]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - MdeModulePkg/Core/Dxe/Mem/Page.c
GenFds fix two UI sections error.
[mirror_edk2.git] / MdeModulePkg / Core / Dxe / Mem / Page.c
... / ...
CommitLineData
1/** @file\r
2 UEFI Memory page management functions.\r
3\r
4Copyright (c) 2007 - 2008, Intel Corporation. <BR>\r
5All rights reserved. This program and the accompanying materials\r
6are licensed and made available under the terms and conditions of the BSD License\r
7which accompanies this distribution. The full text of the license may be found at\r
8http://opensource.org/licenses/bsd-license.php\r
9\r
10THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13**/\r
14\r
15#include "DxeMain.h"\r
16#include "Imem.h"\r
17\r
18#define EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT (EFI_PAGE_SIZE)\r
19\r
20//\r
21// Entry for tracking the memory regions for each memory type to coalesce similar memory types\r
22//\r
23typedef struct {\r
24 EFI_PHYSICAL_ADDRESS BaseAddress;\r
25 EFI_PHYSICAL_ADDRESS MaximumAddress;\r
26 UINT64 CurrentNumberOfPages;\r
27 UINT64 NumberOfPages;\r
28 UINTN InformationIndex;\r
29 BOOLEAN Special;\r
30 BOOLEAN Runtime;\r
31} EFI_MEMORY_TYPE_STAISTICS;\r
32\r
33//\r
34// MemoryMap - The current memory map\r
35//\r
36UINTN mMemoryMapKey = 0;\r
37\r
38//\r
39// mMapStack - space to use as temp storage to build new map descriptors\r
40// mMapDepth - depth of new descriptor stack\r
41//\r
42\r
43#define MAX_MAP_DEPTH 6\r
44UINTN mMapDepth = 0;\r
45MEMORY_MAP mMapStack[MAX_MAP_DEPTH];\r
46UINTN mFreeMapStack = 0;\r
47//\r
48// This list maintain the free memory map list\r
49//\r
50LIST_ENTRY mFreeMemoryMapEntryList = INITIALIZE_LIST_HEAD_VARIABLE (mFreeMemoryMapEntryList);\r
51BOOLEAN mMemoryTypeInformationInitialized = FALSE;\r
52\r
53EFI_MEMORY_TYPE_STAISTICS mMemoryTypeStatistics[EfiMaxMemoryType + 1] = {\r
54 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiReservedMemoryType\r
55 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiLoaderCode\r
56 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiLoaderData\r
57 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiBootServicesCode\r
58 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiBootServicesData\r
59 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiRuntimeServicesCode\r
60 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiRuntimeServicesData\r
61 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiConventionalMemory\r
62 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiUnusableMemory\r
63 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiACPIReclaimMemory\r
64 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiACPIMemoryNVS\r
65 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiMemoryMappedIO\r
66 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiMemoryMappedIOPortSpace\r
67 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiPalCode\r
68 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE } // EfiMaxMemoryType\r
69};\r
70\r
71EFI_PHYSICAL_ADDRESS mDefaultMaximumAddress = EFI_MAX_ADDRESS;\r
72\r
73EFI_MEMORY_TYPE_INFORMATION gMemoryTypeInformation[EfiMaxMemoryType + 1] = {\r
74 { EfiReservedMemoryType, 0 },\r
75 { EfiLoaderCode, 0 },\r
76 { EfiLoaderData, 0 },\r
77 { EfiBootServicesCode, 0 },\r
78 { EfiBootServicesData, 0 },\r
79 { EfiRuntimeServicesCode, 0 },\r
80 { EfiRuntimeServicesData, 0 },\r
81 { EfiConventionalMemory, 0 },\r
82 { EfiUnusableMemory, 0 },\r
83 { EfiACPIReclaimMemory, 0 },\r
84 { EfiACPIMemoryNVS, 0 },\r
85 { EfiMemoryMappedIO, 0 },\r
86 { EfiMemoryMappedIOPortSpace, 0 },\r
87 { EfiPalCode, 0 },\r
88 { EfiMaxMemoryType, 0 }\r
89};\r
90\r
91\r
92/**\r
93 Enter critical section by gaining lock on gMemoryLock.\r
94\r
95**/\r
96VOID\r
97CoreAcquireMemoryLock (\r
98 VOID\r
99 )\r
100{\r
101 CoreAcquireLock (&gMemoryLock);\r
102}\r
103\r
104\r
105\r
106/**\r
107 Exit critical section by releasing lock on gMemoryLock.\r
108\r
109**/\r
110VOID\r
111CoreReleaseMemoryLock (\r
112 VOID\r
113 )\r
114{\r
115 CoreReleaseLock (&gMemoryLock);\r
116}\r
117\r
118\r
119\r
120\r
121/**\r
122 Internal function. Removes a descriptor entry.\r
123\r
124 @param Entry The entry to remove\r
125\r
126**/\r
127VOID\r
128RemoveMemoryMapEntry (\r
129 IN OUT MEMORY_MAP *Entry\r
130 )\r
131{\r
132 RemoveEntryList (&Entry->Link);\r
133 Entry->Link.ForwardLink = NULL;\r
134\r
135 if (Entry->FromPages) {\r
136 //\r
137 // Insert the free memory map descriptor to the end of mFreeMemoryMapEntryList\r
138 //\r
139 InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);\r
140 }\r
141}\r
142\r
143/**\r
144 Internal function. Adds a ranges to the memory map.\r
145 The range must not already exist in the map.\r
146\r
147 @param Type The type of memory range to add\r
148 @param Start The starting address in the memory range Must be\r
149 paged aligned\r
150 @param End The last address in the range Must be the last\r
151 byte of a page\r
152 @param Attribute The attributes of the memory range to add\r
153\r
154**/\r
155VOID\r
156CoreAddRange (\r
157 IN EFI_MEMORY_TYPE Type,\r
158 IN EFI_PHYSICAL_ADDRESS Start,\r
159 IN EFI_PHYSICAL_ADDRESS End,\r
160 IN UINT64 Attribute\r
161 )\r
162{\r
163 LIST_ENTRY *Link;\r
164 MEMORY_MAP *Entry;\r
165\r
166 ASSERT ((Start & EFI_PAGE_MASK) == 0);\r
167 ASSERT (End > Start) ;\r
168\r
169 ASSERT_LOCKED (&gMemoryLock);\r
170\r
171 DEBUG ((DEBUG_PAGE, "AddRange: %lx-%lx to %d\n", Start, End, Type));\r
172\r
173 //\r
174 // Memory map being altered so updated key\r
