f2a12
JF
19/**\r
20 The function will check if BSP Execute Disable is enabled.\r
844b2d07
JF
21\r
22 DxeIpl may have enabled Execute Disable for BSP, APs need to\r
23 get the status and sync up the settings.\r
24 If BSP's CR0.Paging is not set, BSP execute Disble feature is\r
25 not working actually.\r
7c3f2a12
JF
26\r
27 @retval TRUE BSP Execute Disable is enabled.\r
28 @retval FALSE BSP Execute Disable is not enabled.\r
29**/\r
30BOOLEAN\r
31IsBspExecuteDisableEnabled (\r
32 VOID\r
33 )\r
34{\r
35 UINT32 Eax;\r
36 CPUID_EXTENDED_CPU_SIG_EDX Edx;\r
37 MSR_IA32_EFER_REGISTER EferMsr;\r
38 BOOLEAN Enabled;\r
844b2d07 39 IA32_CR0 Cr0;\r
7c3f2a12
JF
40\r
41 Enabled = FALSE;\r
844b2d07
JF
42 Cr0.UintN = AsmReadCr0 ();\r
43 if (Cr0.Bits.PG != 0) {\r
7c3f2a12 44 //\r
844b2d07 45 // If CR0 Paging bit is set\r
7c3f2a12 46 //\r
844b2d07
JF
47 AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);\r
48 if (Eax >= CPUID_EXTENDED_CPU_SIG) {\r
49 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);\r
7c3f2a12 50 //\r
844b2d07
JF
51 // CPUID 0x80000001\r
52 // Bit 20: Execute Disable Bit available.\r
7c3f2a12 53 //\r
844b2d07
JF
54 if (Edx.Bits.NX != 0) {\r
55 EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);\r
56 //\r
57 // MSR 0xC0000080\r
58 // Bit 11: Execute Disable Bit enable.\r
59 //\r
60 if (EferMsr.Bits.NXE != 0) {\r
61 Enabled = TRUE;\r
62 }\r
7c3f2a12
JF
63 }\r
64 }\r
65 }\r
66\r
67 return Enabled;\r
68}\r
69\r
41be0da5
JF
70/**\r
71 Worker function for SwitchBSP().\r
72\r
73 Worker function for SwitchBSP(), assigned to the AP which is intended\r
74 to become BSP.\r
75\r
76 @param[in] Buffer Pointer to CPU MP Data\r
77**/\r
78VOID\r
79EFIAPI\r
80FutureBSPProc (\r
81 IN VOID *Buffer\r
82 )\r
83{\r
84 CPU_MP_DATA *DataInHob;\r
85\r
86 DataInHob = (CPU_MP_DATA *) Buffer;\r
87 AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);\r
88}\r
89\r
03a1a925
JF
90/**\r
91 Get the Application Processors state.\r
92\r
93 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
94\r
95 @return The AP status\r
96**/\r
97CPU_STATE\r
98GetApState (\r
99 IN CPU_AP_DATA *CpuData\r
100 )\r
101{\r
102 return CpuData->State;\r
103}\r
104\r
105/**\r
106 Set the Application Processors state.\r
107\r
108 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
109 @param[in] State The AP status\r
110**/\r
111VOID\r
112SetApState (\r
113 IN CPU_AP_DATA *CpuData,\r
114 IN CPU_STATE State\r
115 )\r
116{\r
117 AcquireSpinLock (&CpuData->ApLock);\r
118 CpuData->State = State;\r
119 ReleaseSpinLock (&CpuData->ApLock);\r
120}\r
3e8ad6bd 121\r
ffab2442 122/**\r
f70174d6 123 Save BSP's local APIC timer setting.\r
ffab2442
JF
124\r
125 @param[in] CpuMpData Pointer to CPU MP Data\r
126**/\r
127VOID\r
128SaveLocalApicTimerSetting (\r
129 IN CPU_MP_DATA *CpuMpData\r
130 )\r
131{\r
132 //\r
133 // Record the current local APIC timer setting of BSP\r
134 //\r
135 GetApicTimerState (\r
136 &CpuMpData->DivideValue,\r
137 &CpuMpData->PeriodicMode,\r
138 &CpuMpData->Vector\r
139 );\r
140 CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();\r
141 CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();\r
142}\r
143\r
144/**\r
145 Sync local APIC timer setting from BSP to AP.\r
146\r
147 @param[in] CpuMpData Pointer to CPU MP Data\r
148**/\r
149VOID\r
150SyncLocalApicTimerSetting (\r
151 IN CPU_MP_DATA *CpuMpData\r
152 )\r
153{\r
154 //\r
155 // Sync local APIC timer setting from BSP to AP\r
156 //\r
157 InitializeApicTimer (\r
158 CpuMpData->DivideValue,\r
159 CpuMpData->CurrentTimerCount,\r
160 CpuMpData->PeriodicMode,\r
161 CpuMpData->Vector\r
162 );\r
163 //\r
164 // Disable AP's local APIC timer interrupt\r
165 //\r
166 DisableApicTimerInterrupt ();\r
167}\r
168\r
68cb9330
JF
169/**\r
170 Save the volatile registers required to be restored following INIT IPI.\r
171\r
172 @param[out] VolatileRegisters Returns buffer saved the volatile resisters\r
173**/\r
174VOID\r
175SaveVolatileRegisters (\r
176 OUT CPU_VOLATILE_REGISTERS *VolatileRegisters\r
177 )\r
178{\r
179 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
180\r
181 VolatileRegisters->Cr0 = AsmReadCr0 ();\r
182 VolatileRegisters->Cr3 = AsmReadCr3 ();\r
183 VolatileRegisters->Cr4 = AsmReadCr4 ();\r
184\r
185 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
186 if (VersionInfoEdx.Bits.DE != 0) {\r
187 //\r
188 // If processor supports Debugging Extensions feature\r
189 // by CPUID.[EAX=01H]:EDX.BIT2\r
190 //\r
191 VolatileRegisters->Dr0 = AsmReadDr0 ();\r
192 VolatileRegisters->Dr1 = AsmReadDr1 ();\r
193 VolatileRegisters->Dr2 = AsmReadDr2 ();\r
194 VolatileRegisters->Dr3 = AsmReadDr3 ();\r
195 VolatileRegisters->Dr6 = AsmReadDr6 ();\r
196 VolatileRegisters->Dr7 = AsmReadDr7 ();\r
197 }\r
198}\r
199\r
200/**\r
201 Restore the volatile registers following INIT IPI.\r
202\r
203 @param[in] VolatileRegisters Pointer to volatile resisters\r
204 @param[in] IsRestoreDr TRUE: Restore DRx if supported\r
205 FALSE: Do not restore DRx\r
206**/\r
207VOID\r
208RestoreVolatileRegisters (\r
209 IN CPU_VOLATILE_REGISTERS *VolatileRegisters,\r
210 IN BOOLEAN IsRestoreDr\r
211 )\r
212{\r
213 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
214\r
215 AsmWriteCr0 (VolatileRegisters->Cr0);\r
216 AsmWriteCr3 (VolatileRegisters->Cr3);\r
217 AsmWriteCr4 (VolatileRegisters->Cr4);\r
218\r
219 if (IsRestoreDr) {\r
220 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
221 if (VersionInfoEdx.Bits.DE != 0) {\r
222 //\r
223 // If processor supports Debugging Extensions feature\r
224 // by CPUID.[EAX=01H]:EDX.BIT2\r
225 //\r
226 AsmWriteDr0 (VolatileRegisters->Dr0);\r
227 AsmWriteDr1 (VolatileRegisters->Dr1);\r
228 AsmWriteDr2 (VolatileRegisters->Dr2);\r
229 AsmWriteDr3 (VolatileRegisters->Dr3);\r
230 AsmWriteDr6 (VolatileRegisters->Dr6);\r
231 AsmWriteDr7 (VolatileRegisters->Dr7);\r
232 }\r
233 }\r
234}\r
235\r
9ebcf0f4
JF
236/**\r
237 Detect whether Mwait-monitor feature is supported.\r
238\r
239 @retval TRUE Mwait-monitor feature is supported.\r
240 @retval FALSE Mwait-monitor feature is not supported.\r
241**/\r
242BOOLEAN\r
243IsMwaitSupport (\r
244 VOID\r
245 )\r
246{\r
247 CPUID_VERSION_INFO_ECX VersionInfoEcx;\r
248\r
249 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);\r
250 return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;\r
251}\r
252\r
253/**\r
254 Get AP loop mode.\r
255\r
256 @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.\r
257\r
258 @return The AP loop mode.\r
259**/\r
260UINT8\r
261GetApLoopMode (\r
262 OUT UINT32 *MonitorFilterSize\r
263 )\r
264{\r
265 UINT8 ApLoopMode;\r
266 CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;\r
267\r
268 ASSERT (MonitorFilterSize != NULL);\r
269\r
270 ApLoopMode = PcdGet8 (PcdCpuApLoopMode);\r
271 ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);\r
272 if (ApLoopMode == ApInMwaitLoop) {\r
273 if (!IsMwaitSupport ()) {\r
274 //\r
275 // If processor does not support MONITOR/MWAIT feature,\r
276 // force AP in Hlt-loop mode\r
277 //\r
278 ApLoopMode = ApInHltLoop;\r
279 }\r
280 }\r
281\r
282 if (ApLoopMode != ApInMwaitLoop) {\r
283 *MonitorFilterSize = sizeof (UINT32);\r
284 } else {\r
285 //\r
286 // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes\r
287 // CPUID.[EAX=05H].EDX: C-states supported using MWAIT\r
288 //\r
289 AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);\r
290 *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;\r
291 }\r
292\r
293 return ApLoopMode;\r
294}\r
b8b04307 295\r
8a2d564b
JF
296/**\r
297 Sort the APIC ID of all processors.\r
298\r
299 This function sorts the APIC ID of all processors so that processor number is\r
300 assigned in the ascending order of APIC ID which eases MP debugging.\r
301\r
302 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
303**/\r
304VOID\r
305SortApicId (\r
306 IN CPU_MP_DATA *CpuMpData\r
307 )\r
308{\r
309 UINTN Index1;\r
310 UINTN Index2;\r
311 UINTN Index3;\r
312 UINT32 ApicId;\r
31a1e4da 313 CPU_INFO_IN_HOB CpuInfo;\r
8a2d564b
JF
314 UINT32 ApCount;\r
315 CPU_INFO_IN_HOB *CpuInfoInHob;\r
316\r
317 ApCount = CpuMpData->CpuCount - 1;\r
