]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - MdeModulePkg/Core/Dxe/Mem/Page.c
Add type cast for better coding style.
[mirror_edk2.git] / MdeModulePkg / Core / Dxe / Mem / Page.c
... / ...
CommitLineData
1/** @file\r
2 UEFI Memory page management functions.\r
3\r
4Copyright (c) 2007 - 2013, Intel Corporation. All rights reserved.<BR>\r
5This program and the accompanying materials\r
6are licensed and made available under the terms and conditions of the BSD License\r
7which accompanies this distribution. The full text of the license may be found at\r
8http://opensource.org/licenses/bsd-license.php\r
9\r
10THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13**/\r
14\r
15#include "DxeMain.h"\r
16#include "Imem.h"\r
17\r
18#define EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT (EFI_PAGE_SIZE)\r
19\r
20//\r
21// Entry for tracking the memory regions for each memory type to coalesce similar memory types\r
22//\r
23typedef struct {\r
24 EFI_PHYSICAL_ADDRESS BaseAddress;\r
25 EFI_PHYSICAL_ADDRESS MaximumAddress;\r
26 UINT64 CurrentNumberOfPages;\r
27 UINT64 NumberOfPages;\r
28 UINTN InformationIndex;\r
29 BOOLEAN Special;\r
30 BOOLEAN Runtime;\r
31} EFI_MEMORY_TYPE_STATISTICS;\r
32\r
33//\r
34// MemoryMap - The current memory map\r
35//\r
36UINTN mMemoryMapKey = 0;\r
37\r
38#define MAX_MAP_DEPTH 6\r
39\r
40///\r
41/// mMapDepth - depth of new descriptor stack\r
42///\r
43UINTN mMapDepth = 0;\r
44///\r
45/// mMapStack - space to use as temp storage to build new map descriptors\r
46///\r
47MEMORY_MAP mMapStack[MAX_MAP_DEPTH];\r
48UINTN mFreeMapStack = 0;\r
49///\r
50/// This list maintain the free memory map list\r
51///\r
52LIST_ENTRY mFreeMemoryMapEntryList = INITIALIZE_LIST_HEAD_VARIABLE (mFreeMemoryMapEntryList);\r
53BOOLEAN mMemoryTypeInformationInitialized = FALSE;\r
54\r
55EFI_MEMORY_TYPE_STATISTICS mMemoryTypeStatistics[EfiMaxMemoryType + 1] = {\r
56 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiReservedMemoryType\r
57 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiLoaderCode\r
58 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiLoaderData\r
59 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiBootServicesCode\r
60 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiBootServicesData\r
61 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiRuntimeServicesCode\r
62 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiRuntimeServicesData\r
63 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiConventionalMemory\r
64 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiUnusableMemory\r
65 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiACPIReclaimMemory\r
66 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiACPIMemoryNVS\r
67 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiMemoryMappedIO\r
68 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiMemoryMappedIOPortSpace\r
69 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiPalCode\r
70 { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE } // EfiMaxMemoryType\r
71};\r
72\r
73EFI_PHYSICAL_ADDRESS mDefaultMaximumAddress = MAX_ADDRESS;\r
74EFI_PHYSICAL_ADDRESS mDefaultBaseAddress = MAX_ADDRESS;\r
75\r
76EFI_MEMORY_TYPE_INFORMATION gMemoryTypeInformation[EfiMaxMemoryType + 1] = {\r
77 { EfiReservedMemoryType, 0 },\r
78 { EfiLoaderCode, 0 },\r
79 { EfiLoaderData, 0 },\r
80 { EfiBootServicesCode, 0 },\r
81 { EfiBootServicesData, 0 },\r
82 { EfiRuntimeServicesCode, 0 },\r
83 { EfiRuntimeServicesData, 0 },\r
84 { EfiConventionalMemory, 0 },\r
85 { EfiUnusableMemory, 0 },\r
86 { EfiACPIReclaimMemory, 0 },\r
87 { EfiACPIMemoryNVS, 0 },\r