175 //\r
176 mMemoryMapKey += 1;\r
177\r
178 //\r
179 // UEFI 2.0 added an event group for notificaiton on memory map changes.\r
180 // So we need to signal this Event Group every time the memory map changes.\r
181 // If we are in EFI 1.10 compatability mode no event groups will be\r
182 // found and nothing will happen we we call this function. These events\r
183 // will get signaled but since a lock is held around the call to this\r
184 // function the notificaiton events will only be called after this funciton\r
185 // returns and the lock is released.\r
186 //\r
187 CoreNotifySignalList (&gEfiEventMemoryMapChangeGuid);\r
188\r
189 //\r
190 // Look for adjoining memory descriptor\r
191 //\r
192\r
193 // Two memory descriptors can only be merged if they have the same Type\r
194 // and the same Attribute\r
195 //\r
196\r
197 Link = gMemoryMap.ForwardLink;\r
198 while (Link != &gMemoryMap) {\r
199 Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
200 Link = Link->ForwardLink;\r
201\r
202 if (Entry->Type != Type) {\r
203 continue;\r
204 }\r
205\r
206 if (Entry->Attribute != Attribute) {\r
207 continue;\r
208 }\r
209\r
210 if (Entry->End + 1 == Start) {\r
211\r
212 Start = Entry->Start;\r
213 RemoveMemoryMapEntry (Entry);\r
214\r
215 } else if (Entry->Start == End + 1) {\r
216\r
217 End = Entry->End;\r
218 RemoveMemoryMapEntry (Entry);\r
219 }\r
220 }\r
221\r
222 //\r
223 // Add descriptor\r
224 //\r
225\r
226 mMapStack[mMapDepth].Signature = MEMORY_MAP_SIGNATURE;\r
227 mMapStack[mMapDepth].FromPages = FALSE;\r
228 mMapStack[mMapDepth].Type = Type;\r
229 mMapStack[mMapDepth].Start = Start;\r
230 mMapStack[mMapDepth].End = End;\r
231 mMapStack[mMapDepth].VirtualStart = 0;\r
232 mMapStack[mMapDepth].Attribute = Attribute;\r
233 InsertTailList (&gMemoryMap, &mMapStack[mMapDepth].Link);\r
234\r
235 mMapDepth += 1;\r
236 ASSERT (mMapDepth < MAX_MAP_DEPTH);\r
237\r
238 return ;\r
239}\r
240\r
241/**\r
242 Internal function. Deque a descriptor entry from the mFreeMemoryMapEntryList.\r
243 If the list is emtry, then allocate a new page to refuel the list.\r
244 Please Note this algorithm to allocate the memory map descriptor has a property\r
245 that the memory allocated for memory entries always grows, and will never really be freed\r
246 For example, if the current boot uses 2000 memory map entries at the maximum point, but\r
247 ends up with only 50 at the time the OS is booted, then the memory associated with the 1950\r
248 memory map entries is still allocated from EfiBootServicesMemory.\r
249\r
250\r
251 @return The Memory map descriptor dequed from the mFreeMemoryMapEntryList\r
252\r
253**/\r
254MEMORY_MAP *\r
255AllocateMemoryMapEntry (\r
256 VOID\r
257 )\r
258{\r
259 MEMORY_MAP* FreeDescriptorEntries;\r
260 MEMORY_MAP* Entry;\r
261 UINTN Index;\r
262\r
263 if (IsListEmpty (&mFreeMemoryMapEntryList)) {\r
264 //\r
265 // The list is empty, to allocate one page to refuel the list\r
266 //\r
267 FreeDescriptorEntries = CoreAllocatePoolPages (EfiBootServicesData, EFI_SIZE_TO_PAGES(DEFAULT_PAGE_ALLOCATION), DEFAULT_PAGE_ALLOCATION);\r
268 if(FreeDescriptorEntries != NULL) {\r
269 //\r
270 // Enque the free memmory map entries into the list\r
271 //\r
272 for (Index = 0; Index< DEFAULT_PAGE_ALLOCATION / sizeof(MEMORY_MAP); Index++) {\r
273 FreeDescriptorEntries[Index].Signature = MEMORY_MAP_SIGNATURE;\r
274 InsertTailList (&mFreeMemoryMapEntryList, &FreeDescriptorEntries[Index].Link);\r
275 }\r
276 } else {\r
277 return NULL;\r
278 }\r
279 }\r
280 //\r
281 // dequeue the first descriptor from the list\r
282 //\r
283 Entry = CR (mFreeMemoryMapEntryList.ForwardLink, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
284 RemoveEntryList (&Entry->Link);\r
285\r
286 return Entry;\r
287}\r
288\r
289\r
290/**\r
291 Internal function. Moves any memory descriptors that are on the\r
292 temporary descriptor stack to heap.\r
293\r
294**/\r
295VOID\r
296CoreFreeMemoryMapStack (\r
297 VOID\r
298 )\r
299{\r
300 MEMORY_MAP *Entry;\r
301 MEMORY_MAP *Entry2;\r
302 LIST_ENTRY *Link2;\r
303\r
304 ASSERT_LOCKED (&gMemoryLock);\r
305\r
306 //\r
307 // If already freeing the map stack, then return\r
308 //\r
309 if (mFreeMapStack != 0) {\r
310 return ;\r
311 }\r
312\r
313 //\r
314 // Move the temporary memory descriptor stack into pool\r
315 //\r
316 mFreeMapStack += 1;\r
317\r
318 while (mMapDepth != 0) {\r
319 //\r
320 // Deque an memory map entry from mFreeMemoryMapEntryList\r
321 //\r
322 Entry = AllocateMemoryMapEntry ();\r
323\r
324 ASSERT (Entry);\r
325\r
326 //\r
327 // Update to proper entry\r
328 //\r
329 mMapDepth -= 1;\r
330\r
331 if (mMapStack[mMapDepth].Link.ForwardLink != NULL) {\r
332\r
333 //\r
334 // Move this entry to general memory\r
335 //\r
336 RemoveEntryList (&mMapStack[mMapDepth].Link);\r
337 mMapStack[mMapDepth].Link.ForwardLink = NULL;\r
338\r
339 CopyMem (Entry , &mMapStack[mMapDepth], sizeof (MEMORY_MAP));\r
340 Entry->FromPages = TRUE;\r
341\r
342 //\r
343 // Find insertion location\r
344 //\r
345 for (Link2 = gMemoryMap.ForwardLink; Link2 != &gMemoryMap; Link2 = Link2->ForwardLink) {\r
346 Entry2 = CR (Link2, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
347 if (Entry2->FromPages && Entry2->Start > Entry->Start) {\r
348 break;\r
349 }\r
350 }\r
351\r
352 InsertTailList (Link2, &Entry->Link);\r
353\r
354 } else {\r
355 //\r
356 // This item of mMapStack[mMapDepth] has already been dequeued from gMemoryMap list,\r
357 // so here no need to move it to memory.\r
358 //\r
