]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - MdeModulePkg/Core/Dxe/Mem/Page.c
MdePkg: Correct EfiGcdMemoryTypePersistent name to follow PI spec
[mirror_edk2.git] / MdeModulePkg / Core / Dxe / Mem / Page.c
... / ...
CommitLineData
1/** @file\r
2 UEFI Memory page management functions.\r
3\r
4Copyright (c) 2007 - 2017, Intel Corporation. All rights reserved.<BR>\r
5This program and the accompanying materials\r
6are licensed and made available under the terms and conditions of the BSD License\r
7which accompanies this distribution. The full text of the license may be found at\r
8http://opensource.org/licenses/bsd-license.php\r
9\r
10THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13**/\r
14\r
15#include "DxeMain.h"\r
16#include "Imem.h"\r
17\r
18//\r
19// Entry for tracking the memory regions for each memory type to coalesce similar memory types\r
20//\r
21typedef struct {\r
22 EFI_PHYSICAL_ADDRESS BaseAddress;\r
23 EFI_PHYSICAL_ADDRESS MaximumAddress;\r
24 UINT64 CurrentNumberOfPages;\r
25 UINT64 NumberOfPages;\r
26 UINTN InformationIndex;\r
27 BOOLEAN Special;\r
28 BOOLEAN Runtime;\r
29} EFI_MEMORY_TYPE_STATISTICS;\r
30\r
31//\r
32// MemoryMap - The current memory map\r
33//\r
34UINTN mMemoryMapKey = 0;\r
35\r
36#define MAX_MAP_DEPTH 6\r
37\r
38///\r
39/// mMapDepth - depth of new descriptor stack\r
40///\r
41UINTN mMapDepth = 0;\r
42///\r
43/// mMapStack - space to use as temp storage to build new map descriptors\r
44///\r
45MEMORY_MAP mMapStack[MAX_MAP_DEPTH];\r
46UINTN mFreeMapStack = 0;\r
47///\r
48/// This list maintain the free memory map list\r
49///\r
50LIST_ENTRY mFreeMemoryMapEntryList = INITIALIZE_LIST_HEAD_VARIABLE (mFreeMemoryMapEntryList);\r
51BOOLEAN mMemoryTypeInformationInitialized = FALSE;\r
52\r
53EFI_MEMORY_TYPE_STATISTICS mMemoryTypeStatistics[EfiMaxMemoryType + 1] = {\r
54 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiReservedMemoryType\r
55 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiLoaderCode\r
56 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiLoaderData\r
57 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiBootServicesCode\r
58 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiBootServicesData\r
59 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiRuntimeServicesCode\r
60 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiRuntimeServicesData\r
61 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiConventionalMemory\r
62 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiUnusableMemory\r
63 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiACPIReclaimMemory\r
64 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiACPIMemoryNVS\r
65 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiMemoryMappedIO\r
66 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiMemoryMappedIOPortSpace\r
67 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiPalCode\r
68 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiPersistentMemory\r
69 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE } // EfiMaxMemoryType\r
70};\r
71\r
72EFI_PHYSICAL_ADDRESS mDefaultMaximumAddress = MAX_ADDRESS;\r
73EFI_PHYSICAL_ADDRESS mDefaultBaseAddress = MAX_ADDRESS;\r
74\r
75EFI_MEMORY_TYPE_INFORMATION gMemoryTypeInformation[EfiMaxMemoryType + 1] = {\r
76 { EfiReservedMemoryType, 0 },\r
77 { EfiLoaderCode, 0 },\r
78 { EfiLoaderData, 0 },\r
79 { EfiBootServicesCode, 0 },\r
80 { EfiBootServicesData, 0 },\r
81 { EfiRuntimeServicesCode, 0 },\r
82 { EfiRuntimeServicesData, 0 },\r
83 { EfiConventionalMemory, 0 },\r
84 { EfiUnusableMemory, 0 },\r
85 { EfiACPIReclaimMemory, 0 },\r
86 { EfiACPIMemoryNVS, 0 },\r
87 { EfiMemoryMappedIO, 0 },\r
88 { EfiMemoryMappedIOPortSpace, 0 },\r
89 { EfiPalCode, 0 },\r
90 { EfiPersistentMemory, 0 },\r
91 { EfiMaxMemoryType, 0 }\r
92};\r
93//\r
94// Only used when load module at fixed address feature is enabled. True means the memory is alreay successfully allocated\r
95// and ready to load the module in to specified address.or else, the memory is not ready and module will be loaded at a \r
96// address assigned by DXE core.\r
97//\r
98GLOBAL_REMOVE_IF_UNREFERENCED BOOLEAN gLoadFixedAddressCodeMemoryReady = FALSE;\r
99\r
100/**\r
101 Enter critical section by gaining lock on gMemoryLock.\r
102\r
103**/\r
104VOID\r
105CoreAcquireMemoryLock (\r
106 VOID\r
107 )\r
108{\r
109 CoreAcquireLock (&gMemoryLock);\r
110}\r
111\r
112\r
113\r
114/**\r
115 Exit critical section by releasing lock on gMemoryLock.\r
116\r
117**/\r
118VOID\r
119CoreReleaseMemoryLock (\r
120 VOID\r
121 )\r
122{\r
123 CoreReleaseLock (&gMemoryLock);\r
124}\r
125\r
126\r
127\r
128\r
129/**\r
130 Internal function. Removes a descriptor entry.\r
131\r
132 @param Entry The entry to remove\r
133\r
134**/\r
135VOID\r
136RemoveMemoryMapEntry (\r
137 IN OUT MEMORY_MAP *Entry\r
138 )\r
139{\r
140 RemoveEntryList (&Entry->Link);\r
141 Entry->Link.ForwardLink = NULL;\r
142\r
143 if (Entry->FromPages) {\r
144 //\r
145 // Insert the free memory map descriptor to the end of mFreeMemoryMapEntryList\r
146 //\r
147 InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);\r
148 }\r
149}\r
150\r
151/**\r
152 Internal function. Adds a ranges to the memory map.\r
153 The range must not already exist in the map.\r
154\r
155 @param Type The type of memory range to add\r
156 @param Start The starting address in the memory range Must be\r
157 paged aligned\r
158 @param End The last address in the range Must be the last\r
159 byte of a page\r
160 @param Attribute The attributes of the memory range to add\r
161\r
162**/\r
163VOID\r
164CoreAddRange (\r
165 IN EFI_MEMORY_TYPE Type,\r
166 IN EFI_PHYSICAL_ADDRESS Start,\r
167 IN EFI_PHYSICAL_ADDRESS End,\r
168 IN UINT64 Attribute\r
169 )\r
170{\r
171 LIST_ENTRY *Link;\r
172 MEMORY_MAP *Entry;\r
173\r
174 ASSERT ((Start & EFI_PAGE_MASK) == 0);\r
175 ASSERT (End > Start) ;\r
176\r
177 ASSERT_LOCKED (&gMemoryLock);\r
178\r
179 DEBUG ((DEBUG_PAGE, "AddRange: %lx-%lx to %d\n", Start, End, Type));\r
180 \r
181 //\r
182 // If memory of type EfiConventionalMemory is being added that includes the page \r
183 // starting at address 0, then zero the page starting at address 0. This has \r
184 // two benifits. It helps find NULL pointer bugs and it also maximizes \r
185 // compatibility with operating systems that may evaluate memory in this page \r
186 // for legacy data structures. If memory of any other type is added starting \r
187 // at address 0, then do not zero the page at address 0 because the page is being \r
188 // used for other purposes.\r
189 // \r
190 if (Type == EfiConventionalMemory && Start == 0 && (End >= EFI_PAGE_SIZE - 1)) {\r
191 SetMem ((VOID *)(UINTN)Start, EFI_PAGE_SIZE, 0);\r
192 }\r
193 \r
194 //\r
195 // Memory map being altered so updated key\r
196 //\r
197 mMemoryMapKey += 1;\r
198\r
199 //\r
200 // UEFI 2.0 added an event group for notificaiton on memory map changes.\r
201 // So we need to signal this Event Group every time the memory map changes.\r
202 // If we are in EFI 1.10 compatability mode no event groups will be\r
203 // found and nothing will happen we we call this function. These events\r
204 // will get signaled but since a lock is held around the call to this\r
205 // function the notificaiton events will only be called after this function\r
206 // returns and the lock is released.\r
207 //\r
208 CoreNotifySignalList (&gEfiEventMemoryMapChangeGuid);\r
209\r
210 //\r
211 // Look for adjoining memory descriptor\r
212 //\r
213\r
214 // Two memory descriptors can only be merged if they have the same Type\r
215 // and the same Attribute\r
216 //\r
217\r
218 Link = gMemoryMap.ForwardLink;\r
219 while (Link != &gMemoryMap) {\r
220 Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
221 Link = Link->ForwardLink;\r
222\r
223 if (Entry->Type != Type) {\r
224 continue;\r
225 }\r
226\r
227 if (Entry->Attribute != Attribute) {\r
228 continue;\r
229 }\r
230\r
231 if (Entry->End + 1 == Start) {\r
232\r
233 Start = Entry->Start;\r