88 { EfiMemoryMappedIO, 0 },\r
89 { EfiMemoryMappedIOPortSpace, 0 },\r
90 { EfiPalCode, 0 },\r
91 { EfiMaxMemoryType, 0 }\r
92};\r
93//\r
94// Only used when load module at fixed address feature is enabled. True means the memory is alreay successfully allocated\r
95// and ready to load the module in to specified address.or else, the memory is not ready and module will be loaded at a \r
96// address assigned by DXE core.\r
97//\r
98GLOBAL_REMOVE_IF_UNREFERENCED BOOLEAN gLoadFixedAddressCodeMemoryReady = FALSE;\r
99\r
100/**\r
101 Enter critical section by gaining lock on gMemoryLock.\r
102\r
103**/\r
104VOID\r
105CoreAcquireMemoryLock (\r
106 VOID\r
107 )\r
108{\r
109 CoreAcquireLock (&gMemoryLock);\r
110}\r
111\r
112\r
113\r
114/**\r
115 Exit critical section by releasing lock on gMemoryLock.\r
116\r
117**/\r
118VOID\r
119CoreReleaseMemoryLock (\r
120 VOID\r
121 )\r
122{\r
123 CoreReleaseLock (&gMemoryLock);\r
124}\r
125\r
126\r
127\r
128\r
129/**\r
130 Internal function. Removes a descriptor entry.\r
131\r
132 @param Entry The entry to remove\r
133\r
134**/\r
135VOID\r
136RemoveMemoryMapEntry (\r
137 IN OUT MEMORY_MAP *Entry\r
138 )\r
139{\r
140 RemoveEntryList (&Entry->Link);\r
141 Entry->Link.ForwardLink = NULL;\r
142\r
143 if (Entry->FromPages) {\r
144 //\r
145 // Insert the free memory map descriptor to the end of mFreeMemoryMapEntryList\r
146 //\r
147 InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);\r
148 }\r
149}\r
150\r
151/**\r
152 Internal function. Adds a ranges to the memory map.\r
153 The range must not already exist in the map.\r
154\r
155 @param Type The type of memory range to add\r
156 @param Start The starting address in the memory range Must be\r
157 paged aligned\r
158 @param End The last address in the range Must be the last\r
159 byte of a page\r
160 @param Attribute The attributes of the memory range to add\r
161\r
162**/\r
163VOID\r
164CoreAddRange (\r
165 IN EFI_MEMORY_TYPE Type,\r
166 IN EFI_PHYSICAL_ADDRESS Start,\r
167 IN EFI_PHYSICAL_ADDRESS End,\r
168 IN UINT64 Attribute\r
169 )\r
170{\r
171 LIST_ENTRY *Link;\r
172 MEMORY_MAP *Entry;\r
173\r
174 ASSERT ((Start & EFI_PAGE_MASK) == 0);\r
175 ASSERT (End > Start) ;\r
176\r
177 ASSERT_LOCKED (&gMemoryLock);\r
178\r
179 DEBUG ((DEBUG_PAGE, "AddRange: %lx-%lx to %d\n", Start, End, Type));\r
180 \r
181 //\r
182 // If memory of type EfiConventionalMemory is being added that includes the page \r
183 // starting at address 0, then zero the page starting at address 0. This has \r
184 // two benifits. It helps find NULL pointer bugs and it also maximizes \r
185 // compatibility with operating systems that may evaluate memory in this page \r
186 // for legacy data structures. If memory of any other type is added starting \r
187 // at address 0, then do not zero the page at address 0 because the page is being \r
188 // used for other purposes.\r
189 // \r
190 if (Type == EfiConventionalMemory && Start == 0 && (End >= EFI_PAGE_SIZE - 1)) {\r
191 SetMem ((VOID *)(UINTN)Start, EFI_PAGE_SIZE, 0);\r
192 }\r
193 \r
194 //\r
195 // Memory map being altered so updated key\r
196 //\r
197 mMemoryMapKey += 1;\r
198\r
199 //\r
200 // UEFI 2.0 added an event group for notificaiton on memory map changes.\r
201 // So we need to signal this Event Group every time the memory map changes.\r
202 // If we are in EFI 1.10 compatability mode no event groups will be\r
203 // found and nothing will happen we we call this function. These events\r
204 // will get signaled but since a lock is held around the call to this\r
205 // function the notificaiton events will only be called after this funciton\r