359 InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);\r
360 }\r
361 }\r
362\r
363 mFreeMapStack -= 1;\r
364}\r
365\r
366/**\r
367 Find untested but initialized memory regions in GCD map and convert them to be DXE allocatable.\r
368\r
369**/\r
370VOID\r
371PromoteMemoryResource (\r
372 VOID\r
373 )\r
374{\r
375 LIST_ENTRY *Link;\r
376 EFI_GCD_MAP_ENTRY *Entry;\r
377\r
378 DEBUG ((DEBUG_PAGE, "Promote the memory resource\n"));\r
379\r
380 CoreAcquireGcdMemoryLock ();\r
381\r
382 Link = mGcdMemorySpaceMap.ForwardLink;\r
383 while (Link != &mGcdMemorySpaceMap) {\r
384\r
385 Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r
386\r
387 if (Entry->GcdMemoryType == EfiGcdMemoryTypeReserved &&\r
388 Entry->EndAddress < EFI_MAX_ADDRESS &&\r
389 (Entry->Capabilities & (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED)) ==\r
390 (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED)) {\r
391 //\r
392 // Update the GCD map\r
393 //\r
394 Entry->GcdMemoryType = EfiGcdMemoryTypeSystemMemory;\r
395 Entry->Capabilities |= EFI_MEMORY_TESTED;\r
396 Entry->ImageHandle = gDxeCoreImageHandle;\r
397 Entry->DeviceHandle = NULL;\r
398\r
399 //\r
400 // Add to allocable system memory resource\r
401 //\r
402\r
403 CoreAddRange (\r
404 EfiConventionalMemory,\r
405 Entry->BaseAddress,\r
406 Entry->EndAddress,\r
407 Entry->Capabilities & ~(EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED | EFI_MEMORY_RUNTIME)\r
408 );\r
409 CoreFreeMemoryMapStack ();\r
410\r
411 }\r
412\r
413 Link = Link->ForwardLink;\r
414 }\r
415\r
416 CoreReleaseGcdMemoryLock ();\r
417\r
418 return;\r
419}\r
420\r
421\r
422/**\r
423 Called to initialize the memory map and add descriptors to\r
424 the current descriptor list.\r
425 The first descriptor that is added must be general usable\r
426 memory as the addition allocates heap.\r
427\r
428 @param Type The type of memory to add\r
429 @param Start The starting address in the memory range Must be\r
430 page aligned\r
431 @param NumberOfPages The number of pages in the range\r
432 @param Attribute Attributes of the memory to add\r
433\r
434 @return None. The range is added to the memory map\r
435\r
436**/\r
437VOID\r
438CoreAddMemoryDescriptor (\r
439 IN EFI_MEMORY_TYPE Type,\r
440 IN EFI_PHYSICAL_ADDRESS Start,\r
441 IN UINT64 NumberOfPages,\r
442 IN UINT64 Attribute\r
443 )\r
444{\r
445 EFI_PHYSICAL_ADDRESS End;\r
446 EFI_STATUS Status;\r
447 UINTN Index;\r
448 UINTN FreeIndex;\r
449\r
450 if ((Start & EFI_PAGE_MASK) != 0) {\r
451 return;\r
452 }\r
453\r
454 if (Type >= EfiMaxMemoryType && Type <= 0x7fffffff) {\r
455 return;\r
456 }\r
457\r
458 CoreAcquireMemoryLock ();\r
459 End = Start + LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT) - 1;\r
460 CoreAddRange (Type, Start, End, Attribute);\r
461 CoreFreeMemoryMapStack ();\r
462 CoreReleaseMemoryLock ();\r
463\r
464 //\r
465 // Check to see if the statistics for the different memory types have already been established\r
466 //\r
467 if (mMemoryTypeInformationInitialized) {\r
468 return;\r
469 }\r
470\r
471 //\r
472 // Loop through each memory type in the order specified by the gMemoryTypeInformation[] array\r
473 //\r
474 for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r
475 //\r
476 // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r
477 //\r
478 Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[Index].Type);\r
479 if (Type < 0 || Type > EfiMaxMemoryType) {\r
480 continue;\r
481 }\r
482\r
483 if (gMemoryTypeInformation[Index].NumberOfPages != 0) {\r
484 //\r
485 // Allocate pages for the current memory type from the top of available memory\r
486 //\r
487 Status = CoreAllocatePages (\r
488 AllocateAnyPages,\r
489 Type,\r
490 gMemoryTypeInformation[Index].NumberOfPages,\r
491 &mMemoryTypeStatistics[Type].BaseAddress\r
492 );\r
493 if (EFI_ERROR (Status)) {\r
494 //\r
495 // If an error occurs allocating the pages for the current memory type, then\r
496 // free all the pages allocates for the previous memory types and return. This\r
497 // operation with be retied when/if more memory is added to the system\r
498 //\r
499 for (FreeIndex = 0; FreeIndex < Index; FreeIndex++) {\r
500 //\r
501 // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r
502 //\r
503 Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[FreeIndex].Type);\r
504 if (Type < 0 || Type > EfiMaxMemoryType) {\r
505 continue;\r
506 }\r
507\r
508 if (gMemoryTypeInformation[FreeIndex].NumberOfPages != 0) {\r
509 CoreFreePages (\r
510 mMemoryTypeStatistics[Type].BaseAddress,\r
511 gMemoryTypeInformation[FreeIndex].NumberOfPages\r
512 );\r
513 mMemoryTypeStatistics[Type].BaseAddress = 0;\r
514 mMemoryTypeStatistics[Type].MaximumAddress = EFI_MAX_ADDRESS;\r
515 }\r
516 }\r
517 return;\r
518 }\r
519\r
520 //\r
521 // Compute the address at the top of the current statistics\r
522 //\r
523 mMemoryTypeStatistics[Type].MaximumAddress =\r
524 mMemoryTypeStatistics[Type].BaseAddress +\r
525 LShiftU64 (gMemoryTypeInformation[Index].NumberOfPages, EFI_PAGE_SHIFT) - 1;\r
526\r
527 //\r
528 // If the current base address is the lowest address so far, then update the default\r
529 // maximum address\r
530 //\r
531 if (mMemoryTypeStatistics[Type].BaseAddress < mDefaultMaximumAddress) {\r
532 mDefaultMaximumAddress = mMemoryTypeStatistics[Type].BaseAddress - 1;\r
533 }\r
534 }\r
535 }\r
536\r
537 //\r
538 // There was enough system memory for all the the memory types were allocated. So,\r
539 // those memory areas can be freed for future allocations, and all future memory\r
