Commit | Line | Data |
---|---|---|
3e8ad6bd JF |
1 | /** @file\r |
2 | CPU MP Initialize Library common functions.\r | |
3 | \r | |
4 | Copyright (c) 2016, Intel Corporation. All rights reserved.<BR>\r | |
5 | This program and the accompanying materials\r | |
6 | are licensed and made available under the terms and conditions of the BSD License\r | |
7 | which accompanies this distribution. The full text of the license may be found at\r | |
8 | http://opensource.org/licenses/bsd-license.php\r | |
9 | \r | |
10 | THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r | |
11 | WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r | |
12 | \r | |
13 | **/\r | |
14 | \r | |
15 | #include "MpLib.h"\r | |
16 | \r | |
93ca4c0f JF |
17 | EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;\r |
18 | \r | |
7c3f2a12 JF |
19 | /**\r |
20 | The function will check if BSP Execute Disable is enabled.\r | |
21 | DxeIpl may have enabled Execute Disable for BSP,\r | |
22 | APs need to get the status and sync up the settings.\r | |
23 | \r | |
24 | @retval TRUE BSP Execute Disable is enabled.\r | |
25 | @retval FALSE BSP Execute Disable is not enabled.\r | |
26 | **/\r | |
27 | BOOLEAN\r | |
28 | IsBspExecuteDisableEnabled (\r | |
29 | VOID\r | |
30 | )\r | |
31 | {\r | |
32 | UINT32 Eax;\r | |
33 | CPUID_EXTENDED_CPU_SIG_EDX Edx;\r | |
34 | MSR_IA32_EFER_REGISTER EferMsr;\r | |
35 | BOOLEAN Enabled;\r | |
36 | \r | |
37 | Enabled = FALSE;\r | |
38 | AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);\r | |
39 | if (Eax >= CPUID_EXTENDED_CPU_SIG) {\r | |
40 | AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);\r | |
41 | //\r | |
42 | // CPUID 0x80000001\r | |
43 | // Bit 20: Execute Disable Bit available.\r | |
44 | //\r | |
45 | if (Edx.Bits.NX != 0) {\r | |
46 | EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);\r | |
47 | //\r | |
48 | // MSR 0xC0000080\r | |
49 | // Bit 11: Execute Disable Bit enable.\r | |
50 | //\r | |
51 | if (EferMsr.Bits.NXE != 0) {\r | |
52 | Enabled = TRUE;\r | |
53 | }\r | |
54 | }\r | |
55 | }\r | |
56 | \r | |
57 | return Enabled;\r | |
58 | }\r | |
59 | \r | |
41be0da5 JF |
60 | /**\r |
61 | Worker function for SwitchBSP().\r | |
62 | \r | |
63 | Worker function for SwitchBSP(), assigned to the AP which is intended\r | |
64 | to become BSP.\r | |
65 | \r | |
66 | @param[in] Buffer Pointer to CPU MP Data\r | |
67 | **/\r | |
68 | VOID\r | |
69 | EFIAPI\r | |
70 | FutureBSPProc (\r | |
71 | IN VOID *Buffer\r | |
72 | )\r | |
73 | {\r | |
74 | CPU_MP_DATA *DataInHob;\r | |
75 | \r | |
76 | DataInHob = (CPU_MP_DATA *) Buffer;\r | |
77 | AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);\r | |
78 | }\r | |
79 | \r | |
03a1a925 JF |
80 | /**\r |
81 | Get the Application Processors state.\r | |
82 | \r | |
83 | @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r | |
84 | \r | |
85 | @return The AP status\r | |
86 | **/\r | |
87 | CPU_STATE\r | |
88 | GetApState (\r | |
89 | IN CPU_AP_DATA *CpuData\r | |
90 | )\r | |
91 | {\r | |
92 | return CpuData->State;\r | |
93 | }\r | |
94 | \r | |
95 | /**\r | |
96 | Set the Application Processors state.\r | |
97 | \r | |
98 | @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r | |
99 | @param[in] State The AP status\r | |
100 | **/\r | |
101 | VOID\r | |
102 | SetApState (\r | |
103 | IN CPU_AP_DATA *CpuData,\r | |
104 | IN CPU_STATE State\r | |
105 | )\r | |
106 | {\r | |
107 | AcquireSpinLock (&CpuData->ApLock);\r | |
108 | CpuData->State = State;\r | |
109 | ReleaseSpinLock (&CpuData->ApLock);\r | |
110 | }\r | |
3e8ad6bd | 111 | \r |
68cb9330 JF |
112 | /**\r |
113 | Save the volatile registers required to be restored following INIT IPI.\r | |
114 | \r | |
115 | @param[out] VolatileRegisters Returns buffer saved the volatile resisters\r | |
116 | **/\r | |
117 | VOID\r | |
118 | SaveVolatileRegisters (\r | |
119 | OUT CPU_VOLATILE_REGISTERS *VolatileRegisters\r | |
120 | )\r | |
121 | {\r | |
122 | CPUID_VERSION_INFO_EDX VersionInfoEdx;\r | |
123 | \r | |
124 | VolatileRegisters->Cr0 = AsmReadCr0 ();\r | |
125 | VolatileRegisters->Cr3 = AsmReadCr3 ();\r | |
126 | VolatileRegisters->Cr4 = AsmReadCr4 ();\r | |
127 | \r | |
128 | AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r | |
129 | if (VersionInfoEdx.Bits.DE != 0) {\r | |
130 | //\r | |
131 | // If processor supports Debugging Extensions feature\r | |
132 | // by CPUID.[EAX=01H]:EDX.BIT2\r | |
133 | //\r | |
134 | VolatileRegisters->Dr0 = AsmReadDr0 ();\r | |
135 | VolatileRegisters->Dr1 = AsmReadDr1 ();\r | |
136 | VolatileRegisters->Dr2 = AsmReadDr2 ();\r | |
137 | VolatileRegisters->Dr3 = AsmReadDr3 ();\r | |
138 | VolatileRegisters->Dr6 = AsmReadDr6 ();\r | |
139 | VolatileRegisters->Dr7 = AsmReadDr7 ();\r | |
140 | }\r | |
141 | }\r | |
142 | \r | |
143 | /**\r | |
144 | Restore the volatile registers following INIT IPI.\r | |
145 | \r | |
146 | @param[in] VolatileRegisters Pointer to volatile resisters\r | |
147 | @param[in] IsRestoreDr TRUE: Restore DRx if supported\r | |
148 | FALSE: Do not restore DRx\r | |
149 | **/\r | |
150 | VOID\r | |
151 | RestoreVolatileRegisters (\r | |
152 | IN CPU_VOLATILE_REGISTERS *VolatileRegisters,\r | |
153 | IN BOOLEAN IsRestoreDr\r | |
154 | )\r | |
155 | {\r | |
156 | CPUID_VERSION_INFO_EDX VersionInfoEdx;\r | |
157 | \r | |
158 | AsmWriteCr0 (VolatileRegisters->Cr0);\r | |
159 | AsmWriteCr3 (VolatileRegisters->Cr3);\r | |
160 | AsmWriteCr4 (VolatileRegisters->Cr4);\r | |
161 | \r | |
162 | if (IsRestoreDr) {\r | |
163 | AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r | |
164 | if (VersionInfoEdx.Bits.DE != 0) {\r | |
165 | //\r | |
166 | // If processor supports Debugging Extensions feature\r | |
167 | // by CPUID.[EAX=01H]:EDX.BIT2\r | |
168 | //\r | |
169 | AsmWriteDr0 (VolatileRegisters->Dr0);\r | |
170 | AsmWriteDr1 (VolatileRegisters->Dr1);\r | |
171 | AsmWriteDr2 (VolatileRegisters->Dr2);\r | |
172 | AsmWriteDr3 (VolatileRegisters->Dr3);\r | |
173 | AsmWriteDr6 (VolatileRegisters->Dr6);\r | |
174 | AsmWriteDr7 (VolatileRegisters->Dr7);\r | |
175 | }\r | |
176 | }\r | |
177 | }\r | |
178 | \r | |
9ebcf0f4 JF |
179 | /**\r |
180 | Detect whether Mwait-monitor feature is supported.\r | |
181 | \r | |
182 | @retval TRUE Mwait-monitor feature is supported.\r | |
183 | @retval FALSE Mwait-monitor feature is not supported.\r | |
184 | **/\r | |
185 | BOOLEAN\r | |
186 | IsMwaitSupport (\r | |
187 | VOID\r | |
188 | )\r | |
189 | {\r | |
190 | CPUID_VERSION_INFO_ECX VersionInfoEcx;\r | |
191 | \r | |
192 | AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);\r | |
193 | return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;\r | |
194 | }\r | |
195 | \r | |
196 | /**\r | |
197 | Get AP loop mode.\r | |
198 | \r | |
199 | @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.\r | |
200 | \r | |
201 | @return The AP loop mode.\r | |
202 | **/\r | |
203 | UINT8\r | |
204 | GetApLoopMode (\r | |
205 | OUT UINT32 *MonitorFilterSize\r | |
206 | )\r | |
207 | {\r | |
208 | UINT8 ApLoopMode;\r | |
209 | CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;\r | |
210 | \r | |
211 | ASSERT (MonitorFilterSize != NULL);\r | |
212 | \r | |
213 | ApLoopMode = PcdGet8 (PcdCpuApLoopMode);\r | |
214 | ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);\r | |
215 | if (ApLoopMode == ApInMwaitLoop) {\r | |
216 | if (!IsMwaitSupport ()) {\r | |
217 | //\r | |
218 | // If processor does not support MONITOR/MWAIT feature,\r | |
219 | // force AP in Hlt-loop mode\r | |
220 | //\r | |
221 | ApLoopMode = ApInHltLoop;\r | |
222 | }\r | |
223 | }\r | |
224 | \r | |
225 | if (ApLoopMode != ApInMwaitLoop) {\r | |
226 | *MonitorFilterSize = sizeof (UINT32);\r | |
227 | } else {\r | |
228 | //\r | |
229 | // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes\r | |
230 | // CPUID.[EAX=05H].EDX: C-states supported using MWAIT\r | |
231 | //\r | |
232 | AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);\r | |
233 | *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;\r | |
234 | }\r | |
235 | \r | |
236 | return ApLoopMode;\r | |
237 | }\r | |
b8b04307 | 238 | \r |
8a2d564b JF |
239 | /**\r |
240 | Sort the APIC ID of all processors.\r | |
241 | \r | |
242 | This function sorts the APIC ID of all processors so that processor number is\r | |
243 | assigned in the ascending order of APIC ID which eases MP debugging.\r | |
244 | \r | |
245 | @param[in] CpuMpData Pointer to PEI CPU MP Data\r | |
246 | **/\r | |
247 | VOID\r | |
248 | SortApicId (\r | |
249 | IN CPU_MP_DATA *CpuMpData\r | |
250 | )\r | |
251 | {\r | |
252 | UINTN Index1;\r | |
253 | UINTN Index2;\r | |
254 | UINTN Index3;\r | |
255 | UINT32 ApicId;\r | |
256 | CPU_AP_DATA CpuData;\r | |
257 | UINT32 ApCount;\r | |
258 | CPU_INFO_IN_HOB *CpuInfoInHob;\r | |
259 | \r | |
260 | ApCount = CpuMpData->CpuCount - 1;\r | |
261 | \r | |
262 | if (ApCount != 0) {\r | |