206 // returns and the lock is released.\r
207 //\r
208 CoreNotifySignalList (&gEfiEventMemoryMapChangeGuid);\r
209\r
210 //\r
211 // Look for adjoining memory descriptor\r
212 //\r
213\r
214 // Two memory descriptors can only be merged if they have the same Type\r
215 // and the same Attribute\r
216 //\r
217\r
218 Link = gMemoryMap.ForwardLink;\r
219 while (Link != &gMemoryMap) {\r
220 Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
221 Link = Link->ForwardLink;\r
222\r
223 if (Entry->Type != Type) {\r
224 continue;\r
225 }\r
226\r
227 if (Entry->Attribute != Attribute) {\r
228 continue;\r
229 }\r
230\r
231 if (Entry->End + 1 == Start) {\r
232\r
233 Start = Entry->Start;\r
234 RemoveMemoryMapEntry (Entry);\r
235\r
236 } else if (Entry->Start == End + 1) {\r
237\r
238 End = Entry->End;\r
239 RemoveMemoryMapEntry (Entry);\r
240 }\r
241 }\r
242\r
243 //\r
244 // Add descriptor\r
245 //\r
246\r
247 mMapStack[mMapDepth].Signature = MEMORY_MAP_SIGNATURE;\r
248 mMapStack[mMapDepth].FromPages = FALSE;\r
249 mMapStack[mMapDepth].Type = Type;\r
250 mMapStack[mMapDepth].Start = Start;\r
251 mMapStack[mMapDepth].End = End;\r
252 mMapStack[mMapDepth].VirtualStart = 0;\r
253 mMapStack[mMapDepth].Attribute = Attribute;\r
254 InsertTailList (&gMemoryMap, &mMapStack[mMapDepth].Link);\r
255\r
256 mMapDepth += 1;\r
257 ASSERT (mMapDepth < MAX_MAP_DEPTH);\r
258\r
259 return ;\r
260}\r
261\r
262/**\r
263 Internal function. Deque a descriptor entry from the mFreeMemoryMapEntryList.\r
264 If the list is emtry, then allocate a new page to refuel the list.\r
265 Please Note this algorithm to allocate the memory map descriptor has a property\r
266 that the memory allocated for memory entries always grows, and will never really be freed\r
267 For example, if the current boot uses 2000 memory map entries at the maximum point, but\r
268 ends up with only 50 at the time the OS is booted, then the memory associated with the 1950\r
269 memory map entries is still allocated from EfiBootServicesMemory.\r
270\r
271\r
272 @return The Memory map descriptor dequed from the mFreeMemoryMapEntryList\r
273\r
274**/\r
275MEMORY_MAP *\r
276AllocateMemoryMapEntry (\r
277 VOID\r
278 )\r
279{\r
280 MEMORY_MAP* FreeDescriptorEntries;\r
281 MEMORY_MAP* Entry;\r
282 UINTN Index;\r
283\r
284 if (IsListEmpty (&mFreeMemoryMapEntryList)) {\r
285 //\r
286 // The list is empty, to allocate one page to refuel the list\r
287 //\r
288 FreeDescriptorEntries = CoreAllocatePoolPages (EfiBootServicesData, EFI_SIZE_TO_PAGES(DEFAULT_PAGE_ALLOCATION), DEFAULT_PAGE_ALLOCATION);\r
289 if(FreeDescriptorEntries != NULL) {\r
290 //\r
291 // Enque the free memmory map entries into the list\r
292 //\r
293 for (Index = 0; Index< DEFAULT_PAGE_ALLOCATION / sizeof(MEMORY_MAP); Index++) {\r
294 FreeDescriptorEntries[Index].Signature = MEMORY_MAP_SIGNATURE;\r
295 InsertTailList (&mFreeMemoryMapEntryList, &FreeDescriptorEntries[Index].Link);\r
296 }\r
297 } else {\r
298 return NULL;\r
299 }\r
300 }\r
301 //\r
302 // dequeue the first descriptor from the list\r
303 //\r
304 Entry = CR (mFreeMemoryMapEntryList.ForwardLink, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
305 RemoveEntryList (&Entry->Link);\r
306\r
307 return Entry;\r
308}\r
309\r
310\r
311/**\r
312 Internal function. Moves any memory descriptors that are on the\r
313 temporary descriptor stack to heap.\r
314\r
315**/\r
316VOID\r
317CoreFreeMemoryMapStack (\r
318 VOID\r
319 )\r
320{\r
321 MEMORY_MAP *Entry;\r
322 MEMORY_MAP *Entry2;\r
323 LIST_ENTRY *Link2;\r
324\r
325 ASSERT_LOCKED (&gMemoryLock);\r
326\r
327 //\r
328 // If already freeing the map stack, then return\r