540 // allocations can occur within their respective bins\r
541 //\r
542 for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r
543 //\r
544 // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r
545 //\r
546 Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[Index].Type);\r
547 if (Type < 0 || Type > EfiMaxMemoryType) {\r
548 continue;\r
549 }\r
550\r
551 if (gMemoryTypeInformation[Index].NumberOfPages != 0) {\r
552 CoreFreePages (\r
553 mMemoryTypeStatistics[Type].BaseAddress,\r
554 gMemoryTypeInformation[Index].NumberOfPages\r
555 );\r
556 mMemoryTypeStatistics[Type].NumberOfPages = gMemoryTypeInformation[Index].NumberOfPages;\r
557 gMemoryTypeInformation[Index].NumberOfPages = 0;\r
558 }\r
559 }\r
560\r
561 //\r
562 // If the number of pages reserved for a memory type is 0, then all allocations for that type\r
563 // should be in the default range.\r
564 //\r
565 for (Type = (EFI_MEMORY_TYPE) 0; Type < EfiMaxMemoryType; Type++) {\r
566 for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r
567 if (Type == (EFI_MEMORY_TYPE)gMemoryTypeInformation[Index].Type) {\r
568 mMemoryTypeStatistics[Type].InformationIndex = Index;\r
569 }\r
570 }\r
571 mMemoryTypeStatistics[Type].CurrentNumberOfPages = 0;\r
572 if (mMemoryTypeStatistics[Type].MaximumAddress == EFI_MAX_ADDRESS) {\r
573 mMemoryTypeStatistics[Type].MaximumAddress = mDefaultMaximumAddress;\r
574 }\r
575 }\r
576\r
577 mMemoryTypeInformationInitialized = TRUE;\r
578}\r
579\r
580\r
581/**\r
582 Internal function. Converts a memory range to the specified type.\r
583 The range must exist in the memory map.\r
584\r
585 @param Start The first address of the range Must be page\r
586 aligned\r
587 @param NumberOfPages The number of pages to convert\r
588 @param NewType The new type for the memory range\r
589\r
590 @retval EFI_INVALID_PARAMETER Invalid parameter\r
591 @retval EFI_NOT_FOUND Could not find a descriptor cover the specified\r
592 range or convertion not allowed.\r
593 @retval EFI_SUCCESS Successfully converts the memory range to the\r
594 specified type.\r
595\r
596**/\r
597EFI_STATUS\r
598CoreConvertPages (\r
599 IN UINT64 Start,\r
600 IN UINT64 NumberOfPages,\r
601 IN EFI_MEMORY_TYPE NewType\r
602 )\r
603{\r
604\r
605 UINT64 NumberOfBytes;\r
606 UINT64 End;\r
607 UINT64 RangeEnd;\r
608 UINT64 Attribute;\r
609 LIST_ENTRY *Link;\r
610 MEMORY_MAP *Entry;\r
611\r
612 Entry = NULL;\r
613 NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);\r
614 End = Start + NumberOfBytes - 1;\r
615\r
616 ASSERT (NumberOfPages);\r
617 ASSERT ((Start & EFI_PAGE_MASK) == 0);\r
618 ASSERT (End > Start) ;\r
619 ASSERT_LOCKED (&gMemoryLock);\r
620\r
621 if (NumberOfPages == 0 || ((Start & EFI_PAGE_MASK) != 0) || (Start > (Start + NumberOfBytes))) {\r
622 return EFI_INVALID_PARAMETER;\r
623 }\r
624\r
625 //\r
626 // Convert the entire range\r
627 //\r
628\r
629 while (Start < End) {\r
630\r
631 //\r
632 // Find the entry that the covers the range\r
633 //\r
634 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
635 Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
636\r
637 if (Entry->Start <= Start && Entry->End > Start) {\r
638 break;\r
639 }\r
640 }\r
641\r
642 if (Link == &gMemoryMap) {\r
643 DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: failed to find range %lx - %lx\n", Start, End));\r
644 return EFI_NOT_FOUND;\r
645 }\r
646\r
647 //\r
648 // Convert range to the end, or to the end of the descriptor\r
649 // if that's all we've got\r
650 //\r
651 RangeEnd = End;\r
652 if (Entry->End < End) {\r
653 RangeEnd = Entry->End;\r
654 }\r
655\r
656 DEBUG ((DEBUG_PAGE, "ConvertRange: %lx-%lx to %d\n", Start, RangeEnd, NewType));\r
657\r
658 //\r
659 // Debug code - verify conversion is allowed\r
660 //\r
661 if (!(NewType == EfiConventionalMemory ? 1 : 0) ^ (Entry->Type == EfiConventionalMemory ? 1 : 0)) {\r
662 DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: Incompatible memory types\n"));\r
663 return EFI_NOT_FOUND;\r
664 }\r
665\r
666 //\r
667 // Update counters for the number of pages allocated to each memory type\r
668 //\r
669 if (Entry->Type >= 0 && Entry->Type < EfiMaxMemoryType) {\r
670 if (Start >= mMemoryTypeStatistics[Entry->Type].BaseAddress &&\r
671 Start <= mMemoryTypeStatistics[Entry->Type].MaximumAddress) {\r
672 if (NumberOfPages > mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages) {\r
673 mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages = 0;\r
674 } else {\r
675 mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages -= NumberOfPages;\r
676 }\r
677 }\r
678 }\r
679\r
680 if (NewType >= 0 && NewType < EfiMaxMemoryType) {\r
681 if (Start >= mMemoryTypeStatistics[NewType].BaseAddress && Start <= mMemoryTypeStatistics[NewType].MaximumAddress) {\r
682 mMemoryTypeStatistics[NewType].CurrentNumberOfPages += NumberOfPages;\r
683 if (mMemoryTypeStatistics[NewType].CurrentNumberOfPages >\r
684 gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages) {\r
685 gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages = (UINT32)mMemoryTypeStatistics[NewType].CurrentNumberOfPages;\r
686 }\r
687 }\r
688 }\r
689\r
690 //\r
691 // Pull range out of descriptor\r
692 //\r
693 if (Entry->Start == Start) {\r
694\r
695 //\r
696 // Clip start\r
697 //\r
698 Entry->Start = RangeEnd + 1;\r
699\r
700 } else if (Entry->End == RangeEnd) {\r
701\r
702 //\r
703 // Clip end\r
704 //\r
705 Entry->End = Start - 1;\r
706\r
707 } else {\r
708\r
709 //\r
710 // Pull it out of the center, clip current\r
711 //\r
712\r
713 //\r
714 // Add a new one\r