263 | for (Index1 = 0; Index1 < ApCount; Index1++) {\r | |
264 | Index3 = Index1;\r | |
265 | //\r | |
266 | // Sort key is the hardware default APIC ID\r | |
267 | //\r | |
268 | ApicId = CpuMpData->CpuData[Index1].ApicId;\r | |
269 | for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {\r | |
270 | if (ApicId > CpuMpData->CpuData[Index2].ApicId) {\r | |
271 | Index3 = Index2;\r | |
272 | ApicId = CpuMpData->CpuData[Index2].ApicId;\r | |
273 | }\r | |
274 | }\r | |
275 | if (Index3 != Index1) {\r | |
276 | CopyMem (&CpuData, &CpuMpData->CpuData[Index3], sizeof (CPU_AP_DATA));\r | |
277 | CopyMem (\r | |
278 | &CpuMpData->CpuData[Index3],\r | |
279 | &CpuMpData->CpuData[Index1],\r | |
280 | sizeof (CPU_AP_DATA)\r | |
281 | );\r | |
282 | CopyMem (&CpuMpData->CpuData[Index1], &CpuData, sizeof (CPU_AP_DATA));\r | |
283 | }\r | |
284 | }\r | |
285 | \r | |
286 | //\r | |
287 | // Get the processor number for the BSP\r | |
288 | //\r | |
289 | ApicId = GetInitialApicId ();\r | |
290 | for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {\r | |
291 | if (CpuMpData->CpuData[Index1].ApicId == ApicId) {\r | |
292 | CpuMpData->BspNumber = (UINT32) Index1;\r | |
293 | break;\r | |
294 | }\r | |
295 | }\r | |
296 | \r | |
297 | CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r | |
298 | for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {\r | |
299 | CpuInfoInHob[Index1].InitialApicId = CpuMpData->CpuData[Index1].InitialApicId;\r | |
300 | CpuInfoInHob[Index1].ApicId = CpuMpData->CpuData[Index1].ApicId;\r | |
301 | CpuInfoInHob[Index1].Health = CpuMpData->CpuData[Index1].Health;\r | |
302 | }\r | |
303 | }\r | |
304 | }\r | |
305 | \r | |
fe627769 JF |
306 | /**\r |
307 | Enable x2APIC mode on APs.\r | |
308 | \r | |
309 | @param[in, out] Buffer Pointer to private data buffer.\r | |
310 | **/\r | |
311 | VOID\r | |
312 | EFIAPI\r | |
313 | ApFuncEnableX2Apic (\r | |
314 | IN OUT VOID *Buffer\r | |
315 | )\r | |
316 | {\r | |
317 | SetApicMode (LOCAL_APIC_MODE_X2APIC);\r | |
318 | }\r | |
319 | \r | |
b8b04307 JF |
320 | /**\r |
321 | Do sync on APs.\r | |
322 | \r | |
323 | @param[in, out] Buffer Pointer to private data buffer.\r | |
324 | **/\r | |
325 | VOID\r | |
326 | EFIAPI\r | |
327 | ApInitializeSync (\r | |
328 | IN OUT VOID *Buffer\r | |
329 | )\r | |
330 | {\r | |
331 | CPU_MP_DATA *CpuMpData;\r | |
332 | \r | |
333 | CpuMpData = (CPU_MP_DATA *) Buffer;\r | |
334 | //\r | |
335 | // Sync BSP's MTRR table to AP\r | |
336 | //\r | |
337 | MtrrSetAllMtrrs (&CpuMpData->MtrrTable);\r | |
338 | //\r | |
339 | // Load microcode on AP\r | |
340 | //\r | |
341 | MicrocodeDetect (CpuMpData);\r | |
342 | }\r | |
343 | \r | |
344 | /**\r | |
345 | Find the current Processor number by APIC ID.\r | |
346 | \r | |
347 | @param[in] CpuMpData Pointer to PEI CPU MP Data\r | |
348 | @param[in] ProcessorNumber Return the pocessor number found\r | |
349 | \r | |
350 | @retval EFI_SUCCESS ProcessorNumber is found and returned.\r | |
351 | @retval EFI_NOT_FOUND ProcessorNumber is not found.\r | |
352 | **/\r | |
353 | EFI_STATUS\r | |
354 | GetProcessorNumber (\r | |
355 | IN CPU_MP_DATA *CpuMpData,\r | |
356 | OUT UINTN *ProcessorNumber\r | |
357 | )\r | |
358 | {\r | |
359 | UINTN TotalProcessorNumber;\r | |
360 | UINTN Index;\r | |
361 | \r | |
362 | TotalProcessorNumber = CpuMpData->CpuCount;\r | |
363 | for (Index = 0; Index < TotalProcessorNumber; Index ++) {\r | |
364 | if (CpuMpData->CpuData[Index].ApicId == GetApicId ()) {\r | |
365 | *ProcessorNumber = Index;\r | |
366 | return EFI_SUCCESS;\r | |
367 | }\r | |
368 | }\r | |
369 | return EFI_NOT_FOUND;\r | |
370 | }\r | |
371 | \r | |
03434dff JF |
372 | /**\r |
373 | This function will get CPU count in the system.\r | |
374 | \r | |
375 | @param[in] CpuMpData Pointer to PEI CPU MP Data\r | |
376 | \r | |
377 | @return CPU count detected\r | |
378 | **/\r | |
379 | UINTN\r | |
380 | CollectProcessorCount (\r | |
381 | IN CPU_MP_DATA *CpuMpData\r | |
382 | )\r | |
383 | {\r | |
384 | //\r | |
385 | // Send 1st broadcast IPI to APs to wakeup APs\r | |
386 | //\r | |
387 | CpuMpData->InitFlag = ApInitConfig;\r | |
388 | CpuMpData->X2ApicEnable = FALSE;\r | |
389 | WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL);\r | |
03434dff JF |
390 | CpuMpData->InitFlag = ApInitDone;\r |
391 | ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));\r | |
392 | //\r | |
393 | // Wait for all APs finished the initialization\r | |
394 | //\r | |
395 | while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r | |
396 | CpuPause ();\r | |
397 | }\r | |
398 | \r | |
fe627769 JF |
399 | if (CpuMpData->X2ApicEnable) {\r |
400 | DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));\r | |
401 | //\r | |
402 | // Wakeup all APs to enable x2APIC mode\r | |
403 | //\r | |
404 | WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL);\r | |
405 | //\r | |
406 | // Wait for all known APs finished\r | |
407 | //\r | |
408 | while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r | |
409 | CpuPause ();\r | |
410 | }\r | |
411 | //\r | |
412 | // Enable x2APIC on BSP\r | |
413 | //\r | |
414 | SetApicMode (LOCAL_APIC_MODE_X2APIC);\r | |
415 | }\r | |
416 | DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));\r | |
8a2d564b JF |
417 | //\r |
418 | // Sort BSP/Aps by CPU APIC ID in ascending order\r | |
419 | //\r | |
420 | SortApicId (CpuMpData);\r | |
421 | \r | |
03434dff JF |
422 | DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));\r |
423 | \r | |
424 | return CpuMpData->CpuCount;\r | |
425 | }\r | |
426 | \r | |
03a1a925 JF |
427 | /*\r |
428 | Initialize CPU AP Data when AP is wakeup at the first time.\r | |
429 | \r | |
430 | @param[in, out] CpuMpData Pointer to PEI CPU MP Data\r | |
431 | @param[in] ProcessorNumber The handle number of processor\r | |
432 | @param[in] BistData Processor BIST data\r | |
433 | \r | |
434 | **/\r | |
435 | VOID\r | |
436 | InitializeApData (\r | |
437 | IN OUT CPU_MP_DATA *CpuMpData,\r | |
438 | IN UINTN ProcessorNumber,\r | |
439 | IN UINT32 BistData\r | |
440 | )\r | |
441 | {\r | |
442 | CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r | |
443 | CpuMpData->CpuData[ProcessorNumber].Health = BistData;\r | |
444 | CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;\r | |
445 | CpuMpData->CpuData[ProcessorNumber].ApicId = GetApicId ();\r | |
446 | CpuMpData->CpuData[ProcessorNumber].InitialApicId = GetInitialApicId ();\r | |
447 | if (CpuMpData->CpuData[ProcessorNumber].InitialApicId >= 0xFF) {\r | |
448 | //\r | |
449 | // Set x2APIC mode if there are any logical processor reporting\r | |
450 | // an Initial APIC ID of 255 or greater.\r | |
451 | //\r | |
452 | AcquireSpinLock(&CpuMpData->MpLock);\r | |
453 | CpuMpData->X2ApicEnable = TRUE;\r | |
454 | ReleaseSpinLock(&CpuMpData->MpLock);\r | |
455 | }\r | |
456 | \r | |
457 | InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);\r | |
458 | SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r | |
459 | }\r | |
460 | \r | |
b8b04307 JF |
461 | /**\r |
462 | This function will be called from AP reset code if BSP uses WakeUpAP.\r | |
463 | \r | |
464 | @param[in] ExchangeInfo Pointer to the MP exchange info buffer\r | |
465 | @param[in] NumApsExecuting Number of current executing AP\r | |
466 | **/\r | |
467 | VOID\r | |
468 | EFIAPI\r | |
469 | ApWakeupFunction (\r | |
470 | IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,\r | |
471 | IN UINTN NumApsExecuting\r | |
472 | )\r | |
473 | {\r | |
474 | CPU_MP_DATA *CpuMpData;\r | |
475 | UINTN ProcessorNumber;\r | |
476 | EFI_AP_PROCEDURE Procedure;\r | |
477 | VOID *Parameter;\r | |
478 | UINT32 BistData;\r | |
479 | volatile UINT32 *ApStartupSignalBuffer;\r | |
480 | \r | |
481 | //\r | |
482 | // AP finished assembly code and begin to execute C code\r | |
483 | //\r | |
484 | CpuMpData = ExchangeInfo->CpuMpData;\r | |
485 | \r | |
486 | ProgramVirtualWireMode (); \r | |
487 | \r | |
488 | while (TRUE) {\r | |
489 | if (CpuMpData->InitFlag == ApInitConfig) {\r | |
490 | //\r | |
491 | // Add CPU number\r | |
492 | //\r | |
493 | InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);\r | |
494 | ProcessorNumber = NumApsExecuting;\r | |
495 | //\r | |
496 | // This is first time AP wakeup, get BIST information from AP stack\r | |
497 | //\r | |
498 | BistData = *(UINT32 *) (CpuMpData->Buffer + ProcessorNumber * CpuMpData->CpuApStackSize - sizeof (UINTN));\r | |
499 | //\r | |
500 | // Do some AP initialize sync\r | |
501 | //\r | |
502 | ApInitializeSync (CpuMpData);\r | |
503 | //\r | |
504 | // Sync BSP's Control registers to APs\r | |
505 | //\r | |
506 | RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);\r | |
507 | InitializeApData (CpuMpData, ProcessorNumber, BistData);\r | |
508 | ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r | |
509 | } else {\r | |