329 //\r
330 if (mFreeMapStack != 0) {\r
331 return ;\r
332 }\r
333\r
334 //\r
335 // Move the temporary memory descriptor stack into pool\r
336 //\r
337 mFreeMapStack += 1;\r
338\r
339 while (mMapDepth != 0) {\r
340 //\r
341 // Deque an memory map entry from mFreeMemoryMapEntryList\r
342 //\r
343 Entry = AllocateMemoryMapEntry ();\r
344\r
345 ASSERT (Entry);\r
346\r
347 //\r
348 // Update to proper entry\r
349 //\r
350 mMapDepth -= 1;\r
351\r
352 if (mMapStack[mMapDepth].Link.ForwardLink != NULL) {\r
353\r
354 //\r
355 // Move this entry to general memory\r
356 //\r
357 RemoveEntryList (&mMapStack[mMapDepth].Link);\r
358 mMapStack[mMapDepth].Link.ForwardLink = NULL;\r
359\r
360 CopyMem (Entry , &mMapStack[mMapDepth], sizeof (MEMORY_MAP));\r
361 Entry->FromPages = TRUE;\r
362\r
363 //\r
364 // Find insertion location\r
365 //\r
366 for (Link2 = gMemoryMap.ForwardLink; Link2 != &gMemoryMap; Link2 = Link2->ForwardLink) {\r
367 Entry2 = CR (Link2, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
368 if (Entry2->FromPages && Entry2->Start > Entry->Start) {\r
369 break;\r
370 }\r
371 }\r
372\r
373 InsertTailList (Link2, &Entry->Link);\r
374\r
375 } else {\r
376 //\r
377 // This item of mMapStack[mMapDepth] has already been dequeued from gMemoryMap list,\r
378 // so here no need to move it to memory.\r
379 //\r
380 InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);\r
381 }\r
382 }\r
383\r
384 mFreeMapStack -= 1;\r
385}\r
386\r
387/**\r
388 Find untested but initialized memory regions in GCD map and convert them to be DXE allocatable.\r
389\r
390**/\r
391BOOLEAN\r
392PromoteMemoryResource (\r
393 VOID\r
394 )\r
395{\r
396 LIST_ENTRY *Link;\r
397 EFI_GCD_MAP_ENTRY *Entry;\r
398 BOOLEAN Promoted;\r
399\r
400 DEBUG ((DEBUG_PAGE, "Promote the memory resource\n"));\r
401\r
402 CoreAcquireGcdMemoryLock ();\r
403\r
404 Promoted = FALSE;\r
405 Link = mGcdMemorySpaceMap.ForwardLink;\r
406 while (Link != &mGcdMemorySpaceMap) {\r
407\r
408 Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r
409\r
410 if (Entry->GcdMemoryType == EfiGcdMemoryTypeReserved &&\r
411 Entry->EndAddress < MAX_ADDRESS &&\r
412 (Entry->Capabilities & (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED)) ==\r
413 (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED)) {\r
414 //\r
415 // Update the GCD map\r
416 //\r
417 Entry->GcdMemoryType = EfiGcdMemoryTypeSystemMemory;\r
418 Entry->Capabilities |= EFI_MEMORY_TESTED;\r
419 Entry->ImageHandle = gDxeCoreImageHandle;\r
420 Entry->DeviceHandle = NULL;\r
421\r
422 //\r
423 // Add to allocable system memory resource\r
424 //\r
425\r
426 CoreAddRange (\r
427 EfiConventionalMemory,\r
428 Entry->BaseAddress,\r
429 Entry->EndAddress,\r
430 Entry->Capabilities & ~(EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED | EFI_MEMORY_RUNTIME)\r
431 );\r
432 CoreFreeMemoryMapStack ();\r
433\r
434 Promoted = TRUE;\r
435 }\r
436\r
437 Link = Link->ForwardLink;\r
438 }\r
439\r
440 CoreReleaseGcdMemoryLock ();\r
441\r
442 return Promoted;\r
443}\r
444/**\r
445 This function try to allocate Runtime code & Boot time code memory range. If LMFA enabled, 2 patchable PCD \r
446 PcdLoadFixAddressRuntimeCodePageNumber & PcdLoadFixAddressBootTimeCodePageNumber which are set by tools will record the \r
447 size of boot time and runtime code.\r
448\r
449**/\r
450VOID\r
451CoreLoadingFixedAddressHook (\r
452 VOID\r
453 )\r
454{\r
455 UINT32 RuntimeCodePageNumber;\r
456 UINT32 BootTimeCodePageNumber;\r
457 EFI_PHYSICAL_ADDRESS RuntimeCodeBase;\r
458 EFI_PHYSICAL_ADDRESS BootTimeCodeBase;\r
459 EFI_STATUS Status;\r
460\r
461 //\r
462 // Make sure these 2 areas are not initialzied.\r