234 RemoveMemoryMapEntry (Entry);\r
235\r
236 } else if (Entry->Start == End + 1) {\r
237\r
238 End = Entry->End;\r
239 RemoveMemoryMapEntry (Entry);\r
240 }\r
241 }\r
242\r
243 //\r
244 // Add descriptor\r
245 //\r
246\r
247 mMapStack[mMapDepth].Signature = MEMORY_MAP_SIGNATURE;\r
248 mMapStack[mMapDepth].FromPages = FALSE;\r
249 mMapStack[mMapDepth].Type = Type;\r
250 mMapStack[mMapDepth].Start = Start;\r
251 mMapStack[mMapDepth].End = End;\r
252 mMapStack[mMapDepth].VirtualStart = 0;\r
253 mMapStack[mMapDepth].Attribute = Attribute;\r
254 InsertTailList (&gMemoryMap, &mMapStack[mMapDepth].Link);\r
255\r
256 mMapDepth += 1;\r
257 ASSERT (mMapDepth < MAX_MAP_DEPTH);\r
258\r
259 return ;\r
260}\r
261\r
262/**\r
263 Internal function. Deque a descriptor entry from the mFreeMemoryMapEntryList.\r
264 If the list is emtry, then allocate a new page to refuel the list.\r
265 Please Note this algorithm to allocate the memory map descriptor has a property\r
266 that the memory allocated for memory entries always grows, and will never really be freed\r
267 For example, if the current boot uses 2000 memory map entries at the maximum point, but\r
268 ends up with only 50 at the time the OS is booted, then the memory associated with the 1950\r
269 memory map entries is still allocated from EfiBootServicesMemory.\r
270\r
271\r
272 @return The Memory map descriptor dequed from the mFreeMemoryMapEntryList\r
273\r
274**/\r
275MEMORY_MAP *\r
276AllocateMemoryMapEntry (\r
277 VOID\r
278 )\r
279{\r
280 MEMORY_MAP* FreeDescriptorEntries;\r
281 MEMORY_MAP* Entry;\r
282 UINTN Index;\r
283\r
284 if (IsListEmpty (&mFreeMemoryMapEntryList)) {\r
285 //\r
286 // The list is empty, to allocate one page to refuel the list\r
287 //\r
288 FreeDescriptorEntries = CoreAllocatePoolPages (EfiBootServicesData,\r
289 EFI_SIZE_TO_PAGES (DEFAULT_PAGE_ALLOCATION_GRANULARITY),\r
290 DEFAULT_PAGE_ALLOCATION_GRANULARITY);\r
291 if (FreeDescriptorEntries != NULL) {\r
292 //\r
293 // Enque the free memmory map entries into the list\r
294 //\r
295 for (Index = 0; Index < DEFAULT_PAGE_ALLOCATION_GRANULARITY / sizeof(MEMORY_MAP); Index++) {\r
296 FreeDescriptorEntries[Index].Signature = MEMORY_MAP_SIGNATURE;\r
297 InsertTailList (&mFreeMemoryMapEntryList, &FreeDescriptorEntries[Index].Link);\r
298 }\r
299 } else {\r
300 return NULL;\r
301 }\r
302 }\r
303 //\r
304 // dequeue the first descriptor from the list\r
305 //\r
306 Entry = CR (mFreeMemoryMapEntryList.ForwardLink, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
307 RemoveEntryList (&Entry->Link);\r
308\r
309 return Entry;\r
310}\r
311\r
312\r
313/**\r
314 Internal function. Moves any memory descriptors that are on the\r
315 temporary descriptor stack to heap.\r
316\r
317**/\r
318VOID\r
319CoreFreeMemoryMapStack (\r
320 VOID\r
321 )\r
322{\r
323 MEMORY_MAP *Entry;\r
324 MEMORY_MAP *Entry2;\r
325 LIST_ENTRY *Link2;\r
326\r
327 ASSERT_LOCKED (&gMemoryLock);\r
328\r
329 //\r
330 // If already freeing the map stack, then return\r
331 //\r
332 if (mFreeMapStack != 0) {\r
333 return ;\r
334 }\r
335\r
336 //\r
337 // Move the temporary memory descriptor stack into pool\r
338 //\r
339 mFreeMapStack += 1;\r
340\r
341 while (mMapDepth != 0) {\r
342 //\r
343 // Deque an memory map entry from mFreeMemoryMapEntryList\r
344 //\r
345 Entry = AllocateMemoryMapEntry ();\r
346\r
347 ASSERT (Entry);\r
348\r
349 //\r
350 // Update to proper entry\r
351 //\r
352 mMapDepth -= 1;\r
353\r
354 if (mMapStack[mMapDepth].Link.ForwardLink != NULL) {\r
355\r
356 //\r
357 // Move this entry to general memory\r
358 //\r
359 RemoveEntryList (&mMapStack[mMapDepth].Link);\r
360 mMapStack[mMapDepth].Link.ForwardLink = NULL;\r
361\r
362 CopyMem (Entry , &mMapStack[mMapDepth], sizeof (MEMORY_MAP));\r
363 Entry->FromPages = TRUE;\r
364\r
365 //\r
366 // Find insertion location\r
367 //\r
368 for (Link2 = gMemoryMap.ForwardLink; Link2 != &gMemoryMap; Link2 = Link2->ForwardLink) {\r
369 Entry2 = CR (Link2, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
370 if (Entry2->FromPages && Entry2->Start > Entry->Start) {\r
371 break;\r
372 }\r
373 }\r
374\r
375 InsertTailList (Link2, &Entry->Link);\r
376\r
377 } else {\r
378 //\r
379 // This item of mMapStack[mMapDepth] has already been dequeued from gMemoryMap list,\r
380 // so here no need to move it to memory.\r
381 //\r
382 InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);\r
383 }\r
384 }\r
385\r
386 mFreeMapStack -= 1;\r
387}\r
388\r
389/**\r
390 Find untested but initialized memory regions in GCD map and convert them to be DXE allocatable.\r
391\r
392**/\r
393BOOLEAN\r
394PromoteMemoryResource (\r
395 VOID\r
396 )\r
397{\r
398 LIST_ENTRY *Link;\r
399 EFI_GCD_MAP_ENTRY *Entry;\r
400 BOOLEAN Promoted;\r
401\r
402 DEBUG ((DEBUG_PAGE, "Promote the memory resource\n"));\r
403\r
404 CoreAcquireGcdMemoryLock ();\r
405\r
406 Promoted = FALSE;\r
407 Link = mGcdMemorySpaceMap.ForwardLink;\r
408 while (Link != &mGcdMemorySpaceMap) {\r
409\r
410 Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r
411\r
412 if (Entry->GcdMemoryType == EfiGcdMemoryTypeReserved &&\r
413 Entry->EndAddress < MAX_ADDRESS &&\r
414 (Entry->Capabilities & (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED)) ==\r
415 (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED)) {\r
416 //\r
417 // Update the GCD map\r
418 //\r
419 if ((Entry->Capabilities & EFI_MEMORY_MORE_RELIABLE) == EFI_MEMORY_MORE_RELIABLE) {\r
420 Entry->GcdMemoryType = EfiGcdMemoryTypeMoreReliable;\r
421 } else {\r
422 Entry->GcdMemoryType = EfiGcdMemoryTypeSystemMemory;\r
423 }\r
424 Entry->Capabilities |= EFI_MEMORY_TESTED;\r
425 Entry->ImageHandle = gDxeCoreImageHandle;\r
426 Entry->DeviceHandle = NULL;\r
427\r
428 //\r
429 // Add to allocable system memory resource\r
430 //\r
431\r
432 CoreAddRange (\r
433 EfiConventionalMemory,\r
434 Entry->BaseAddress,\r
435 Entry->EndAddress,\r
436 Entry->Capabilities & ~(EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED | EFI_MEMORY_RUNTIME)\r
437 );\r
438 CoreFreeMemoryMapStack ();\r
439\r
440 Promoted = TRUE;\r
441 }\r
442\r
443 Link = Link->ForwardLink;\r
444 }\r
445\r
446 CoreReleaseGcdMemoryLock ();\r
447\r
448 return Promoted;\r
449}\r
450/**\r
451 This function try to allocate Runtime code & Boot time code memory range. If LMFA enabled, 2 patchable PCD \r
452 PcdLoadFixAddressRuntimeCodePageNumber & PcdLoadFixAddressBootTimeCodePageNumber which are set by tools will record the \r
453 size of boot time and runtime code.\r
454\r
455**/\r
456VOID\r
457CoreLoadingFixedAddressHook (\r
458 VOID\r
459 )\r
460{\r
461 UINT32 RuntimeCodePageNumber;\r
462 UINT32 BootTimeCodePageNumber;\r
463 EFI_PHYSICAL_ADDRESS RuntimeCodeBase;\r
464 EFI_PHYSICAL_ADDRESS BootTimeCodeBase;\r
465 EFI_STATUS Status;\r
466\r
467 //\r
468 // Make sure these 2 areas are not initialzied.\r
469 //\r
470 if (!gLoadFixedAddressCodeMemoryReady) { \r
471 RuntimeCodePageNumber = PcdGet32(PcdLoadFixAddressRuntimeCodePageNumber);\r
472 BootTimeCodePageNumber= PcdGet32(PcdLoadFixAddressBootTimeCodePageNumber);\r
473 RuntimeCodeBase = (EFI_PHYSICAL_ADDRESS)(gLoadModuleAtFixAddressConfigurationTable.DxeCodeTopAddress - EFI_PAGES_TO_SIZE (RuntimeCodePageNumber));\r
474 BootTimeCodeBase = (EFI_PHYSICAL_ADDRESS)(RuntimeCodeBase - EFI_PAGES_TO_SIZE (BootTimeCodePageNumber));\r
475 //\r
476 // Try to allocate runtime memory.\r
477 //\r
478 Status = CoreAllocatePages (\r
479 AllocateAddress,\r
480 EfiRuntimeServicesCode,\r
481 RuntimeCodePageNumber,\r
482 &RuntimeCodeBase\r
483 );\r
484 if (EFI_ERROR(Status)) {\r
485 //\r
486 // Runtime memory allocation failed \r
487 //\r
488 return;\r
489 }\r
490 //\r
491 // Try to allocate boot memory.\r
492 //\r
493 Status = CoreAllocatePages (\r
494 AllocateAddress,\r
495 EfiBootServicesCode,\r
496 BootTimeCodePageNumber,\r
497 &BootTimeCodeBase\r
498 );\r
499 if (EFI_ERROR(Status)) {\r
500 //\r
501 // boot memory allocation failed. Free Runtime code range and will try the allocation again when \r