715 //\r
716 mMapStack[mMapDepth].Signature = MEMORY_MAP_SIGNATURE;\r
717 mMapStack[mMapDepth].FromPages = FALSE;\r
718 mMapStack[mMapDepth].Type = Entry->Type;\r
719 mMapStack[mMapDepth].Start = RangeEnd+1;\r
720 mMapStack[mMapDepth].End = Entry->End;\r
721\r
722 //\r
723 // Inherit Attribute from the Memory Descriptor that is being clipped\r
724 //\r
725 mMapStack[mMapDepth].Attribute = Entry->Attribute;\r
726\r
727 Entry->End = Start - 1;\r
728 ASSERT (Entry->Start < Entry->End);\r
729\r
730 Entry = &mMapStack[mMapDepth];\r
731 InsertTailList (&gMemoryMap, &Entry->Link);\r
732\r
733 mMapDepth += 1;\r
734 ASSERT (mMapDepth < MAX_MAP_DEPTH);\r
735 }\r
736\r
737 //\r
738 // The new range inherits the same Attribute as the Entry\r
739 //it is being cut out of\r
740 //\r
741 Attribute = Entry->Attribute;\r
742\r
743 //\r
744 // If the descriptor is empty, then remove it from the map\r
745 //\r
746 if (Entry->Start == Entry->End + 1) {\r
747 RemoveMemoryMapEntry (Entry);\r
748 Entry = NULL;\r
749 }\r
750\r
751 //\r
752 // Add our new range in\r
753 //\r
754 CoreAddRange (NewType, Start, RangeEnd, Attribute);\r
755\r
756 //\r
757 // Move any map descriptor stack to general pool\r
758 //\r
759 CoreFreeMemoryMapStack ();\r
760\r
761 //\r
762 // Bump the starting address, and convert the next range\r
763 //\r
764 Start = RangeEnd + 1;\r
765 }\r
766\r
767 //\r
768 // Converted the whole range, done\r
769 //\r
770\r
771 return EFI_SUCCESS;\r
772}\r
773\r
774\r
775\r
776/**\r
777 Internal function. Finds a consecutive free page range below\r
778 the requested address.\r
779\r
780 @param MaxAddress The address that the range must be below\r
781 @param NumberOfPages Number of pages needed\r
782 @param NewType The type of memory the range is going to be\r
783 turned into\r
784 @param Alignment Bits to align with\r
785\r
786 @return The base address of the range, or 0 if the range was not found\r
787\r
788**/\r
789UINT64\r
790CoreFindFreePagesI (\r
791 IN UINT64 MaxAddress,\r
792 IN UINT64 NumberOfPages,\r
793 IN EFI_MEMORY_TYPE NewType,\r
794 IN UINTN Alignment\r
795 )\r
796{\r
797 UINT64 NumberOfBytes;\r
798 UINT64 Target;\r
799 UINT64 DescStart;\r
800 UINT64 DescEnd;\r
801 UINT64 DescNumberOfBytes;\r
802 LIST_ENTRY *Link;\r
803 MEMORY_MAP *Entry;\r
804\r
805 if ((MaxAddress < EFI_PAGE_MASK) ||(NumberOfPages == 0)) {\r
806 return 0;\r
807 }\r
808\r
809 if ((MaxAddress & EFI_PAGE_MASK) != EFI_PAGE_MASK) {\r
810\r
811 //\r
812 // If MaxAddress is not aligned to the end of a page\r
813 //\r
814\r
815 //\r
816 // Change MaxAddress to be 1 page lower\r
817 //\r
818 MaxAddress -= (EFI_PAGE_MASK + 1);\r
819\r
820 //\r
821 // Set MaxAddress to a page boundary\r
822 //\r
823 MaxAddress &= ~EFI_PAGE_MASK;\r
824\r
825 //\r
826 // Set MaxAddress to end of the page\r
827 //\r
828 MaxAddress |= EFI_PAGE_MASK;\r
829 }\r
830\r
831 NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);\r
832 Target = 0;\r
833\r
834 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
835 Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
836\r
837 //\r
838 // If it's not a free entry, don't bother with it\r
839 //\r
840 if (Entry->Type != EfiConventionalMemory) {\r
841 continue;\r
842 }\r
843\r
844 DescStart = Entry->Start;\r
845 DescEnd = Entry->End;\r
846\r
847 //\r
848 // If desc is past max allowed address, skip it\r
849 //\r
850 if (DescStart >= MaxAddress) {\r
851 continue;\r
852 }\r
853\r
854 //\r
855 // If desc ends past max allowed address, clip the end\r
856 //\r
857 if (DescEnd >= MaxAddress) {\r
858 DescEnd = MaxAddress;\r
859 }\r
860\r
861 DescEnd = ((DescEnd + 1) & (~(Alignment - 1))) - 1;\r
862\r
863 //\r
864 // Compute the number of bytes we can used from this\r
865 // descriptor, and see it's enough to satisfy the request\r
866 //\r
867 DescNumberOfBytes = DescEnd - DescStart + 1;\r
868\r
869 if (DescNumberOfBytes >= NumberOfBytes) {\r
870\r
871 //\r
872 // If this is the best match so far remember it\r
873 //\r
874 if (DescEnd > Target) {\r
875 Target = DescEnd;\r
876 }\r
877 }\r
878 }\r
879\r
880 //\r
881 // If this is a grow down, adjust target to be the allocation base\r
882 //\r
883 Target -= NumberOfBytes - 1;\r
884\r
885 //\r
886 // If we didn't find a match, return 0\r
887 //\r
888 if ((Target & EFI_PAGE_MASK) != 0) {\r
889 return 0;\r
890 }\r
891\r
892 return Target;\r
893}\r
894\r
895\r
896/**\r
897 Internal function. Finds a consecutive free page range below\r
898 the requested address\r
899\r
900 @param MaxAddress The address that the range must be below\r
901 @param NoPages Number of pages needed\r
902 @param NewType The type of memory the range is going to be\r
903 turned into\r
904 @param Alignment Bits to align with\r
905\r
906 @return The base address of the range, or 0 if the range was not found.\r
907\r
908**/\r
909UINT64\r
910FindFreePages (\r
911 IN UINT64 MaxAddress,\r
912 IN UINT64 NoPages,\r
913 IN EFI_MEMORY_TYPE NewType,\r
914 IN UINTN Alignment\r
915 )\r
916{\r
917 UINT64 NewMaxAddress;\r
918 UINT64 Start;\r
919\r
920 NewMaxAddress = MaxAddress;\r
921\r
922 if (NewType >= 0 && NewType < EfiMaxMemoryType && NewMaxAddress >= mMemoryTypeStatistics[NewType].MaximumAddress) {\r
923 NewMaxAddress = mMemoryTypeStatistics[NewType].MaximumAddress;\r
924 } else {\r
925 if (NewMaxAddress > mDefaultMaximumAddress) {\r
926 NewMaxAddress = mDefaultMaximumAddress;\r
927 }\r
928 }\r
929\r
930 Start = CoreFindFreePagesI (NewMaxAddress, NoPages, NewType, Alignment);\r
931 if (Start == 0) {\r