510 | //\r | |
511 | // Execute AP function if AP is ready\r | |
512 | //\r | |
513 | GetProcessorNumber (CpuMpData, &ProcessorNumber);\r | |
514 | //\r | |
515 | // Clear AP start-up signal when AP waken up\r | |
516 | //\r | |
517 | ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r | |
518 | InterlockedCompareExchange32 (\r | |
519 | (UINT32 *) ApStartupSignalBuffer,\r | |
520 | WAKEUP_AP_SIGNAL,\r | |
521 | 0\r | |
522 | );\r | |
523 | if (CpuMpData->ApLoopMode == ApInHltLoop) {\r | |
524 | //\r | |
525 | // Restore AP's volatile registers saved\r | |
526 | //\r | |
527 | RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);\r | |
528 | }\r | |
529 | \r | |
530 | if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {\r | |
531 | Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;\r | |
532 | Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;\r | |
533 | if (Procedure != NULL) {\r | |
534 | SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);\r | |
535 | //\r | |
536 | // Invoke AP function here\r | |
537 | //\r | |
538 | Procedure (Parameter);\r | |
41be0da5 JF |
539 | if (CpuMpData->SwitchBspFlag) {\r |
540 | //\r | |
541 | // Re-get the processor number due to BSP/AP maybe exchange in AP function\r | |
542 | //\r | |
543 | GetProcessorNumber (CpuMpData, &ProcessorNumber);\r | |
544 | CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;\r | |
545 | CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;\r | |
546 | } else {\r | |
547 | //\r | |
548 | // Re-get the CPU APICID and Initial APICID\r | |
549 | //\r | |
550 | CpuMpData->CpuData[ProcessorNumber].ApicId = GetApicId ();\r | |
551 | CpuMpData->CpuData[ProcessorNumber].InitialApicId = GetInitialApicId ();\r | |
552 | }\r | |
b8b04307 JF |
553 | }\r |
554 | SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);\r | |
555 | }\r | |
556 | }\r | |
557 | \r | |
558 | //\r | |
559 | // AP finished executing C code\r | |
560 | //\r | |
561 | InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);\r | |
562 | \r | |
563 | //\r | |
564 | // Place AP is specified loop mode\r | |
565 | //\r | |
566 | if (CpuMpData->ApLoopMode == ApInHltLoop) {\r | |
567 | //\r | |
568 | // Save AP volatile registers\r | |
569 | //\r | |
570 | SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);\r | |
571 | //\r | |
572 | // Place AP in HLT-loop\r | |
573 | //\r | |
574 | while (TRUE) {\r | |
575 | DisableInterrupts ();\r | |
576 | CpuSleep ();\r | |
577 | CpuPause ();\r | |
578 | }\r | |
579 | }\r | |
580 | while (TRUE) {\r | |
581 | DisableInterrupts ();\r | |
582 | if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r | |
583 | //\r | |
584 | // Place AP in MWAIT-loop\r | |
585 | //\r | |
586 | AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);\r | |
587 | if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {\r | |
588 | //\r | |
589 | // Check AP start-up signal again.\r | |
590 | // If AP start-up signal is not set, place AP into\r | |
591 | // the specified C-state\r | |
592 | //\r | |
593 | AsmMwait (CpuMpData->ApTargetCState << 4, 0);\r | |
594 | }\r | |
595 | } else if (CpuMpData->ApLoopMode == ApInRunLoop) {\r | |
596 | //\r | |
597 | // Place AP in Run-loop\r | |
598 | //\r | |
599 | CpuPause ();\r | |
600 | } else {\r | |
601 | ASSERT (FALSE);\r | |
602 | }\r | |
603 | \r | |
604 | //\r | |
605 | // If AP start-up signal is written, AP is waken up\r | |
606 | // otherwise place AP in loop again\r | |
607 | //\r | |
608 | if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {\r | |
609 | break;\r | |
610 | }\r | |
611 | }\r | |
612 | }\r | |
613 | }\r | |
614 | \r | |
96f5920d JF |
615 | /**\r |
616 | Wait for AP wakeup and write AP start-up signal till AP is waken up.\r | |
617 | \r | |
618 | @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal\r | |
619 | **/\r | |
620 | VOID\r | |
621 | WaitApWakeup (\r | |
622 | IN volatile UINT32 *ApStartupSignalBuffer\r | |
623 | )\r | |
624 | {\r | |
625 | //\r | |
626 | // If AP is waken up, StartupApSignal should be cleared.\r | |
627 | // Otherwise, write StartupApSignal again till AP waken up.\r | |
628 | //\r | |
629 | while (InterlockedCompareExchange32 (\r | |
630 | (UINT32 *) ApStartupSignalBuffer,\r | |
631 | WAKEUP_AP_SIGNAL,\r | |
632 | WAKEUP_AP_SIGNAL\r | |
633 | ) != 0) {\r | |
634 | CpuPause ();\r | |
635 | }\r | |
636 | }\r | |
637 | \r | |
7c3f2a12 JF |
638 | /**\r |
639 | This function will fill the exchange info structure.\r | |
640 | \r | |
641 | @param[in] CpuMpData Pointer to CPU MP Data\r | |
642 | \r | |
643 | **/\r | |
644 | VOID\r | |
645 | FillExchangeInfoData (\r | |
646 | IN CPU_MP_DATA *CpuMpData\r | |
647 | )\r | |
648 | {\r | |
649 | volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r | |
650 | \r | |
651 | ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r | |
652 | ExchangeInfo->Lock = 0;\r | |
653 | ExchangeInfo->StackStart = CpuMpData->Buffer;\r | |
654 | ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;\r | |
655 | ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;\r | |
656 | ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;\r | |
657 | \r | |
658 | ExchangeInfo->CodeSegment = AsmReadCs ();\r | |
659 | ExchangeInfo->DataSegment = AsmReadDs ();\r | |
660 | \r | |
661 | ExchangeInfo->Cr3 = AsmReadCr3 ();\r | |
662 | \r | |
663 | ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;\r | |
664 | ExchangeInfo->NumApsExecuting = 0;\r | |
665 | ExchangeInfo->CpuMpData = CpuMpData;\r | |
666 | \r | |
667 | ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();\r | |
668 | \r | |
669 | //\r | |
670 | // Get the BSP's data of GDT and IDT\r | |
671 | //\r | |
672 | AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);\r | |
673 | AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);\r | |
674 | }\r | |
675 | \r | |
96f5920d JF |
676 | /**\r |
677 | This function will be called by BSP to wakeup AP.\r | |
678 | \r | |
679 | @param[in] CpuMpData Pointer to CPU MP Data\r | |
680 | @param[in] Broadcast TRUE: Send broadcast IPI to all APs\r | |
681 | FALSE: Send IPI to AP by ApicId\r | |
682 | @param[in] ProcessorNumber The handle number of specified processor\r | |
683 | @param[in] Procedure The function to be invoked by AP\r | |
684 | @param[in] ProcedureArgument The argument to be passed into AP function\r | |
685 | **/\r | |
686 | VOID\r | |
687 | WakeUpAP (\r | |
688 | IN CPU_MP_DATA *CpuMpData,\r | |
689 | IN BOOLEAN Broadcast,\r | |
690 | IN UINTN ProcessorNumber,\r | |
691 | IN EFI_AP_PROCEDURE Procedure, OPTIONAL\r | |
692 | IN VOID *ProcedureArgument OPTIONAL\r | |
693 | )\r | |
694 | {\r | |
695 | volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r | |
696 | UINTN Index;\r | |
697 | CPU_AP_DATA *CpuData;\r | |
698 | BOOLEAN ResetVectorRequired;\r | |
699 | \r | |
700 | CpuMpData->FinishedCount = 0;\r | |
701 | ResetVectorRequired = FALSE;\r | |
702 | \r | |
703 | if (CpuMpData->ApLoopMode == ApInHltLoop ||\r | |
704 | CpuMpData->InitFlag != ApInitDone) {\r | |
705 | ResetVectorRequired = TRUE;\r | |
706 | AllocateResetVector (CpuMpData);\r | |
707 | FillExchangeInfoData (CpuMpData);\r | |
708 | } else if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r | |
709 | //\r | |
710 | // Get AP target C-state each time when waking up AP,\r | |
711 | // for it maybe updated by platform again\r | |
712 | //\r | |
713 | CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);\r | |
714 | }\r | |
715 | \r | |
716 | ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r | |
717 | \r | |
718 | if (Broadcast) {\r | |
719 | for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r | |
720 | if (Index != CpuMpData->BspNumber) {\r | |
721 | CpuData = &CpuMpData->CpuData[Index];\r | |
722 | CpuData->ApFunction = (UINTN) Procedure;\r | |
723 | CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r | |
724 | SetApState (CpuData, CpuStateReady);\r | |
725 | if (CpuMpData->InitFlag != ApInitConfig) {\r | |
726 | *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r | |
727 | }\r | |
728 | }\r | |
729 | }\r | |
730 | if (ResetVectorRequired) {\r | |
731 | //\r | |
732 | // Wakeup all APs\r | |
733 | //\r | |
734 | SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);\r | |
735 | }\r | |
c1192210 JF |
736 | if (CpuMpData->InitFlag == ApInitConfig) {\r |
737 | //\r | |
738 | // Wait for all potential APs waken up in one specified period\r | |
739 | //\r | |
740 | MicroSecondDelay (PcdGet32(PcdCpuApInitTimeOutInMicroSeconds));\r | |
741 | } else {\r | |
96f5920d JF |
742 | //\r |
743 | // Wait all APs waken up if this is not the 1st broadcast of SIPI\r | |
744 | //\r | |
745 | for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r | |
746 | CpuData = &CpuMpData->CpuData[Index];\r | |
747 | if (Index != CpuMpData->BspNumber) {\r | |
748 | WaitApWakeup (CpuData->StartupApSignal);\r | |
749 | }\r | |
750 | }\r | |