502 // new memory range is installed.\r
503 //\r
504 CoreFreePages (\r
505 RuntimeCodeBase,\r
506 RuntimeCodePageNumber\r
507 );\r
508 return;\r
509 }\r
510 gLoadFixedAddressCodeMemoryReady = TRUE;\r
511 } \r
512 return;\r
513} \r
514\r
515/**\r
516 Called to initialize the memory map and add descriptors to\r
517 the current descriptor list.\r
518 The first descriptor that is added must be general usable\r
519 memory as the addition allocates heap.\r
520\r
521 @param Type The type of memory to add\r
522 @param Start The starting address in the memory range Must be\r
523 page aligned\r
524 @param NumberOfPages The number of pages in the range\r
525 @param Attribute Attributes of the memory to add\r
526\r
527 @return None. The range is added to the memory map\r
528\r
529**/\r
530VOID\r
531CoreAddMemoryDescriptor (\r
532 IN EFI_MEMORY_TYPE Type,\r
533 IN EFI_PHYSICAL_ADDRESS Start,\r
534 IN UINT64 NumberOfPages,\r
535 IN UINT64 Attribute\r
536 )\r
537{\r
538 EFI_PHYSICAL_ADDRESS End;\r
539 EFI_STATUS Status;\r
540 UINTN Index;\r
541 UINTN FreeIndex;\r
542 \r
543 if ((Start & EFI_PAGE_MASK) != 0) {\r
544 return;\r
545 }\r
546\r
547 if (Type >= EfiMaxMemoryType && Type < MEMORY_TYPE_OEM_RESERVED_MIN) {\r
548 return;\r
549 }\r
550 CoreAcquireMemoryLock ();\r
551 End = Start + LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT) - 1;\r
552 CoreAddRange (Type, Start, End, Attribute);\r
553 CoreFreeMemoryMapStack ();\r
554 CoreReleaseMemoryLock ();\r
555\r
556 ApplyMemoryProtectionPolicy (EfiMaxMemoryType, Type, Start,\r
557 LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT));\r
558\r
559 //\r
560 // If Loading Module At Fixed Address feature is enabled. try to allocate memory with Runtime code & Boot time code type\r
561 //\r
562 if (PcdGet64(PcdLoadModuleAtFixAddressEnable) != 0) {\r
563 CoreLoadingFixedAddressHook();\r
564 }\r
565 \r
566 //\r
567 // Check to see if the statistics for the different memory types have already been established\r
568 //\r
569 if (mMemoryTypeInformationInitialized) {\r
570 return;\r
571 }\r
572\r
573 \r
574 //\r
575 // Loop through each memory type in the order specified by the gMemoryTypeInformation[] array\r
576 //\r
577 for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r
578 //\r
579 // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r
580 //\r
581 Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[Index].Type);\r
582 if ((UINT32)Type > EfiMaxMemoryType) {\r
583 continue;\r
584 }\r
585 if (gMemoryTypeInformation[Index].NumberOfPages != 0) {\r
586 //\r
587 // Allocate pages for the current memory type from the top of available memory\r
588 //\r
589 Status = CoreAllocatePages (\r
590 AllocateAnyPages,\r
591 Type,\r
592 gMemoryTypeInformation[Index].NumberOfPages,\r
593 &mMemoryTypeStatistics[Type].BaseAddress\r
594 );\r
595 if (EFI_ERROR (Status)) {\r
596 //\r
597 // If an error occurs allocating the pages for the current memory type, then\r
598 // free all the pages allocates for the previous memory types and return. This\r
599 // operation with be retied when/if more memory is added to the system\r
600 //\r
601 for (FreeIndex = 0; FreeIndex < Index; FreeIndex++) {\r
602 //\r
603 // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r
604 //\r
605 Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[FreeIndex].Type);\r
606 if ((UINT32)Type > EfiMaxMemoryType) {\r
607 continue;\r
608 }\r
609\r
610 if (gMemoryTypeInformation[FreeIndex].NumberOfPages != 0) {\r
611 CoreFreePages (\r
612 mMemoryTypeStatistics[Type].BaseAddress,\r
613 gMemoryTypeInformation[FreeIndex].NumberOfPages\r
614 );\r
615 mMemoryTypeStatistics[Type].BaseAddress = 0;\r
616 mMemoryTypeStatistics[Type].MaximumAddress = MAX_ADDRESS;\r
617 }\r
618 }\r
619 return;\r
620 }\r
621\r
622 //\r
623 // Compute the address at the top of the current statistics\r
624 //\r
625 mMemoryTypeStatistics[Type].MaximumAddress =\r
626 mMemoryTypeStatistics[Type].BaseAddress +\r
627 LShiftU64 (gMemoryTypeInformation[Index].NumberOfPages, EFI_PAGE_SHIFT) - 1;\r
628\r
629 //\r
630 // If the current base address is the lowest address so far, then update the default\r
631 // maximum address\r
632 //\r
633 if (mMemoryTypeStatistics[Type].BaseAddress < mDefaultMaximumAddress) {\r
634 mDefaultMaximumAddress = mMemoryTypeStatistics[Type].BaseAddress - 1;\r
635 }\r
636 }\r
637 }\r
638\r
639 //\r
640 // There was enough system memory for all the the memory types were allocated. So,\r
641 // those memory areas can be freed for future allocations, and all future memory\r
642 // allocations can occur within their respective bins\r
643 //\r
644 for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r
645 //\r
646 // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r
647 //\r
648 Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[Index].Type);\r
649 if ((UINT32)Type > EfiMaxMemoryType) {\r
650 continue;\r
651 }\r
652 if (gMemoryTypeInformation[Index].NumberOfPages != 0) {\r
653 CoreFreePages (\r
654 mMemoryTypeStatistics[Type].BaseAddress,\r
655 gMemoryTypeInformation[Index].NumberOfPages\r
656 );\r
657 mMemoryTypeStatistics[Type].NumberOfPages = gMemoryTypeInformation[Index].NumberOfPages;\r
658 gMemoryTypeInformation[Index].NumberOfPages = 0;\r
659 }\r
660 }\r
661\r
662 //\r
663 // If the number of pages reserved for a memory type is 0, then all allocations for that type\r
664 // should be in the default range.\r
665 //\r
666 for (Type = (EFI_MEMORY_TYPE) 0; Type < EfiMaxMemoryType; Type++) {\r
667 for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r
668 if (Type == (EFI_MEMORY_TYPE)gMemoryTypeInformation[Index].Type) {\r
669 mMemoryTypeStatistics[Type].InformationIndex = Index;\r
670 }\r
671 }\r
672 mMemoryTypeStatistics[Type].CurrentNumberOfPages = 0;\r
673 if (mMemoryTypeStatistics[Type].MaximumAddress == MAX_ADDRESS) {\r
674 mMemoryTypeStatistics[Type].MaximumAddress = mDefaultMaximumAddress;\r
675 }\r
676 }\r
677\r
678 mMemoryTypeInformationInitialized = TRUE;\r
679}\r
680\r
681\r
682/**\r
683 Internal function. Converts a memory range to the specified type or attributes.\r
684 The range must exist in the memory map. Either ChangingType or\r
685 ChangingAttributes must be set, but not both.\r
686\r
687 @param Start The first address of the range Must be page\r
688 aligned\r
689 @param NumberOfPages The number of pages to convert\r
690 @param ChangingType Boolean indicating that type value should be changed\r
691 @param NewType The new type for the memory range\r
692 @param ChangingAttributes Boolean indicating that attributes value should be changed\r
693 @param NewAttributes The new attributes for the memory range\r
694\r
695 @retval EFI_INVALID_PARAMETER Invalid parameter\r
696 @retval EFI_NOT_FOUND Could not find a descriptor cover the specified\r
697 range or convertion not allowed.\r
698 @retval EFI_SUCCESS Successfully converts the memory range to the\r
699 specified type.\r
700\r
701**/\r
702EFI_STATUS\r
703CoreConvertPagesEx (\r
704 IN UINT64 Start,\r
705 IN UINT64 NumberOfPages,\r
706 IN BOOLEAN ChangingType,\r
707 IN EFI_MEMORY_TYPE NewType,\r
708 IN BOOLEAN ChangingAttributes,\r
709 IN UINT64 NewAttributes\r
710 )\r
711{\r
712\r
713 UINT64 NumberOfBytes;\r
714 UINT64 End;\r
715 UINT64 RangeEnd;\r
716 UINT64 Attribute;\r
717 EFI_MEMORY_TYPE MemType;\r
718 LIST_ENTRY *Link;\r
719 MEMORY_MAP *Entry;\r
720\r
721 Entry = NULL;\r
722 NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);\r
723 End = Start + NumberOfBytes - 1;\r
724\r
725 ASSERT (NumberOfPages);\r
726 ASSERT ((Start & EFI_PAGE_MASK) == 0);\r
727 ASSERT (End > Start) ;\r
728 ASSERT_LOCKED (&gMemoryLock);\r
729 ASSERT ( (ChangingType == FALSE) || (ChangingAttributes == FALSE) );\r
730\r
731 if (NumberOfPages == 0 || ((Start & EFI_PAGE_MASK) != 0) || (Start >= End)) {\r
732 return EFI_INVALID_PARAMETER;\r
733 }\r
734\r
735 //\r
736 // Convert the entire range\r
737 //\r
738\r
739 while (Start < End) {\r
740\r
741 //\r