463 //\r
464 if (!gLoadFixedAddressCodeMemoryReady) { \r
465 RuntimeCodePageNumber = PcdGet32(PcdLoadFixAddressRuntimeCodePageNumber);\r
466 BootTimeCodePageNumber= PcdGet32(PcdLoadFixAddressBootTimeCodePageNumber);\r
467 RuntimeCodeBase = (EFI_PHYSICAL_ADDRESS)(gLoadModuleAtFixAddressConfigurationTable.DxeCodeTopAddress - EFI_PAGES_TO_SIZE (RuntimeCodePageNumber));\r
468 BootTimeCodeBase = (EFI_PHYSICAL_ADDRESS)(RuntimeCodeBase - EFI_PAGES_TO_SIZE (BootTimeCodePageNumber));\r
469 //\r
470 // Try to allocate runtime memory.\r
471 //\r
472 Status = CoreAllocatePages (\r
473 AllocateAddress,\r
474 EfiRuntimeServicesCode,\r
475 RuntimeCodePageNumber,\r
476 &RuntimeCodeBase\r
477 );\r
478 if (EFI_ERROR(Status)) {\r
479 //\r
480 // Runtime memory allocation failed \r
481 //\r
482 return;\r
483 }\r
484 //\r
485 // Try to allocate boot memory.\r
486 //\r
487 Status = CoreAllocatePages (\r
488 AllocateAddress,\r
489 EfiBootServicesCode,\r
490 BootTimeCodePageNumber,\r
491 &BootTimeCodeBase\r
492 );\r
493 if (EFI_ERROR(Status)) {\r
494 //\r
495 // boot memory allocation failed. Free Runtime code range and will try the allocation again when \r
496 // new memory range is installed.\r
497 //\r
498 CoreFreePages (\r
499 RuntimeCodeBase,\r
500 RuntimeCodePageNumber\r
501 );\r
502 return;\r
503 }\r
504 gLoadFixedAddressCodeMemoryReady = TRUE;\r
505 } \r
506 return;\r
507} \r
508\r
509/**\r
510 Called to initialize the memory map and add descriptors to\r
511 the current descriptor list.\r
512 The first descriptor that is added must be general usable\r
513 memory as the addition allocates heap.\r
514\r
515 @param Type The type of memory to add\r
516 @param Start The starting address in the memory range Must be\r
517 page aligned\r
518 @param NumberOfPages The number of pages in the range\r
519 @param Attribute Attributes of the memory to add\r
520\r
521 @return None. The range is added to the memory map\r
522\r
523**/\r
524VOID\r
525CoreAddMemoryDescriptor (\r
526 IN EFI_MEMORY_TYPE Type,\r
527 IN EFI_PHYSICAL_ADDRESS Start,\r
528 IN UINT64 NumberOfPages,\r
529 IN UINT64 Attribute\r
530 )\r
531{\r
532 EFI_PHYSICAL_ADDRESS End;\r
533 EFI_STATUS Status;\r
534 UINTN Index;\r
535 UINTN FreeIndex;\r
536 \r
537 if ((Start & EFI_PAGE_MASK) != 0) {\r
538 return;\r
539 }\r
540\r
541 if (Type >= EfiMaxMemoryType && Type <= 0x7fffffff) {\r
542 return;\r
543 }\r
544 CoreAcquireMemoryLock ();\r
545 End = Start + LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT) - 1;\r
546 CoreAddRange (Type, Start, End, Attribute);\r
547 CoreFreeMemoryMapStack ();\r
548 CoreReleaseMemoryLock ();\r
549\r
550 //\r
551 // If Loading Module At Fixed Address feature is enabled. try to allocate memory with Runtime code & Boot time code type\r
552 //\r
553 if (PcdGet64(PcdLoadModuleAtFixAddressEnable) != 0) {\r
554 CoreLoadingFixedAddressHook();\r
555 }\r
556 \r
557 //\r
558 // Check to see if the statistics for the different memory types have already been established\r
559 //\r
560 if (mMemoryTypeInformationInitialized) {\r
561 return;\r
562 }\r
563\r
564 \r
565 //\r
566 // Loop through each memory type in the order specified by the gMemoryTypeInformation[] array\r
567 //\r
568 for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r
569 //\r
570 // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r
571 //\r
572 Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[Index].Type);\r
573 if ((UINT32)Type > EfiMaxMemoryType) {\r
574 continue;\r
575 }\r
576 if (gMemoryTypeInformation[Index].NumberOfPages != 0) {\r
577 //\r
578 // Allocate pages for the current memory type from the top of available memory\r