31a1e4da 318 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
8a2d564b
JF
319 if (ApCount != 0) {\r
320 for (Index1 = 0; Index1 < ApCount; Index1++) {\r
321 Index3 = Index1;\r
322 //\r
323 // Sort key is the hardware default APIC ID\r
324 //\r
31a1e4da 325 ApicId = CpuInfoInHob[Index1].ApicId;\r
8a2d564b 326 for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {\r
31a1e4da 327 if (ApicId > CpuInfoInHob[Index2].ApicId) {\r
8a2d564b 328 Index3 = Index2;\r
31a1e4da 329 ApicId = CpuInfoInHob[Index2].ApicId;\r
8a2d564b
JF
330 }\r
331 }\r
332 if (Index3 != Index1) {\r
31a1e4da 333 CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));\r
8a2d564b 334 CopyMem (\r
31a1e4da
JF
335 &CpuInfoInHob[Index3],\r
336 &CpuInfoInHob[Index1],\r
337 sizeof (CPU_INFO_IN_HOB)\r
8a2d564b 338 );\r
31a1e4da 339 CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));\r
8a2d564b
JF
340 }\r
341 }\r
342\r
343 //\r
344 // Get the processor number for the BSP\r
345 //\r
346 ApicId = GetInitialApicId ();\r
347 for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {\r
31a1e4da 348 if (CpuInfoInHob[Index1].ApicId == ApicId) {\r
8a2d564b
JF
349 CpuMpData->BspNumber = (UINT32) Index1;\r
350 break;\r
351 }\r
352 }\r
8a2d564b
JF
353 }\r
354}\r
355\r
fe627769
JF
356/**\r
357 Enable x2APIC mode on APs.\r
358\r
359 @param[in, out] Buffer Pointer to private data buffer.\r
360**/\r
361VOID\r
362EFIAPI\r
363ApFuncEnableX2Apic (\r
364 IN OUT VOID *Buffer\r
365 )\r
366{\r
367 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
368}\r
369\r
b8b04307
JF
370/**\r
371 Do sync on APs.\r
372\r
373 @param[in, out] Buffer Pointer to private data buffer.\r
374**/\r
375VOID\r
376EFIAPI\r
377ApInitializeSync (\r
378 IN OUT VOID *Buffer\r
379 )\r
380{\r
381 CPU_MP_DATA *CpuMpData;\r
382\r
383 CpuMpData = (CPU_MP_DATA *) Buffer;\r
384 //\r
b8b04307
JF
385 // Load microcode on AP\r
386 //\r
387 MicrocodeDetect (CpuMpData);\r
cb811673
JF
388 //\r
389 // Sync BSP's MTRR table to AP\r
390 //\r
391 MtrrSetAllMtrrs (&CpuMpData->MtrrTable);\r
b8b04307
JF
392}\r
393\r
394/**\r
395 Find the current Processor number by APIC ID.\r
396\r
367284e7
DB
397 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
398 @param[out] ProcessorNumber Return the pocessor number found\r
b8b04307
JF
399\r
400 @retval EFI_SUCCESS ProcessorNumber is found and returned.\r
401 @retval EFI_NOT_FOUND ProcessorNumber is not found.\r
402**/\r
403EFI_STATUS\r
404GetProcessorNumber (\r
405 IN CPU_MP_DATA *CpuMpData,\r
406 OUT UINTN *ProcessorNumber\r
407 )\r
408{\r
409 UINTN TotalProcessorNumber;\r
410 UINTN Index;\r
31a1e4da
JF
411 CPU_INFO_IN_HOB *CpuInfoInHob;\r
412\r
413 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
b8b04307
JF
414\r
415 TotalProcessorNumber = CpuMpData->CpuCount;\r
416 for (Index = 0; Index < TotalProcessorNumber; Index ++) {\r
31a1e4da 417 if (CpuInfoInHob[Index].ApicId == GetApicId ()) {\r
b8b04307
JF
418 *ProcessorNumber = Index;\r
419 return EFI_SUCCESS;\r
420 }\r
421 }\r
422 return EFI_NOT_FOUND;\r
423}\r
424\r
03434dff
JF
425/**\r
426 This function will get CPU count in the system.\r
427\r
428 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
429\r
430 @return CPU count detected\r
431**/\r
432UINTN\r
433CollectProcessorCount (\r
434 IN CPU_MP_DATA *CpuMpData\r
435 )\r
436{\r
437 //\r
438 // Send 1st broadcast IPI to APs to wakeup APs\r
439 //\r
440 CpuMpData->InitFlag = ApInitConfig;\r
441 CpuMpData->X2ApicEnable = FALSE;\r
442 WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL);\r
03434dff
JF
443 CpuMpData->InitFlag = ApInitDone;\r
444 ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));\r
445 //\r
446 // Wait for all APs finished the initialization\r
447 //\r
448 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
449 CpuPause ();\r
450 }\r
451\r
fe627769
JF
452 if (CpuMpData->X2ApicEnable) {\r
453 DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));\r
454 //\r
455 // Wakeup all APs to enable x2APIC mode\r
456 //\r
457 WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL);\r
458 //\r
459 // Wait for all known APs finished\r
460 //\r
461 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
462 CpuPause ();\r
463 }\r
464 //\r
465 // Enable x2APIC on BSP\r
466 //\r
467 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
468 }\r
469 DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));\r
8a2d564b
JF
470 //\r
471 // Sort BSP/Aps by CPU APIC ID in ascending order\r
472 //\r
473 SortApicId (CpuMpData);\r
474\r
03434dff
JF
475 DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));\r
476\r
477 return CpuMpData->CpuCount;\r
478}\r
479\r
367284e7 480/**\r
03a1a925
JF
481 Initialize CPU AP Data when AP is wakeup at the first time.\r
482\r
483 @param[in, out] CpuMpData Pointer to PEI CPU MP Data\r
484 @param[in] ProcessorNumber The handle number of processor\r
485 @param[in] BistData Processor BIST data\r
367284e7 486 @param[in] ApTopOfStack Top of AP stack\r
03a1a925
JF
487\r
488**/\r
489VOID\r
490InitializeApData (\r
491 IN OUT CPU_MP_DATA *CpuMpData,\r
492 IN UINTN ProcessorNumber,\r
845c5be1 493 IN UINT32 BistData,\r
dd3fa0cd 494 IN UINT64 ApTopOfStack\r
03a1a925
JF
495 )\r
496{\r
31a1e4da
JF
497 CPU_INFO_IN_HOB *CpuInfoInHob;\r
498\r
499 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
500 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
501 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
502 CpuInfoInHob[ProcessorNumber].Health = BistData;\r
dd3fa0cd 503 CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;\r
31a1e4da 504\r
03a1a925 505 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
03a1a925 506 CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;\r
31a1e4da 507 if (CpuInfoInHob[ProcessorNumber].InitialApicId >= 0xFF) {\r
03a1a925
JF
508 //\r
509 // Set x2APIC mode if there are any logical processor reporting\r
510 // an Initial APIC ID of 255 or greater.\r
511 //\r
512 AcquireSpinLock(&CpuMpData->MpLock);\r
513 CpuMpData->X2ApicEnable = TRUE;\r
514 ReleaseSpinLock(&CpuMpData->MpLock);\r
515 }\r
516\r
517 InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);\r
518 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
519}\r
520\r
b8b04307
JF
521/**\r
522 This function will be called from AP reset code if BSP uses WakeUpAP.\r
523\r
524 @param[in] ExchangeInfo Pointer to the MP exchange info buffer\r
525 @param[in] NumApsExecuting Number of current executing AP\r
526**/\r
527VOID\r
528EFIAPI\r
529ApWakeupFunction (\r
530 IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,\r
531 IN UINTN NumApsExecuting\r
532 )\r
533{\r
534 CPU_MP_DATA *CpuMpData;\r
535 UINTN ProcessorNumber;\r
536 EFI_AP_PROCEDURE Procedure;\r
537 VOID *Parameter;\r
538 UINT32 BistData;\r
539 volatile UINT32 *ApStartupSignalBuffer;\r
31a1e4da 540 CPU_INFO_IN_HOB *CpuInfoInHob;\r
dd3fa0cd 541 UINT64 ApTopOfStack;\r
b8b04307
JF
542\r
543 //\r
544 // AP finished assembly code and begin to execute C code\r
545 //\r
546 CpuMpData = ExchangeInfo->CpuMpData;\r
547\r
ffab2442
JF
548 //\r
549 // AP's local APIC settings will be lost after received INIT IPI\r
550 // We need to re-initialize them at here\r
551 //\r
552 ProgramVirtualWireMode ();\r
553 SyncLocalApicTimerSetting (CpuMpData);\r
b8b04307
JF
554\r
555 while (TRUE) {\r
556 if (CpuMpData->InitFlag == ApInitConfig) {\r
557 //\r
558 // Add CPU number\r
559 //\r
560 InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);\r
561 ProcessorNumber = NumApsExecuting;\r
562 //\r
563 // This is first time AP wakeup, get BIST information from AP stack\r
564 //\r
845c5be1 565 ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;\r
dd3fa0cd 566 BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));\r
b8b04307
JF
567 //\r
568 // Do some AP initialize sync\r
569 //\r
570 ApInitializeSync (CpuMpData);\r
571 //\r
572 // Sync BSP's Control registers to APs\r
573 //\r
574 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);\r
845c5be1 575 InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);\r
b8b04307
JF
576 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
577 } else {\r
578 //\r
