]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - MdeModulePkg/Core/Dxe/Mem/Page.c
Apply HighBitSet() in MDE baseLib to retire the internal function CoreHighestSetBit().
[mirror_edk2.git] / MdeModulePkg / Core / Dxe / Mem / Page.c
... / ...
CommitLineData
1/** @file\r
2 UEFI Memory page management functions.\r
3\r
4Copyright (c) 2007 - 2008, Intel Corporation. <BR>\r
5All rights reserved. This program and the accompanying materials\r
6are licensed and made available under the terms and conditions of the BSD License\r
7which accompanies this distribution. The full text of the license may be found at\r
8http://opensource.org/licenses/bsd-license.php\r
9\r
10THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13**/\r
14\r
15#include "DxeMain.h"\r
16\r
17#define EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT (EFI_PAGE_SIZE)\r
18\r
19//\r
20// Entry for tracking the memory regions for each memory type to coalesce similar memory types\r
21//\r
22typedef struct {\r
23 EFI_PHYSICAL_ADDRESS BaseAddress;\r
24 EFI_PHYSICAL_ADDRESS MaximumAddress;\r
25 UINT64 CurrentNumberOfPages;\r
26 UINT64 NumberOfPages;\r
27 UINTN InformationIndex;\r
28 BOOLEAN Special;\r
29 BOOLEAN Runtime;\r
30} EFI_MEMORY_TYPE_STAISTICS;\r
31\r
32//\r
33// MemoryMap - The current memory map\r
34//\r
35UINTN mMemoryMapKey = 0;\r
36\r
37//\r
38// mMapStack - space to use as temp storage to build new map descriptors\r
39// mMapDepth - depth of new descriptor stack\r
40//\r
41\r
42#define MAX_MAP_DEPTH 6\r
43UINTN mMapDepth = 0;\r
44MEMORY_MAP mMapStack[MAX_MAP_DEPTH];\r
45UINTN mFreeMapStack = 0;\r
46//\r
47// This list maintain the free memory map list\r
48//\r
49LIST_ENTRY mFreeMemoryMapEntryList = INITIALIZE_LIST_HEAD_VARIABLE (mFreeMemoryMapEntryList);\r
50BOOLEAN mMemoryTypeInformationInitialized = FALSE;\r
51\r
52EFI_MEMORY_TYPE_STAISTICS mMemoryTypeStatistics[EfiMaxMemoryType + 1] = {\r
53 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiReservedMemoryType\r
54 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiLoaderCode\r
55 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiLoaderData\r
56 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiBootServicesCode\r
57 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiBootServicesData\r
58 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiRuntimeServicesCode\r
59 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiRuntimeServicesData\r
60 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiConventionalMemory\r
61 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiUnusableMemory\r
62 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiACPIReclaimMemory\r
63 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiACPIMemoryNVS\r
64 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiMemoryMappedIO\r
65 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiMemoryMappedIOPortSpace\r
66 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiPalCode\r
67 { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE } // EfiMaxMemoryType\r
68};\r
69\r
70EFI_PHYSICAL_ADDRESS mDefaultMaximumAddress = EFI_MAX_ADDRESS;\r
71\r
72EFI_MEMORY_TYPE_INFORMATION gMemoryTypeInformation[EfiMaxMemoryType + 1] = {\r
73 { EfiReservedMemoryType, 0 },\r
74 { EfiLoaderCode, 0 },\r
75 { EfiLoaderData, 0 },\r
76 { EfiBootServicesCode, 0 },\r
77 { EfiBootServicesData, 0 },\r
78 { EfiRuntimeServicesCode, 0 },\r
79 { EfiRuntimeServicesData, 0 },\r
80 { EfiConventionalMemory, 0 },\r
81 { EfiUnusableMemory, 0 },\r
82 { EfiACPIReclaimMemory, 0 },\r
83 { EfiACPIMemoryNVS, 0 },\r
84 { EfiMemoryMappedIO, 0 },\r
85 { EfiMemoryMappedIOPortSpace, 0 },\r
86 { EfiPalCode, 0 },\r
87 { EfiMaxMemoryType, 0 }\r
88};\r
89\r
90//\r
91// Internal prototypes\r
92//\r
93/**\r
94 Find untested but initialized memory regions in GCD map and convert them to be DXE allocatable.\r
95\r
96**/\r
97VOID\r
98PromoteMemoryResource (\r
99 VOID\r
100 );\r
101\r
102/**\r
103 Internal function. Adds a ranges to the memory map.\r
104 The range must not already exist in the map.\r
105\r
106 @param Type The type of memory range to add\r
107 @param Start The starting address in the memory range Must be\r
108 paged aligned\r
109 @param End The last address in the range Must be the last\r
110 byte of a page\r
111 @param Attribute The attributes of the memory range to add\r
112\r
113**/\r
114VOID\r
115CoreAddRange (\r
116 IN EFI_MEMORY_TYPE Type,\r
117 IN EFI_PHYSICAL_ADDRESS Start,\r
118 IN EFI_PHYSICAL_ADDRESS End,\r
119 IN UINT64 Attribute\r
120 );\r
121\r
122/**\r
123 Internal function. Moves any memory descriptors that are on the\r
124 temporary descriptor stack to heap.\r
125\r
126**/\r
127VOID\r
128CoreFreeMemoryMapStack (\r
129 VOID\r
130 );\r
131\r
132/**\r
133 Internal function. Converts a memory range to the specified type.\r
134 The range must exist in the memory map.\r
135\r
136 @param Start The first address of the range Must be page\r
137 aligned\r
138 @param NumberOfPages The number of pages to convert\r
139 @param NewType The new type for the memory range\r
140\r
141 @retval EFI_INVALID_PARAMETER Invalid parameter\r
142 @retval EFI_NOT_FOUND Could not find a descriptor cover the specified\r
143 range or convertion not allowed.\r
144 @retval EFI_SUCCESS Successfully converts the memory range to the\r
145 specified type.\r
146\r
147**/\r
148EFI_STATUS\r
149CoreConvertPages (\r
150 IN UINT64 Start,\r
151 IN UINT64 NumberOfPages,\r
152 IN EFI_MEMORY_TYPE NewType\r
153 );\r
154\r
155/**\r
156 Internal function. Removes a descriptor entry.\r
157\r
158 @param Entry The entry to remove\r
159\r
160**/\r
161VOID\r
162RemoveMemoryMapEntry (\r
163 IN OUT MEMORY_MAP *Entry\r
164 );\r
165\r
166/**\r
167 Internal function. Deque a descriptor entry from the mFreeMemoryMapEntryList.\r
168 If the list is emtry, then allocate a new page to refuel the list.\r