751 | }\r | |
752 | } else {\r | |
753 | CpuData = &CpuMpData->CpuData[ProcessorNumber];\r | |
754 | CpuData->ApFunction = (UINTN) Procedure;\r | |
755 | CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r | |
756 | SetApState (CpuData, CpuStateReady);\r | |
757 | //\r | |
758 | // Wakeup specified AP\r | |
759 | //\r | |
760 | ASSERT (CpuMpData->InitFlag != ApInitConfig);\r | |
761 | *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r | |
762 | if (ResetVectorRequired) {\r | |
763 | SendInitSipiSipi (\r | |
764 | CpuData->ApicId,\r | |
765 | (UINT32) ExchangeInfo->BufferStart\r | |
766 | );\r | |
767 | }\r | |
768 | //\r | |
769 | // Wait specified AP waken up\r | |
770 | //\r | |
771 | WaitApWakeup (CpuData->StartupApSignal);\r | |
772 | }\r | |
773 | \r | |
774 | if (ResetVectorRequired) {\r | |
775 | FreeResetVector (CpuMpData);\r | |
776 | }\r | |
777 | }\r | |
778 | \r | |
08085f08 JF |
779 | /**\r |
780 | Calculate timeout value and return the current performance counter value.\r | |
781 | \r | |
782 | Calculate the number of performance counter ticks required for a timeout.\r | |
783 | If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r | |
784 | as infinity.\r | |
785 | \r | |
786 | @param[in] TimeoutInMicroseconds Timeout value in microseconds.\r | |
787 | @param[out] CurrentTime Returns the current value of the performance counter.\r | |
788 | \r | |
789 | @return Expected time stamp counter for timeout.\r | |
790 | If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r | |
791 | as infinity.\r | |
792 | \r | |
793 | **/\r | |
794 | UINT64\r | |
795 | CalculateTimeout (\r | |
796 | IN UINTN TimeoutInMicroseconds,\r | |
797 | OUT UINT64 *CurrentTime\r | |
798 | )\r | |
799 | {\r | |
800 | //\r | |
801 | // Read the current value of the performance counter\r | |
802 | //\r | |
803 | *CurrentTime = GetPerformanceCounter ();\r | |
804 | \r | |
805 | //\r | |
806 | // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r | |
807 | // as infinity.\r | |
808 | //\r | |
809 | if (TimeoutInMicroseconds == 0) {\r | |
810 | return 0;\r | |
811 | }\r | |
812 | \r | |
813 | //\r | |
814 | // GetPerformanceCounterProperties () returns the timestamp counter's frequency\r | |
815 | // in Hz. So multiply the return value with TimeoutInMicroseconds and then divide\r | |
816 | // it by 1,000,000, to get the number of ticks for the timeout value.\r | |
817 | //\r | |
818 | return DivU64x32 (\r | |
819 | MultU64x64 (\r | |
820 | GetPerformanceCounterProperties (NULL, NULL),\r | |
821 | TimeoutInMicroseconds\r | |
822 | ),\r | |
823 | 1000000\r | |
824 | );\r | |
825 | }\r | |
826 | \r | |
827 | /**\r | |
828 | Checks whether timeout expires.\r | |
829 | \r | |
830 | Check whether the number of elapsed performance counter ticks required for\r | |
831 | a timeout condition has been reached.\r | |
832 | If Timeout is zero, which means infinity, return value is always FALSE.\r | |
833 | \r | |
834 | @param[in, out] PreviousTime On input, the value of the performance counter\r | |
835 | when it was last read.\r | |
836 | On output, the current value of the performance\r | |
837 | counter\r | |
838 | @param[in] TotalTime The total amount of elapsed time in performance\r | |
839 | counter ticks.\r | |
840 | @param[in] Timeout The number of performance counter ticks required\r | |
841 | to reach a timeout condition.\r | |
842 | \r | |
843 | @retval TRUE A timeout condition has been reached.\r | |
844 | @retval FALSE A timeout condition has not been reached.\r | |
845 | \r | |
846 | **/\r | |
847 | BOOLEAN\r | |
848 | CheckTimeout (\r | |
849 | IN OUT UINT64 *PreviousTime,\r | |
850 | IN UINT64 *TotalTime,\r | |
851 | IN UINT64 Timeout\r | |
852 | )\r | |
853 | {\r | |
854 | UINT64 Start;\r | |
855 | UINT64 End;\r | |
856 | UINT64 CurrentTime;\r | |
857 | INT64 Delta;\r | |
858 | INT64 Cycle;\r | |
859 | \r | |
860 | if (Timeout == 0) {\r | |
861 | return FALSE;\r | |
862 | }\r | |
863 | GetPerformanceCounterProperties (&Start, &End);\r | |
864 | Cycle = End - Start;\r | |
865 | if (Cycle < 0) {\r | |
866 | Cycle = -Cycle;\r | |
867 | }\r | |
868 | Cycle++;\r | |
869 | CurrentTime = GetPerformanceCounter();\r | |
870 | Delta = (INT64) (CurrentTime - *PreviousTime);\r | |
871 | if (Start > End) {\r | |
872 | Delta = -Delta;\r | |
873 | }\r | |
874 | if (Delta < 0) {\r | |
875 | Delta += Cycle;\r | |
876 | }\r | |
877 | *TotalTime += Delta;\r | |
878 | *PreviousTime = CurrentTime;\r | |
879 | if (*TotalTime > Timeout) {\r | |
880 | return TRUE;\r | |
881 | }\r | |
882 | return FALSE;\r | |
883 | }\r | |
884 | \r | |
885 | /**\r | |
886 | Reset an AP to Idle state.\r | |
887 | \r | |
888 | Any task being executed by the AP will be aborted and the AP\r | |
889 | will be waiting for a new task in Wait-For-SIPI state.\r | |
890 | \r | |
891 | @param[in] ProcessorNumber The handle number of processor.\r | |
892 | **/\r | |
893 | VOID\r | |
894 | ResetProcessorToIdleState (\r | |
895 | IN UINTN ProcessorNumber\r | |
896 | )\r | |
897 | {\r | |
898 | CPU_MP_DATA *CpuMpData;\r | |
899 | \r | |
900 | CpuMpData = GetCpuMpData ();\r | |
901 | \r | |
cb33bde4 | 902 | CpuMpData->InitFlag = ApInitReconfig;\r |
08085f08 | 903 | WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL);\r |
cb33bde4 JF |
904 | while (CpuMpData->FinishedCount < 1) {\r |
905 | CpuPause ();\r | |
906 | }\r | |
907 | CpuMpData->InitFlag = ApInitDone;\r | |
08085f08 JF |
908 | \r |
909 | SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r | |
910 | }\r | |
911 | \r | |
912 | /**\r | |
913 | Searches for the next waiting AP.\r | |
914 | \r | |
915 | Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().\r | |
916 | \r | |
917 | @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.\r | |
918 | \r | |
919 | @retval EFI_SUCCESS The next waiting AP has been found.\r | |
920 | @retval EFI_NOT_FOUND No waiting AP exists.\r | |
921 | \r | |
922 | **/\r | |
923 | EFI_STATUS\r | |
924 | GetNextWaitingProcessorNumber (\r | |
925 | OUT UINTN *NextProcessorNumber\r | |
926 | )\r | |
927 | {\r | |
928 | UINTN ProcessorNumber;\r | |
929 | CPU_MP_DATA *CpuMpData;\r | |
930 | \r | |
931 | CpuMpData = GetCpuMpData ();\r | |
932 | \r | |
933 | for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r | |
934 | if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r | |
935 | *NextProcessorNumber = ProcessorNumber;\r | |
936 | return EFI_SUCCESS;\r | |
937 | }\r | |
938 | }\r | |
939 | \r | |
940 | return EFI_NOT_FOUND;\r | |
941 | }\r | |
942 | \r | |
943 | /** Checks status of specified AP.\r | |
944 | \r | |
945 | This function checks whether the specified AP has finished the task assigned\r | |
946 | by StartupThisAP(), and whether timeout expires.\r | |
947 | \r | |
948 | @param[in] ProcessorNumber The handle number of processor.\r | |
949 | \r | |
950 | @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().\r | |
951 | @retval EFI_TIMEOUT The timeout expires.\r | |
952 | @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.\r | |
953 | **/\r | |
954 | EFI_STATUS\r | |
955 | CheckThisAP (\r | |
956 | IN UINTN ProcessorNumber\r | |
957 | )\r | |
958 | {\r | |
959 | CPU_MP_DATA *CpuMpData;\r | |
960 | CPU_AP_DATA *CpuData;\r | |
961 | \r | |
962 | CpuMpData = GetCpuMpData ();\r | |
963 | CpuData = &CpuMpData->CpuData[ProcessorNumber];\r | |
964 | \r | |
965 | //\r | |
966 | // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.\r | |
967 | // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r | |
968 | // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.\r | |
969 | //\r | |
970 | //\r | |
971 | // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.\r | |
972 | //\r | |
973 | if (GetApState(CpuData) == CpuStateFinished) {\r | |
974 | if (CpuData->Finished != NULL) {\r | |
975 | *(CpuData->Finished) = TRUE;\r | |
976 | }\r | |
977 | SetApState (CpuData, CpuStateIdle);\r | |
978 | return EFI_SUCCESS;\r | |
979 | } else {\r | |
980 | //\r | |
981 | // If timeout expires for StartupThisAP(), report timeout.\r | |
982 | //\r | |
983 | if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {\r | |
984 | if (CpuData->Finished != NULL) {\r | |
985 | *(CpuData->Finished) = FALSE;\r | |
986 | }\r | |
987 | //\r | |
988 | // Reset failed AP to idle state\r | |
989 | //\r | |
990 | ResetProcessorToIdleState (ProcessorNumber);\r | |
991 | \r | |
992 | return EFI_TIMEOUT;\r | |
993 | }\r | |
994 | }\r | |
995 | return EFI_NOT_READY;\r | |
996 | }\r | |
997 | \r | |
998 | /**\r | |
999 | Checks status of all APs.\r | |
1000 | \r | |
1001 | This function checks whether all APs have finished task assigned by StartupAllAPs(),\r | |
1002 | and whether timeout expires.\r | |
1003 | \r | |
1004 | @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().\r | |
1005 | @retval EFI_TIMEOUT The timeout expires.\r | |
1006 | @retval EFI_NOT_READY APs have not finished task and timeout has not expired.\r | |