579 // Execute AP function if AP is ready\r
580 //\r
581 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
582 //\r
583 // Clear AP start-up signal when AP waken up\r
584 //\r
585 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
586 InterlockedCompareExchange32 (\r
587 (UINT32 *) ApStartupSignalBuffer,\r
588 WAKEUP_AP_SIGNAL,\r
589 0\r
590 );\r
591 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
592 //\r
593 // Restore AP's volatile registers saved\r
594 //\r
595 RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);\r
596 }\r
597\r
598 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {\r
599 Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;\r
600 Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;\r
601 if (Procedure != NULL) {\r
602 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);\r
603 //\r
43c9fdcc
JF
604 // Enable source debugging on AP function\r
605 // \r
606 EnableDebugAgent ();\r
607 //\r
b8b04307
JF
608 // Invoke AP function here\r
609 //\r
610 Procedure (Parameter);\r
31a1e4da 611 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
41be0da5
JF
612 if (CpuMpData->SwitchBspFlag) {\r
613 //\r
614 // Re-get the processor number due to BSP/AP maybe exchange in AP function\r
615 //\r
616 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
617 CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;\r
618 CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;\r
b3775af2
JF
619 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
620 CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;\r
41be0da5
JF
621 } else {\r
622 //\r
623 // Re-get the CPU APICID and Initial APICID\r
624 //\r
31a1e4da
JF
625 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
626 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
41be0da5 627 }\r
b8b04307
JF
628 }\r
629 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);\r
630 }\r
631 }\r
632\r
633 //\r
634 // AP finished executing C code\r
635 //\r
636 InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);\r
637\r
638 //\r
639 // Place AP is specified loop mode\r
640 //\r
641 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
642 //\r
643 // Save AP volatile registers\r
644 //\r
645 SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);\r
646 //\r
647 // Place AP in HLT-loop\r
648 //\r
649 while (TRUE) {\r
650 DisableInterrupts ();\r
651 CpuSleep ();\r
652 CpuPause ();\r
653 }\r
654 }\r
655 while (TRUE) {\r
656 DisableInterrupts ();\r
657 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
658 //\r
659 // Place AP in MWAIT-loop\r
660 //\r
661 AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);\r
662 if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {\r
663 //\r
664 // Check AP start-up signal again.\r
665 // If AP start-up signal is not set, place AP into\r
666 // the specified C-state\r
667 //\r
668 AsmMwait (CpuMpData->ApTargetCState << 4, 0);\r
669 }\r
670 } else if (CpuMpData->ApLoopMode == ApInRunLoop) {\r
671 //\r
672 // Place AP in Run-loop\r
673 //\r
674 CpuPause ();\r
675 } else {\r
676 ASSERT (FALSE);\r
677 }\r
678\r
679 //\r
680 // If AP start-up signal is written, AP is waken up\r
681 // otherwise place AP in loop again\r
682 //\r
683 if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {\r
684 break;\r
685 }\r
686 }\r
687 }\r
688}\r
689\r
96f5920d
JF
690/**\r
691 Wait for AP wakeup and write AP start-up signal till AP is waken up.\r
692\r
693 @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal\r
694**/\r
695VOID\r
696WaitApWakeup (\r
697 IN volatile UINT32 *ApStartupSignalBuffer\r
698 )\r
699{\r
700 //\r
701 // If AP is waken up, StartupApSignal should be cleared.\r
702 // Otherwise, write StartupApSignal again till AP waken up.\r
703 //\r
704 while (InterlockedCompareExchange32 (\r
705 (UINT32 *) ApStartupSignalBuffer,\r
706 WAKEUP_AP_SIGNAL,\r
707 WAKEUP_AP_SIGNAL\r
708 ) != 0) {\r
709 CpuPause ();\r
710 }\r
711}\r
712\r
7c3f2a12
JF
713/**\r
714 This function will fill the exchange info structure.\r
715\r
716 @param[in] CpuMpData Pointer to CPU MP Data\r
717\r
718**/\r
719VOID\r
720FillExchangeInfoData (\r
721 IN CPU_MP_DATA *CpuMpData\r
722 )\r
723{\r
724 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
725\r
726 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
727 ExchangeInfo->Lock = 0;\r
728 ExchangeInfo->StackStart = CpuMpData->Buffer;\r
729 ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;\r
730 ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;\r
731 ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;\r
732\r
733 ExchangeInfo->CodeSegment = AsmReadCs ();\r
734 ExchangeInfo->DataSegment = AsmReadDs ();\r
735\r
736 ExchangeInfo->Cr3 = AsmReadCr3 ();\r
737\r
738 ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;\r
739 ExchangeInfo->NumApsExecuting = 0;\r
46d4b885
JF
740 ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;\r
741 ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
7c3f2a12
JF
742 ExchangeInfo->CpuMpData = CpuMpData;\r
743\r
744 ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();\r
745\r
746 //\r
747 // Get the BSP's data of GDT and IDT\r
748 //\r
749 AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);\r
750 AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);\r
751}\r
752\r
6e1987f1
LE
753/**\r
754 Helper function that waits until the finished AP count reaches the specified\r
755 limit, or the specified timeout elapses (whichever comes first).\r
756\r
757 @param[in] CpuMpData Pointer to CPU MP Data.\r
758 @param[in] FinishedApLimit The number of finished APs to wait for.\r
759 @param[in] TimeLimit The number of microseconds to wait for.\r
760**/\r
761VOID\r
762TimedWaitForApFinish (\r
763 IN CPU_MP_DATA *CpuMpData,\r
764 IN UINT32 FinishedApLimit,\r
765 IN UINT32 TimeLimit\r
766 );\r
767\r
96f5920d
JF
768/**\r
769 This function will be called by BSP to wakeup AP.\r
770\r
771 @param[in] CpuMpData Pointer to CPU MP Data\r
772 @param[in] Broadcast TRUE: Send broadcast IPI to all APs\r
773 FALSE: Send IPI to AP by ApicId\r
774 @param[in] ProcessorNumber The handle number of specified processor\r
775 @param[in] Procedure The function to be invoked by AP\r
776 @param[in] ProcedureArgument The argument to be passed into AP function\r
777**/\r
778VOID\r
779WakeUpAP (\r
780 IN CPU_MP_DATA *CpuMpData,\r
781 IN BOOLEAN Broadcast,\r
782 IN UINTN ProcessorNumber,\r
783 IN EFI_AP_PROCEDURE Procedure, OPTIONAL\r
784 IN VOID *ProcedureArgument OPTIONAL\r
785 )\r
786{\r
787 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
788 UINTN Index;\r
789 CPU_AP_DATA *CpuData;\r
790 BOOLEAN ResetVectorRequired;\r
31a1e4da 791 CPU_INFO_IN_HOB *CpuInfoInHob;\r
96f5920d
JF
792\r
793 CpuMpData->FinishedCount = 0;\r
794 ResetVectorRequired = FALSE;\r
795\r
796 if (CpuMpData->ApLoopMode == ApInHltLoop ||\r
797 CpuMpData->InitFlag != ApInitDone) {\r
798 ResetVectorRequired = TRUE;\r
799 AllocateResetVector (CpuMpData);\r
800 FillExchangeInfoData (CpuMpData);\r
ffab2442 801 SaveLocalApicTimerSetting (CpuMpData);\r
96f5920d
JF
802 } else if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
803 //\r
804 // Get AP target C-state each time when waking up AP,\r
805 // for it maybe updated by platform again\r
806 //\r
807 CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);\r
808 }\r
809\r
810 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
811\r
812 if (Broadcast) {\r
813 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
814 if (Index != CpuMpData->BspNumber) {\r
815 CpuData = &CpuMpData->CpuData[Index];\r
816 CpuData->ApFunction = (UINTN) Procedure;\r
817 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
818 SetApState (CpuData, CpuStateReady);\r
819 if (CpuMpData->InitFlag != ApInitConfig) {\r
820 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
821 }\r
822 }\r
823 }\r
824 if (ResetVectorRequired) {\r
825 //\r
826 // Wakeup all APs\r
827 //\r
828 SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);\r
829 }\r
c1192210
JF
830 if (CpuMpData->InitFlag == ApInitConfig) {\r
831 //\r
832 // Wait for all potential APs waken up in one specified period\r
833 //\r