169 Please Note this algorithm to allocate the memory map descriptor has a property\r
170 that the memory allocated for memory entries always grows, and will never really be freed\r
171 For example, if the current boot uses 2000 memory map entries at the maximum point, but\r
172 ends up with only 50 at the time the OS is booted, then the memory associated with the 1950\r
173 memory map entries is still allocated from EfiBootServicesMemory.\r
174\r
175\r
176 @return The Memory map descriptor dequed from the mFreeMemoryMapEntryList\r
177\r
178**/\r
179MEMORY_MAP *\r
180AllocateMemoryMapEntry (\r
181 VOID\r
182 );\r
183\r
184\r
185/**\r
186 Enter critical section by gaining lock on gMemoryLock.\r
187\r
188**/\r
189VOID\r
190CoreAcquireMemoryLock (\r
191 VOID\r
192 )\r
193{\r
194 CoreAcquireLock (&gMemoryLock);\r
195}\r
196\r
197\r
198\r
199/**\r
200 Exit critical section by releasing lock on gMemoryLock.\r
201\r
202**/\r
203VOID\r
204CoreReleaseMemoryLock (\r
205 VOID\r
206 )\r
207{\r
208 CoreReleaseLock (&gMemoryLock);\r
209}\r
210\r
211\r
212/**\r
213 Find untested but initialized memory regions in GCD map and convert them to be DXE allocatable.\r
214\r
215**/\r
216VOID\r
217PromoteMemoryResource (\r
218 VOID\r
219 )\r
220{\r
221 LIST_ENTRY *Link;\r
222 EFI_GCD_MAP_ENTRY *Entry;\r
223\r
224 DEBUG ((DEBUG_PAGE, "Promote the memory resource\n"));\r
225\r
226 CoreAcquireGcdMemoryLock ();\r
227\r
228 Link = mGcdMemorySpaceMap.ForwardLink;\r
229 while (Link != &mGcdMemorySpaceMap) {\r
230\r
231 Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r
232\r
233 if (Entry->GcdMemoryType == EfiGcdMemoryTypeReserved &&\r
234 Entry->EndAddress < EFI_MAX_ADDRESS &&\r
235 (Entry->Capabilities & (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED)) ==\r
236 (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED)) {\r
237 //\r
238 // Update the GCD map\r
239 //\r
240 Entry->GcdMemoryType = EfiGcdMemoryTypeSystemMemory;\r
241 Entry->Capabilities |= EFI_MEMORY_TESTED;\r
242 Entry->ImageHandle = gDxeCoreImageHandle;\r
243 Entry->DeviceHandle = NULL;\r
244\r
245 //\r
246 // Add to allocable system memory resource\r
247 //\r
248\r
249 CoreAddRange (\r
250 EfiConventionalMemory,\r
251 Entry->BaseAddress,\r
252 Entry->EndAddress,\r
253 Entry->Capabilities & ~(EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED | EFI_MEMORY_RUNTIME)\r
254 );\r
255 CoreFreeMemoryMapStack ();\r
256\r
257 }\r
258\r
259 Link = Link->ForwardLink;\r
260 }\r
261\r
262 CoreReleaseGcdMemoryLock ();\r
263\r
264 return;\r
265}\r
266\r
267\r
268/**\r
269 Called to initialize the memory map and add descriptors to\r
270 the current descriptor list.\r
271 The first descriptor that is added must be general usable\r
272 memory as the addition allocates heap.\r
273\r
274 @param Type The type of memory to add\r
275 @param Start The starting address in the memory range Must be\r
276 page aligned\r
277 @param NumberOfPages The number of pages in the range\r
278 @param Attribute Attributes of the memory to add\r
279\r
280 @return None. The range is added to the memory map\r
281\r
282**/\r
283VOID\r
284CoreAddMemoryDescriptor (\r
285 IN EFI_MEMORY_TYPE Type,\r
286 IN EFI_PHYSICAL_ADDRESS Start,\r
287 IN UINT64 NumberOfPages,\r
288 IN UINT64 Attribute\r
289 )\r
290{\r
291 EFI_PHYSICAL_ADDRESS End;\r
292 EFI_STATUS Status;\r
293 UINTN Index;\r
294 UINTN FreeIndex;\r
295\r
296 if ((Start & EFI_PAGE_MASK) != 0) {\r
297 return;\r
298 }\r
299\r
300 if (Type >= EfiMaxMemoryType && Type <= 0x7fffffff) {\r
301 return;\r
302 }\r
303\r
304 CoreAcquireMemoryLock ();\r
305 End = Start + LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT) - 1;\r
306 CoreAddRange (Type, Start, End, Attribute);\r
307 CoreFreeMemoryMapStack ();\r
308 CoreReleaseMemoryLock ();\r
309\r
310 //\r
311 // Check to see if the statistics for the different memory types have already been established\r
312 //\r
313 if (mMemoryTypeInformationInitialized) {\r
314 return;\r
315 }\r
316\r
317 //\r
318 // Loop through each memory type in the order specified by the gMemoryTypeInformation[] array\r
319 //\r
320 for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r
321 //\r
322 // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r
323 //\r
324 Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[Index].Type);\r
325 if (Type < 0 || Type > EfiMaxMemoryType) {\r
326 continue;\r
327 }\r
328\r
329 if (gMemoryTypeInformation[Index].NumberOfPages != 0) {\r
330 //\r
331 // Allocate pages for the current memory type from the top of available memory\r
332 //\r
333 Status = CoreAllocatePages (\r
334 AllocateAnyPages,\r
335 Type,\r
336 gMemoryTypeInformation[Index].NumberOfPages,\r
337 &mMemoryTypeStatistics[Type].BaseAddress\r
338 );\r
339 if (EFI_ERROR (Status)) {\r
340 //\r
341 // If an error occurs allocating the pages for the current memory type, then\r
342 // free all the pages allocates for the previous memory types and return. This\r
343 // operation with be retied when/if more memory is added to the system\r
344 //\r
345 for (FreeIndex = 0; FreeIndex < Index; FreeIndex++) {\r
346 //\r
347 // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r
348 //\r
349 Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[FreeIndex].Type);\r
350 if (Type < 0 || Type > EfiMaxMemoryType) {\r
351 continue;\r
352 }\r
353\r
354 if (gMemoryTypeInformation[FreeIndex].NumberOfPages != 0) {\r
355 CoreFreePages (\r
356 mMemoryTypeStatistics[Type].BaseAddress,\r
357 gMemoryTypeInformation[FreeIndex].NumberOfPages\r
358 );\r
359 mMemoryTypeStatistics[Type].BaseAddress = 0;\r
360 mMemoryTypeStatistics[Type].MaximumAddress = EFI_MAX_ADDRESS;\r
361 }\r
362 }\r
363 return;\r
364 }\r
365\r
366 //\r
367 // Compute the address at the top of the current statistics\r
368 //\r
369 mMemoryTypeStatistics[Type].MaximumAddress =\r
370 mMemoryTypeStatistics[Type].BaseAddress +\r
371 LShiftU64 (gMemoryTypeInformation[Index].NumberOfPages, EFI_PAGE_SHIFT) - 1;\r