742 // Find the entry that the covers the range\r
743 //\r
744 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
745 Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
746\r
747 if (Entry->Start <= Start && Entry->End > Start) {\r
748 break;\r
749 }\r
750 }\r
751\r
752 if (Link == &gMemoryMap) {\r
753 DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: failed to find range %lx - %lx\n", Start, End));\r
754 return EFI_NOT_FOUND;\r
755 }\r
756\r
757 //\r
758 // If we are converting the type of the range from EfiConventionalMemory to\r
759 // another type, we have to ensure that the entire range is covered by a\r
760 // single entry.\r
761 //\r
762 if (ChangingType && (NewType != EfiConventionalMemory)) {\r
763 if (Entry->End < End) {\r
764 DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: range %lx - %lx covers multiple entries\n", Start, End));\r
765 return EFI_NOT_FOUND;\r
766 }\r
767 }\r
768 //\r
769 // Convert range to the end, or to the end of the descriptor\r
770 // if that's all we've got\r
771 //\r
772 RangeEnd = End;\r
773\r
774 ASSERT (Entry != NULL);\r
775 if (Entry->End < End) {\r
776 RangeEnd = Entry->End;\r
777 }\r
778\r
779 if (ChangingType) {\r
780 DEBUG ((DEBUG_PAGE, "ConvertRange: %lx-%lx to type %d\n", Start, RangeEnd, NewType));\r
781 }\r
782 if (ChangingAttributes) {\r
783 DEBUG ((DEBUG_PAGE, "ConvertRange: %lx-%lx to attr %lx\n", Start, RangeEnd, NewAttributes));\r
784 }\r
785\r
786 if (ChangingType) {\r
787 //\r
788 // Debug code - verify conversion is allowed\r
789 //\r
790 if (!(NewType == EfiConventionalMemory ? 1 : 0) ^ (Entry->Type == EfiConventionalMemory ? 1 : 0)) {\r
791 DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: Incompatible memory types, "));\r
792 if (Entry->Type == EfiConventionalMemory) {\r
793 DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "the pages to free have been freed\n"));\r
794 } else {\r
795 DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "the pages to allocate have been allocated\n"));\r
796 }\r
797 return EFI_NOT_FOUND;\r
798 }\r
799\r
800 //\r
801 // Update counters for the number of pages allocated to each memory type\r
802 //\r
803 if ((UINT32)Entry->Type < EfiMaxMemoryType) {\r
804 if ((Start >= mMemoryTypeStatistics[Entry->Type].BaseAddress && Start <= mMemoryTypeStatistics[Entry->Type].MaximumAddress) ||\r
805 (Start >= mDefaultBaseAddress && Start <= mDefaultMaximumAddress) ) {\r
806 if (NumberOfPages > mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages) {\r
807 mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages = 0;\r
808 } else {\r
809 mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages -= NumberOfPages;\r
810 }\r
811 }\r
812 }\r
813\r
814 if ((UINT32)NewType < EfiMaxMemoryType) {\r
815 if ((Start >= mMemoryTypeStatistics[NewType].BaseAddress && Start <= mMemoryTypeStatistics[NewType].MaximumAddress) ||\r
816 (Start >= mDefaultBaseAddress && Start <= mDefaultMaximumAddress) ) {\r
817 mMemoryTypeStatistics[NewType].CurrentNumberOfPages += NumberOfPages;\r
818 if (mMemoryTypeStatistics[NewType].CurrentNumberOfPages > gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages) {\r
819 gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages = (UINT32)mMemoryTypeStatistics[NewType].CurrentNumberOfPages;\r
820 }\r
821 }\r
822 }\r
823 }\r
824\r
825 //\r
826 // Pull range out of descriptor\r
827 //\r
828 if (Entry->Start == Start) {\r
829\r
830 //\r
831 // Clip start\r
832 //\r
833 Entry->Start = RangeEnd + 1;\r
834\r
835 } else if (Entry->End == RangeEnd) {\r
836\r
837 //\r
838 // Clip end\r
839 //\r
840 Entry->End = Start - 1;\r
841\r
842 } else {\r
843\r
844 //\r
845 // Pull it out of the center, clip current\r
846 //\r
847\r
848 //\r
849 // Add a new one\r
850 //\r
851 mMapStack[mMapDepth].Signature = MEMORY_MAP_SIGNATURE;\r
852 mMapStack[mMapDepth].FromPages = FALSE;\r
853 mMapStack[mMapDepth].Type = Entry->Type;\r
854 mMapStack[mMapDepth].Start = RangeEnd+1;\r
855 mMapStack[mMapDepth].End = Entry->End;\r
856\r
857 //\r
858 // Inherit Attribute from the Memory Descriptor that is being clipped\r
859 //\r
860 mMapStack[mMapDepth].Attribute = Entry->Attribute;\r
861\r
862 Entry->End = Start - 1;\r
863 ASSERT (Entry->Start < Entry->End);\r
864\r
865 Entry = &mMapStack[mMapDepth];\r
866 InsertTailList (&gMemoryMap, &Entry->Link);\r
867\r
868 mMapDepth += 1;\r
869 ASSERT (mMapDepth < MAX_MAP_DEPTH);\r
870 }\r
871\r
872 //\r
873 // The new range inherits the same Attribute as the Entry\r
874 // it is being cut out of unless attributes are being changed\r
875 //\r
876 if (ChangingType) {\r
877 Attribute = Entry->Attribute;\r
878 MemType = NewType;\r
879 } else {\r
880 Attribute = NewAttributes;\r
881 MemType = Entry->Type;\r
882 }\r
883\r
884 //\r
885 // If the descriptor is empty, then remove it from the map\r
886 //\r
887 if (Entry->Start == Entry->End + 1) {\r
888 RemoveMemoryMapEntry (Entry);\r
889 Entry = NULL;\r
890 }\r
891\r
892 //\r
893 // Add our new range in\r
894 //\r
895 CoreAddRange (MemType, Start, RangeEnd, Attribute);\r
896 if (ChangingType && (MemType == EfiConventionalMemory)) {\r
897 //\r
898 // Avoid calling DEBUG_CLEAR_MEMORY() for an address of 0 because this\r
899 // macro will ASSERT() if address is 0. Instead, CoreAddRange() guarantees\r
900 // that the page starting at address 0 is always filled with zeros.\r
901 //\r
902 if (Start == 0) {\r
903 if (RangeEnd > EFI_PAGE_SIZE) {\r
904 DEBUG_CLEAR_MEMORY ((VOID *)(UINTN) EFI_PAGE_SIZE, (UINTN) (RangeEnd - EFI_PAGE_SIZE + 1));\r
905 }\r
906 } else {\r
907 DEBUG_CLEAR_MEMORY ((VOID *)(UINTN) Start, (UINTN) (RangeEnd - Start + 1));\r
908 }\r
909 }\r
910\r
911 //\r
912 // Move any map descriptor stack to general pool\r
913 //\r
914 CoreFreeMemoryMapStack ();\r
915\r
916 //\r
917 // Bump the starting address, and convert the next range\r
918 //\r
919 Start = RangeEnd + 1;\r
920 }\r
921\r
922 //\r
923 // Converted the whole range, done\r
924 //\r
925\r
926 return EFI_SUCCESS;\r
927}\r
928\r
929\r
930/**\r
931 Internal function. Converts a memory range to the specified type.\r
932 The range must exist in the memory map.\r
933\r
934 @param Start The first address of the range Must be page\r
935 aligned\r
936 @param NumberOfPages The number of pages to convert\r
937 @param NewType The new type for the memory range\r
938\r
939 @retval EFI_INVALID_PARAMETER Invalid parameter\r
940 @retval EFI_NOT_FOUND Could not find a descriptor cover the specified\r
941 range or convertion not allowed.\r
942 @retval EFI_SUCCESS Successfully converts the memory range to the\r
943 specified type.\r
944\r
945**/\r
946EFI_STATUS\r
947CoreConvertPages (\r
948 IN UINT64 Start,\r
949 IN UINT64 NumberOfPages,\r
950 IN EFI_MEMORY_TYPE NewType\r
951 )\r
952{\r
953 return CoreConvertPagesEx(Start, NumberOfPages, TRUE, NewType, FALSE, 0);\r
954}\r
955\r
956\r
957/**\r
958 Internal function. Converts a memory range to use new attributes.\r
959\r
960 @param Start The first address of the range Must be page\r
961 aligned\r
962 @param NumberOfPages The number of pages to convert\r
963 @param NewAttributes The new attributes value for the range.\r
964\r
965**/\r
966VOID\r
967CoreUpdateMemoryAttributes (\r
968 IN EFI_PHYSICAL_ADDRESS Start,\r
969 IN UINT64 NumberOfPages,\r
970 IN UINT64 NewAttributes\r
971 )\r
972{\r
973 CoreAcquireMemoryLock ();\r
974\r
975 //\r
976 // Update the attributes to the new value\r
977 //\r
978 CoreConvertPagesEx(Start, NumberOfPages, FALSE, (EFI_MEMORY_TYPE)0, TRUE, NewAttributes);\r
979\r
980 CoreReleaseMemoryLock ();\r
981}\r
982\r
983\r
984/**\r
985 Internal function. Finds a consecutive free page range below\r
986 the requested address.\r
987\r
988 @param MaxAddress The address that the range must be below\r
989 @param MinAddress The address that the range must be above\r
990 @param NumberOfPages Number of pages needed\r
991 @param NewType The type of memory the range is going to be\r
992 turned into\r
993 @param Alignment Bits to align with\r