6e1987f1
LE
834 TimedWaitForApFinish (\r
835 CpuMpData,\r
836 PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,\r
837 PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)\r
838 );\r
c1192210 839 } else {\r
96f5920d
JF
840 //\r
841 // Wait all APs waken up if this is not the 1st broadcast of SIPI\r
842 //\r
843 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
844 CpuData = &CpuMpData->CpuData[Index];\r
845 if (Index != CpuMpData->BspNumber) {\r
846 WaitApWakeup (CpuData->StartupApSignal);\r
847 }\r
848 }\r
849 }\r
850 } else {\r
851 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
852 CpuData->ApFunction = (UINTN) Procedure;\r
853 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
854 SetApState (CpuData, CpuStateReady);\r
855 //\r
856 // Wakeup specified AP\r
857 //\r
858 ASSERT (CpuMpData->InitFlag != ApInitConfig);\r
859 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
860 if (ResetVectorRequired) {\r
31a1e4da 861 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
96f5920d 862 SendInitSipiSipi (\r
31a1e4da 863 CpuInfoInHob[ProcessorNumber].ApicId,\r
96f5920d
JF
864 (UINT32) ExchangeInfo->BufferStart\r
865 );\r
866 }\r
867 //\r
868 // Wait specified AP waken up\r
869 //\r
870 WaitApWakeup (CpuData->StartupApSignal);\r
871 }\r
872\r
873 if (ResetVectorRequired) {\r
874 FreeResetVector (CpuMpData);\r
875 }\r
876}\r
877\r
08085f08
JF
878/**\r
879 Calculate timeout value and return the current performance counter value.\r
880\r
881 Calculate the number of performance counter ticks required for a timeout.\r
882 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
883 as infinity.\r
884\r
885 @param[in] TimeoutInMicroseconds Timeout value in microseconds.\r
886 @param[out] CurrentTime Returns the current value of the performance counter.\r
887\r
888 @return Expected time stamp counter for timeout.\r
889 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
890 as infinity.\r
891\r
892**/\r
893UINT64\r
894CalculateTimeout (\r
895 IN UINTN TimeoutInMicroseconds,\r
896 OUT UINT64 *CurrentTime\r
897 )\r
898{\r
899 //\r
900 // Read the current value of the performance counter\r
901 //\r
902 *CurrentTime = GetPerformanceCounter ();\r
903\r
904 //\r
905 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
906 // as infinity.\r
907 //\r
908 if (TimeoutInMicroseconds == 0) {\r
909 return 0;\r
910 }\r
911\r
912 //\r
913 // GetPerformanceCounterProperties () returns the timestamp counter's frequency\r
914 // in Hz. So multiply the return value with TimeoutInMicroseconds and then divide\r
915 // it by 1,000,000, to get the number of ticks for the timeout value.\r
916 //\r
917 return DivU64x32 (\r
918 MultU64x64 (\r
919 GetPerformanceCounterProperties (NULL, NULL),\r
920 TimeoutInMicroseconds\r
921 ),\r
922 1000000\r
923 );\r
924}\r
925\r
926/**\r
927 Checks whether timeout expires.\r
928\r
929 Check whether the number of elapsed performance counter ticks required for\r
930 a timeout condition has been reached.\r
931 If Timeout is zero, which means infinity, return value is always FALSE.\r
932\r
933 @param[in, out] PreviousTime On input, the value of the performance counter\r
934 when it was last read.\r
935 On output, the current value of the performance\r
936 counter\r
937 @param[in] TotalTime The total amount of elapsed time in performance\r
938 counter ticks.\r
939 @param[in] Timeout The number of performance counter ticks required\r
940 to reach a timeout condition.\r
941\r
942 @retval TRUE A timeout condition has been reached.\r
943 @retval FALSE A timeout condition has not been reached.\r
944\r
945**/\r
946BOOLEAN\r
947CheckTimeout (\r
948 IN OUT UINT64 *PreviousTime,\r
949 IN UINT64 *TotalTime,\r
950 IN UINT64 Timeout\r
951 )\r
952{\r
953 UINT64 Start;\r
954 UINT64 End;\r
955 UINT64 CurrentTime;\r
956 INT64 Delta;\r
957 INT64 Cycle;\r
958\r
959 if (Timeout == 0) {\r
960 return FALSE;\r
961 }\r
962 GetPerformanceCounterProperties (&Start, &End);\r
963 Cycle = End - Start;\r
964 if (Cycle < 0) {\r
965 Cycle = -Cycle;\r
966 }\r
967 Cycle++;\r
968 CurrentTime = GetPerformanceCounter();\r
969 Delta = (INT64) (CurrentTime - *PreviousTime);\r
970 if (Start > End) {\r
971 Delta = -Delta;\r
972 }\r
973 if (Delta < 0) {\r
974 Delta += Cycle;\r
975 }\r
976 *TotalTime += Delta;\r
977 *PreviousTime = CurrentTime;\r
978 if (*TotalTime > Timeout) {\r
979 return TRUE;\r
980 }\r
981 return FALSE;\r
982}\r
983\r
6e1987f1
LE
984/**\r
985 Helper function that waits until the finished AP count reaches the specified\r
986 limit, or the specified timeout elapses (whichever comes first).\r
987\r
988 @param[in] CpuMpData Pointer to CPU MP Data.\r
989 @param[in] FinishedApLimit The number of finished APs to wait for.\r
990 @param[in] TimeLimit The number of microseconds to wait for.\r
991**/\r
992VOID\r
993TimedWaitForApFinish (\r
994 IN CPU_MP_DATA *CpuMpData,\r
995 IN UINT32 FinishedApLimit,\r
996 IN UINT32 TimeLimit\r
997 )\r
998{\r
999 //\r
1000 // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0\r
1001 // "infinity", so check for (TimeLimit == 0) explicitly.\r
1002 //\r
1003 if (TimeLimit == 0) {\r
1004 return;\r
1005 }\r
1006\r
1007 CpuMpData->TotalTime = 0;\r
1008 CpuMpData->ExpectedTime = CalculateTimeout (\r
1009 TimeLimit,\r
1010 &CpuMpData->CurrentTime\r
1011 );\r
1012 while (CpuMpData->FinishedCount < FinishedApLimit &&\r
1013 !CheckTimeout (\r
1014 &CpuMpData->CurrentTime,\r
1015 &CpuMpData->TotalTime,\r
1016 CpuMpData->ExpectedTime\r
1017 )) {\r
1018 CpuPause ();\r
1019 }\r
1020\r
1021 if (CpuMpData->FinishedCount >= FinishedApLimit) {\r
1022 DEBUG ((\r
1023 DEBUG_VERBOSE,\r
1024 "%a: reached FinishedApLimit=%u in %Lu microseconds\n",\r
1025 __FUNCTION__,\r
1026 FinishedApLimit,\r
1027 DivU64x64Remainder (\r
1028 MultU64x32 (CpuMpData->TotalTime, 1000000),\r
1029 GetPerformanceCounterProperties (NULL, NULL),\r
1030 NULL\r
1031 )\r
1032 ));\r
1033 }\r
1034}\r
1035\r
08085f08
JF
1036/**\r
1037 Reset an AP to Idle state.\r
1038\r
1039 Any task being executed by the AP will be aborted and the AP\r
1040 will be waiting for a new task in Wait-For-SIPI state.\r
1041\r
1042 @param[in] ProcessorNumber The handle number of processor.\r
1043**/\r
1044VOID\r
1045ResetProcessorToIdleState (\r
1046 IN UINTN ProcessorNumber\r
1047 )\r
1048{\r
1049 CPU_MP_DATA *CpuMpData;\r
1050\r
1051 CpuMpData = GetCpuMpData ();\r
1052\r
cb33bde4 1053 CpuMpData->InitFlag = ApInitReconfig;\r
08085f08 1054 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL);\r
cb33bde4
JF
1055 while (CpuMpData->FinishedCount < 1) {\r
1056 CpuPause ();\r
1057 }\r
1058 CpuMpData->InitFlag = ApInitDone;\r
08085f08
JF
1059\r
1060 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
1061}\r
1062\r
1063/**\r
1064 Searches for the next waiting AP.\r
1065\r
1066 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().\r
1067\r
1068 @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.\r
1069\r
1070 @retval EFI_SUCCESS The next waiting AP has been found.\r
1071 @retval EFI_NOT_FOUND No waiting AP exists.\r
1072\r
1073**/\r
1074EFI_STATUS\r
1075GetNextWaitingProcessorNumber (\r
1076 OUT UINTN *NextProcessorNumber\r
1077 )\r
1078{\r
1079 UINTN ProcessorNumber;\r
1080 CPU_MP_DATA *CpuMpData;\r
1081\r
1082 CpuMpData = GetCpuMpData ();\r
1083\r
1084 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1085 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1086 *NextProcessorNumber = ProcessorNumber;\r
1087 return EFI_SUCCESS;\r
1088 }\r
1089 }\r
1090\r
1091 return EFI_NOT_FOUND;\r
1092}\r
1093\r
1094/** Checks status of specified AP.\r
1095\r
1096 This function checks whether the specified AP has finished the task assigned\r
1097 by StartupThisAP(), and whether timeout expires.\r
1098\r
1099 @param[in] ProcessorNumber The handle number of processor.\r
1100\r
1101 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().\r
1102 @retval EFI_TIMEOUT The timeout expires.\r
1103 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.\r
1104**/\r
1105EFI_STATUS\r
1106CheckThisAP (\r
1107 IN UINTN ProcessorNumber\r
1108 )\r
1109{\r
1110 CPU_MP_DATA *CpuMpData;\r