1007 | **/\r | |
1008 | EFI_STATUS\r | |
1009 | CheckAllAPs (\r | |
1010 | VOID\r | |
1011 | )\r | |
1012 | {\r | |
1013 | UINTN ProcessorNumber;\r | |
1014 | UINTN NextProcessorNumber;\r | |
1015 | UINTN ListIndex;\r | |
1016 | EFI_STATUS Status;\r | |
1017 | CPU_MP_DATA *CpuMpData;\r | |
1018 | CPU_AP_DATA *CpuData;\r | |
1019 | \r | |
1020 | CpuMpData = GetCpuMpData ();\r | |
1021 | \r | |
1022 | NextProcessorNumber = 0;\r | |
1023 | \r | |
1024 | //\r | |
1025 | // Go through all APs that are responsible for the StartupAllAPs().\r | |
1026 | //\r | |
1027 | for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r | |
1028 | if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {\r | |
1029 | continue;\r | |
1030 | }\r | |
1031 | \r | |
1032 | CpuData = &CpuMpData->CpuData[ProcessorNumber];\r | |
1033 | //\r | |
1034 | // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.\r | |
1035 | // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r | |
1036 | // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.\r | |
1037 | //\r | |
1038 | if (GetApState(CpuData) == CpuStateFinished) {\r | |
1039 | CpuMpData->RunningCount ++;\r | |
1040 | CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r | |
1041 | SetApState(CpuData, CpuStateIdle);\r | |
1042 | \r | |
1043 | //\r | |
1044 | // If in Single Thread mode, then search for the next waiting AP for execution.\r | |
1045 | //\r | |
1046 | if (CpuMpData->SingleThread) {\r | |
1047 | Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);\r | |
1048 | \r | |
1049 | if (!EFI_ERROR (Status)) {\r | |
1050 | WakeUpAP (\r | |
1051 | CpuMpData,\r | |
1052 | FALSE,\r | |
1053 | (UINT32) NextProcessorNumber,\r | |
1054 | CpuMpData->Procedure,\r | |
1055 | CpuMpData->ProcArguments\r | |
1056 | );\r | |
1057 | }\r | |
1058 | }\r | |
1059 | }\r | |
1060 | }\r | |
1061 | \r | |
1062 | //\r | |
1063 | // If all APs finish, return EFI_SUCCESS.\r | |
1064 | //\r | |
1065 | if (CpuMpData->RunningCount == CpuMpData->StartCount) {\r | |
1066 | return EFI_SUCCESS;\r | |
1067 | }\r | |
1068 | \r | |
1069 | //\r | |
1070 | // If timeout expires, report timeout.\r | |
1071 | //\r | |
1072 | if (CheckTimeout (\r | |
1073 | &CpuMpData->CurrentTime,\r | |
1074 | &CpuMpData->TotalTime,\r | |
1075 | CpuMpData->ExpectedTime)\r | |
1076 | ) {\r | |
1077 | //\r | |
1078 | // If FailedCpuList is not NULL, record all failed APs in it.\r | |
1079 | //\r | |
1080 | if (CpuMpData->FailedCpuList != NULL) {\r | |
1081 | *CpuMpData->FailedCpuList =\r | |
1082 | AllocatePool ((CpuMpData->StartCount - CpuMpData->FinishedCount + 1) * sizeof (UINTN));\r | |
1083 | ASSERT (*CpuMpData->FailedCpuList != NULL);\r | |
1084 | }\r | |
1085 | ListIndex = 0;\r | |
1086 | \r | |
1087 | for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r | |
1088 | //\r | |
1089 | // Check whether this processor is responsible for StartupAllAPs().\r | |
1090 | //\r | |
1091 | if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r | |
1092 | //\r | |
1093 | // Reset failed APs to idle state\r | |
1094 | //\r | |
1095 | ResetProcessorToIdleState (ProcessorNumber);\r | |
1096 | CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r | |
1097 | if (CpuMpData->FailedCpuList != NULL) {\r | |
1098 | (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;\r | |
1099 | }\r | |
1100 | }\r | |
1101 | }\r | |
1102 | if (CpuMpData->FailedCpuList != NULL) {\r | |
1103 | (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;\r | |
1104 | }\r | |
1105 | return EFI_TIMEOUT;\r | |
1106 | }\r | |
1107 | return EFI_NOT_READY;\r | |
1108 | }\r | |
1109 | \r | |
3e8ad6bd JF |
1110 | /**\r |
1111 | MP Initialize Library initialization.\r | |
1112 | \r | |
1113 | This service will allocate AP reset vector and wakeup all APs to do APs\r | |
1114 | initialization.\r | |
1115 | \r | |
1116 | This service must be invoked before all other MP Initialize Library\r | |
1117 | service are invoked.\r | |
1118 | \r | |
1119 | @retval EFI_SUCCESS MP initialization succeeds.\r | |
1120 | @retval Others MP initialization fails.\r | |
1121 | \r | |
1122 | **/\r | |
1123 | EFI_STATUS\r | |
1124 | EFIAPI\r | |
1125 | MpInitLibInitialize (\r | |
1126 | VOID\r | |
1127 | )\r | |
1128 | {\r | |
6a2ee2bb JF |
1129 | CPU_MP_DATA *OldCpuMpData;\r |
1130 | CPU_INFO_IN_HOB *CpuInfoInHob;\r | |
e59f8f6b JF |
1131 | UINT32 MaxLogicalProcessorNumber;\r |
1132 | UINT32 ApStackSize;\r | |
f7f85d83 | 1133 | MP_ASSEMBLY_ADDRESS_MAP AddressMap;\r |
e59f8f6b | 1134 | UINTN BufferSize;\r |
9ebcf0f4 | 1135 | UINT32 MonitorFilterSize;\r |
e59f8f6b JF |
1136 | VOID *MpBuffer;\r |
1137 | UINTN Buffer;\r | |
1138 | CPU_MP_DATA *CpuMpData;\r | |
9ebcf0f4 | 1139 | UINT8 ApLoopMode;\r |
e59f8f6b | 1140 | UINT8 *MonitorBuffer;\r |
03a1a925 | 1141 | UINTN Index;\r |
f7f85d83 | 1142 | UINTN ApResetVectorSize;\r |
e59f8f6b | 1143 | UINTN BackupBufferAddr;\r |
6a2ee2bb JF |
1144 | \r |
1145 | OldCpuMpData = GetCpuMpDataFromGuidedHob ();\r | |
1146 | if (OldCpuMpData == NULL) {\r | |
1147 | MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);\r | |
1148 | } else {\r | |
1149 | MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;\r | |
1150 | }\r | |
14e8137c | 1151 | ASSERT (MaxLogicalProcessorNumber != 0);\r |
f7f85d83 JF |
1152 | \r |
1153 | AsmGetAddressMap (&AddressMap);\r | |
1154 | ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);\r | |
e59f8f6b | 1155 | ApStackSize = PcdGet32(PcdCpuApStackSize);\r |
9ebcf0f4 JF |
1156 | ApLoopMode = GetApLoopMode (&MonitorFilterSize);\r |
1157 | \r | |
e59f8f6b JF |
1158 | BufferSize = ApStackSize * MaxLogicalProcessorNumber;\r |
1159 | BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;\r | |
1160 | BufferSize += sizeof (CPU_MP_DATA);\r | |
1161 | BufferSize += ApResetVectorSize;\r | |
1162 | BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;\r | |
1163 | MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));\r | |
1164 | ASSERT (MpBuffer != NULL);\r | |
1165 | ZeroMem (MpBuffer, BufferSize);\r | |
1166 | Buffer = (UINTN) MpBuffer;\r | |
1167 | \r | |
1168 | MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);\r | |
1169 | BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;\r | |
1170 | CpuMpData = (CPU_MP_DATA *) (BackupBufferAddr + ApResetVectorSize);\r | |
1171 | CpuMpData->Buffer = Buffer;\r | |
1172 | CpuMpData->CpuApStackSize = ApStackSize;\r | |
1173 | CpuMpData->BackupBuffer = BackupBufferAddr;\r | |
1174 | CpuMpData->BackupBufferSize = ApResetVectorSize;\r | |
d11f10d1 | 1175 | CpuMpData->SaveRestoreFlag = FALSE;\r |
e59f8f6b JF |
1176 | CpuMpData->WakeupBuffer = (UINTN) -1;\r |
1177 | CpuMpData->CpuCount = 1;\r | |
1178 | CpuMpData->BspNumber = 0;\r | |
1179 | CpuMpData->WaitEvent = NULL;\r | |
41be0da5 | 1180 | CpuMpData->SwitchBspFlag = FALSE;\r |
e59f8f6b JF |
1181 | CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);\r |
1182 | CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);\r | |
1183 | InitializeSpinLock(&CpuMpData->MpLock);\r | |
1184 | //\r | |
68cb9330 JF |
1185 | // Save BSP's Control registers to APs\r |
1186 | //\r | |
1187 | SaveVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters);\r | |
1188 | //\r | |
03a1a925 JF |
1189 | // Set BSP basic information\r |
1190 | //\r | |
1191 | InitializeApData (CpuMpData, 0, 0);\r | |
1192 | //\r | |
e59f8f6b JF |
1193 | // Save assembly code information\r |
1194 | //\r | |
1195 | CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));\r | |
1196 | //\r | |
1197 | // Finally set AP loop mode\r | |
1198 | //\r | |
1199 | CpuMpData->ApLoopMode = ApLoopMode;\r | |
1200 | DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));\r | |
1201 | //\r | |
03a1a925 JF |
1202 | // Set up APs wakeup signal buffer\r |
1203 | //\r | |
1204 | for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {\r | |
1205 | CpuMpData->CpuData[Index].StartupApSignal =\r | |
1206 | (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);\r | |
1207 | }\r | |
94f63c76 JF |
1208 | //\r |
1209 | // Load Microcode on BSP\r | |
1210 | //\r | |
1211 | MicrocodeDetect (CpuMpData);\r | |
1212 | //\r | |
e59f8f6b JF |
1213 | // Store BSP's MTRR setting\r |
1214 | //\r | |
1215 | MtrrGetAllMtrrs (&CpuMpData->MtrrTable);\r | |
1216 | \r | |
6a2ee2bb | 1217 | if (OldCpuMpData == NULL) {\r |
14e8137c JF |
1218 | if (MaxLogicalProcessorNumber > 1) {\r |
1219 | //\r | |
1220 | // Wakeup all APs and calculate the processor count in system\r | |
1221 | //\r | |
1222 | CollectProcessorCount (CpuMpData);\r | |
1223 | }\r | |
6a2ee2bb JF |
1224 | } else {\r |
1225 | //\r | |
1226 | // APs have been wakeup before, just get the CPU Information\r | |
1227 | // from HOB\r | |
1228 | //\r | |
1229 | CpuMpData->CpuCount = OldCpuMpData->CpuCount;\r | |
1230 | CpuMpData->BspNumber = OldCpuMpData->BspNumber;\r | |
1231 | CpuMpData->InitFlag = ApInitReconfig;\r | |