372\r
373 //\r
374 // If the current base address is the lowest address so far, then update the default\r
375 // maximum address\r
376 //\r
377 if (mMemoryTypeStatistics[Type].BaseAddress < mDefaultMaximumAddress) {\r
378 mDefaultMaximumAddress = mMemoryTypeStatistics[Type].BaseAddress - 1;\r
379 }\r
380 }\r
381 }\r
382\r
383 //\r
384 // There was enough system memory for all the the memory types were allocated. So,\r
385 // those memory areas can be freed for future allocations, and all future memory\r
386 // allocations can occur within their respective bins\r
387 //\r
388 for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r
389 //\r
390 // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r
391 //\r
392 Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[Index].Type);\r
393 if (Type < 0 || Type > EfiMaxMemoryType) {\r
394 continue;\r
395 }\r
396\r
397 if (gMemoryTypeInformation[Index].NumberOfPages != 0) {\r
398 CoreFreePages (\r
399 mMemoryTypeStatistics[Type].BaseAddress,\r
400 gMemoryTypeInformation[Index].NumberOfPages\r
401 );\r
402 mMemoryTypeStatistics[Type].NumberOfPages = gMemoryTypeInformation[Index].NumberOfPages;\r
403 gMemoryTypeInformation[Index].NumberOfPages = 0;\r
404 }\r
405 }\r
406\r
407 //\r
408 // If the number of pages reserved for a memory type is 0, then all allocations for that type\r
409 // should be in the default range.\r
410 //\r
411 for (Type = (EFI_MEMORY_TYPE) 0; Type < EfiMaxMemoryType; Type++) {\r
412 for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r
413 if (Type == (EFI_MEMORY_TYPE)gMemoryTypeInformation[Index].Type) {\r
414 mMemoryTypeStatistics[Type].InformationIndex = Index;\r
415 }\r
416 }\r
417 mMemoryTypeStatistics[Type].CurrentNumberOfPages = 0;\r
418 if (mMemoryTypeStatistics[Type].MaximumAddress == EFI_MAX_ADDRESS) {\r
419 mMemoryTypeStatistics[Type].MaximumAddress = mDefaultMaximumAddress;\r
420 }\r
421 }\r
422\r
423 mMemoryTypeInformationInitialized = TRUE;\r
424}\r
425\r
426\r
427\r
428/**\r
429 Internal function. Adds a ranges to the memory map.\r
430 The range must not already exist in the map.\r
431\r
432 @param Type The type of memory range to add\r
433 @param Start The starting address in the memory range Must be\r
434 paged aligned\r
435 @param End The last address in the range Must be the last\r
436 byte of a page\r
437 @param Attribute The attributes of the memory range to add\r
438\r
439**/\r
440VOID\r
441CoreAddRange (\r
442 IN EFI_MEMORY_TYPE Type,\r
443 IN EFI_PHYSICAL_ADDRESS Start,\r
444 IN EFI_PHYSICAL_ADDRESS End,\r
445 IN UINT64 Attribute\r
446 )\r
447{\r
448 LIST_ENTRY *Link;\r
449 MEMORY_MAP *Entry;\r
450\r
451 ASSERT ((Start & EFI_PAGE_MASK) == 0);\r
452 ASSERT (End > Start) ;\r
453\r
454 ASSERT_LOCKED (&gMemoryLock);\r
455\r
456 DEBUG ((DEBUG_PAGE, "AddRange: %lx-%lx to %d\n", Start, End, Type));\r
457\r
458 //\r
459 // Memory map being altered so updated key\r
460 //\r
461 mMemoryMapKey += 1;\r
462\r
463 //\r
464 // UEFI 2.0 added an event group for notificaiton on memory map changes.\r
465 // So we need to signal this Event Group every time the memory map changes.\r
466 // If we are in EFI 1.10 compatability mode no event groups will be\r
467 // found and nothing will happen we we call this function. These events\r
468 // will get signaled but since a lock is held around the call to this\r
469 // function the notificaiton events will only be called after this funciton\r
470 // returns and the lock is released.\r
471 //\r
472 CoreNotifySignalList (&gEfiEventMemoryMapChangeGuid);\r
473\r
474 //\r
475 // Look for adjoining memory descriptor\r
476 //\r
477\r
478 // Two memory descriptors can only be merged if they have the same Type\r
479 // and the same Attribute\r
480 //\r
481\r
482 Link = gMemoryMap.ForwardLink;\r
483 while (Link != &gMemoryMap) {\r
484 Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
485 Link = Link->ForwardLink;\r
486\r
487 if (Entry->Type != Type) {\r
488 continue;\r
489 }\r
490\r
491 if (Entry->Attribute != Attribute) {\r
492 continue;\r
493 }\r
494\r
495 if (Entry->End + 1 == Start) {\r
496\r
497 Start = Entry->Start;\r
498 RemoveMemoryMapEntry (Entry);\r
499\r
500 } else if (Entry->Start == End + 1) {\r
501\r
502 End = Entry->End;\r
503 RemoveMemoryMapEntry (Entry);\r
504 }\r
505 }\r
506\r
507 //\r
508 // Add descriptor\r
509 //\r
510\r
511 mMapStack[mMapDepth].Signature = MEMORY_MAP_SIGNATURE;\r
512 mMapStack[mMapDepth].FromPages = FALSE;\r
513 mMapStack[mMapDepth].Type = Type;\r
514 mMapStack[mMapDepth].Start = Start;\r
515 mMapStack[mMapDepth].End = End;\r
516 mMapStack[mMapDepth].VirtualStart = 0;\r
517 mMapStack[mMapDepth].Attribute = Attribute;\r
518 InsertTailList (&gMemoryMap, &mMapStack[mMapDepth].Link);\r
519\r
520 mMapDepth += 1;\r
521 ASSERT (mMapDepth < MAX_MAP_DEPTH);\r
522\r
523 return ;\r
524}\r
525\r
526\r
527/**\r
528 Internal function. Moves any memory descriptors that are on the\r
529 temporary descriptor stack to heap.\r
530\r
531**/\r
532VOID\r
533CoreFreeMemoryMapStack (\r
534 VOID\r
535 )\r
536{\r
537 MEMORY_MAP *Entry;\r
538 MEMORY_MAP *Entry2;\r
539 LIST_ENTRY *Link2;\r
540\r
541 ASSERT_LOCKED (&gMemoryLock);\r
542\r
543 //\r
544 // If already freeing the map stack, then return\r
545 //\r
546 if (mFreeMapStack != 0) {\r
547 return ;\r
548 }\r
549\r
550 //\r
551 // Move the temporary memory descriptor stack into pool\r
552 //\r
553 mFreeMapStack += 1;\r
554\r
555 while (mMapDepth != 0) {\r
556 //\r
557 // Deque an memory map entry from mFreeMemoryMapEntryList\r
558 //\r
559 Entry = AllocateMemoryMapEntry ();\r
560\r
561 ASSERT (Entry);\r
562\r
563 //\r
564 // Update to proper entry\r
565 //\r
566 mMapDepth -= 1;\r
567\r
568 if (mMapStack[mMapDepth].Link.ForwardLink != NULL) {\r
569\r
570 //\r
571 // Move this entry to general memory\r
572 //\r
573 RemoveEntryList (&mMapStack[mMapDepth].Link);\r