994\r
995 @return The base address of the range, or 0 if the range was not found\r
996\r
997**/\r
998UINT64\r
999CoreFindFreePagesI (\r
1000 IN UINT64 MaxAddress,\r
1001 IN UINT64 MinAddress,\r
1002 IN UINT64 NumberOfPages,\r
1003 IN EFI_MEMORY_TYPE NewType,\r
1004 IN UINTN Alignment\r
1005 )\r
1006{\r
1007 UINT64 NumberOfBytes;\r
1008 UINT64 Target;\r
1009 UINT64 DescStart;\r
1010 UINT64 DescEnd;\r
1011 UINT64 DescNumberOfBytes;\r
1012 LIST_ENTRY *Link;\r
1013 MEMORY_MAP *Entry;\r
1014\r
1015 if ((MaxAddress < EFI_PAGE_MASK) ||(NumberOfPages == 0)) {\r
1016 return 0;\r
1017 }\r
1018\r
1019 if ((MaxAddress & EFI_PAGE_MASK) != EFI_PAGE_MASK) {\r
1020\r
1021 //\r
1022 // If MaxAddress is not aligned to the end of a page\r
1023 //\r
1024\r
1025 //\r
1026 // Change MaxAddress to be 1 page lower\r
1027 //\r
1028 MaxAddress -= (EFI_PAGE_MASK + 1);\r
1029\r
1030 //\r
1031 // Set MaxAddress to a page boundary\r
1032 //\r
1033 MaxAddress &= ~(UINT64)EFI_PAGE_MASK;\r
1034\r
1035 //\r
1036 // Set MaxAddress to end of the page\r
1037 //\r
1038 MaxAddress |= EFI_PAGE_MASK;\r
1039 }\r
1040\r
1041 NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);\r
1042 Target = 0;\r
1043\r
1044 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
1045 Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
1046\r
1047 //\r
1048 // If it's not a free entry, don't bother with it\r
1049 //\r
1050 if (Entry->Type != EfiConventionalMemory) {\r
1051 continue;\r
1052 }\r
1053\r
1054 DescStart = Entry->Start;\r
1055 DescEnd = Entry->End;\r
1056\r
1057 //\r
1058 // If desc is past max allowed address or below min allowed address, skip it\r
1059 //\r
1060 if ((DescStart >= MaxAddress) || (DescEnd < MinAddress)) {\r
1061 continue;\r
1062 }\r
1063\r
1064 //\r
1065 // If desc ends past max allowed address, clip the end\r
1066 //\r
1067 if (DescEnd >= MaxAddress) {\r
1068 DescEnd = MaxAddress;\r
1069 }\r
1070\r
1071 DescEnd = ((DescEnd + 1) & (~(Alignment - 1))) - 1;\r
1072\r
1073 // Skip if DescEnd is less than DescStart after alignment clipping\r
1074 if (DescEnd < DescStart) {\r
1075 continue;\r
1076 }\r
1077\r
1078 //\r
1079 // Compute the number of bytes we can used from this\r
1080 // descriptor, and see it's enough to satisfy the request\r
1081 //\r
1082 DescNumberOfBytes = DescEnd - DescStart + 1;\r
1083\r
1084 if (DescNumberOfBytes >= NumberOfBytes) {\r
1085 //\r
1086 // If the start of the allocated range is below the min address allowed, skip it\r
1087 //\r
1088 if ((DescEnd - NumberOfBytes + 1) < MinAddress) {\r
1089 continue;\r
1090 }\r
1091\r
1092 //\r
1093 // If this is the best match so far remember it\r
1094 //\r
1095 if (DescEnd > Target) {\r
1096 Target = DescEnd;\r
1097 }\r
1098 }\r
1099 }\r
1100\r
1101 //\r
1102 // If this is a grow down, adjust target to be the allocation base\r
1103 //\r
1104 Target -= NumberOfBytes - 1;\r
1105\r
1106 //\r
1107 // If we didn't find a match, return 0\r
1108 //\r
1109 if ((Target & EFI_PAGE_MASK) != 0) {\r
1110 return 0;\r
1111 }\r
1112\r
1113 return Target;\r
1114}\r
1115\r
1116\r
1117/**\r
1118 Internal function. Finds a consecutive free page range below\r
1119 the requested address\r
1120\r
1121 @param MaxAddress The address that the range must be below\r
1122 @param NoPages Number of pages needed\r
1123 @param NewType The type of memory the range is going to be\r
1124 turned into\r
1125 @param Alignment Bits to align with\r
1126\r
1127 @return The base address of the range, or 0 if the range was not found.\r
1128\r
1129**/\r
1130UINT64\r
1131FindFreePages (\r
1132 IN UINT64 MaxAddress,\r
1133 IN UINT64 NoPages,\r
1134 IN EFI_MEMORY_TYPE NewType,\r
1135 IN UINTN Alignment\r
1136 )\r
1137{\r
1138 UINT64 Start;\r
1139\r
1140 //\r
1141 // Attempt to find free pages in the preferred bin based on the requested memory type\r
1142 //\r
1143 if ((UINT32)NewType < EfiMaxMemoryType && MaxAddress >= mMemoryTypeStatistics[NewType].MaximumAddress) {\r
1144 Start = CoreFindFreePagesI (\r
1145 mMemoryTypeStatistics[NewType].MaximumAddress, \r
1146 mMemoryTypeStatistics[NewType].BaseAddress, \r
1147 NoPages, \r
1148 NewType, \r
1149 Alignment\r
1150 );\r
1151 if (Start != 0) {\r
1152 return Start;\r
1153 }\r
1154 }\r
1155\r
1156 //\r
1157 // Attempt to find free pages in the default allocation bin\r
1158 //\r
1159 if (MaxAddress >= mDefaultMaximumAddress) {\r
1160 Start = CoreFindFreePagesI (mDefaultMaximumAddress, 0, NoPages, NewType, Alignment);\r
1161 if (Start != 0) {\r
1162 if (Start < mDefaultBaseAddress) {\r
1163 mDefaultBaseAddress = Start;\r
1164 }\r
1165 return Start;\r
1166 }\r
1167 }\r
1168\r
1169 //\r
1170 // The allocation did not succeed in any of the prefered bins even after \r
1171 // promoting resources. Attempt to find free pages anywhere is the requested \r
1172 // address range. If this allocation fails, then there are not enough \r
1173 // resources anywhere to satisfy the request.\r
1174 //\r
1175 Start = CoreFindFreePagesI (MaxAddress, 0, NoPages, NewType, Alignment);\r
1176 if (Start != 0) {\r
1177 return Start;\r
1178 }\r
1179\r
1180 //\r
1181 // If allocations from the preferred bins fail, then attempt to promote memory resources.\r
1182 //\r
1183 if (!PromoteMemoryResource ()) {\r
1184 return 0;\r
1185 }\r
1186\r
1187 //\r
1188 // If any memory resources were promoted, then re-attempt the allocation\r
1189 //\r
1190 return FindFreePages (MaxAddress, NoPages, NewType, Alignment);\r
1191}\r
1192\r
1193\r
1194/**\r
1195 Allocates pages from the memory map.\r
1196\r
1197 @param Type The type of allocation to perform\r
1198 @param MemoryType The type of memory to turn the allocated pages\r
1199 into\r
1200 @param NumberOfPages The number of pages to allocate\r
1201 @param Memory A pointer to receive the base allocated memory\r
1202 address\r
1203\r
1204 @return Status. On success, Memory is filled in with the base address allocated\r
1205 @retval EFI_INVALID_PARAMETER Parameters violate checking rules defined in\r
1206 spec.\r
1207 @retval EFI_NOT_FOUND Could not allocate pages match the requirement.\r
1208 @retval EFI_OUT_OF_RESOURCES No enough pages to allocate.\r
1209 @retval EFI_SUCCESS Pages successfully allocated.\r
1210\r
1211**/\r
1212EFI_STATUS\r
1213EFIAPI\r
1214CoreInternalAllocatePages (\r
1215 IN EFI_ALLOCATE_TYPE Type,\r
1216 IN EFI_MEMORY_TYPE MemoryType,\r
1217 IN UINTN NumberOfPages,\r
1218 IN OUT EFI_PHYSICAL_ADDRESS *Memory\r
1219 )\r
1220{\r
1221 EFI_STATUS Status;\r
1222 UINT64 Start;\r
1223 UINT64 NumberOfBytes;\r
1224 UINT64 End;\r
1225 UINT64 MaxAddress;\r
1226 UINTN Alignment;\r
1227\r
1228 if ((UINT32)Type >= MaxAllocateType) {\r
1229 return EFI_INVALID_PARAMETER;\r
1230 }\r
1231\r
1232 if ((MemoryType >= EfiMaxMemoryType && MemoryType < MEMORY_TYPE_OEM_RESERVED_MIN) ||\r
1233 (MemoryType == EfiConventionalMemory) || (MemoryType == EfiPersistentMemory)) {\r
1234 return EFI_INVALID_PARAMETER;\r
1235 }\r
1236\r
1237 if (Memory == NULL) {\r
1238 return EFI_INVALID_PARAMETER;\r
1239 }\r
1240\r
1241 Alignment = DEFAULT_PAGE_ALLOCATION_GRANULARITY;\r
1242\r
1243 if (MemoryType == EfiACPIReclaimMemory ||\r
1244 MemoryType == EfiACPIMemoryNVS ||\r
1245 MemoryType == EfiRuntimeServicesCode ||\r
1246 MemoryType == EfiRuntimeServicesData) {\r
1247\r
1248 Alignment = RUNTIME_PAGE_ALLOCATION_GRANULARITY;\r
1249 }\r
1250\r
1251 if (Type == AllocateAddress) {\r
1252 if ((*Memory & (Alignment - 1)) != 0) {\r
1253 return EFI_NOT_FOUND;\r
1254 }\r
1255 }\r
1256\r
1257 NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1;\r
1258 NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1);\r
1259\r
1260 //\r
1261 // If this is for below a particular address, then\r
1262 //\r
1263 Start = *Memory;\r
1264\r
1265 //\r
1266 // The max address is the max natively addressable address for the processor\r
1267 //\r
1268 MaxAddress = MAX_ADDRESS;\r
1269\r
1270 //\r
1271 // Check for Type AllocateAddress,\r
1272 // if NumberOfPages is 0 or\r