932 Start = CoreFindFreePagesI (MaxAddress, NoPages, NewType, Alignment);\r
933 if (Start == 0) {\r
934 //\r
935 // Here means there may be no enough memory to use, so try to go through\r
936 // all the memory descript to promote the untested memory directly\r
937 //\r
938 PromoteMemoryResource ();\r
939\r
940 //\r
941 // Allocate memory again after the memory resource re-arranged\r
942 //\r
943 Start = CoreFindFreePagesI (MaxAddress, NoPages, NewType, Alignment);\r
944 }\r
945 }\r
946\r
947 return Start;\r
948}\r
949\r
950\r
951\r
952/**\r
953 Allocates pages from the memory map.\r
954\r
955 @param Type The type of allocation to perform\r
956 @param MemoryType The type of memory to turn the allocated pages\r
957 into\r
958 @param NumberOfPages The number of pages to allocate\r
959 @param Memory A pointer to receive the base allocated memory\r
960 address\r
961\r
962 @return Status. On success, Memory is filled in with the base address allocated\r
963 @retval EFI_INVALID_PARAMETER Parameters violate checking rules defined in\r
964 spec.\r
965 @retval EFI_NOT_FOUND Could not allocate pages match the requirement.\r
966 @retval EFI_OUT_OF_RESOURCES No enough pages to allocate.\r
967 @retval EFI_SUCCESS Pages successfully allocated.\r
968\r
969**/\r
970EFI_STATUS\r
971EFIAPI\r
972CoreAllocatePages (\r
973 IN EFI_ALLOCATE_TYPE Type,\r
974 IN EFI_MEMORY_TYPE MemoryType,\r
975 IN UINTN NumberOfPages,\r
976 IN OUT EFI_PHYSICAL_ADDRESS *Memory\r
977 )\r
978{\r
979 EFI_STATUS Status;\r
980 UINT64 Start;\r
981 UINT64 MaxAddress;\r
982 UINTN Alignment;\r
983\r
984 if (Type < AllocateAnyPages || Type >= (UINTN) MaxAllocateType) {\r
985 return EFI_INVALID_PARAMETER;\r
986 }\r
987\r
988 if ((MemoryType >= EfiMaxMemoryType && MemoryType <= 0x7fffffff) ||\r
989 MemoryType == EfiConventionalMemory) {\r
990 return EFI_INVALID_PARAMETER;\r
991 }\r
992\r
993 Alignment = EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT;\r
994\r
995 if (MemoryType == EfiACPIReclaimMemory ||\r
996 MemoryType == EfiACPIMemoryNVS ||\r
997 MemoryType == EfiRuntimeServicesCode ||\r
998 MemoryType == EfiRuntimeServicesData) {\r
999\r
1000 Alignment = EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT;\r
1001 }\r
1002\r
1003 if (Type == AllocateAddress) {\r
1004 if ((*Memory & (Alignment - 1)) != 0) {\r
1005 return EFI_NOT_FOUND;\r
1006 }\r
1007 }\r
1008\r
1009 NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1;\r
1010 NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1);\r
1011\r
1012 //\r
1013 // If this is for below a particular address, then\r
1014 //\r
1015 Start = *Memory;\r
1016\r
1017 //\r
1018 // The max address is the max natively addressable address for the processor\r
1019 //\r
1020 MaxAddress = EFI_MAX_ADDRESS;\r
1021\r
1022 if (Type == AllocateMaxAddress) {\r
1023 MaxAddress = Start;\r
1024 }\r
1025\r
1026 CoreAcquireMemoryLock ();\r
1027\r
1028 //\r
1029 // If not a specific address, then find an address to allocate\r
1030 //\r
1031 if (Type != AllocateAddress) {\r
1032 Start = FindFreePages (MaxAddress, NumberOfPages, MemoryType, Alignment);\r
1033 if (Start == 0) {\r
1034 Status = EFI_OUT_OF_RESOURCES;\r
1035 goto Done;\r
1036 }\r
1037 }\r
1038\r
1039 //\r
1040 // Convert pages from FreeMemory to the requested type\r
1041 //\r
1042 Status = CoreConvertPages (Start, NumberOfPages, MemoryType);\r
1043\r
1044Done:\r
1045 CoreReleaseMemoryLock ();\r
1046\r
1047 if (!EFI_ERROR (Status)) {\r
1048 *Memory = Start;\r
1049 }\r
1050\r
1051 return Status;\r
1052}\r
1053\r
1054\r
1055/**\r
1056 Frees previous allocated pages.\r
1057\r
1058 @param Memory Base address of memory being freed\r
1059 @param NumberOfPages The number of pages to free\r
1060\r
1061 @retval EFI_NOT_FOUND Could not find the entry that covers the range\r
1062 @retval EFI_INVALID_PARAMETER Address not aligned\r
1063 @return EFI_SUCCESS -Pages successfully freed.\r
1064\r
1065**/\r
1066EFI_STATUS\r
1067EFIAPI\r
1068CoreFreePages (\r
1069 IN EFI_PHYSICAL_ADDRESS Memory,\r
1070 IN UINTN NumberOfPages\r
1071 )\r
1072{\r
1073 EFI_STATUS Status;\r
1074 LIST_ENTRY *Link;\r
1075 MEMORY_MAP *Entry;\r
1076 UINTN Alignment;\r
1077\r
1078 //\r
1079 // Free the range\r
1080 //\r
1081 CoreAcquireMemoryLock ();\r
1082\r
1083 //\r
1084 // Find the entry that the covers the range\r
1085 //\r
1086 Entry = NULL;\r
1087 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
1088 Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
1089 if (Entry->Start <= Memory && Entry->End > Memory) {\r
1090 break;\r
1091 }\r
1092 }\r
1093 if (Link == &gMemoryMap) {\r
1094 CoreReleaseMemoryLock ();\r
1095 return EFI_NOT_FOUND;\r
1096 }\r
1097\r
1098 Alignment = EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT;\r
1099\r
1100 if (Entry->Type == EfiACPIReclaimMemory ||\r
1101 Entry->Type == EfiACPIMemoryNVS ||\r
1102 Entry->Type == EfiRuntimeServicesCode ||\r
1103 Entry->Type == EfiRuntimeServicesData) {\r
1104\r
1105 Alignment = EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT;\r
1106\r
1107 }\r
1108\r
1109 if ((Memory & (Alignment - 1)) != 0) {\r
1110 CoreReleaseMemoryLock ();\r
1111 return EFI_INVALID_PARAMETER;\r
1112 }\r
1113\r
1114 NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1;\r
1115 NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1);\r
1116\r
1117 Status = CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);\r
1118\r
1119 CoreReleaseMemoryLock ();\r
1120\r
1121 if (EFI_ERROR (Status)) {\r
1122 return Status;\r
1123 }\r
1124\r
1125 //\r
1126 // Destroy the contents\r
1127 //\r