574 mMapStack[mMapDepth].Link.ForwardLink = NULL;\r
575\r
576 CopyMem (Entry , &mMapStack[mMapDepth], sizeof (MEMORY_MAP));\r
577 Entry->FromPages = TRUE;\r
578\r
579 //\r
580 // Find insertion location\r
581 //\r
582 for (Link2 = gMemoryMap.ForwardLink; Link2 != &gMemoryMap; Link2 = Link2->ForwardLink) {\r
583 Entry2 = CR (Link2, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
584 if (Entry2->FromPages && Entry2->Start > Entry->Start) {\r
585 break;\r
586 }\r
587 }\r
588\r
589 InsertTailList (Link2, &Entry->Link);\r
590\r
591 } else {\r
592 //\r
593 // This item of mMapStack[mMapDepth] has already been dequeued from gMemoryMap list,\r
594 // so here no need to move it to memory.\r
595 //\r
596 InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);\r
597 }\r
598 }\r
599\r
600 mFreeMapStack -= 1;\r
601}\r
602\r
603\r
604/**\r
605 Internal function. Removes a descriptor entry.\r
606\r
607 @param Entry The entry to remove\r
608\r
609**/\r
610VOID\r
611RemoveMemoryMapEntry (\r
612 IN OUT MEMORY_MAP *Entry\r
613 )\r
614{\r
615 RemoveEntryList (&Entry->Link);\r
616 Entry->Link.ForwardLink = NULL;\r
617\r
618 if (Entry->FromPages) {\r
619 //\r
620 // Insert the free memory map descriptor to the end of mFreeMemoryMapEntryList\r
621 //\r
622 InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);\r
623 }\r
624}\r
625\r
626\r
627/**\r
628 Internal function. Deque a descriptor entry from the mFreeMemoryMapEntryList.\r
629 If the list is emtry, then allocate a new page to refuel the list.\r
630 Please Note this algorithm to allocate the memory map descriptor has a property\r
631 that the memory allocated for memory entries always grows, and will never really be freed\r
632 For example, if the current boot uses 2000 memory map entries at the maximum point, but\r
633 ends up with only 50 at the time the OS is booted, then the memory associated with the 1950\r
634 memory map entries is still allocated from EfiBootServicesMemory.\r
635\r
636\r
637 @return The Memory map descriptor dequed from the mFreeMemoryMapEntryList\r
638\r
639**/\r
640MEMORY_MAP *\r
641AllocateMemoryMapEntry (\r
642 VOID\r
643 )\r
644{\r
645 MEMORY_MAP* FreeDescriptorEntries;\r
646 MEMORY_MAP* Entry;\r
647 UINTN Index;\r
648\r
649 if (IsListEmpty (&mFreeMemoryMapEntryList)) {\r
650 //\r
651 // The list is empty, to allocate one page to refuel the list\r
652 //\r
653 FreeDescriptorEntries = CoreAllocatePoolPages (EfiBootServicesData, EFI_SIZE_TO_PAGES(DEFAULT_PAGE_ALLOCATION), DEFAULT_PAGE_ALLOCATION);\r
654 if(FreeDescriptorEntries != NULL) {\r
655 //\r
656 // Enque the free memmory map entries into the list\r
657 //\r
658 for (Index = 0; Index< DEFAULT_PAGE_ALLOCATION / sizeof(MEMORY_MAP); Index++) {\r
659 FreeDescriptorEntries[Index].Signature = MEMORY_MAP_SIGNATURE;\r
660 InsertTailList (&mFreeMemoryMapEntryList, &FreeDescriptorEntries[Index].Link);\r
661 }\r
662 } else {\r
663 return NULL;\r
664 }\r
665 }\r
666 //\r
667 // dequeue the first descriptor from the list\r
668 //\r
669 Entry = CR (mFreeMemoryMapEntryList.ForwardLink, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
670 RemoveEntryList (&Entry->Link);\r
671\r
672 return Entry;\r
673}\r
674\r
675\r
676/**\r
677 Internal function. Converts a memory range to the specified type.\r
678 The range must exist in the memory map.\r
679\r
680 @param Start The first address of the range Must be page\r
681 aligned\r
682 @param NumberOfPages The number of pages to convert\r
683 @param NewType The new type for the memory range\r
684\r
685 @retval EFI_INVALID_PARAMETER Invalid parameter\r
686 @retval EFI_NOT_FOUND Could not find a descriptor cover the specified\r
687 range or convertion not allowed.\r
688 @retval EFI_SUCCESS Successfully converts the memory range to the\r
689 specified type.\r
690\r
691**/\r
692EFI_STATUS\r
693CoreConvertPages (\r
694 IN UINT64 Start,\r
695 IN UINT64 NumberOfPages,\r
696 IN EFI_MEMORY_TYPE NewType\r
697 )\r
698{\r
699\r
700 UINT64 NumberOfBytes;\r
701 UINT64 End;\r
702 UINT64 RangeEnd;\r
703 UINT64 Attribute;\r
704 LIST_ENTRY *Link;\r
705 MEMORY_MAP *Entry;\r
706\r
707 Entry = NULL;\r
708 NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);\r
709 End = Start + NumberOfBytes - 1;\r
710\r
711 ASSERT (NumberOfPages);\r
712 ASSERT ((Start & EFI_PAGE_MASK) == 0);\r
713 ASSERT (End > Start) ;\r
714 ASSERT_LOCKED (&gMemoryLock);\r
715\r
716 if (NumberOfPages == 0 || ((Start & EFI_PAGE_MASK) != 0) || (Start > (Start + NumberOfBytes))) {\r
717 return EFI_INVALID_PARAMETER;\r
718 }\r
719\r
720 //\r
721 // Convert the entire range\r
722 //\r
723\r
724 while (Start < End) {\r
725\r
726 //\r
727 // Find the entry that the covers the range\r
728 //\r
729 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
730 Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
731\r
732 if (Entry->Start <= Start && Entry->End > Start) {\r
733 break;\r
734 }\r
735 }\r
736\r
737 if (Link == &gMemoryMap) {\r
738 DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: failed to find range %lx - %lx\n", Start, End));\r
739 return EFI_NOT_FOUND;\r
740 }\r
741\r
742 //\r
743 // Convert range to the end, or to the end of the descriptor\r
744 // if that's all we've got\r
745 //\r
746 RangeEnd = End;\r
747 if (Entry->End < End) {\r
748 RangeEnd = Entry->End;\r
749 }\r
750\r
751 DEBUG ((DEBUG_PAGE, "ConvertRange: %lx-%lx to %d\n", Start, RangeEnd, NewType));\r
752\r
753 //\r
754 // Debug code - verify conversion is allowed\r
755 //\r
756 if (!(NewType == EfiConventionalMemory ? 1 : 0) ^ (Entry->Type == EfiConventionalMemory ? 1 : 0)) {\r
757 DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: Incompatible memory types\n"));\r
758 return EFI_NOT_FOUND;\r
759 }\r
760\r
761 //\r
762 // Update counters for the number of pages allocated to each memory type\r
763 //\r
764 if (Entry->Type >= 0 && Entry->Type < EfiMaxMemoryType) {\r