1273 // if (NumberOfPages << EFI_PAGE_SHIFT) is above MAX_ADDRESS or\r
1274 // if (Start + NumberOfBytes) rolls over 0 or\r
1275 // if Start is above MAX_ADDRESS or\r
1276 // if End is above MAX_ADDRESS,\r
1277 // return EFI_NOT_FOUND.\r
1278 //\r
1279 if (Type == AllocateAddress) {\r
1280 if ((NumberOfPages == 0) ||\r
1281 (NumberOfPages > RShiftU64 (MaxAddress, EFI_PAGE_SHIFT))) {\r
1282 return EFI_NOT_FOUND;\r
1283 }\r
1284 NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);\r
1285 End = Start + NumberOfBytes - 1;\r
1286\r
1287 if ((Start >= End) ||\r
1288 (Start > MaxAddress) || \r
1289 (End > MaxAddress)) {\r
1290 return EFI_NOT_FOUND;\r
1291 }\r
1292 }\r
1293\r
1294 if (Type == AllocateMaxAddress) {\r
1295 MaxAddress = Start;\r
1296 }\r
1297\r
1298 CoreAcquireMemoryLock ();\r
1299\r
1300 //\r
1301 // If not a specific address, then find an address to allocate\r
1302 //\r
1303 if (Type != AllocateAddress) {\r
1304 Start = FindFreePages (MaxAddress, NumberOfPages, MemoryType, Alignment);\r
1305 if (Start == 0) {\r
1306 Status = EFI_OUT_OF_RESOURCES;\r
1307 goto Done;\r
1308 }\r
1309 }\r
1310\r
1311 //\r
1312 // Convert pages from FreeMemory to the requested type\r
1313 //\r
1314 Status = CoreConvertPages (Start, NumberOfPages, MemoryType);\r
1315\r
1316Done:\r
1317 CoreReleaseMemoryLock ();\r
1318\r
1319 if (!EFI_ERROR (Status)) {\r
1320 *Memory = Start;\r
1321 }\r
1322\r
1323 return Status;\r
1324}\r
1325\r
1326/**\r
1327 Allocates pages from the memory map.\r
1328\r
1329 @param Type The type of allocation to perform\r
1330 @param MemoryType The type of memory to turn the allocated pages\r
1331 into\r
1332 @param NumberOfPages The number of pages to allocate\r
1333 @param Memory A pointer to receive the base allocated memory\r
1334 address\r
1335\r
1336 @return Status. On success, Memory is filled in with the base address allocated\r
1337 @retval EFI_INVALID_PARAMETER Parameters violate checking rules defined in\r
1338 spec.\r
1339 @retval EFI_NOT_FOUND Could not allocate pages match the requirement.\r
1340 @retval EFI_OUT_OF_RESOURCES No enough pages to allocate.\r
1341 @retval EFI_SUCCESS Pages successfully allocated.\r
1342\r
1343**/\r
1344EFI_STATUS\r
1345EFIAPI\r
1346CoreAllocatePages (\r
1347 IN EFI_ALLOCATE_TYPE Type,\r
1348 IN EFI_MEMORY_TYPE MemoryType,\r
1349 IN UINTN NumberOfPages,\r
1350 OUT EFI_PHYSICAL_ADDRESS *Memory\r
1351 )\r
1352{\r
1353 EFI_STATUS Status;\r
1354\r
1355 Status = CoreInternalAllocatePages (Type, MemoryType, NumberOfPages, Memory);\r
1356 if (!EFI_ERROR (Status)) {\r
1357 CoreUpdateProfile (\r
1358 (EFI_PHYSICAL_ADDRESS) (UINTN) RETURN_ADDRESS (0),\r
1359 MemoryProfileActionAllocatePages,\r
1360 MemoryType,\r
1361 EFI_PAGES_TO_SIZE (NumberOfPages),\r
1362 (VOID *) (UINTN) *Memory,\r
1363 NULL\r
1364 );\r
1365 InstallMemoryAttributesTableOnMemoryAllocation (MemoryType);\r
1366 ApplyMemoryProtectionPolicy (EfiConventionalMemory, MemoryType, *Memory,\r
1367 EFI_PAGES_TO_SIZE (NumberOfPages));\r
1368 }\r
1369 return Status;\r
1370}\r
1371\r
1372/**\r
1373 Frees previous allocated pages.\r
1374\r
1375 @param Memory Base address of memory being freed\r
1376 @param NumberOfPages The number of pages to free\r
1377 @param MemoryType Pointer to memory type\r
1378\r
1379 @retval EFI_NOT_FOUND Could not find the entry that covers the range\r
1380 @retval EFI_INVALID_PARAMETER Address not aligned\r
1381 @return EFI_SUCCESS -Pages successfully freed.\r
1382\r
1383**/\r
1384EFI_STATUS\r
1385EFIAPI\r
1386CoreInternalFreePages (\r
1387 IN EFI_PHYSICAL_ADDRESS Memory,\r
1388 IN UINTN NumberOfPages,\r
1389 OUT EFI_MEMORY_TYPE *MemoryType OPTIONAL\r
1390 )\r
1391{\r
1392 EFI_STATUS Status;\r
1393 LIST_ENTRY *Link;\r
1394 MEMORY_MAP *Entry;\r
1395 UINTN Alignment;\r
1396\r
1397 //\r
1398 // Free the range\r
1399 //\r
1400 CoreAcquireMemoryLock ();\r
1401\r
1402 //\r
1403 // Find the entry that the covers the range\r
1404 //\r
1405 Entry = NULL;\r
1406 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
1407 Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
1408 if (Entry->Start <= Memory && Entry->End > Memory) {\r
1409 break;\r
1410 }\r
1411 }\r
1412 if (Link == &gMemoryMap) {\r
1413 Status = EFI_NOT_FOUND;\r
1414 goto Done;\r
1415 }\r
1416\r
1417 Alignment = DEFAULT_PAGE_ALLOCATION_GRANULARITY;\r
1418\r
1419 ASSERT (Entry != NULL);\r
1420 if (Entry->Type == EfiACPIReclaimMemory ||\r
1421 Entry->Type == EfiACPIMemoryNVS ||\r
1422 Entry->Type == EfiRuntimeServicesCode ||\r
1423 Entry->Type == EfiRuntimeServicesData) {\r
1424\r
1425 Alignment = RUNTIME_PAGE_ALLOCATION_GRANULARITY;\r
1426\r
1427 }\r
1428\r
1429 if ((Memory & (Alignment - 1)) != 0) {\r
1430 Status = EFI_INVALID_PARAMETER;\r
1431 goto Done;\r
1432 }\r
1433\r
1434 NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1;\r
1435 NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1);\r
1436\r
1437 if (MemoryType != NULL) {\r
1438 *MemoryType = Entry->Type;\r
1439 }\r
1440\r
1441 Status = CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);\r
1442\r
1443 if (EFI_ERROR (Status)) {\r
1444 goto Done;\r
1445 }\r
1446\r
1447Done:\r
1448 CoreReleaseMemoryLock ();\r
1449 return Status;\r
1450}\r
1451\r
1452/**\r
1453 Frees previous allocated pages.\r
1454\r
1455 @param Memory Base address of memory being freed\r
1456 @param NumberOfPages The number of pages to free\r
1457\r
1458 @retval EFI_NOT_FOUND Could not find the entry that covers the range\r
1459 @retval EFI_INVALID_PARAMETER Address not aligned\r
1460 @return EFI_SUCCESS -Pages successfully freed.\r
1461\r
1462**/\r
1463EFI_STATUS\r
1464EFIAPI\r
1465CoreFreePages (\r
1466 IN EFI_PHYSICAL_ADDRESS Memory,\r
1467 IN UINTN NumberOfPages\r
1468 )\r
1469{\r
1470 EFI_STATUS Status;\r
1471 EFI_MEMORY_TYPE MemoryType;\r
1472\r
1473 Status = CoreInternalFreePages (Memory, NumberOfPages, &MemoryType);\r
1474 if (!EFI_ERROR (Status)) {\r
1475 CoreUpdateProfile (\r
1476 (EFI_PHYSICAL_ADDRESS) (UINTN) RETURN_ADDRESS (0),\r
1477 MemoryProfileActionFreePages,\r
1478 MemoryType,\r
1479 EFI_PAGES_TO_SIZE (NumberOfPages),\r
1480 (VOID *) (UINTN) Memory,\r
1481 NULL\r
1482 );\r
1483 InstallMemoryAttributesTableOnMemoryAllocation (MemoryType);\r
1484 ApplyMemoryProtectionPolicy (MemoryType, EfiConventionalMemory, Memory,\r
1485 EFI_PAGES_TO_SIZE (NumberOfPages));\r
1486 }\r
1487 return Status;\r
1488}\r
1489\r
1490/**\r
1491 This function checks to see if the last memory map descriptor in a memory map\r
1492 can be merged with any of the other memory map descriptors in a memorymap.\r
1493 Memory descriptors may be merged if they are adjacent and have the same type\r
1494 and attributes.\r
1495\r
1496 @param MemoryMap A pointer to the start of the memory map.\r
1497 @param MemoryMapDescriptor A pointer to the last descriptor in MemoryMap.\r
1498 @param DescriptorSize The size, in bytes, of an individual\r
1499 EFI_MEMORY_DESCRIPTOR.\r
1500\r
1501 @return A pointer to the next available descriptor in MemoryMap\r
1502\r
1503**/\r
1504EFI_MEMORY_DESCRIPTOR *\r
1505MergeMemoryMapDescriptor (\r
1506 IN EFI_MEMORY_DESCRIPTOR *MemoryMap,\r
1507 IN EFI_MEMORY_DESCRIPTOR *MemoryMapDescriptor,\r
1508 IN UINTN DescriptorSize\r
1509 )\r
1510{\r
1511 //\r
1512 // Traverse the array of descriptors in MemoryMap\r
1513 //\r
1514 for (; MemoryMap != MemoryMapDescriptor; MemoryMap = NEXT_MEMORY_DESCRIPTOR (MemoryMap, DescriptorSize)) {\r
1515 //\r
1516 // Check to see if the Type fields are identical.\r
1517 //\r
1518 if (MemoryMap->Type != MemoryMapDescriptor->Type) {\r
1519 continue;\r
1520 }\r
1521\r
1522 //\r
1523 // Check to see if the Attribute fields are identical.\r
1524 //\r
1525 if (MemoryMap->Attribute != MemoryMapDescriptor->Attribute) {\r
1526 continue;\r
1527 }\r
1528\r
1529 //\r
1530 // Check to see if MemoryMapDescriptor is immediately above MemoryMap\r
1531 //\r
1532 if (MemoryMap->PhysicalStart + EFI_PAGES_TO_SIZE ((UINTN)MemoryMap->NumberOfPages) == MemoryMapDescriptor->PhysicalStart) { \r
1533 //\r