1128 if (Memory < EFI_MAX_ADDRESS) {\r
1129 DEBUG_CLEAR_MEMORY ((VOID *)(UINTN)Memory, NumberOfPages << EFI_PAGE_SHIFT);\r
1130 }\r
1131\r
1132 return Status;\r
1133}\r
1134\r
1135\r
1136/**\r
1137 This function returns a copy of the current memory map. The map is an array of\r
1138 memory descriptors, each of which describes a contiguous block of memory.\r
1139\r
1140 @param MemoryMapSize A pointer to the size, in bytes, of the\r
1141 MemoryMap buffer. On input, this is the size of\r
1142 the buffer allocated by the caller. On output,\r
1143 it is the size of the buffer returned by the\r
1144 firmware if the buffer was large enough, or the\r
1145 size of the buffer needed to contain the map if\r
1146 the buffer was too small.\r
1147 @param MemoryMap A pointer to the buffer in which firmware places\r
1148 the current memory map.\r
1149 @param MapKey A pointer to the location in which firmware\r
1150 returns the key for the current memory map.\r
1151 @param DescriptorSize A pointer to the location in which firmware\r
1152 returns the size, in bytes, of an individual\r
1153 EFI_MEMORY_DESCRIPTOR.\r
1154 @param DescriptorVersion A pointer to the location in which firmware\r
1155 returns the version number associated with the\r
1156 EFI_MEMORY_DESCRIPTOR.\r
1157\r
1158 @retval EFI_SUCCESS The memory map was returned in the MemoryMap\r
1159 buffer.\r
1160 @retval EFI_BUFFER_TOO_SMALL The MemoryMap buffer was too small. The current\r
1161 buffer size needed to hold the memory map is\r
1162 returned in MemoryMapSize.\r
1163 @retval EFI_INVALID_PARAMETER One of the parameters has an invalid value.\r
1164\r
1165**/\r
1166EFI_STATUS\r
1167EFIAPI\r
1168CoreGetMemoryMap (\r
1169 IN OUT UINTN *MemoryMapSize,\r
1170 IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,\r
1171 OUT UINTN *MapKey,\r
1172 OUT UINTN *DescriptorSize,\r
1173 OUT UINT32 *DescriptorVersion\r
1174 )\r
1175{\r
1176 EFI_STATUS Status;\r
1177 UINTN Size;\r
1178 UINTN BufferSize;\r
1179 UINTN NumberOfRuntimeEntries;\r
1180 LIST_ENTRY *Link;\r
1181 MEMORY_MAP *Entry;\r
1182 EFI_GCD_MAP_ENTRY *GcdMapEntry;\r
1183 EFI_MEMORY_TYPE Type;\r
1184\r
1185 //\r
1186 // Make sure the parameters are valid\r
1187 //\r
1188 if (MemoryMapSize == NULL) {\r
1189 return EFI_INVALID_PARAMETER;\r
1190 }\r
1191\r
1192 CoreAcquireGcdMemoryLock ();\r
1193\r
1194 //\r
1195 // Count the number of Reserved and MMIO entries that are marked for runtime use\r
1196 //\r
1197 NumberOfRuntimeEntries = 0;\r
1198 for (Link = mGcdMemorySpaceMap.ForwardLink; Link != &mGcdMemorySpaceMap; Link = Link->ForwardLink) {\r
1199 GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r
1200 if ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) ||\r
1201 (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo)) {\r
1202 if ((GcdMapEntry->Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) {\r
1203 NumberOfRuntimeEntries++;\r
1204 }\r
1205 }\r
1206 }\r
1207\r
1208 Size = sizeof (EFI_MEMORY_DESCRIPTOR);\r
1209\r
1210 //\r
1211 // Make sure Size != sizeof(EFI_MEMORY_DESCRIPTOR). This will\r
1212 // prevent people from having pointer math bugs in their code.\r
1213 // now you have to use *DescriptorSize to make things work.\r
1214 //\r
1215 Size += sizeof(UINT64) - (Size % sizeof (UINT64));\r
1216\r
1217 if (DescriptorSize != NULL) {\r
1218 *DescriptorSize = Size;\r
1219 }\r
1220\r
1221 if (DescriptorVersion != NULL) {\r
1222 *DescriptorVersion = EFI_MEMORY_DESCRIPTOR_VERSION;\r
1223 }\r
1224\r
1225 CoreAcquireMemoryLock ();\r
1226\r
1227 //\r
1228 // Compute the buffer size needed to fit the entire map\r
1229 //\r
1230 BufferSize = Size * NumberOfRuntimeEntries;\r
1231 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
1232 BufferSize += Size;\r
1233 }\r
1234\r
1235 if (*MemoryMapSize < BufferSize) {\r
1236 Status = EFI_BUFFER_TOO_SMALL;\r
1237 goto Done;\r
1238 }\r
1239\r
1240 if (MemoryMap == NULL) {\r
1241 Status = EFI_INVALID_PARAMETER;\r
1242 goto Done;\r
1243 }\r
1244\r
1245 //\r
1246 // Build the map\r
1247 //\r
1248 ZeroMem (MemoryMap, BufferSize);\r
1249 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
1250 Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
1251 ASSERT (Entry->VirtualStart == 0);\r
1252\r
1253 //\r
1254 // Convert internal map into an EFI_MEMORY_DESCRIPTOR\r
1255 //\r
1256 MemoryMap->Type = Entry->Type;\r
1257 MemoryMap->PhysicalStart = Entry->Start;\r
1258 MemoryMap->VirtualStart = Entry->VirtualStart;\r
1259 MemoryMap->NumberOfPages = RShiftU64 (Entry->End - Entry->Start + 1, EFI_PAGE_SHIFT);\r
1260 //\r
1261 // If the memory type is EfiConventionalMemory, then determine if the range is part of a\r
1262 // memory type bin and needs to be converted to the same memory type as the rest of the\r
1263 // memory type bin in order to minimize EFI Memory Map changes across reboots. This\r
1264 // improves the chances for a successful S4 resume in the presence of minor page allocation\r
1265 // differences across reboots.\r
1266 //\r
1267 if (MemoryMap->Type == EfiConventionalMemory) {\r
1268 for (Type = (EFI_MEMORY_TYPE) 0; Type < EfiMaxMemoryType; Type++) {\r
1269 if (mMemoryTypeStatistics[Type].Special &&\r
1270 mMemoryTypeStatistics[Type].NumberOfPages > 0 &&\r
1271 Entry->Start >= mMemoryTypeStatistics[Type].BaseAddress &&\r
1272 Entry->End <= mMemoryTypeStatistics[Type].MaximumAddress) {\r
1273 MemoryMap->Type = Type;\r
1274 }\r
1275 }\r
1276 }\r
1277 MemoryMap->Attribute = Entry->Attribute;\r
1278 if (mMemoryTypeStatistics[MemoryMap->Type].Runtime) {\r