1111 CPU_AP_DATA *CpuData;\r
1112\r
1113 CpuMpData = GetCpuMpData ();\r
1114 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1115\r
1116 //\r
1117 // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.\r
1118 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
1119 // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.\r
1120 //\r
1121 //\r
1122 // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.\r
1123 //\r
1124 if (GetApState(CpuData) == CpuStateFinished) {\r
1125 if (CpuData->Finished != NULL) {\r
1126 *(CpuData->Finished) = TRUE;\r
1127 }\r
1128 SetApState (CpuData, CpuStateIdle);\r
1129 return EFI_SUCCESS;\r
1130 } else {\r
1131 //\r
1132 // If timeout expires for StartupThisAP(), report timeout.\r
1133 //\r
1134 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {\r
1135 if (CpuData->Finished != NULL) {\r
1136 *(CpuData->Finished) = FALSE;\r
1137 }\r
1138 //\r
1139 // Reset failed AP to idle state\r
1140 //\r
1141 ResetProcessorToIdleState (ProcessorNumber);\r
1142\r
1143 return EFI_TIMEOUT;\r
1144 }\r
1145 }\r
1146 return EFI_NOT_READY;\r
1147}\r
1148\r
1149/**\r
1150 Checks status of all APs.\r
1151\r
1152 This function checks whether all APs have finished task assigned by StartupAllAPs(),\r
1153 and whether timeout expires.\r
1154\r
1155 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().\r
1156 @retval EFI_TIMEOUT The timeout expires.\r
1157 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.\r
1158**/\r
1159EFI_STATUS\r
1160CheckAllAPs (\r
1161 VOID\r
1162 )\r
1163{\r
1164 UINTN ProcessorNumber;\r
1165 UINTN NextProcessorNumber;\r
1166 UINTN ListIndex;\r
1167 EFI_STATUS Status;\r
1168 CPU_MP_DATA *CpuMpData;\r
1169 CPU_AP_DATA *CpuData;\r
1170\r
1171 CpuMpData = GetCpuMpData ();\r
1172\r
1173 NextProcessorNumber = 0;\r
1174\r
1175 //\r
1176 // Go through all APs that are responsible for the StartupAllAPs().\r
1177 //\r
1178 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1179 if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1180 continue;\r
1181 }\r
1182\r
1183 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1184 //\r
1185 // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.\r
1186 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
1187 // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.\r
1188 //\r
1189 if (GetApState(CpuData) == CpuStateFinished) {\r
1190 CpuMpData->RunningCount ++;\r
1191 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
1192 SetApState(CpuData, CpuStateIdle);\r
1193\r
1194 //\r
1195 // If in Single Thread mode, then search for the next waiting AP for execution.\r
1196 //\r
1197 if (CpuMpData->SingleThread) {\r
1198 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);\r
1199\r
1200 if (!EFI_ERROR (Status)) {\r
1201 WakeUpAP (\r
1202 CpuMpData,\r
1203 FALSE,\r
1204 (UINT32) NextProcessorNumber,\r
1205 CpuMpData->Procedure,\r
1206 CpuMpData->ProcArguments\r
1207 );\r
1208 }\r
1209 }\r
1210 }\r
1211 }\r
1212\r
1213 //\r
1214 // If all APs finish, return EFI_SUCCESS.\r
1215 //\r
1216 if (CpuMpData->RunningCount == CpuMpData->StartCount) {\r
1217 return EFI_SUCCESS;\r
1218 }\r
1219\r
1220 //\r
1221 // If timeout expires, report timeout.\r
1222 //\r
1223 if (CheckTimeout (\r
1224 &CpuMpData->CurrentTime,\r
1225 &CpuMpData->TotalTime,\r
1226 CpuMpData->ExpectedTime)\r
1227 ) {\r
1228 //\r
1229 // If FailedCpuList is not NULL, record all failed APs in it.\r
1230 //\r
1231 if (CpuMpData->FailedCpuList != NULL) {\r
1232 *CpuMpData->FailedCpuList =\r
1233 AllocatePool ((CpuMpData->StartCount - CpuMpData->FinishedCount + 1) * sizeof (UINTN));\r
1234 ASSERT (*CpuMpData->FailedCpuList != NULL);\r
1235 }\r
1236 ListIndex = 0;\r
1237\r
1238 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1239 //\r
1240 // Check whether this processor is responsible for StartupAllAPs().\r
1241 //\r
1242 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1243 //\r
1244 // Reset failed APs to idle state\r
1245 //\r
1246 ResetProcessorToIdleState (ProcessorNumber);\r
1247 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
1248 if (CpuMpData->FailedCpuList != NULL) {\r
1249 (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;\r
1250 }\r
1251 }\r
1252 }\r
1253 if (CpuMpData->FailedCpuList != NULL) {\r
1254 (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;\r
1255 }\r
1256 return EFI_TIMEOUT;\r
1257 }\r
1258 return EFI_NOT_READY;\r
1259}\r
1260\r
3e8ad6bd
JF
1261/**\r
1262 MP Initialize Library initialization.\r
1263\r
1264 This service will allocate AP reset vector and wakeup all APs to do APs\r
1265 initialization.\r
1266\r
1267 This service must be invoked before all other MP Initialize Library\r
1268 service are invoked.\r
1269\r
1270 @retval EFI_SUCCESS MP initialization succeeds.\r
1271 @retval Others MP initialization fails.\r
1272\r
1273**/\r
1274EFI_STATUS\r
1275EFIAPI\r
1276MpInitLibInitialize (\r
1277 VOID\r
1278 )\r
1279{\r
6a2ee2bb
JF
1280 CPU_MP_DATA *OldCpuMpData;\r
1281 CPU_INFO_IN_HOB *CpuInfoInHob;\r
e59f8f6b
JF
1282 UINT32 MaxLogicalProcessorNumber;\r
1283 UINT32 ApStackSize;\r
f7f85d83 1284 MP_ASSEMBLY_ADDRESS_MAP AddressMap;\r
e59f8f6b 1285 UINTN BufferSize;\r
9ebcf0f4 1286 UINT32 MonitorFilterSize;\r
e59f8f6b
JF
1287 VOID *MpBuffer;\r
1288 UINTN Buffer;\r
1289 CPU_MP_DATA *CpuMpData;\r
9ebcf0f4 1290 UINT8 ApLoopMode;\r
e59f8f6b 1291 UINT8 *MonitorBuffer;\r
03a1a925 1292 UINTN Index;\r
f7f85d83 1293 UINTN ApResetVectorSize;\r
e59f8f6b 1294 UINTN BackupBufferAddr;\r
6a2ee2bb
JF
1295\r
1296 OldCpuMpData = GetCpuMpDataFromGuidedHob ();\r
1297 if (OldCpuMpData == NULL) {\r
1298 MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);\r
1299 } else {\r
1300 MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;\r
1301 }\r
14e8137c 1302 ASSERT (MaxLogicalProcessorNumber != 0);\r
f7f85d83
JF
1303\r
1304 AsmGetAddressMap (&AddressMap);\r
1305 ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);\r
e59f8f6b 1306 ApStackSize = PcdGet32(PcdCpuApStackSize);\r
9ebcf0f4
JF
1307 ApLoopMode = GetApLoopMode (&MonitorFilterSize);\r
1308\r
e59f8f6b
JF
1309 BufferSize = ApStackSize * MaxLogicalProcessorNumber;\r
1310 BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;\r
1311 BufferSize += sizeof (CPU_MP_DATA);\r
1312 BufferSize += ApResetVectorSize;\r
1313 BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;\r
1314 MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));\r
1315 ASSERT (MpBuffer != NULL);\r
1316 ZeroMem (MpBuffer, BufferSize);\r
1317 Buffer = (UINTN) MpBuffer;\r
1318\r
1319 MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);\r
1320 BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;\r
1321 CpuMpData = (CPU_MP_DATA *) (BackupBufferAddr + ApResetVectorSize);\r
1322 CpuMpData->Buffer = Buffer;\r
1323 CpuMpData->CpuApStackSize = ApStackSize;\r
1324 CpuMpData->BackupBuffer = BackupBufferAddr;\r
1325 CpuMpData->BackupBufferSize = ApResetVectorSize;\r
d11f10d1 1326 CpuMpData->SaveRestoreFlag = FALSE;\r
e59f8f6b
JF
1327 CpuMpData->WakeupBuffer = (UINTN) -1;\r
1328 CpuMpData->CpuCount = 1;\r
1329 CpuMpData->BspNumber = 0;\r
1330 CpuMpData->WaitEvent = NULL;\r
41be0da5 1331 CpuMpData->SwitchBspFlag = FALSE;\r
e59f8f6b
JF
1332 CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);\r
1333 CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);\r
1334 InitializeSpinLock(&CpuMpData->MpLock);\r
1335 //\r
68cb9330
JF
1336 // Save BSP's Control registers to APs\r
1337 //\r
1338 SaveVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters);\r
1339 //\r
03a1a925
JF
1340 // Set BSP basic information\r
1341 //\r
845c5be1 1342 InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer);\r
03a1a925 1343 //\r
e59f8f6b
JF
1344 // Save assembly code information\r
1345 //\r
1346 CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));\r
1347 //\r
1348 // Finally set AP loop mode\r
1349 //\r
1350 CpuMpData->ApLoopMode = ApLoopMode;\r
1351 DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));\r
1352 //\r
03a1a925
JF
1353 // Set up APs wakeup signal buffer\r
1354 //\r
1355 for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {\r