1232 | CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) OldCpuMpData->CpuInfoInHob;\r | |
1233 | for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r | |
1234 | InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);\r | |
1235 | CpuMpData->CpuData[Index].ApicId = CpuInfoInHob[Index].ApicId;\r | |
1236 | CpuMpData->CpuData[Index].InitialApicId = CpuInfoInHob[Index].InitialApicId;\r | |
1237 | if (CpuMpData->CpuData[Index].InitialApicId >= 255) {\r | |
1238 | CpuMpData->X2ApicEnable = TRUE;\r | |
1239 | }\r | |
1240 | CpuMpData->CpuData[Index].Health = CpuInfoInHob[Index].Health;\r | |
1241 | CpuMpData->CpuData[Index].CpuHealthy = (CpuMpData->CpuData[Index].Health == 0)? TRUE:FALSE;\r | |
1242 | CpuMpData->CpuData[Index].ApFunction = 0;\r | |
1243 | CopyMem (\r | |
1244 | &CpuMpData->CpuData[Index].VolatileRegisters,\r | |
1245 | &CpuMpData->CpuData[0].VolatileRegisters,\r | |
1246 | sizeof (CPU_VOLATILE_REGISTERS)\r | |
1247 | );\r | |
1248 | }\r | |
14e8137c JF |
1249 | if (MaxLogicalProcessorNumber > 1) {\r |
1250 | //\r | |
1251 | // Wakeup APs to do some AP initialize sync\r | |
1252 | //\r | |
1253 | WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData);\r | |
1254 | //\r | |
1255 | // Wait for all APs finished initialization\r | |
1256 | //\r | |
1257 | while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r | |
1258 | CpuPause ();\r | |
1259 | }\r | |
1260 | CpuMpData->InitFlag = ApInitDone;\r | |
1261 | for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r | |
1262 | SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r | |
1263 | }\r | |
6a2ee2bb JF |
1264 | }\r |
1265 | }\r | |
93ca4c0f JF |
1266 | \r |
1267 | //\r | |
1268 | // Initialize global data for MP support\r | |
1269 | //\r | |
1270 | InitMpGlobalData (CpuMpData);\r | |
1271 | \r | |
f7f85d83 | 1272 | return EFI_SUCCESS;\r |
3e8ad6bd JF |
1273 | }\r |
1274 | \r | |
1275 | /**\r | |
1276 | Gets detailed MP-related information on the requested processor at the\r | |
1277 | instant this call is made. This service may only be called from the BSP.\r | |
1278 | \r | |
1279 | @param[in] ProcessorNumber The handle number of processor.\r | |
1280 | @param[out] ProcessorInfoBuffer A pointer to the buffer where information for\r | |
1281 | the requested processor is deposited.\r | |
1282 | @param[out] HealthData Return processor health data.\r | |
1283 | \r | |
1284 | @retval EFI_SUCCESS Processor information was returned.\r | |
1285 | @retval EFI_DEVICE_ERROR The calling processor is an AP.\r | |
1286 | @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.\r | |
1287 | @retval EFI_NOT_FOUND The processor with the handle specified by\r | |
1288 | ProcessorNumber does not exist in the platform.\r | |
1289 | @retval EFI_NOT_READY MP Initialize Library is not initialized.\r | |
1290 | \r | |
1291 | **/\r | |
1292 | EFI_STATUS\r | |
1293 | EFIAPI\r | |
1294 | MpInitLibGetProcessorInfo (\r | |
1295 | IN UINTN ProcessorNumber,\r | |
1296 | OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,\r | |
1297 | OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL\r | |
1298 | )\r | |
1299 | {\r | |
ad52f25e JF |
1300 | CPU_MP_DATA *CpuMpData;\r |
1301 | UINTN CallerNumber;\r | |
1302 | \r | |
1303 | CpuMpData = GetCpuMpData ();\r | |
1304 | \r | |
1305 | //\r | |
1306 | // Check whether caller processor is BSP\r | |
1307 | //\r | |
1308 | MpInitLibWhoAmI (&CallerNumber);\r | |
1309 | if (CallerNumber != CpuMpData->BspNumber) {\r | |
1310 | return EFI_DEVICE_ERROR;\r | |
1311 | }\r | |
1312 | \r | |
1313 | if (ProcessorInfoBuffer == NULL) {\r | |
1314 | return EFI_INVALID_PARAMETER;\r | |
1315 | }\r | |
1316 | \r | |
1317 | if (ProcessorNumber >= CpuMpData->CpuCount) {\r | |
1318 | return EFI_NOT_FOUND;\r | |
1319 | }\r | |
1320 | \r | |
1321 | ProcessorInfoBuffer->ProcessorId = (UINT64) CpuMpData->CpuData[ProcessorNumber].ApicId;\r | |
1322 | ProcessorInfoBuffer->StatusFlag = 0;\r | |
1323 | if (ProcessorNumber == CpuMpData->BspNumber) {\r | |
1324 | ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;\r | |
1325 | }\r | |
1326 | if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {\r | |
1327 | ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;\r | |
1328 | }\r | |
1329 | if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r | |
1330 | ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;\r | |
1331 | } else {\r | |
1332 | ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;\r | |
1333 | }\r | |
1334 | \r | |
1335 | //\r | |
1336 | // Get processor location information\r | |
1337 | //\r | |
262128e5 | 1338 | GetProcessorLocationByApicId (\r |
73152f19 LD |
1339 | CpuMpData->CpuData[ProcessorNumber].ApicId,\r |
1340 | &ProcessorInfoBuffer->Location.Package,\r | |
1341 | &ProcessorInfoBuffer->Location.Core,\r | |
1342 | &ProcessorInfoBuffer->Location.Thread\r | |
1343 | );\r | |
ad52f25e JF |
1344 | \r |
1345 | if (HealthData != NULL) {\r | |
1346 | HealthData->Uint32 = CpuMpData->CpuData[ProcessorNumber].Health;\r | |
1347 | }\r | |
1348 | \r | |
1349 | return EFI_SUCCESS;\r | |
3e8ad6bd | 1350 | }\r |
ad52f25e | 1351 | \r |
41be0da5 JF |
1352 | /**\r |
1353 | Worker function to switch the requested AP to be the BSP from that point onward.\r | |
1354 | \r | |
1355 | @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.\r | |
1356 | @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an\r | |
1357 | enabled AP. Otherwise, it will be disabled.\r | |
1358 | \r | |
1359 | @retval EFI_SUCCESS BSP successfully switched.\r | |
1360 | @retval others Failed to switch BSP. \r | |
1361 | \r | |
1362 | **/\r | |
1363 | EFI_STATUS\r | |
1364 | SwitchBSPWorker (\r | |
1365 | IN UINTN ProcessorNumber,\r | |
1366 | IN BOOLEAN EnableOldBSP\r | |
1367 | )\r | |
1368 | {\r | |
1369 | CPU_MP_DATA *CpuMpData;\r | |
1370 | UINTN CallerNumber;\r | |
1371 | CPU_STATE State;\r | |
1372 | MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;\r | |
1373 | \r | |
1374 | CpuMpData = GetCpuMpData ();\r | |
1375 | \r | |
1376 | //\r | |
1377 | // Check whether caller processor is BSP\r | |
1378 | //\r | |
1379 | MpInitLibWhoAmI (&CallerNumber);\r | |
1380 | if (CallerNumber != CpuMpData->BspNumber) {\r | |
1381 | return EFI_SUCCESS;\r | |
1382 | }\r | |
1383 | \r | |
1384 | if (ProcessorNumber >= CpuMpData->CpuCount) {\r | |
1385 | return EFI_NOT_FOUND;\r | |
1386 | }\r | |
1387 | \r | |
1388 | //\r | |
1389 | // Check whether specified AP is disabled\r | |
1390 | //\r | |
1391 | State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);\r | |
1392 | if (State == CpuStateDisabled) {\r | |
1393 | return EFI_INVALID_PARAMETER;\r | |
1394 | }\r | |
1395 | \r | |
1396 | //\r | |
1397 | // Check whether ProcessorNumber specifies the current BSP\r | |
1398 | //\r | |
1399 | if (ProcessorNumber == CpuMpData->BspNumber) {\r | |
1400 | return EFI_INVALID_PARAMETER;\r | |
1401 | }\r | |
1402 | \r | |
1403 | //\r | |
1404 | // Check whether specified AP is busy\r | |
1405 | //\r | |
1406 | if (State == CpuStateBusy) {\r | |
1407 | return EFI_NOT_READY;\r | |
1408 | }\r | |
1409 | \r | |
1410 | CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;\r | |
1411 | CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;\r | |
1412 | CpuMpData->SwitchBspFlag = TRUE;\r | |
1413 | \r | |
1414 | //\r | |
1415 | // Clear the BSP bit of MSR_IA32_APIC_BASE\r | |
1416 | //\r | |
1417 | ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r | |
1418 | ApicBaseMsr.Bits.BSP = 0;\r | |
1419 | AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r | |
1420 | \r | |
1421 | //\r | |
1422 | // Need to wakeUp AP (future BSP).\r | |
1423 | //\r | |
1424 | WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData);\r | |
1425 | \r | |
1426 | AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);\r | |
1427 | \r | |
1428 | //\r | |
1429 | // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP\r | |
1430 | //\r | |
1431 | ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r | |
1432 | ApicBaseMsr.Bits.BSP = 1;\r | |
1433 | AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r | |
1434 | \r | |
1435 | //\r | |
1436 | // Wait for old BSP finished AP task\r | |
1437 | //\r | |
1438 | while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {\r | |
1439 | CpuPause ();\r | |
1440 | }\r | |
1441 | \r | |
1442 | CpuMpData->SwitchBspFlag = FALSE;\r | |
1443 | //\r | |
1444 | // Set old BSP enable state\r | |
1445 | //\r | |
1446 | if (!EnableOldBSP) {\r | |
1447 | SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);\r | |
1448 | }\r | |
1449 | //\r | |
1450 | // Save new BSP number\r | |
1451 | //\r | |
1452 | CpuMpData->BspNumber = (UINT32) ProcessorNumber;\r | |
1453 | \r | |
1454 | return EFI_SUCCESS;\r | |
1455 | }\r | |
ad52f25e | 1456 | \r |
e37109bc JF |
1457 | /**\r |
1458 | Worker function to let the caller enable or disable an AP from this point onward.\r | |