1279 MemoryMap->Attribute |= EFI_MEMORY_RUNTIME;\r
1280 }\r
1281\r
1282 MemoryMap = NextMemoryDescriptor (MemoryMap, Size);\r
1283 }\r
1284\r
1285 for (Link = mGcdMemorySpaceMap.ForwardLink; Link != &mGcdMemorySpaceMap; Link = Link->ForwardLink) {\r
1286 GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r
1287 if ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) ||\r
1288 (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo)) {\r
1289 if ((GcdMapEntry->Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) {\r
1290\r
1291 MemoryMap->PhysicalStart = GcdMapEntry->BaseAddress;\r
1292 MemoryMap->VirtualStart = 0;\r
1293 MemoryMap->NumberOfPages = RShiftU64 ((GcdMapEntry->EndAddress - GcdMapEntry->BaseAddress + 1), EFI_PAGE_SHIFT);\r
1294 MemoryMap->Attribute = GcdMapEntry->Attributes & ~EFI_MEMORY_PORT_IO;\r
1295\r
1296 if (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) {\r
1297 MemoryMap->Type = EfiReservedMemoryType;\r
1298 } else if (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) {\r
1299 if ((GcdMapEntry->Attributes & EFI_MEMORY_PORT_IO) == EFI_MEMORY_PORT_IO) {\r
1300 MemoryMap->Type = EfiMemoryMappedIOPortSpace;\r
1301 } else {\r
1302 MemoryMap->Type = EfiMemoryMappedIO;\r
1303 }\r
1304 }\r
1305\r
1306 MemoryMap = NextMemoryDescriptor (MemoryMap, Size);\r
1307 }\r
1308 }\r
1309 }\r
1310\r
1311 Status = EFI_SUCCESS;\r
1312\r
1313Done:\r
1314\r
1315 CoreReleaseMemoryLock ();\r
1316\r
1317 CoreReleaseGcdMemoryLock ();\r
1318\r
1319 //\r
1320 // Update the map key finally\r
1321 //\r
1322 if (MapKey != NULL) {\r
1323 *MapKey = mMemoryMapKey;\r
1324 }\r
1325\r
1326 *MemoryMapSize = BufferSize;\r
1327\r
1328 return Status;\r
1329}\r
1330\r
1331\r
1332/**\r
1333 Internal function. Used by the pool functions to allocate pages\r
1334 to back pool allocation requests.\r
1335\r
1336 @param PoolType The type of memory for the new pool pages\r
1337 @param NumberOfPages No of pages to allocate\r
1338 @param Alignment Bits to align.\r
1339\r
1340 @return The allocated memory, or NULL\r
1341\r
1342**/\r
1343VOID *\r
1344CoreAllocatePoolPages (\r
1345 IN EFI_MEMORY_TYPE PoolType,\r
1346 IN UINTN NumberOfPages,\r
1347 IN UINTN Alignment\r
1348 )\r
1349{\r
1350 UINT64 Start;\r
1351\r
1352 //\r
1353 // Find the pages to convert\r
1354 //\r
1355 Start = FindFreePages (EFI_MAX_ADDRESS, NumberOfPages, PoolType, Alignment);\r
1356\r
1357 //\r
1358 // Convert it to boot services data\r
1359 //\r
1360 if (Start == 0) {\r
1361 DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "AllocatePoolPages: failed to allocate %d pages\n", NumberOfPages));\r
1362 } else {\r
1363 CoreConvertPages (Start, NumberOfPages, PoolType);\r
1364 }\r
1365\r
1366 return (VOID *)(UINTN) Start;\r
1367}\r
1368\r
1369\r
1370/**\r
1371 Internal function. Frees pool pages allocated via AllocatePoolPages ()\r
1372\r
1373 @param Memory The base address to free\r
1374 @param NumberOfPages The number of pages to free\r
1375\r
1376**/\r
1377VOID\r
1378CoreFreePoolPages (\r
1379 IN EFI_PHYSICAL_ADDRESS Memory,\r
1380 IN UINTN NumberOfPages\r
1381 )\r
1382{\r
1383 CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);\r
1384}\r
1385\r
1386\r
1387\r
1388/**\r
1389 Make sure the memory map is following all the construction rules,\r
1390 it is the last time to check memory map error before exit boot services.\r
1391\r
1392 @param MapKey Memory map key\r
1393\r
1394 @retval EFI_INVALID_PARAMETER Memory map not consistent with construction\r
1395 rules.\r
1396 @retval EFI_SUCCESS Valid memory map.\r
1397\r
1398**/\r
1399EFI_STATUS\r
1400CoreTerminateMemoryMap (\r
1401 IN UINTN MapKey\r
1402 )\r
1403{\r
1404 EFI_STATUS Status;\r
1405 LIST_ENTRY *Link;\r
1406 MEMORY_MAP *Entry;\r
1407\r
1408 Status = EFI_SUCCESS;\r
1409\r
1410 CoreAcquireMemoryLock ();\r
1411\r
1412 if (MapKey == mMemoryMapKey) {\r
1413\r
1414 //\r
1415 // Make sure the memory map is following all the construction rules\r
1416 // This is the last chance we will be able to display any messages on\r
1417 // the console devices.\r
1418 //\r
1419\r
1420 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
1421 Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
1422 if (Entry->Attribute & EFI_MEMORY_RUNTIME) {\r
1423 if (Entry->Type == EfiACPIReclaimMemory || Entry->Type == EfiACPIMemoryNVS) {\r
1424 DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: ACPI memory entry has RUNTIME attribute set.\n"));\r
1425 Status = EFI_INVALID_PARAMETER;\r
1426 goto Done;\r
1427 }\r
1428 if (Entry->Start & (EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT - 1)) {\r
1429 DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n"));\r
1430 Status = EFI_INVALID_PARAMETER;\r
1431 goto Done;\r
1432 }\r
1433 if ((Entry->End + 1) & (EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT - 1)) {\r
1434 DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n"));\r
1435 Status = EFI_INVALID_PARAMETER;\r
1436 goto Done;\r
1437 }\r
1438 }\r
1439 }\r
1440\r
1441 //\r
1442 // The map key they gave us matches what we expect. Fall through and\r
1443 // return success. In an ideal world we would clear out all of\r
1444 // EfiBootServicesCode and EfiBootServicesData. However this function\r
1445 // is not the last one called by ExitBootServices(), so we have to\r
1446 // preserve the memory contents.\r
1447 //\r
1448 } else {\r
1449 Status = EFI_INVALID_PARAMETER;\r
1450 }\r
1451\r
1452Done:\r
1453 CoreReleaseMemoryLock ();\r
1454\r
1455 return Status;\r
1456}\r
1457\r
1458\r
1459\r
1460\r
1461\r
1462\r
1463\r
1464\r
1465\r