1534 // Merge MemoryMapDescriptor into MemoryMap\r
1535 //\r
1536 MemoryMap->NumberOfPages += MemoryMapDescriptor->NumberOfPages;\r
1537\r
1538 //\r
1539 // Return MemoryMapDescriptor as the next available slot int he MemoryMap array\r
1540 //\r
1541 return MemoryMapDescriptor;\r
1542 }\r
1543\r
1544 //\r
1545 // Check to see if MemoryMapDescriptor is immediately below MemoryMap\r
1546 //\r
1547 if (MemoryMap->PhysicalStart - EFI_PAGES_TO_SIZE ((UINTN)MemoryMapDescriptor->NumberOfPages) == MemoryMapDescriptor->PhysicalStart) {\r
1548 //\r
1549 // Merge MemoryMapDescriptor into MemoryMap\r
1550 //\r
1551 MemoryMap->PhysicalStart = MemoryMapDescriptor->PhysicalStart;\r
1552 MemoryMap->VirtualStart = MemoryMapDescriptor->VirtualStart;\r
1553 MemoryMap->NumberOfPages += MemoryMapDescriptor->NumberOfPages;\r
1554\r
1555 //\r
1556 // Return MemoryMapDescriptor as the next available slot int he MemoryMap array\r
1557 //\r
1558 return MemoryMapDescriptor;\r
1559 }\r
1560 }\r
1561\r
1562 //\r
1563 // MemoryMapDescrtiptor could not be merged with any descriptors in MemoryMap.\r
1564 //\r
1565 // Return the slot immediately after MemoryMapDescriptor as the next available \r
1566 // slot in the MemoryMap array\r
1567 //\r
1568 return NEXT_MEMORY_DESCRIPTOR (MemoryMapDescriptor, DescriptorSize);\r
1569}\r
1570\r
1571/**\r
1572 This function returns a copy of the current memory map. The map is an array of\r
1573 memory descriptors, each of which describes a contiguous block of memory.\r
1574\r
1575 @param MemoryMapSize A pointer to the size, in bytes, of the\r
1576 MemoryMap buffer. On input, this is the size of\r
1577 the buffer allocated by the caller. On output,\r
1578 it is the size of the buffer returned by the\r
1579 firmware if the buffer was large enough, or the\r
1580 size of the buffer needed to contain the map if\r
1581 the buffer was too small.\r
1582 @param MemoryMap A pointer to the buffer in which firmware places\r
1583 the current memory map.\r
1584 @param MapKey A pointer to the location in which firmware\r
1585 returns the key for the current memory map.\r
1586 @param DescriptorSize A pointer to the location in which firmware\r
1587 returns the size, in bytes, of an individual\r
1588 EFI_MEMORY_DESCRIPTOR.\r
1589 @param DescriptorVersion A pointer to the location in which firmware\r
1590 returns the version number associated with the\r
1591 EFI_MEMORY_DESCRIPTOR.\r
1592\r
1593 @retval EFI_SUCCESS The memory map was returned in the MemoryMap\r
1594 buffer.\r
1595 @retval EFI_BUFFER_TOO_SMALL The MemoryMap buffer was too small. The current\r
1596 buffer size needed to hold the memory map is\r
1597 returned in MemoryMapSize.\r
1598 @retval EFI_INVALID_PARAMETER One of the parameters has an invalid value.\r
1599\r
1600**/\r
1601EFI_STATUS\r
1602EFIAPI\r
1603CoreGetMemoryMap (\r
1604 IN OUT UINTN *MemoryMapSize,\r
1605 IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,\r
1606 OUT UINTN *MapKey,\r
1607 OUT UINTN *DescriptorSize,\r
1608 OUT UINT32 *DescriptorVersion\r
1609 )\r
1610{\r
1611 EFI_STATUS Status;\r
1612 UINTN Size;\r
1613 UINTN BufferSize;\r
1614 UINTN NumberOfEntries;\r
1615 LIST_ENTRY *Link;\r
1616 MEMORY_MAP *Entry;\r
1617 EFI_GCD_MAP_ENTRY *GcdMapEntry;\r
1618 EFI_GCD_MAP_ENTRY MergeGcdMapEntry;\r
1619 EFI_MEMORY_TYPE Type;\r
1620 EFI_MEMORY_DESCRIPTOR *MemoryMapStart;\r
1621\r
1622 //\r
1623 // Make sure the parameters are valid\r
1624 //\r
1625 if (MemoryMapSize == NULL) {\r
1626 return EFI_INVALID_PARAMETER;\r
1627 }\r
1628\r
1629 CoreAcquireGcdMemoryLock ();\r
1630\r
1631 //\r
1632 // Count the number of Reserved and runtime MMIO entries\r
1633 // And, count the number of Persistent entries.\r
1634 //\r
1635 NumberOfEntries = 0;\r
1636 for (Link = mGcdMemorySpaceMap.ForwardLink; Link != &mGcdMemorySpaceMap; Link = Link->ForwardLink) {\r
1637 GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r
1638 if ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypePersistentMemory) || \r
1639 (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) ||\r
1640 ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) &&\r
1641 ((GcdMapEntry->Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME))) {\r
1642 NumberOfEntries ++;\r
1643 }\r
1644 }\r
1645\r
1646 Size = sizeof (EFI_MEMORY_DESCRIPTOR);\r
1647\r
1648 //\r
1649 // Make sure Size != sizeof(EFI_MEMORY_DESCRIPTOR). This will\r
1650 // prevent people from having pointer math bugs in their code.\r
1651 // now you have to use *DescriptorSize to make things work.\r
1652 //\r
1653 Size += sizeof(UINT64) - (Size % sizeof (UINT64));\r
1654\r
1655 if (DescriptorSize != NULL) {\r
1656 *DescriptorSize = Size;\r
1657 }\r
1658\r
1659 if (DescriptorVersion != NULL) {\r
1660 *DescriptorVersion = EFI_MEMORY_DESCRIPTOR_VERSION;\r
1661 }\r
1662\r
1663 CoreAcquireMemoryLock ();\r
1664\r
1665 //\r
1666 // Compute the buffer size needed to fit the entire map\r
1667 //\r
1668 BufferSize = Size * NumberOfEntries;\r
1669 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
1670 BufferSize += Size;\r
1671 }\r
1672\r
1673 if (*MemoryMapSize < BufferSize) {\r
1674 Status = EFI_BUFFER_TOO_SMALL;\r
1675 goto Done;\r
1676 }\r
1677\r
1678 if (MemoryMap == NULL) {\r
1679 Status = EFI_INVALID_PARAMETER;\r
1680 goto Done;\r
1681 }\r
1682\r
1683 //\r
1684 // Build the map\r
1685 //\r
1686 ZeroMem (MemoryMap, BufferSize);\r
1687 MemoryMapStart = MemoryMap;\r
1688 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
1689 Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
1690 ASSERT (Entry->VirtualStart == 0);\r
1691\r
1692 //\r
1693 // Convert internal map into an EFI_MEMORY_DESCRIPTOR\r
1694 //\r
1695 MemoryMap->Type = Entry->Type;\r
1696 MemoryMap->PhysicalStart = Entry->Start;\r
1697 MemoryMap->VirtualStart = Entry->VirtualStart;\r
1698 MemoryMap->NumberOfPages = RShiftU64 (Entry->End - Entry->Start + 1, EFI_PAGE_SHIFT);\r
1699 //\r
1700 // If the memory type is EfiConventionalMemory, then determine if the range is part of a\r
1701 // memory type bin and needs to be converted to the same memory type as the rest of the\r
1702 // memory type bin in order to minimize EFI Memory Map changes across reboots. This\r
1703 // improves the chances for a successful S4 resume in the presence of minor page allocation\r
1704 // differences across reboots.\r
1705 //\r
1706 if (MemoryMap->Type == EfiConventionalMemory) {\r
1707 for (Type = (EFI_MEMORY_TYPE) 0; Type < EfiMaxMemoryType; Type++) {\r
1708 if (mMemoryTypeStatistics[Type].Special &&\r
1709 mMemoryTypeStatistics[Type].NumberOfPages > 0 &&\r
1710 Entry->Start >= mMemoryTypeStatistics[Type].BaseAddress &&\r
1711 Entry->End <= mMemoryTypeStatistics[Type].MaximumAddress) {\r
1712 MemoryMap->Type = Type;\r
1713 }\r
1714 }\r
1715 }\r
1716 MemoryMap->Attribute = Entry->Attribute;\r
1717 if (MemoryMap->Type < EfiMaxMemoryType) {\r
1718 if (mMemoryTypeStatistics[MemoryMap->Type].Runtime) {\r
1719 MemoryMap->Attribute |= EFI_MEMORY_RUNTIME;\r
1720 }\r
1721 }\r
1722\r
1723 //\r
1724 // Check to see if the new Memory Map Descriptor can be merged with an \r
1725 // existing descriptor if they are adjacent and have the same attributes\r
1726 //\r
1727 MemoryMap = MergeMemoryMapDescriptor (MemoryMapStart, MemoryMap, Size);\r
1728 }\r
1729\r
1730 \r
1731 ZeroMem (&MergeGcdMapEntry, sizeof (MergeGcdMapEntry));\r
1732 GcdMapEntry = NULL;\r
1733 for (Link = mGcdMemorySpaceMap.ForwardLink; ; Link = Link->ForwardLink) {\r
1734 if (Link != &mGcdMemorySpaceMap) {\r
1735 //\r
1736 // Merge adjacent same type and attribute GCD memory range\r
1737 //\r
1738 GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r
1739 \r
1740 if ((MergeGcdMapEntry.Capabilities == GcdMapEntry->Capabilities) && \r
1741 (MergeGcdMapEntry.Attributes == GcdMapEntry->Attributes) &&\r
1742 (MergeGcdMapEntry.GcdMemoryType == GcdMapEntry->GcdMemoryType) &&\r
1743 (MergeGcdMapEntry.GcdIoType == GcdMapEntry->GcdIoType)) {\r
1744 MergeGcdMapEntry.EndAddress = GcdMapEntry->EndAddress;\r