1356 CpuMpData->CpuData[Index].StartupApSignal =\r
1357 (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);\r
1358 }\r
94f63c76
JF
1359 //\r
1360 // Load Microcode on BSP\r
1361 //\r
1362 MicrocodeDetect (CpuMpData);\r
1363 //\r
e59f8f6b
JF
1364 // Store BSP's MTRR setting\r
1365 //\r
1366 MtrrGetAllMtrrs (&CpuMpData->MtrrTable);\r
9d64a9fd
JF
1367 //\r
1368 // Enable the local APIC for Virtual Wire Mode.\r
1369 //\r
1370 ProgramVirtualWireMode ();\r
e59f8f6b 1371\r
6a2ee2bb 1372 if (OldCpuMpData == NULL) {\r
14e8137c
JF
1373 if (MaxLogicalProcessorNumber > 1) {\r
1374 //\r
1375 // Wakeup all APs and calculate the processor count in system\r
1376 //\r
1377 CollectProcessorCount (CpuMpData);\r
1378 }\r
6a2ee2bb
JF
1379 } else {\r
1380 //\r
1381 // APs have been wakeup before, just get the CPU Information\r
1382 // from HOB\r
1383 //\r
1384 CpuMpData->CpuCount = OldCpuMpData->CpuCount;\r
1385 CpuMpData->BspNumber = OldCpuMpData->BspNumber;\r
1386 CpuMpData->InitFlag = ApInitReconfig;\r
31a1e4da
JF
1387 CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;\r
1388 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
6a2ee2bb
JF
1389 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1390 InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);\r
31a1e4da 1391 if (CpuInfoInHob[Index].InitialApicId >= 255) {\r
6a2ee2bb
JF
1392 CpuMpData->X2ApicEnable = TRUE;\r
1393 }\r
31a1e4da 1394 CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;\r
6a2ee2bb
JF
1395 CpuMpData->CpuData[Index].ApFunction = 0;\r
1396 CopyMem (\r
1397 &CpuMpData->CpuData[Index].VolatileRegisters,\r
1398 &CpuMpData->CpuData[0].VolatileRegisters,\r
1399 sizeof (CPU_VOLATILE_REGISTERS)\r
1400 );\r
1401 }\r
14e8137c
JF
1402 if (MaxLogicalProcessorNumber > 1) {\r
1403 //\r
1404 // Wakeup APs to do some AP initialize sync\r
1405 //\r
1406 WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData);\r
1407 //\r
1408 // Wait for all APs finished initialization\r
1409 //\r
1410 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
1411 CpuPause ();\r
1412 }\r
1413 CpuMpData->InitFlag = ApInitDone;\r
1414 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1415 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
1416 }\r
6a2ee2bb
JF
1417 }\r
1418 }\r
93ca4c0f
JF
1419\r
1420 //\r
1421 // Initialize global data for MP support\r
1422 //\r
1423 InitMpGlobalData (CpuMpData);\r
1424\r
f7f85d83 1425 return EFI_SUCCESS;\r
3e8ad6bd
JF
1426}\r
1427\r
1428/**\r
1429 Gets detailed MP-related information on the requested processor at the\r
1430 instant this call is made. This service may only be called from the BSP.\r
1431\r
1432 @param[in] ProcessorNumber The handle number of processor.\r
1433 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for\r
1434 the requested processor is deposited.\r
1435 @param[out] HealthData Return processor health data.\r
1436\r
1437 @retval EFI_SUCCESS Processor information was returned.\r
1438 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
1439 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.\r
1440 @retval EFI_NOT_FOUND The processor with the handle specified by\r
1441 ProcessorNumber does not exist in the platform.\r
1442 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
1443\r
1444**/\r
1445EFI_STATUS\r
1446EFIAPI\r
1447MpInitLibGetProcessorInfo (\r
1448 IN UINTN ProcessorNumber,\r
1449 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,\r
1450 OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL\r
1451 )\r
1452{\r
ad52f25e
JF
1453 CPU_MP_DATA *CpuMpData;\r
1454 UINTN CallerNumber;\r
31a1e4da 1455 CPU_INFO_IN_HOB *CpuInfoInHob;\r
ad52f25e
JF
1456\r
1457 CpuMpData = GetCpuMpData ();\r
31a1e4da 1458 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
ad52f25e
JF
1459\r
1460 //\r
1461 // Check whether caller processor is BSP\r
1462 //\r
1463 MpInitLibWhoAmI (&CallerNumber);\r
1464 if (CallerNumber != CpuMpData->BspNumber) {\r
1465 return EFI_DEVICE_ERROR;\r
1466 }\r
1467\r
1468 if (ProcessorInfoBuffer == NULL) {\r
1469 return EFI_INVALID_PARAMETER;\r
1470 }\r
1471\r
1472 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1473 return EFI_NOT_FOUND;\r
1474 }\r
1475\r
31a1e4da 1476 ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;\r
ad52f25e
JF
1477 ProcessorInfoBuffer->StatusFlag = 0;\r
1478 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1479 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;\r
1480 }\r
1481 if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {\r
1482 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;\r
1483 }\r
1484 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
1485 ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;\r
1486 } else {\r
1487 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;\r
1488 }\r
1489\r
1490 //\r
1491 // Get processor location information\r
1492 //\r
262128e5 1493 GetProcessorLocationByApicId (\r
31a1e4da 1494 CpuInfoInHob[ProcessorNumber].ApicId,\r
73152f19
LD
1495 &ProcessorInfoBuffer->Location.Package,\r
1496 &ProcessorInfoBuffer->Location.Core,\r
1497 &ProcessorInfoBuffer->Location.Thread\r
1498 );\r
ad52f25e
JF
1499\r
1500 if (HealthData != NULL) {\r
31a1e4da 1501 HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;\r
ad52f25e
JF
1502 }\r
1503\r
1504 return EFI_SUCCESS;\r
3e8ad6bd 1505}\r
ad52f25e 1506\r
41be0da5
JF
1507/**\r
1508 Worker function to switch the requested AP to be the BSP from that point onward.\r
1509\r
1510 @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.\r
1511 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an\r
1512 enabled AP. Otherwise, it will be disabled.\r
1513\r
1514 @retval EFI_SUCCESS BSP successfully switched.\r
1515 @retval others Failed to switch BSP. \r
1516\r
1517**/\r
1518EFI_STATUS\r
1519SwitchBSPWorker (\r
1520 IN UINTN ProcessorNumber,\r
1521 IN BOOLEAN EnableOldBSP\r
1522 )\r
1523{\r
1524 CPU_MP_DATA *CpuMpData;\r
1525 UINTN CallerNumber;\r
1526 CPU_STATE State;\r
1527 MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;\r
a8d75a18 1528 BOOLEAN OldInterruptState;\r
26b43433 1529 BOOLEAN OldTimerInterruptState;\r
a8d75a18 1530\r
26b43433
JF
1531 //\r
1532 // Save and Disable Local APIC timer interrupt\r
1533 //\r
1534 OldTimerInterruptState = GetApicTimerInterruptState ();\r
1535 DisableApicTimerInterrupt ();\r
a8d75a18
JF
1536 //\r
1537 // Before send both BSP and AP to a procedure to exchange their roles,\r
1538 // interrupt must be disabled. This is because during the exchange role\r
1539 // process, 2 CPU may use 1 stack. If interrupt happens, the stack will\r
1540 // be corrupted, since interrupt return address will be pushed to stack\r
1541 // by hardware.\r
1542 //\r
1543 OldInterruptState = SaveAndDisableInterrupts ();\r
1544\r
1545 //\r
1546 // Mask LINT0 & LINT1 for the old BSP\r
1547 //\r
1548 DisableLvtInterrupts ();\r
41be0da5
JF
1549\r
1550 CpuMpData = GetCpuMpData ();\r
1551\r
1552 //\r
1553 // Check whether caller processor is BSP\r
1554 //\r
1555 MpInitLibWhoAmI (&CallerNumber);\r
1556 if (CallerNumber != CpuMpData->BspNumber) {\r
1557 return EFI_SUCCESS;\r
1558 }\r
1559\r
1560 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1561 return EFI_NOT_FOUND;\r
1562 }\r
1563\r
1564 //\r
1565 // Check whether specified AP is disabled\r
1566 //\r
1567 State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);\r
1568 if (State == CpuStateDisabled) {\r
1569 return EFI_INVALID_PARAMETER;\r
1570 }\r
1571\r
1572 //\r
1573 // Check whether ProcessorNumber specifies the current BSP\r
1574 //\r
1575 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1576 return EFI_INVALID_PARAMETER;\r
1577 }\r
1578\r
1579 //\r
1580 // Check whether specified AP is busy\r
1581 //\r
1582 if (State == CpuStateBusy) {\r
1583 return EFI_NOT_READY;\r
1584 }\r
1585\r
1586 CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;\r
1587 CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;\r
1588 CpuMpData->SwitchBspFlag = TRUE;\r
b3775af2 1589 CpuMpData->NewBspNumber = ProcessorNumber;\r
41be0da5
JF
1590\r
1591 //\r
1592 // Clear the BSP bit of MSR_IA32_APIC_BASE\r
1593 //\r