765 if (Start >= mMemoryTypeStatistics[Entry->Type].BaseAddress &&\r
766 Start <= mMemoryTypeStatistics[Entry->Type].MaximumAddress) {\r
767 if (NumberOfPages > mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages) {\r
768 mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages = 0;\r
769 } else {\r
770 mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages -= NumberOfPages;\r
771 }\r
772 }\r
773 }\r
774\r
775 if (NewType >= 0 && NewType < EfiMaxMemoryType) {\r
776 if (Start >= mMemoryTypeStatistics[NewType].BaseAddress && Start <= mMemoryTypeStatistics[NewType].MaximumAddress) {\r
777 mMemoryTypeStatistics[NewType].CurrentNumberOfPages += NumberOfPages;\r
778 if (mMemoryTypeStatistics[NewType].CurrentNumberOfPages >\r
779 gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages) {\r
780 gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages = (UINT32)mMemoryTypeStatistics[NewType].CurrentNumberOfPages;\r
781 }\r
782 }\r
783 }\r
784\r
785 //\r
786 // Pull range out of descriptor\r
787 //\r
788 if (Entry->Start == Start) {\r
789\r
790 //\r
791 // Clip start\r
792 //\r
793 Entry->Start = RangeEnd + 1;\r
794\r
795 } else if (Entry->End == RangeEnd) {\r
796\r
797 //\r
798 // Clip end\r
799 //\r
800 Entry->End = Start - 1;\r
801\r
802 } else {\r
803\r
804 //\r
805 // Pull it out of the center, clip current\r
806 //\r
807\r
808 //\r
809 // Add a new one\r
810 //\r
811 mMapStack[mMapDepth].Signature = MEMORY_MAP_SIGNATURE;\r
812 mMapStack[mMapDepth].FromPages = FALSE;\r
813 mMapStack[mMapDepth].Type = Entry->Type;\r
814 mMapStack[mMapDepth].Start = RangeEnd+1;\r
815 mMapStack[mMapDepth].End = Entry->End;\r
816\r
817 //\r
818 // Inherit Attribute from the Memory Descriptor that is being clipped\r
819 //\r
820 mMapStack[mMapDepth].Attribute = Entry->Attribute;\r
821\r
822 Entry->End = Start - 1;\r
823 ASSERT (Entry->Start < Entry->End);\r
824\r
825 Entry = &mMapStack[mMapDepth];\r
826 InsertTailList (&gMemoryMap, &Entry->Link);\r
827\r
828 mMapDepth += 1;\r
829 ASSERT (mMapDepth < MAX_MAP_DEPTH);\r
830 }\r
831\r
832 //\r
833 // The new range inherits the same Attribute as the Entry\r
834 //it is being cut out of\r
835 //\r
836 Attribute = Entry->Attribute;\r
837\r
838 //\r
839 // If the descriptor is empty, then remove it from the map\r
840 //\r
841 if (Entry->Start == Entry->End + 1) {\r
842 RemoveMemoryMapEntry (Entry);\r
843 Entry = NULL;\r
844 }\r
845\r
846 //\r
847 // Add our new range in\r
848 //\r
849 CoreAddRange (NewType, Start, RangeEnd, Attribute);\r
850\r
851 //\r
852 // Move any map descriptor stack to general pool\r
853 //\r
854 CoreFreeMemoryMapStack ();\r
855\r
856 //\r
857 // Bump the starting address, and convert the next range\r
858 //\r
859 Start = RangeEnd + 1;\r
860 }\r
861\r
862 //\r
863 // Converted the whole range, done\r
864 //\r
865\r
866 return EFI_SUCCESS;\r
867}\r
868\r
869\r
870\r
871/**\r
872 Internal function. Finds a consecutive free page range below\r
873 the requested address.\r
874\r
875 @param MaxAddress The address that the range must be below\r
876 @param NumberOfPages Number of pages needed\r
877 @param NewType The type of memory the range is going to be\r
878 turned into\r
879 @param Alignment Bits to align with\r
880\r
881 @return The base address of the range, or 0 if the range was not found\r
882\r
883**/\r
884UINT64\r
885CoreFindFreePagesI (\r
886 IN UINT64 MaxAddress,\r
887 IN UINT64 NumberOfPages,\r
888 IN EFI_MEMORY_TYPE NewType,\r
889 IN UINTN Alignment\r
890 )\r
891{\r
892 UINT64 NumberOfBytes;\r
893 UINT64 Target;\r
894 UINT64 DescStart;\r
895 UINT64 DescEnd;\r
896 UINT64 DescNumberOfBytes;\r
897 LIST_ENTRY *Link;\r
898 MEMORY_MAP *Entry;\r
899\r
900 if ((MaxAddress < EFI_PAGE_MASK) ||(NumberOfPages == 0)) {\r
901 return 0;\r
902 }\r
903\r
904 if ((MaxAddress & EFI_PAGE_MASK) != EFI_PAGE_MASK) {\r
905\r
906 //\r
907 // If MaxAddress is not aligned to the end of a page\r
908 //\r
909\r
910 //\r
911 // Change MaxAddress to be 1 page lower\r
912 //\r
913 MaxAddress -= (EFI_PAGE_MASK + 1);\r
914\r
915 //\r
916 // Set MaxAddress to a page boundary\r
917 //\r
918 MaxAddress &= ~EFI_PAGE_MASK;\r
919\r
920 //\r
921 // Set MaxAddress to end of the page\r
922 //\r
923 MaxAddress |= EFI_PAGE_MASK;\r
924 }\r
925\r
926 NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);\r
927 Target = 0;\r
928\r
929 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
930 Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
931\r
932 //\r
933 // If it's not a free entry, don't bother with it\r
934 //\r
935 if (Entry->Type != EfiConventionalMemory) {\r
936 continue;\r
937 }\r
938\r
939 DescStart = Entry->Start;\r
940 DescEnd = Entry->End;\r
941\r
942 //\r
943 // If desc is past max allowed address, skip it\r
944 //\r
945 if (DescStart >= MaxAddress) {\r
946 continue;\r
947 }\r
948\r
949 //\r
950 // If desc ends past max allowed address, clip the end\r
951 //\r
952 if (DescEnd >= MaxAddress) {\r
953 DescEnd = MaxAddress;\r
954 }\r
955\r
956 DescEnd = ((DescEnd + 1) & (~(Alignment - 1))) - 1;\r
957\r
958 //\r
959 // Compute the number of bytes we can used from this\r
960 // descriptor, and see it's enough to satisfy the request\r
961 //\r
962 DescNumberOfBytes = DescEnd - DescStart + 1;\r
963\r
964 if (DescNumberOfBytes >= NumberOfBytes) {\r
965\r
966 //\r
967 // If this is the best match so far remember it\r
968 //\r
969 if (DescEnd > Target) {\r
970 Target = DescEnd;\r
971 }\r
972 }\r
973 }\r
974\r
975 //\r
976 // If this is a grow down, adjust target to be the allocation base\r
977 //\r
978 Target -= NumberOfBytes - 1;\r
979\r
980 //\r
981 // If we didn't find a match, return 0\r
982 //\r
983 if ((Target & EFI_PAGE_MASK) != 0) {\r
984 return 0;\r
985 }\r
986\r
987 return Target;\r
988}\r
989\r
990\r
991/**\r
992 Internal function. Finds a consecutive free page range below\r
993 the requested address\r
994\r
995 @param MaxAddress The address that the range must be below\r