1745 continue;\r
1746 }\r
1747 }\r
1748\r
1749 if ((MergeGcdMapEntry.GcdMemoryType == EfiGcdMemoryTypeReserved) ||\r
1750 ((MergeGcdMapEntry.GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) &&\r
1751 ((MergeGcdMapEntry.Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME))) {\r
1752 //\r
1753 // Page Align GCD range is required. When it is converted to EFI_MEMORY_DESCRIPTOR, \r
1754 // it will be recorded as page PhysicalStart and NumberOfPages. \r
1755 //\r
1756 ASSERT ((MergeGcdMapEntry.BaseAddress & EFI_PAGE_MASK) == 0);\r
1757 ASSERT (((MergeGcdMapEntry.EndAddress - MergeGcdMapEntry.BaseAddress + 1) & EFI_PAGE_MASK) == 0);\r
1758 \r
1759 // \r
1760 // Create EFI_MEMORY_DESCRIPTOR for every Reserved and runtime MMIO GCD entries\r
1761 //\r
1762 MemoryMap->PhysicalStart = MergeGcdMapEntry.BaseAddress;\r
1763 MemoryMap->VirtualStart = 0;\r
1764 MemoryMap->NumberOfPages = RShiftU64 ((MergeGcdMapEntry.EndAddress - MergeGcdMapEntry.BaseAddress + 1), EFI_PAGE_SHIFT);\r
1765 MemoryMap->Attribute = (MergeGcdMapEntry.Attributes & ~EFI_MEMORY_PORT_IO) | \r
1766 (MergeGcdMapEntry.Capabilities & (EFI_MEMORY_RP | EFI_MEMORY_WP | EFI_MEMORY_XP | EFI_MEMORY_RO |\r
1767 EFI_MEMORY_UC | EFI_MEMORY_UCE | EFI_MEMORY_WC | EFI_MEMORY_WT | EFI_MEMORY_WB));\r
1768\r
1769 if (MergeGcdMapEntry.GcdMemoryType == EfiGcdMemoryTypeReserved) {\r
1770 MemoryMap->Type = EfiReservedMemoryType;\r
1771 } else if (MergeGcdMapEntry.GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) {\r
1772 if ((MergeGcdMapEntry.Attributes & EFI_MEMORY_PORT_IO) == EFI_MEMORY_PORT_IO) {\r
1773 MemoryMap->Type = EfiMemoryMappedIOPortSpace;\r
1774 } else {\r
1775 MemoryMap->Type = EfiMemoryMappedIO;\r
1776 }\r
1777 }\r
1778\r
1779 //\r
1780 // Check to see if the new Memory Map Descriptor can be merged with an \r
1781 // existing descriptor if they are adjacent and have the same attributes\r
1782 //\r
1783 MemoryMap = MergeMemoryMapDescriptor (MemoryMapStart, MemoryMap, Size);\r
1784 }\r
1785 \r
1786 if (MergeGcdMapEntry.GcdMemoryType == EfiGcdMemoryTypePersistentMemory) {\r
1787 //\r
1788 // Page Align GCD range is required. When it is converted to EFI_MEMORY_DESCRIPTOR, \r
1789 // it will be recorded as page PhysicalStart and NumberOfPages. \r
1790 //\r
1791 ASSERT ((MergeGcdMapEntry.BaseAddress & EFI_PAGE_MASK) == 0);\r
1792 ASSERT (((MergeGcdMapEntry.EndAddress - MergeGcdMapEntry.BaseAddress + 1) & EFI_PAGE_MASK) == 0);\r
1793\r
1794 // \r
1795 // Create EFI_MEMORY_DESCRIPTOR for every Persistent GCD entries\r
1796 //\r
1797 MemoryMap->PhysicalStart = MergeGcdMapEntry.BaseAddress;\r
1798 MemoryMap->VirtualStart = 0;\r
1799 MemoryMap->NumberOfPages = RShiftU64 ((MergeGcdMapEntry.EndAddress - MergeGcdMapEntry.BaseAddress + 1), EFI_PAGE_SHIFT);\r
1800 MemoryMap->Attribute = MergeGcdMapEntry.Attributes | EFI_MEMORY_NV | \r
1801 (MergeGcdMapEntry.Capabilities & (EFI_MEMORY_RP | EFI_MEMORY_WP | EFI_MEMORY_XP | EFI_MEMORY_RO |\r
1802 EFI_MEMORY_UC | EFI_MEMORY_UCE | EFI_MEMORY_WC | EFI_MEMORY_WT | EFI_MEMORY_WB));\r
1803 MemoryMap->Type = EfiPersistentMemory;\r
1804 \r
1805 //\r
1806 // Check to see if the new Memory Map Descriptor can be merged with an \r
1807 // existing descriptor if they are adjacent and have the same attributes\r
1808 //\r
1809 MemoryMap = MergeMemoryMapDescriptor (MemoryMapStart, MemoryMap, Size);\r
1810 }\r
1811 if (Link == &mGcdMemorySpaceMap) {\r
1812 //\r
1813 // break loop when arrive at head.\r
1814 //\r
1815 break;\r
1816 }\r
1817 if (GcdMapEntry != NULL) {\r
1818 //\r
1819 // Copy new GCD map entry for the following GCD range merge\r
1820 //\r
1821 CopyMem (&MergeGcdMapEntry, GcdMapEntry, sizeof (MergeGcdMapEntry));\r
1822 }\r
1823 }\r
1824\r
1825 //\r
1826 // Compute the size of the buffer actually used after all memory map descriptor merge operations\r
1827 //\r
1828 BufferSize = ((UINT8 *)MemoryMap - (UINT8 *)MemoryMapStart);\r
1829\r
1830 Status = EFI_SUCCESS;\r
1831\r
1832Done:\r
1833 //\r
1834 // Update the map key finally\r
1835 //\r
1836 if (MapKey != NULL) {\r
1837 *MapKey = mMemoryMapKey;\r
1838 }\r
1839\r
1840 CoreReleaseMemoryLock ();\r
1841\r
1842 CoreReleaseGcdMemoryLock ();\r
1843\r
1844 *MemoryMapSize = BufferSize;\r
1845\r
1846 return Status;\r
1847}\r
1848\r
1849\r
1850/**\r
1851 Internal function. Used by the pool functions to allocate pages\r
1852 to back pool allocation requests.\r
1853\r
1854 @param PoolType The type of memory for the new pool pages\r
1855 @param NumberOfPages No of pages to allocate\r
1856 @param Alignment Bits to align.\r
1857\r
1858 @return The allocated memory, or NULL\r
1859\r
1860**/\r
1861VOID *\r
1862CoreAllocatePoolPages (\r
1863 IN EFI_MEMORY_TYPE PoolType,\r
1864 IN UINTN NumberOfPages,\r
1865 IN UINTN Alignment\r
1866 )\r
1867{\r
1868 UINT64 Start;\r
1869\r
1870 //\r
1871 // Find the pages to convert\r
1872 //\r
1873 Start = FindFreePages (MAX_ADDRESS, NumberOfPages, PoolType, Alignment);\r
1874\r
1875 //\r
1876 // Convert it to boot services data\r
1877 //\r
1878 if (Start == 0) {\r
1879 DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "AllocatePoolPages: failed to allocate %d pages\n", (UINT32)NumberOfPages));\r
1880 } else {\r
1881 CoreConvertPages (Start, NumberOfPages, PoolType);\r
1882 }\r
1883\r
1884 return (VOID *)(UINTN) Start;\r
1885}\r
1886\r
1887\r
1888/**\r
1889 Internal function. Frees pool pages allocated via AllocatePoolPages ()\r
1890\r
1891 @param Memory The base address to free\r
1892 @param NumberOfPages The number of pages to free\r
1893\r
1894**/\r
1895VOID\r
1896CoreFreePoolPages (\r
1897 IN EFI_PHYSICAL_ADDRESS Memory,\r
1898 IN UINTN NumberOfPages\r
1899 )\r
1900{\r
1901 CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);\r
1902}\r
1903\r
1904\r
1905\r
1906/**\r
1907 Make sure the memory map is following all the construction rules,\r
1908 it is the last time to check memory map error before exit boot services.\r
1909\r
1910 @param MapKey Memory map key\r
1911\r
1912 @retval EFI_INVALID_PARAMETER Memory map not consistent with construction\r
1913 rules.\r
1914 @retval EFI_SUCCESS Valid memory map.\r
1915\r
1916**/\r
1917EFI_STATUS\r
1918CoreTerminateMemoryMap (\r
1919 IN UINTN MapKey\r
1920 )\r
1921{\r
1922 EFI_STATUS Status;\r
1923 LIST_ENTRY *Link;\r
1924 MEMORY_MAP *Entry;\r
1925\r
1926 Status = EFI_SUCCESS;\r
1927\r
1928 CoreAcquireMemoryLock ();\r
1929\r
1930 if (MapKey == mMemoryMapKey) {\r
1931\r
1932 //\r
1933 // Make sure the memory map is following all the construction rules\r
1934 // This is the last chance we will be able to display any messages on\r
1935 // the console devices.\r
1936 //\r
1937\r
1938 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
1939 Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
1940 if (Entry->Type < EfiMaxMemoryType) {\r
1941 if (mMemoryTypeStatistics[Entry->Type].Runtime) {\r
1942 ASSERT (Entry->Type != EfiACPIReclaimMemory);\r
1943 ASSERT (Entry->Type != EfiACPIMemoryNVS);\r
1944 if ((Entry->Start & (RUNTIME_PAGE_ALLOCATION_GRANULARITY - 1)) != 0) {\r
1945 DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n"));\r
1946 Status = EFI_INVALID_PARAMETER;\r
1947 goto Done;\r
1948 }\r
1949 if (((Entry->End + 1) & (RUNTIME_PAGE_ALLOCATION_GRANULARITY - 1)) != 0) {\r
1950 DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n"));\r
1951 Status = EFI_INVALID_PARAMETER;\r
1952 goto Done;\r
1953 }\r
1954 }\r
1955 }\r
1956 }\r
1957\r
1958 //\r
1959 // The map key they gave us matches what we expect. Fall through and\r
1960 // return success. In an ideal world we would clear out all of\r
1961 // EfiBootServicesCode and EfiBootServicesData. However this function\r
1962 // is not the last one called by ExitBootServices(), so we have to\r
1963 // preserve the memory contents.\r
1964 //\r
1965 } else {\r
1966 Status = EFI_INVALID_PARAMETER;\r
1967 }\r
1968\r
1969Done:\r
1970 CoreReleaseMemoryLock ();\r
1971\r
1972 return Status;\r
1973}\r
1974\r
1975\r
1976\r
1977\r
1978\r
1979\r
1980\r
1981\r
1982\r