1459 | This service may only be called from the BSP.\r | |
1460 | \r | |
1461 | @param[in] ProcessorNumber The handle number of AP.\r | |
1462 | @param[in] EnableAP Specifies the new state for the processor for\r | |
1463 | enabled, FALSE for disabled.\r | |
1464 | @param[in] HealthFlag If not NULL, a pointer to a value that specifies\r | |
1465 | the new health status of the AP.\r | |
1466 | \r | |
1467 | @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.\r | |
1468 | @retval others Failed to Enable/Disable AP.\r | |
1469 | \r | |
1470 | **/\r | |
1471 | EFI_STATUS\r | |
1472 | EnableDisableApWorker (\r | |
1473 | IN UINTN ProcessorNumber,\r | |
1474 | IN BOOLEAN EnableAP,\r | |
1475 | IN UINT32 *HealthFlag OPTIONAL\r | |
1476 | )\r | |
1477 | {\r | |
1478 | CPU_MP_DATA *CpuMpData;\r | |
1479 | UINTN CallerNumber;\r | |
1480 | \r | |
1481 | CpuMpData = GetCpuMpData ();\r | |
1482 | \r | |
1483 | //\r | |
1484 | // Check whether caller processor is BSP\r | |
1485 | //\r | |
1486 | MpInitLibWhoAmI (&CallerNumber);\r | |
1487 | if (CallerNumber != CpuMpData->BspNumber) {\r | |
1488 | return EFI_DEVICE_ERROR;\r | |
1489 | }\r | |
1490 | \r | |
1491 | if (ProcessorNumber == CpuMpData->BspNumber) {\r | |
1492 | return EFI_INVALID_PARAMETER;\r | |
1493 | }\r | |
1494 | \r | |
1495 | if (ProcessorNumber >= CpuMpData->CpuCount) {\r | |
1496 | return EFI_NOT_FOUND;\r | |
1497 | }\r | |
1498 | \r | |
1499 | if (!EnableAP) {\r | |
1500 | SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);\r | |
1501 | } else {\r | |
1502 | SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r | |
1503 | }\r | |
1504 | \r | |
1505 | if (HealthFlag != NULL) {\r | |
1506 | CpuMpData->CpuData[ProcessorNumber].CpuHealthy =\r | |
1507 | (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);\r | |
1508 | }\r | |
1509 | \r | |
1510 | return EFI_SUCCESS;\r | |
1511 | }\r | |
1512 | \r | |
3e8ad6bd JF |
1513 | /**\r |
1514 | This return the handle number for the calling processor. This service may be\r | |
1515 | called from the BSP and APs.\r | |
1516 | \r | |
1517 | @param[out] ProcessorNumber Pointer to the handle number of AP.\r | |
1518 | The range is from 0 to the total number of\r | |
1519 | logical processors minus 1. The total number of\r | |
1520 | logical processors can be retrieved by\r | |
1521 | MpInitLibGetNumberOfProcessors().\r | |
1522 | \r | |
1523 | @retval EFI_SUCCESS The current processor handle number was returned\r | |
1524 | in ProcessorNumber.\r | |
1525 | @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.\r | |
1526 | @retval EFI_NOT_READY MP Initialize Library is not initialized.\r | |
1527 | \r | |
1528 | **/\r | |
1529 | EFI_STATUS\r | |
1530 | EFIAPI\r | |
1531 | MpInitLibWhoAmI (\r | |
1532 | OUT UINTN *ProcessorNumber\r | |
1533 | )\r | |
1534 | {\r | |
5c9e0997 JF |
1535 | CPU_MP_DATA *CpuMpData;\r |
1536 | \r | |
1537 | if (ProcessorNumber == NULL) {\r | |
1538 | return EFI_INVALID_PARAMETER;\r | |
1539 | }\r | |
1540 | \r | |
1541 | CpuMpData = GetCpuMpData ();\r | |
1542 | \r | |
1543 | return GetProcessorNumber (CpuMpData, ProcessorNumber);\r | |
3e8ad6bd | 1544 | }\r |
809213a6 | 1545 | \r |
3e8ad6bd JF |
1546 | /**\r |
1547 | Retrieves the number of logical processor in the platform and the number of\r | |
1548 | those logical processors that are enabled on this boot. This service may only\r | |
1549 | be called from the BSP.\r | |
1550 | \r | |
1551 | @param[out] NumberOfProcessors Pointer to the total number of logical\r | |
1552 | processors in the system, including the BSP\r | |
1553 | and disabled APs.\r | |
1554 | @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical\r | |
1555 | processors that exist in system, including\r | |
1556 | the BSP.\r | |
1557 | \r | |
1558 | @retval EFI_SUCCESS The number of logical processors and enabled\r | |
1559 | logical processors was retrieved.\r | |
1560 | @retval EFI_DEVICE_ERROR The calling processor is an AP.\r | |
1561 | @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors\r | |
1562 | is NULL.\r | |
1563 | @retval EFI_NOT_READY MP Initialize Library is not initialized.\r | |
1564 | \r | |
1565 | **/\r | |
1566 | EFI_STATUS\r | |
1567 | EFIAPI\r | |
1568 | MpInitLibGetNumberOfProcessors (\r | |
1569 | OUT UINTN *NumberOfProcessors, OPTIONAL\r | |
1570 | OUT UINTN *NumberOfEnabledProcessors OPTIONAL\r | |
1571 | )\r | |
1572 | {\r | |
809213a6 JF |
1573 | CPU_MP_DATA *CpuMpData;\r |
1574 | UINTN CallerNumber;\r | |
1575 | UINTN ProcessorNumber;\r | |
1576 | UINTN EnabledProcessorNumber;\r | |
1577 | UINTN Index;\r | |
1578 | \r | |
1579 | CpuMpData = GetCpuMpData ();\r | |
1580 | \r | |
1581 | if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {\r | |
1582 | return EFI_INVALID_PARAMETER;\r | |
1583 | }\r | |
1584 | \r | |
1585 | //\r | |
1586 | // Check whether caller processor is BSP\r | |
1587 | //\r | |
1588 | MpInitLibWhoAmI (&CallerNumber);\r | |
1589 | if (CallerNumber != CpuMpData->BspNumber) {\r | |
1590 | return EFI_DEVICE_ERROR;\r | |
1591 | }\r | |
1592 | \r | |
1593 | ProcessorNumber = CpuMpData->CpuCount;\r | |
1594 | EnabledProcessorNumber = 0;\r | |
1595 | for (Index = 0; Index < ProcessorNumber; Index++) {\r | |
1596 | if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {\r | |
1597 | EnabledProcessorNumber ++;\r | |
1598 | }\r | |
1599 | }\r | |
1600 | \r | |
1601 | if (NumberOfProcessors != NULL) {\r | |
1602 | *NumberOfProcessors = ProcessorNumber;\r | |
1603 | }\r | |
1604 | if (NumberOfEnabledProcessors != NULL) {\r | |
1605 | *NumberOfEnabledProcessors = EnabledProcessorNumber;\r | |
1606 | }\r | |
1607 | \r | |
1608 | return EFI_SUCCESS;\r | |
3e8ad6bd | 1609 | }\r |
6a2ee2bb | 1610 | \r |
809213a6 | 1611 | \r |
86efe976 JF |
1612 | /**\r |
1613 | Worker function to execute a caller provided function on all enabled APs.\r | |
1614 | \r | |
1615 | @param[in] Procedure A pointer to the function to be run on\r | |
1616 | enabled APs of the system.\r | |
1617 | @param[in] SingleThread If TRUE, then all the enabled APs execute\r | |
1618 | the function specified by Procedure one by\r | |
1619 | one, in ascending order of processor handle\r | |
1620 | number. If FALSE, then all the enabled APs\r | |
1621 | execute the function specified by Procedure\r | |
1622 | simultaneously.\r | |
1623 | @param[in] WaitEvent The event created by the caller with CreateEvent()\r | |
1624 | service.\r | |
1625 | @param[in] TimeoutInMicrosecsond Indicates the time limit in microseconds for\r | |
1626 | APs to return from Procedure, either for\r | |
1627 | blocking or non-blocking mode.\r | |
1628 | @param[in] ProcedureArgument The parameter passed into Procedure for\r | |
1629 | all APs.\r | |
1630 | @param[out] FailedCpuList If all APs finish successfully, then its\r | |
1631 | content is set to NULL. If not all APs\r | |
1632 | finish before timeout expires, then its\r | |
1633 | content is set to address of the buffer\r | |
1634 | holding handle numbers of the failed APs.\r | |
1635 | \r | |
1636 | @retval EFI_SUCCESS In blocking mode, all APs have finished before\r | |
1637 | the timeout expired.\r | |
1638 | @retval EFI_SUCCESS In non-blocking mode, function has been dispatched\r | |
1639 | to all enabled APs.\r | |
1640 | @retval others Failed to Startup all APs.\r | |
1641 | \r | |
1642 | **/\r | |
1643 | EFI_STATUS\r | |
1644 | StartupAllAPsWorker (\r | |
1645 | IN EFI_AP_PROCEDURE Procedure,\r | |
1646 | IN BOOLEAN SingleThread,\r | |
1647 | IN EFI_EVENT WaitEvent OPTIONAL,\r | |
1648 | IN UINTN TimeoutInMicroseconds,\r | |
1649 | IN VOID *ProcedureArgument OPTIONAL,\r | |
1650 | OUT UINTN **FailedCpuList OPTIONAL\r | |
1651 | )\r | |
1652 | {\r | |
1653 | EFI_STATUS Status;\r | |
1654 | CPU_MP_DATA *CpuMpData;\r | |
1655 | UINTN ProcessorCount;\r | |
1656 | UINTN ProcessorNumber;\r | |
1657 | UINTN CallerNumber;\r | |
1658 | CPU_AP_DATA *CpuData;\r | |
1659 | BOOLEAN HasEnabledAp;\r | |
1660 | CPU_STATE ApState;\r | |
1661 | \r | |
1662 | CpuMpData = GetCpuMpData ();\r | |
1663 | \r | |
1664 | if (FailedCpuList != NULL) {\r | |
1665 | *FailedCpuList = NULL;\r | |
1666 | }\r | |
1667 | \r | |
1668 | if (CpuMpData->CpuCount == 1) {\r | |
1669 | return EFI_NOT_STARTED;\r | |
1670 | }\r | |
1671 | \r | |
1672 | if (Procedure == NULL) {\r | |
1673 | return EFI_INVALID_PARAMETER;\r | |
1674 | }\r | |
1675 | \r | |
1676 | //\r | |
1677 | // Check whether caller processor is BSP\r | |
1678 | //\r | |
1679 | MpInitLibWhoAmI (&CallerNumber);\r | |
1680 | if (CallerNumber != CpuMpData->BspNumber) {\r | |
1681 | return EFI_DEVICE_ERROR;\r | |
1682 | }\r | |
1683 | \r | |
1684 | //\r | |
1685 | // Update AP state\r | |
1686 | //\r | |
1687 | CheckAndUpdateApsStatus ();\r | |
1688 | \r | |
1689 | ProcessorCount = CpuMpData->CpuCount;\r | |
1690 | HasEnabledAp = FALSE;\r | |