1594 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1595 ApicBaseMsr.Bits.BSP = 0;\r
1596 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
1597\r
1598 //\r
1599 // Need to wakeUp AP (future BSP).\r
1600 //\r
1601 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData);\r
1602\r
1603 AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);\r
1604\r
1605 //\r
1606 // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP\r
1607 //\r
1608 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1609 ApicBaseMsr.Bits.BSP = 1;\r
1610 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
1611\r
1612 //\r
1613 // Wait for old BSP finished AP task\r
1614 //\r
1615 while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {\r
1616 CpuPause ();\r
1617 }\r
1618\r
1619 CpuMpData->SwitchBspFlag = FALSE;\r
1620 //\r
1621 // Set old BSP enable state\r
1622 //\r
1623 if (!EnableOldBSP) {\r
1624 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);\r
af8ba51a
JF
1625 } else {\r
1626 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);\r
41be0da5
JF
1627 }\r
1628 //\r
1629 // Save new BSP number\r
1630 //\r
1631 CpuMpData->BspNumber = (UINT32) ProcessorNumber;\r
1632\r
a8d75a18
JF
1633 //\r
1634 // Restore interrupt state.\r
1635 //\r
1636 SetInterruptState (OldInterruptState);\r
1637\r
26b43433
JF
1638 if (OldTimerInterruptState) {\r
1639 EnableApicTimerInterrupt ();\r
1640 }\r
a8d75a18 1641\r
41be0da5
JF
1642 return EFI_SUCCESS;\r
1643}\r
ad52f25e 1644\r
e37109bc
JF
1645/**\r
1646 Worker function to let the caller enable or disable an AP from this point onward.\r
1647 This service may only be called from the BSP.\r
1648\r
1649 @param[in] ProcessorNumber The handle number of AP.\r
1650 @param[in] EnableAP Specifies the new state for the processor for\r
1651 enabled, FALSE for disabled.\r
1652 @param[in] HealthFlag If not NULL, a pointer to a value that specifies\r
1653 the new health status of the AP.\r
1654\r
1655 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.\r
1656 @retval others Failed to Enable/Disable AP.\r
1657\r
1658**/\r
1659EFI_STATUS\r
1660EnableDisableApWorker (\r
1661 IN UINTN ProcessorNumber,\r
1662 IN BOOLEAN EnableAP,\r
1663 IN UINT32 *HealthFlag OPTIONAL\r
1664 )\r
1665{\r
1666 CPU_MP_DATA *CpuMpData;\r
1667 UINTN CallerNumber;\r
1668\r
1669 CpuMpData = GetCpuMpData ();\r
1670\r
1671 //\r
1672 // Check whether caller processor is BSP\r
1673 //\r
1674 MpInitLibWhoAmI (&CallerNumber);\r
1675 if (CallerNumber != CpuMpData->BspNumber) {\r
1676 return EFI_DEVICE_ERROR;\r
1677 }\r
1678\r
1679 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1680 return EFI_INVALID_PARAMETER;\r
1681 }\r
1682\r
1683 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1684 return EFI_NOT_FOUND;\r
1685 }\r
1686\r
1687 if (!EnableAP) {\r
1688 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);\r
1689 } else {\r
1690 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
1691 }\r
1692\r
1693 if (HealthFlag != NULL) {\r
1694 CpuMpData->CpuData[ProcessorNumber].CpuHealthy =\r
1695 (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);\r
1696 }\r
1697\r
1698 return EFI_SUCCESS;\r
1699}\r
1700\r
3e8ad6bd
JF
1701/**\r
1702 This return the handle number for the calling processor. This service may be\r
1703 called from the BSP and APs.\r
1704\r
1705 @param[out] ProcessorNumber Pointer to the handle number of AP.\r
1706 The range is from 0 to the total number of\r
1707 logical processors minus 1. The total number of\r
1708 logical processors can be retrieved by\r
1709 MpInitLibGetNumberOfProcessors().\r
1710\r
1711 @retval EFI_SUCCESS The current processor handle number was returned\r
1712 in ProcessorNumber.\r
1713 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.\r
1714 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
1715\r
1716**/\r
1717EFI_STATUS\r
1718EFIAPI\r
1719MpInitLibWhoAmI (\r
1720 OUT UINTN *ProcessorNumber\r
1721 )\r
1722{\r
5c9e0997
JF
1723 CPU_MP_DATA *CpuMpData;\r
1724\r
1725 if (ProcessorNumber == NULL) {\r
1726 return EFI_INVALID_PARAMETER;\r
1727 }\r
1728\r
1729 CpuMpData = GetCpuMpData ();\r
1730\r
1731 return GetProcessorNumber (CpuMpData, ProcessorNumber);\r
3e8ad6bd 1732}\r
809213a6 1733\r
3e8ad6bd
JF
1734/**\r
1735 Retrieves the number of logical processor in the platform and the number of\r
1736 those logical processors that are enabled on this boot. This service may only\r
1737 be called from the BSP.\r
1738\r
1739 @param[out] NumberOfProcessors Pointer to the total number of logical\r
1740 processors in the system, including the BSP\r
1741 and disabled APs.\r
1742 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical\r
1743 processors that exist in system, including\r
1744 the BSP.\r
1745\r
1746 @retval EFI_SUCCESS The number of logical processors and enabled\r
1747 logical processors was retrieved.\r
1748 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
1749 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors\r
1750 is NULL.\r
1751 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
1752\r
1753**/\r
1754EFI_STATUS\r
1755EFIAPI\r
1756MpInitLibGetNumberOfProcessors (\r
1757 OUT UINTN *NumberOfProcessors, OPTIONAL\r
1758 OUT UINTN *NumberOfEnabledProcessors OPTIONAL\r
1759 )\r
1760{\r
809213a6
JF
1761 CPU_MP_DATA *CpuMpData;\r
1762 UINTN CallerNumber;\r
1763 UINTN ProcessorNumber;\r
1764 UINTN EnabledProcessorNumber;\r
1765 UINTN Index;\r
1766\r
1767 CpuMpData = GetCpuMpData ();\r
1768\r
1769 if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {\r
1770 return EFI_INVALID_PARAMETER;\r
1771 }\r
1772\r
1773 //\r
1774 // Check whether caller processor is BSP\r
1775 //\r
1776 MpInitLibWhoAmI (&CallerNumber);\r
1777 if (CallerNumber != CpuMpData->BspNumber) {\r
1778 return EFI_DEVICE_ERROR;\r
1779 }\r
1780\r
1781 ProcessorNumber = CpuMpData->CpuCount;\r
1782 EnabledProcessorNumber = 0;\r
1783 for (Index = 0; Index < ProcessorNumber; Index++) {\r
1784 if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {\r
1785 EnabledProcessorNumber ++;\r
1786 }\r
1787 }\r
1788\r
1789 if (NumberOfProcessors != NULL) {\r
1790 *NumberOfProcessors = ProcessorNumber;\r
1791 }\r
1792 if (NumberOfEnabledProcessors != NULL) {\r
1793 *NumberOfEnabledProcessors = EnabledProcessorNumber;\r
1794 }\r
1795\r
1796 return EFI_SUCCESS;\r
3e8ad6bd 1797}\r
6a2ee2bb 1798\r
809213a6 1799\r
86efe976
JF
1800/**\r
1801 Worker function to execute a caller provided function on all enabled APs.\r
1802\r
1803 @param[in] Procedure A pointer to the function to be run on\r
1804 enabled APs of the system.\r
1805 @param[in] SingleThread If TRUE, then all the enabled APs execute\r
1806 the function specified by Procedure one by\r
1807 one, in ascending order of processor handle\r
1808 number. If FALSE, then all the enabled APs\r
1809 execute the function specified by Procedure\r
1810 simultaneously.\r
1811 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
1812 service.\r
367284e7 1813 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
86efe976
JF
1814 APs to return from Procedure, either for\r
1815 blocking or non-blocking mode.\r
1816 @param[in] ProcedureArgument The parameter passed into Procedure for\r
1817 all APs.\r
1818 @param[out] FailedCpuList If all APs finish successfully, then its\r
1819 content is set to NULL. If not all APs\r
1820 finish before timeout expires, then its\r
1821 content is set to address of the buffer\r
1822 holding handle numbers of the failed APs.\r
1823\r
1824 @retval EFI_SUCCESS In blocking mode, all APs have finished before\r
1825 the timeout expired.\r
1826 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched\r
1827 to all enabled APs.\r
1828 @retval others Failed to Startup all APs.\r
1829\r
1830**/\r
1831EFI_STATUS\r
1832StartupAllAPsWorker (\r
1833 IN EFI_AP_PROCEDURE Procedure,\r
1834 IN BOOLEAN SingleThread,\r
1835 IN EFI_EVENT WaitEvent OPTIONAL,\r
1836 IN UINTN TimeoutInMicroseconds,\r
1837 IN VOID *ProcedureArgument OPTIONAL,\r
1838 OUT UINTN **FailedCpuList OPTIONAL\r
1839 )\r
1840{\r
1841 EFI_STATUS Status;\r
1842 CPU_MP_DATA *CpuMpData;\r
1843 UINTN ProcessorCount;\r