996 @param NoPages Number of pages needed\r
997 @param NewType The type of memory the range is going to be\r
998 turned into\r
999 @param Alignment Bits to align with\r
1000\r
1001 @return The base address of the range, or 0 if the range was not found.\r
1002\r
1003**/\r
1004UINT64\r
1005FindFreePages (\r
1006 IN UINT64 MaxAddress,\r
1007 IN UINT64 NoPages,\r
1008 IN EFI_MEMORY_TYPE NewType,\r
1009 IN UINTN Alignment\r
1010 )\r
1011{\r
1012 UINT64 NewMaxAddress;\r
1013 UINT64 Start;\r
1014\r
1015 NewMaxAddress = MaxAddress;\r
1016\r
1017 if (NewType >= 0 && NewType < EfiMaxMemoryType && NewMaxAddress >= mMemoryTypeStatistics[NewType].MaximumAddress) {\r
1018 NewMaxAddress = mMemoryTypeStatistics[NewType].MaximumAddress;\r
1019 } else {\r
1020 if (NewMaxAddress > mDefaultMaximumAddress) {\r
1021 NewMaxAddress = mDefaultMaximumAddress;\r
1022 }\r
1023 }\r
1024\r
1025 Start = CoreFindFreePagesI (NewMaxAddress, NoPages, NewType, Alignment);\r
1026 if (Start == 0) {\r
1027 Start = CoreFindFreePagesI (MaxAddress, NoPages, NewType, Alignment);\r
1028 if (Start == 0) {\r
1029 //\r
1030 // Here means there may be no enough memory to use, so try to go through\r
1031 // all the memory descript to promote the untested memory directly\r
1032 //\r
1033 PromoteMemoryResource ();\r
1034\r
1035 //\r
1036 // Allocate memory again after the memory resource re-arranged\r
1037 //\r
1038 Start = CoreFindFreePagesI (MaxAddress, NoPages, NewType, Alignment);\r
1039 }\r
1040 }\r
1041\r
1042 return Start;\r
1043}\r
1044\r
1045\r
1046\r
1047/**\r
1048 Allocates pages from the memory map.\r
1049\r
1050 @param Type The type of allocation to perform\r
1051 @param MemoryType The type of memory to turn the allocated pages\r
1052 into\r
1053 @param NumberOfPages The number of pages to allocate\r
1054 @param Memory A pointer to receive the base allocated memory\r
1055 address\r
1056\r
1057 @return Status. On success, Memory is filled in with the base address allocated\r
1058 @retval EFI_INVALID_PARAMETER Parameters violate checking rules defined in\r
1059 spec.\r
1060 @retval EFI_NOT_FOUND Could not allocate pages match the requirement.\r
1061 @retval EFI_OUT_OF_RESOURCES No enough pages to allocate.\r
1062 @retval EFI_SUCCESS Pages successfully allocated.\r
1063\r
1064**/\r
1065EFI_STATUS\r
1066EFIAPI\r
1067CoreAllocatePages (\r
1068 IN EFI_ALLOCATE_TYPE Type,\r
1069 IN EFI_MEMORY_TYPE MemoryType,\r
1070 IN UINTN NumberOfPages,\r
1071 IN OUT EFI_PHYSICAL_ADDRESS *Memory\r
1072 )\r
1073{\r
1074 EFI_STATUS Status;\r
1075 UINT64 Start;\r
1076 UINT64 MaxAddress;\r
1077 UINTN Alignment;\r
1078\r
1079 if (Type < AllocateAnyPages || Type >= (UINTN) MaxAllocateType) {\r
1080 return EFI_INVALID_PARAMETER;\r
1081 }\r
1082\r
1083 if ((MemoryType >= EfiMaxMemoryType && MemoryType <= 0x7fffffff) ||\r
1084 MemoryType == EfiConventionalMemory) {\r
1085 return EFI_INVALID_PARAMETER;\r
1086 }\r
1087\r
1088 Alignment = EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT;\r
1089\r
1090 if (MemoryType == EfiACPIReclaimMemory ||\r
1091 MemoryType == EfiACPIMemoryNVS ||\r
1092 MemoryType == EfiRuntimeServicesCode ||\r
1093 MemoryType == EfiRuntimeServicesData) {\r
1094\r
1095 Alignment = EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT;\r
1096 }\r
1097\r
1098 if (Type == AllocateAddress) {\r
1099 if ((*Memory & (Alignment - 1)) != 0) {\r
1100 return EFI_NOT_FOUND;\r
1101 }\r
1102 }\r
1103\r
1104 NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1;\r
1105 NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1);\r
1106\r
1107 //\r
1108 // If this is for below a particular address, then\r
1109 //\r
1110 Start = *Memory;\r
1111\r
1112 //\r
1113 // The max address is the max natively addressable address for the processor\r
1114 //\r
1115 MaxAddress = EFI_MAX_ADDRESS;\r
1116\r
1117 if (Type == AllocateMaxAddress) {\r
1118 MaxAddress = Start;\r
1119 }\r
1120\r
1121 CoreAcquireMemoryLock ();\r
1122\r
1123 //\r
1124 // If not a specific address, then find an address to allocate\r
1125 //\r
1126 if (Type != AllocateAddress) {\r
1127 Start = FindFreePages (MaxAddress, NumberOfPages, MemoryType, Alignment);\r
1128 if (Start == 0) {\r
1129 Status = EFI_OUT_OF_RESOURCES;\r
1130 goto Done;\r
1131 }\r
1132 }\r
1133\r
1134 //\r
1135 // Convert pages from FreeMemory to the requested type\r
1136 //\r
1137 Status = CoreConvertPages (Start, NumberOfPages, MemoryType);\r
1138\r
1139Done:\r
1140 CoreReleaseMemoryLock ();\r
1141\r
1142 if (!EFI_ERROR (Status)) {\r
1143 *Memory = Start;\r
1144 }\r
1145\r
1146 return Status;\r
1147}\r
1148\r
1149\r
1150/**\r
1151 Frees previous allocated pages.\r
1152\r
1153 @param Memory Base address of memory being freed\r
1154 @param NumberOfPages The number of pages to free\r
1155\r
1156 @retval EFI_NOT_FOUND Could not find the entry that covers the range\r
1157 @retval EFI_INVALID_PARAMETER Address not aligned\r
1158 @return EFI_SUCCESS -Pages successfully freed.\r
1159\r
1160**/\r
1161EFI_STATUS\r
1162EFIAPI\r
1163CoreFreePages (\r
1164 IN EFI_PHYSICAL_ADDRESS Memory,\r
1165 IN UINTN NumberOfPages\r
1166 )\r
1167{\r
1168 EFI_STATUS Status;\r
1169 LIST_ENTRY *Link;\r
1170 MEMORY_MAP *Entry;\r
1171 UINTN Alignment;\r
1172\r
1173 //\r
1174 // Free the range\r
1175 //\r
1176 CoreAcquireMemoryLock ();\r
1177\r
1178 //\r
1179 // Find the entry that the covers the range\r
1180 //\r
1181 Entry = NULL;\r
1182 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
1183 Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
1184 if (Entry->Start <= Memory && Entry->End > Memory) {\r
1185 break;\r
1186 }\r
1187 }\r
1188 if (Link == &gMemoryMap) {\r
1189 CoreReleaseMemoryLock ();\r
1190 return EFI_NOT_FOUND;\r
1191 }\r
1192\r
1193 Alignment = EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT;\r
1194\r
1195 if (Entry->Type == EfiACPIReclaimMemory ||\r
1196 Entry->Type == EfiACPIMemoryNVS ||\r