1691 | //\r | |
1692 | // Check whether all enabled APs are idle.\r | |
1693 | // If any enabled AP is not idle, return EFI_NOT_READY.\r | |
1694 | //\r | |
1695 | for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r | |
1696 | CpuData = &CpuMpData->CpuData[ProcessorNumber];\r | |
1697 | if (ProcessorNumber != CpuMpData->BspNumber) {\r | |
1698 | ApState = GetApState (CpuData);\r | |
1699 | if (ApState != CpuStateDisabled) {\r | |
1700 | HasEnabledAp = TRUE;\r | |
1701 | if (ApState != CpuStateIdle) {\r | |
1702 | //\r | |
1703 | // If any enabled APs are busy, return EFI_NOT_READY.\r | |
1704 | //\r | |
1705 | return EFI_NOT_READY;\r | |
1706 | }\r | |
1707 | }\r | |
1708 | }\r | |
1709 | }\r | |
1710 | \r | |
1711 | if (!HasEnabledAp) {\r | |
1712 | //\r | |
1713 | // If no enabled AP exists, return EFI_NOT_STARTED.\r | |
1714 | //\r | |
1715 | return EFI_NOT_STARTED;\r | |
1716 | }\r | |
1717 | \r | |
1718 | CpuMpData->StartCount = 0;\r | |
1719 | for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r | |
1720 | CpuData = &CpuMpData->CpuData[ProcessorNumber];\r | |
1721 | CpuData->Waiting = FALSE;\r | |
1722 | if (ProcessorNumber != CpuMpData->BspNumber) {\r | |
1723 | if (CpuData->State == CpuStateIdle) {\r | |
1724 | //\r | |
1725 | // Mark this processor as responsible for current calling.\r | |
1726 | //\r | |
1727 | CpuData->Waiting = TRUE;\r | |
1728 | CpuMpData->StartCount++;\r | |
1729 | }\r | |
1730 | }\r | |
1731 | }\r | |
1732 | \r | |
1733 | CpuMpData->Procedure = Procedure;\r | |
1734 | CpuMpData->ProcArguments = ProcedureArgument;\r | |
1735 | CpuMpData->SingleThread = SingleThread;\r | |
1736 | CpuMpData->FinishedCount = 0;\r | |
1737 | CpuMpData->RunningCount = 0;\r | |
1738 | CpuMpData->FailedCpuList = FailedCpuList;\r | |
1739 | CpuMpData->ExpectedTime = CalculateTimeout (\r | |
1740 | TimeoutInMicroseconds,\r | |
1741 | &CpuMpData->CurrentTime\r | |
1742 | );\r | |
1743 | CpuMpData->TotalTime = 0;\r | |
1744 | CpuMpData->WaitEvent = WaitEvent;\r | |
1745 | \r | |
1746 | if (!SingleThread) {\r | |
1747 | WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument);\r | |
1748 | } else {\r | |
1749 | for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r | |
1750 | if (ProcessorNumber == CallerNumber) {\r | |
1751 | continue;\r | |
1752 | }\r | |
1753 | if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r | |
1754 | WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);\r | |
1755 | break;\r | |
1756 | }\r | |
1757 | }\r | |
1758 | }\r | |
1759 | \r | |
1760 | Status = EFI_SUCCESS;\r | |
1761 | if (WaitEvent == NULL) {\r | |
1762 | do {\r | |
1763 | Status = CheckAllAPs ();\r | |
1764 | } while (Status == EFI_NOT_READY);\r | |
1765 | }\r | |
1766 | \r | |
1767 | return Status;\r | |
1768 | }\r | |
1769 | \r | |
20ae5774 JF |
1770 | /**\r |
1771 | Worker function to let the caller get one enabled AP to execute a caller-provided\r | |
1772 | function.\r | |
1773 | \r | |
1774 | @param[in] Procedure A pointer to the function to be run on\r | |
1775 | enabled APs of the system.\r | |
1776 | @param[in] ProcessorNumber The handle number of the AP.\r | |
1777 | @param[in] WaitEvent The event created by the caller with CreateEvent()\r | |
1778 | service.\r | |
1779 | @param[in] TimeoutInMicrosecsond Indicates the time limit in microseconds for\r | |
1780 | APs to return from Procedure, either for\r | |
1781 | blocking or non-blocking mode.\r | |
1782 | @param[in] ProcedureArgument The parameter passed into Procedure for\r | |
1783 | all APs.\r | |
1784 | @param[out] Finished If AP returns from Procedure before the\r | |
1785 | timeout expires, its content is set to TRUE.\r | |
1786 | Otherwise, the value is set to FALSE.\r | |
1787 | \r | |
1788 | @retval EFI_SUCCESS In blocking mode, specified AP finished before\r | |
1789 | the timeout expires.\r | |
1790 | @retval others Failed to Startup AP.\r | |
1791 | \r | |
1792 | **/\r | |
1793 | EFI_STATUS\r | |
1794 | StartupThisAPWorker (\r | |
1795 | IN EFI_AP_PROCEDURE Procedure,\r | |
1796 | IN UINTN ProcessorNumber,\r | |
1797 | IN EFI_EVENT WaitEvent OPTIONAL,\r | |
1798 | IN UINTN TimeoutInMicroseconds,\r | |
1799 | IN VOID *ProcedureArgument OPTIONAL,\r | |
1800 | OUT BOOLEAN *Finished OPTIONAL\r | |
1801 | )\r | |
1802 | {\r | |
1803 | EFI_STATUS Status;\r | |
1804 | CPU_MP_DATA *CpuMpData;\r | |
1805 | CPU_AP_DATA *CpuData;\r | |
1806 | UINTN CallerNumber;\r | |
1807 | \r | |
1808 | CpuMpData = GetCpuMpData ();\r | |
1809 | \r | |
1810 | if (Finished != NULL) {\r | |
1811 | *Finished = FALSE;\r | |
1812 | }\r | |
1813 | \r | |
1814 | //\r | |
1815 | // Check whether caller processor is BSP\r | |
1816 | //\r | |
1817 | MpInitLibWhoAmI (&CallerNumber);\r | |
1818 | if (CallerNumber != CpuMpData->BspNumber) {\r | |
1819 | return EFI_DEVICE_ERROR;\r | |
1820 | }\r | |
1821 | \r | |
1822 | //\r | |
1823 | // Check whether processor with the handle specified by ProcessorNumber exists\r | |
1824 | //\r | |
1825 | if (ProcessorNumber >= CpuMpData->CpuCount) {\r | |
1826 | return EFI_NOT_FOUND;\r | |
1827 | }\r | |
1828 | \r | |
1829 | //\r | |
1830 | // Check whether specified processor is BSP\r | |
1831 | //\r | |
1832 | if (ProcessorNumber == CpuMpData->BspNumber) {\r | |
1833 | return EFI_INVALID_PARAMETER;\r | |
1834 | }\r | |
1835 | \r | |
1836 | //\r | |
1837 | // Check parameter Procedure\r | |
1838 | //\r | |
1839 | if (Procedure == NULL) {\r | |
1840 | return EFI_INVALID_PARAMETER;\r | |
1841 | }\r | |
1842 | \r | |
1843 | //\r | |
1844 | // Update AP state\r | |
1845 | //\r | |
1846 | CheckAndUpdateApsStatus ();\r | |
1847 | \r | |
1848 | //\r | |
1849 | // Check whether specified AP is disabled\r | |
1850 | //\r | |
1851 | if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r | |
1852 | return EFI_INVALID_PARAMETER;\r | |
1853 | }\r | |
1854 | \r | |
1855 | //\r | |
1856 | // If WaitEvent is not NULL, execute in non-blocking mode.\r | |
1857 | // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.\r | |
1858 | // CheckAPsStatus() will check completion and timeout periodically.\r | |
1859 | //\r | |
1860 | CpuData = &CpuMpData->CpuData[ProcessorNumber];\r | |
1861 | CpuData->WaitEvent = WaitEvent;\r | |
1862 | CpuData->Finished = Finished;\r | |
1863 | CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);\r | |
1864 | CpuData->TotalTime = 0;\r | |
1865 | \r | |
1866 | WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);\r | |
1867 | \r | |
1868 | //\r | |
1869 | // If WaitEvent is NULL, execute in blocking mode.\r | |
1870 | // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.\r | |
1871 | //\r | |
1872 | Status = EFI_SUCCESS;\r | |
1873 | if (WaitEvent == NULL) {\r | |
1874 | do {\r | |
1875 | Status = CheckThisAP (ProcessorNumber);\r | |
1876 | } while (Status == EFI_NOT_READY);\r | |
1877 | }\r | |
1878 | \r | |
1879 | return Status;\r | |
1880 | }\r | |
1881 | \r | |
93ca4c0f JF |
1882 | /**\r |
1883 | Get pointer to CPU MP Data structure from GUIDed HOB.\r | |
1884 | \r | |
1885 | @return The pointer to CPU MP Data structure.\r | |
1886 | **/\r | |
1887 | CPU_MP_DATA *\r | |
1888 | GetCpuMpDataFromGuidedHob (\r | |
1889 | VOID\r | |
1890 | )\r | |
1891 | {\r | |
1892 | EFI_HOB_GUID_TYPE *GuidHob;\r | |
1893 | VOID *DataInHob;\r | |
1894 | CPU_MP_DATA *CpuMpData;\r | |
1895 | \r | |
1896 | CpuMpData = NULL;\r | |
1897 | GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);\r | |
1898 | if (GuidHob != NULL) {\r | |
1899 | DataInHob = GET_GUID_HOB_DATA (GuidHob);\r | |
1900 | CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);\r | |
1901 | }\r | |
1902 | return CpuMpData;\r | |
1903 | }\r | |
42c37b3b JF |
1904 | \r |
1905 | /**\r | |
1906 | Get available system memory below 1MB by specified size.\r | |
1907 | \r | |
1908 | @param[in] CpuMpData The pointer to CPU MP Data structure.\r | |
1909 | **/\r | |
1910 | VOID\r | |
1911 | BackupAndPrepareWakeupBuffer(\r | |
1912 | IN CPU_MP_DATA *CpuMpData\r | |
1913 | )\r | |
1914 | {\r | |
1915 | CopyMem (\r | |
1916 | (VOID *) CpuMpData->BackupBuffer,\r | |
1917 | (VOID *) CpuMpData->WakeupBuffer,\r | |
1918 | CpuMpData->BackupBufferSize\r | |
1919 | );\r | |
1920 | CopyMem (\r | |
1921 | (VOID *) CpuMpData->WakeupBuffer,\r | |
1922 | (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,\r | |
1923 | CpuMpData->AddressMap.RendezvousFunnelSize\r | |
1924 | );\r | |
1925 | }\r | |
1926 | \r | |
1927 | /**\r | |
1928 | Restore wakeup buffer data.\r | |
1929 | \r | |
1930 | @param[in] CpuMpData The pointer to CPU MP Data structure.\r | |
1931 | **/\r | |
1932 | VOID\r | |
1933 | RestoreWakeupBuffer(\r | |
1934 | IN CPU_MP_DATA *CpuMpData\r | |
1935 | )\r | |
1936 | {\r | |
1937 | CopyMem (\r | |
1938 | (VOID *) CpuMpData->WakeupBuffer,\r | |
1939 | (VOID *) CpuMpData->BackupBuffer,\r | |
1940 | CpuMpData->BackupBufferSize\r | |
1941 | );\r | |
1942 | }\r |