1844 UINTN ProcessorNumber;\r
1845 UINTN CallerNumber;\r
1846 CPU_AP_DATA *CpuData;\r
1847 BOOLEAN HasEnabledAp;\r
1848 CPU_STATE ApState;\r
1849\r
1850 CpuMpData = GetCpuMpData ();\r
1851\r
1852 if (FailedCpuList != NULL) {\r
1853 *FailedCpuList = NULL;\r
1854 }\r
1855\r
1856 if (CpuMpData->CpuCount == 1) {\r
1857 return EFI_NOT_STARTED;\r
1858 }\r
1859\r
1860 if (Procedure == NULL) {\r
1861 return EFI_INVALID_PARAMETER;\r
1862 }\r
1863\r
1864 //\r
1865 // Check whether caller processor is BSP\r
1866 //\r
1867 MpInitLibWhoAmI (&CallerNumber);\r
1868 if (CallerNumber != CpuMpData->BspNumber) {\r
1869 return EFI_DEVICE_ERROR;\r
1870 }\r
1871\r
1872 //\r
1873 // Update AP state\r
1874 //\r
1875 CheckAndUpdateApsStatus ();\r
1876\r
1877 ProcessorCount = CpuMpData->CpuCount;\r
1878 HasEnabledAp = FALSE;\r
1879 //\r
1880 // Check whether all enabled APs are idle.\r
1881 // If any enabled AP is not idle, return EFI_NOT_READY.\r
1882 //\r
1883 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
1884 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1885 if (ProcessorNumber != CpuMpData->BspNumber) {\r
1886 ApState = GetApState (CpuData);\r
1887 if (ApState != CpuStateDisabled) {\r
1888 HasEnabledAp = TRUE;\r
1889 if (ApState != CpuStateIdle) {\r
1890 //\r
1891 // If any enabled APs are busy, return EFI_NOT_READY.\r
1892 //\r
1893 return EFI_NOT_READY;\r
1894 }\r
1895 }\r
1896 }\r
1897 }\r
1898\r
1899 if (!HasEnabledAp) {\r
1900 //\r
1901 // If no enabled AP exists, return EFI_NOT_STARTED.\r
1902 //\r
1903 return EFI_NOT_STARTED;\r
1904 }\r
1905\r
1906 CpuMpData->StartCount = 0;\r
1907 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
1908 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1909 CpuData->Waiting = FALSE;\r
1910 if (ProcessorNumber != CpuMpData->BspNumber) {\r
1911 if (CpuData->State == CpuStateIdle) {\r
1912 //\r
1913 // Mark this processor as responsible for current calling.\r
1914 //\r
1915 CpuData->Waiting = TRUE;\r
1916 CpuMpData->StartCount++;\r
1917 }\r
1918 }\r
1919 }\r
1920\r
1921 CpuMpData->Procedure = Procedure;\r
1922 CpuMpData->ProcArguments = ProcedureArgument;\r
1923 CpuMpData->SingleThread = SingleThread;\r
1924 CpuMpData->FinishedCount = 0;\r
1925 CpuMpData->RunningCount = 0;\r
1926 CpuMpData->FailedCpuList = FailedCpuList;\r
1927 CpuMpData->ExpectedTime = CalculateTimeout (\r
1928 TimeoutInMicroseconds,\r
1929 &CpuMpData->CurrentTime\r
1930 );\r
1931 CpuMpData->TotalTime = 0;\r
1932 CpuMpData->WaitEvent = WaitEvent;\r
1933\r
1934 if (!SingleThread) {\r
1935 WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument);\r
1936 } else {\r
1937 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
1938 if (ProcessorNumber == CallerNumber) {\r
1939 continue;\r
1940 }\r
1941 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1942 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);\r
1943 break;\r
1944 }\r
1945 }\r
1946 }\r
1947\r
1948 Status = EFI_SUCCESS;\r
1949 if (WaitEvent == NULL) {\r
1950 do {\r
1951 Status = CheckAllAPs ();\r
1952 } while (Status == EFI_NOT_READY);\r
1953 }\r
1954\r
1955 return Status;\r
1956}\r
1957\r
20ae5774
JF
1958/**\r
1959 Worker function to let the caller get one enabled AP to execute a caller-provided\r
1960 function.\r
1961\r
1962 @param[in] Procedure A pointer to the function to be run on\r
1963 enabled APs of the system.\r
1964 @param[in] ProcessorNumber The handle number of the AP.\r
1965 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
1966 service.\r
367284e7 1967 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
20ae5774
JF
1968 APs to return from Procedure, either for\r
1969 blocking or non-blocking mode.\r
1970 @param[in] ProcedureArgument The parameter passed into Procedure for\r
1971 all APs.\r
1972 @param[out] Finished If AP returns from Procedure before the\r
1973 timeout expires, its content is set to TRUE.\r
1974 Otherwise, the value is set to FALSE.\r
1975\r
1976 @retval EFI_SUCCESS In blocking mode, specified AP finished before\r
1977 the timeout expires.\r
1978 @retval others Failed to Startup AP.\r
1979\r
1980**/\r
1981EFI_STATUS\r
1982StartupThisAPWorker (\r
1983 IN EFI_AP_PROCEDURE Procedure,\r
1984 IN UINTN ProcessorNumber,\r
1985 IN EFI_EVENT WaitEvent OPTIONAL,\r
1986 IN UINTN TimeoutInMicroseconds,\r
1987 IN VOID *ProcedureArgument OPTIONAL,\r
1988 OUT BOOLEAN *Finished OPTIONAL\r
1989 )\r
1990{\r
1991 EFI_STATUS Status;\r
1992 CPU_MP_DATA *CpuMpData;\r
1993 CPU_AP_DATA *CpuData;\r
1994 UINTN CallerNumber;\r
1995\r
1996 CpuMpData = GetCpuMpData ();\r
1997\r
1998 if (Finished != NULL) {\r
1999 *Finished = FALSE;\r
2000 }\r
2001\r
2002 //\r
2003 // Check whether caller processor is BSP\r
2004 //\r
2005 MpInitLibWhoAmI (&CallerNumber);\r
2006 if (CallerNumber != CpuMpData->BspNumber) {\r
2007 return EFI_DEVICE_ERROR;\r
2008 }\r
2009\r
2010 //\r
2011 // Check whether processor with the handle specified by ProcessorNumber exists\r
2012 //\r
2013 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
2014 return EFI_NOT_FOUND;\r
2015 }\r
2016\r
2017 //\r
2018 // Check whether specified processor is BSP\r
2019 //\r
2020 if (ProcessorNumber == CpuMpData->BspNumber) {\r
2021 return EFI_INVALID_PARAMETER;\r
2022 }\r
2023\r
2024 //\r
2025 // Check parameter Procedure\r
2026 //\r
2027 if (Procedure == NULL) {\r
2028 return EFI_INVALID_PARAMETER;\r
2029 }\r
2030\r
2031 //\r
2032 // Update AP state\r
2033 //\r
2034 CheckAndUpdateApsStatus ();\r
2035\r
2036 //\r
2037 // Check whether specified AP is disabled\r
2038 //\r
2039 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
2040 return EFI_INVALID_PARAMETER;\r
2041 }\r
2042\r
2043 //\r
2044 // If WaitEvent is not NULL, execute in non-blocking mode.\r
2045 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.\r
2046 // CheckAPsStatus() will check completion and timeout periodically.\r
2047 //\r
2048 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2049 CpuData->WaitEvent = WaitEvent;\r
2050 CpuData->Finished = Finished;\r
2051 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);\r
2052 CpuData->TotalTime = 0;\r
2053\r
2054 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);\r
2055\r
2056 //\r
2057 // If WaitEvent is NULL, execute in blocking mode.\r
2058 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.\r
2059 //\r
2060 Status = EFI_SUCCESS;\r
2061 if (WaitEvent == NULL) {\r
2062 do {\r
2063 Status = CheckThisAP (ProcessorNumber);\r
2064 } while (Status == EFI_NOT_READY);\r
2065 }\r
2066\r
2067 return Status;\r
2068}\r
2069\r
93ca4c0f
JF
2070/**\r
2071 Get pointer to CPU MP Data structure from GUIDed HOB.\r
2072\r
2073 @return The pointer to CPU MP Data structure.\r
2074**/\r
2075CPU_MP_DATA *\r
2076GetCpuMpDataFromGuidedHob (\r
2077 VOID\r
2078 )\r
2079{\r
2080 EFI_HOB_GUID_TYPE *GuidHob;\r
2081 VOID *DataInHob;\r
2082 CPU_MP_DATA *CpuMpData;\r
2083\r
2084 CpuMpData = NULL;\r
2085 GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);\r
2086 if (GuidHob != NULL) {\r
2087 DataInHob = GET_GUID_HOB_DATA (GuidHob);\r
2088 CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);\r
2089 }\r
2090 return CpuMpData;\r
2091}\r
42c37b3b
JF
2092\r
2093/**\r
2094 Get available system memory below 1MB by specified size.\r
2095\r
2096 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
2097**/\r
2098VOID\r
2099BackupAndPrepareWakeupBuffer(\r
2100 IN CPU_MP_DATA *CpuMpData\r
2101 )\r
2102{\r
2103 CopyMem (\r
2104 (VOID *) CpuMpData->BackupBuffer,\r
2105 (VOID *) CpuMpData->WakeupBuffer,\r
2106 CpuMpData->BackupBufferSize\r
2107 );\r
2108 CopyMem (\r
2109 (VOID *) CpuMpData->WakeupBuffer,\r
2110 (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,\r
2111 CpuMpData->AddressMap.RendezvousFunnelSize\r
2112 );\r
2113}\r
2114\r
2115/**\r
2116 Restore wakeup buffer data.\r
2117\r
2118 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
2119**/\r
2120VOID\r
2121RestoreWakeupBuffer(\r
2122 IN CPU_MP_DATA *CpuMpData\r
2123 )\r
2124{\r
2125 CopyMem (\r
2126 (VOID *) CpuMpData->WakeupBuffer,\r
2127 (VOID *) CpuMpData->BackupBuffer,\r
2128 CpuMpData->BackupBufferSize\r
2129 );\r
2130}\r