1197 Entry->Type == EfiRuntimeServicesCode ||\r
1198 Entry->Type == EfiRuntimeServicesData) {\r
1199\r
1200 Alignment = EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT;\r
1201\r
1202 }\r
1203\r
1204 if ((Memory & (Alignment - 1)) != 0) {\r
1205 CoreReleaseMemoryLock ();\r
1206 return EFI_INVALID_PARAMETER;\r
1207 }\r
1208\r
1209 NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1;\r
1210 NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1);\r
1211\r
1212 Status = CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);\r
1213\r
1214 CoreReleaseMemoryLock ();\r
1215\r
1216 if (EFI_ERROR (Status)) {\r
1217 return Status;\r
1218 }\r
1219\r
1220 //\r
1221 // Destroy the contents\r
1222 //\r
1223 if (Memory < EFI_MAX_ADDRESS) {\r
1224 DEBUG_CLEAR_MEMORY ((VOID *)(UINTN)Memory, NumberOfPages << EFI_PAGE_SHIFT);\r
1225 }\r
1226\r
1227 return Status;\r
1228}\r
1229\r
1230\r
1231/**\r
1232 This function returns a copy of the current memory map. The map is an array of\r
1233 memory descriptors, each of which describes a contiguous block of memory.\r
1234\r
1235 @param MemoryMapSize A pointer to the size, in bytes, of the\r
1236 MemoryMap buffer. On input, this is the size of\r
1237 the buffer allocated by the caller. On output,\r
1238 it is the size of the buffer returned by the\r
1239 firmware if the buffer was large enough, or the\r
1240 size of the buffer needed to contain the map if\r
1241 the buffer was too small.\r
1242 @param MemoryMap A pointer to the buffer in which firmware places\r
1243 the current memory map.\r
1244 @param MapKey A pointer to the location in which firmware\r
1245 returns the key for the current memory map.\r
1246 @param DescriptorSize A pointer to the location in which firmware\r
1247 returns the size, in bytes, of an individual\r
1248 EFI_MEMORY_DESCRIPTOR.\r
1249 @param DescriptorVersion A pointer to the location in which firmware\r
1250 returns the version number associated with the\r
1251 EFI_MEMORY_DESCRIPTOR.\r
1252\r
1253 @retval EFI_SUCCESS The memory map was returned in the MemoryMap\r
1254 buffer.\r
1255 @retval EFI_BUFFER_TOO_SMALL The MemoryMap buffer was too small. The current\r
1256 buffer size needed to hold the memory map is\r
1257 returned in MemoryMapSize.\r
1258 @retval EFI_INVALID_PARAMETER One of the parameters has an invalid value.\r
1259\r
1260**/\r
1261EFI_STATUS\r
1262EFIAPI\r
1263CoreGetMemoryMap (\r
1264 IN OUT UINTN *MemoryMapSize,\r
1265 IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,\r
1266 OUT UINTN *MapKey,\r
1267 OUT UINTN *DescriptorSize,\r
1268 OUT UINT32 *DescriptorVersion\r
1269 )\r
1270{\r
1271 EFI_STATUS Status;\r
1272 UINTN Size;\r
1273 UINTN BufferSize;\r
1274 UINTN NumberOfRuntimeEntries;\r
1275 LIST_ENTRY *Link;\r
1276 MEMORY_MAP *Entry;\r
1277 EFI_GCD_MAP_ENTRY *GcdMapEntry;\r
1278 EFI_MEMORY_TYPE Type;\r
1279\r
1280 //\r
1281 // Make sure the parameters are valid\r
1282 //\r
1283 if (MemoryMapSize == NULL) {\r
1284 return EFI_INVALID_PARAMETER;\r
1285 }\r
1286\r
1287 CoreAcquireGcdMemoryLock ();\r
1288\r
1289 //\r
1290 // Count the number of Reserved and MMIO entries that are marked for runtime use\r
1291 //\r
1292 NumberOfRuntimeEntries = 0;\r
1293 for (Link = mGcdMemorySpaceMap.ForwardLink; Link != &mGcdMemorySpaceMap; Link = Link->ForwardLink) {\r
1294 GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r
1295 if ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) ||\r
1296 (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo)) {\r
1297 if ((GcdMapEntry->Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) {\r
1298 NumberOfRuntimeEntries++;\r
1299 }\r
1300 }\r
1301 }\r
1302\r
1303 Size = sizeof (EFI_MEMORY_DESCRIPTOR);\r
1304\r
1305 //\r
1306 // Make sure Size != sizeof(EFI_MEMORY_DESCRIPTOR). This will\r
1307 // prevent people from having pointer math bugs in their code.\r
1308 // now you have to use *DescriptorSize to make things work.\r
1309 //\r
1310 Size += sizeof(UINT64) - (Size % sizeof (UINT64));\r
1311\r
1312 if (DescriptorSize != NULL) {\r
1313 *DescriptorSize = Size;\r
1314 }\r
1315\r
1316 if (DescriptorVersion != NULL) {\r
1317 *DescriptorVersion = EFI_MEMORY_DESCRIPTOR_VERSION;\r
1318 }\r
1319\r
1320 CoreAcquireMemoryLock ();\r
1321\r
1322 //\r
1323 // Compute the buffer size needed to fit the entire map\r
1324 //\r
1325 BufferSize = Size * NumberOfRuntimeEntries;\r
1326 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
1327 BufferSize += Size;\r
1328 }\r
1329\r
1330 if (*MemoryMapSize < BufferSize) {\r
1331 Status = EFI_BUFFER_TOO_SMALL;\r
1332 goto Done;\r
1333 }\r
1334\r
1335 if (MemoryMap == NULL) {\r
1336 Status = EFI_INVALID_PARAMETER;\r
1337 goto Done;\r
1338 }\r
1339\r
1340 //\r
1341 // Build the map\r
1342 //\r
1343 ZeroMem (MemoryMap, BufferSize);\r
1344 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
1345 Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
1346 ASSERT (Entry->VirtualStart == 0);\r
1347\r
1348 //\r
1349 // Convert internal map into an EFI_MEMORY_DESCRIPTOR\r
1350 //\r
1351 MemoryMap->Type = Entry->Type;\r
1352 MemoryMap->PhysicalStart = Entry->Start;\r
1353 MemoryMap->VirtualStart = Entry->VirtualStart;\r
1354 MemoryMap->NumberOfPages = RShiftU64 (Entry->End - Entry->Start + 1, EFI_PAGE_SHIFT);\r
1355 //\r
1356 // If the memory type is EfiConventionalMemory, then determine if the range is part of a\r
1357 // memory type bin and needs to be converted to the same memory type as the rest of the\r
1358 // memory type bin in order to minimize EFI Memory Map changes across reboots. This\r
1359 // improves the chances for a successful S4 resume in the presence of minor page allocation\r
1360 // differences across reboots.\r
1361 //\r
1362 if (MemoryMap->Type == EfiConventionalMemory) {\r
1363 for (Type = (EFI_MEMORY_TYPE) 0; Type < EfiMaxMemoryType; Type++) {\r
1364 if (mMemoryTypeStatistics[Type].Special &&\r
1365 mMemoryTypeStatistics[Type].NumberOfPages > 0 &&\r
1366 Entry->Start >= mMemoryTypeStatistics[Type].BaseAddress &&\r
1367 Entry->End <= mMemoryTypeStatistics[Type].MaximumAddress) {\r
1368 MemoryMap->Type = Type;\r
1369 }\r
1370 }\r
1371 }\r
1372 MemoryMap->Attribute = Entry->Attribute;\r
1373 if (mMemoryTypeStatistics[MemoryMap->Type].Runtime) {\r
1374 MemoryMap->Attribute |= EFI_MEMORY_RUNTIME;\r
1375 }\r
1376\r
1377 MemoryMap = NextMemoryDescriptor (MemoryMap, Size);\r
1378 }\r
1379\r
1380 for (Link = mGcdMemorySpaceMap.ForwardLink; Link != &mGcdMemorySpaceMap; Link = Link->ForwardLink) {\r
1381 GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r
1382 if ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) ||\r
1383 (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo)) {\r
1384 if ((GcdMapEntry->Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) {\r
1385\r
1386 MemoryMap->PhysicalStart = GcdMapEntry->BaseAddress;\r
1387 MemoryMap->VirtualStart = 0;\r
1388 MemoryMap->NumberOfPages = RShiftU64 ((GcdMapEntry->EndAddress - GcdMapEntry->BaseAddress + 1), EFI_PAGE_SHIFT);\r
1389 MemoryMap->Attribute = GcdMapEntry->Attributes & ~EFI_MEMORY_PORT_IO;\r
1390\r
1391 if (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) {\r
1392 MemoryMap->Type = EfiReservedMemoryType;\r
1393 } else if (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) {\r
1394 if ((GcdMapEntry->Attributes & EFI_MEMORY_PORT_IO) == EFI_MEMORY_PORT_IO) {\r
1395 MemoryMap->Type = EfiMemoryMappedIOPortSpace;\r
1396 } else {\r
1397 MemoryMap->Type = EfiMemoryMappedIO;\r
1398 }\r
1399 }\r
1400\r
1401 MemoryMap = NextMemoryDescriptor (MemoryMap, Size);\r
1402 }\r
1403 }\r
1404 }\r
1405\r
1406 Status = EFI_SUCCESS;\r
1407\r
1408Done:\r
1409\r
1410 CoreReleaseMemoryLock ();\r
1411\r
1412 CoreReleaseGcdMemoryLock ();\r
1413\r
1414 //\r
1415 // Update the map key finally\r
1416 //\r
1417 if (MapKey != NULL) {\r
1418 *MapKey = mMemoryMapKey;\r
1419 }\r
1420\r
1421 *MemoryMapSize = BufferSize;\r
1422\r
1423 return Status;\r
1424}\r
1425\r
1426\r
1427/**\r
1428 Internal function. Used by the pool functions to allocate pages\r
1429 to back pool allocation requests.\r
1430\r
1431 @param PoolType The type of memory for the new pool pages\r
1432 @param NumberOfPages No of pages to allocate\r
1433 @param Alignment Bits to align.\r
1434\r
1435 @return The allocated memory, or NULL\r
1436\r
1437**/\r
1438VOID *\r
1439CoreAllocatePoolPages (\r
1440 IN EFI_MEMORY_TYPE PoolType,\r
1441 IN UINTN NumberOfPages,\r
1442 IN UINTN Alignment\r
1443 )\r
1444{\r
1445 UINT64 Start;\r
1446\r
1447 //\r
1448 // Find the pages to convert\r
1449 //\r
1450 Start = FindFreePages (EFI_MAX_ADDRESS, NumberOfPages, PoolType, Alignment);\r
1451\r
1452 //\r
1453 // Convert it to boot services data\r
1454 //\r
1455 if (Start == 0) {\r
1456 DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "AllocatePoolPages: failed to allocate %d pages\n", NumberOfPages));\r
1457 } else {\r
1458 CoreConvertPages (Start, NumberOfPages, PoolType);\r
1459 }\r
1460\r
1461 return (VOID *)(UINTN) Start;\r
1462}\r
1463\r
1464\r
1465/**\r
1466 Internal function. Frees pool pages allocated via AllocatePoolPages ()\r
1467\r
1468 @param Memory The base address to free\r
1469 @param NumberOfPages The number of pages to free\r
1470\r
1471**/\r
1472VOID\r
1473CoreFreePoolPages (\r
1474 IN EFI_PHYSICAL_ADDRESS Memory,\r
1475 IN UINTN NumberOfPages\r
1476 )\r
1477{\r
1478 CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);\r
1479}\r
1480\r
1481\r
1482\r
1483/**\r
1484 Make sure the memory map is following all the construction rules,\r
1485 it is the last time to check memory map error before exit boot services.\r
1486\r
1487 @param MapKey Memory map key\r
1488\r
1489 @retval EFI_INVALID_PARAMETER Memory map not consistent with construction\r
1490 rules.\r
1491 @retval EFI_SUCCESS Valid memory map.\r
1492\r
1493**/\r
1494EFI_STATUS\r
1495CoreTerminateMemoryMap (\r
1496 IN UINTN MapKey\r
1497 )\r
1498{\r
1499 EFI_STATUS Status;\r
1500 LIST_ENTRY *Link;\r
1501 MEMORY_MAP *Entry;\r
1502\r
1503 Status = EFI_SUCCESS;\r
1504\r
1505 CoreAcquireMemoryLock ();\r
1506\r
1507 if (MapKey == mMemoryMapKey) {\r
1508\r
1509 //\r
1510 // Make sure the memory map is following all the construction rules\r
1511 // This is the last chance we will be able to display any messages on\r
1512 // the console devices.\r
1513 //\r
1514\r
1515 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
1516 Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
1517 if (Entry->Attribute & EFI_MEMORY_RUNTIME) {\r
1518 if (Entry->Type == EfiACPIReclaimMemory || Entry->Type == EfiACPIMemoryNVS) {\r
1519 DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: ACPI memory entry has RUNTIME attribute set.\n"));\r
1520 Status = EFI_INVALID_PARAMETER;\r
1521 goto Done;\r
1522 }\r
1523 if (Entry->Start & (EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT - 1)) {\r
1524 DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n"));\r
1525 Status = EFI_INVALID_PARAMETER;\r
1526 goto Done;\r
1527 }\r
1528 if ((Entry->End + 1) & (EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT - 1)) {\r
1529 DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n"));\r
1530 Status = EFI_INVALID_PARAMETER;\r
1531 goto Done;\r
1532 }\r
1533 }\r
1534 }\r
1535\r
1536 //\r
1537 // The map key they gave us matches what we expect. Fall through and\r
1538 // return success. In an ideal world we would clear out all of\r
1539 // EfiBootServicesCode and EfiBootServicesData. However this function\r
1540 // is not the last one called by ExitBootServices(), so we have to\r
1541 // preserve the memory contents.\r
1542 //\r
1543 } else {\r
1544 Status = EFI_INVALID_PARAMETER;\r
1545 }\r
1546\r
1547Done:\r
1548 CoreReleaseMemoryLock ();\r
1549\r
1550 return Status;\r
1551}\r
1552\r
1553\r
1554\r
1555\r
1556\r
1557\r
1558\r
1559\r
1560\r