579 //\r
580 Status = CoreAllocatePages (\r
581 AllocateAnyPages,\r
582 Type,\r
583 gMemoryTypeInformation[Index].NumberOfPages,\r
584 &mMemoryTypeStatistics[Type].BaseAddress\r
585 );\r
586 if (EFI_ERROR (Status)) {\r
587 //\r
588 // If an error occurs allocating the pages for the current memory type, then\r
589 // free all the pages allocates for the previous memory types and return. This\r
590 // operation with be retied when/if more memory is added to the system\r
591 //\r
592 for (FreeIndex = 0; FreeIndex < Index; FreeIndex++) {\r
593 //\r
594 // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r
595 //\r
596 Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[FreeIndex].Type);\r
597 if ((UINT32)Type > EfiMaxMemoryType) {\r
598 continue;\r
599 }\r
600\r
601 if (gMemoryTypeInformation[FreeIndex].NumberOfPages != 0) {\r
602 CoreFreePages (\r
603 mMemoryTypeStatistics[Type].BaseAddress,\r
604 gMemoryTypeInformation[FreeIndex].NumberOfPages\r
605 );\r
606 mMemoryTypeStatistics[Type].BaseAddress = 0;\r
607 mMemoryTypeStatistics[Type].MaximumAddress = MAX_ADDRESS;\r
608 }\r
609 }\r
610 return;\r
611 }\r
612\r
613 //\r
614 // Compute the address at the top of the current statistics\r
615 //\r
616 mMemoryTypeStatistics[Type].MaximumAddress =\r
617 mMemoryTypeStatistics[Type].BaseAddress +\r
618 LShiftU64 (gMemoryTypeInformation[Index].NumberOfPages, EFI_PAGE_SHIFT) - 1;\r
619\r
620 //\r
621 // If the current base address is the lowest address so far, then update the default\r
622 // maximum address\r
623 //\r
624 if (mMemoryTypeStatistics[Type].BaseAddress < mDefaultMaximumAddress) {\r
625 mDefaultMaximumAddress = mMemoryTypeStatistics[Type].BaseAddress - 1;\r
626 }\r
627 }\r
628 }\r
629\r
630 //\r
631 // There was enough system memory for all the the memory types were allocated. So,\r
632 // those memory areas can be freed for future allocations, and all future memory\r
633 // allocations can occur within their respective bins\r
634 //\r
635 for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r
636 //\r
637 // Make sure the memory type in the gMemoryTypeInformation[] array is valid\r
638 //\r
639 Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[Index].Type);\r
640 if ((UINT32)Type > EfiMaxMemoryType) {\r
641 continue;\r
642 }\r
643 if (gMemoryTypeInformation[Index].NumberOfPages != 0) {\r
644 CoreFreePages (\r
645 mMemoryTypeStatistics[Type].BaseAddress,\r
646 gMemoryTypeInformation[Index].NumberOfPages\r
647 );\r
648 mMemoryTypeStatistics[Type].NumberOfPages = gMemoryTypeInformation[Index].NumberOfPages;\r
649 gMemoryTypeInformation[Index].NumberOfPages = 0;\r
650 }\r
651 }\r
652\r
653 //\r
654 // If the number of pages reserved for a memory type is 0, then all allocations for that type\r
655 // should be in the default range.\r
656 //\r
657 for (Type = (EFI_MEMORY_TYPE) 0; Type < EfiMaxMemoryType; Type++) {\r
658 for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {\r
659 if (Type == (EFI_MEMORY_TYPE)gMemoryTypeInformation[Index].Type) {\r
660 mMemoryTypeStatistics[Type].InformationIndex = Index;\r
661 }\r
662 }\r
663 mMemoryTypeStatistics[Type].CurrentNumberOfPages = 0;\r
664 if (mMemoryTypeStatistics[Type].MaximumAddress == MAX_ADDRESS) {\r
665 mMemoryTypeStatistics[Type].MaximumAddress = mDefaultMaximumAddress;\r
666 }\r
667 }\r
668\r
669 mMemoryTypeInformationInitialized = TRUE;\r
670}\r
671\r
672\r
673/**\r
674 Internal function. Converts a memory range to the specified type.\r
675 The range must exist in the memory map.\r
676\r
677 @param Start The first address of the range Must be page\r
678 aligned\r
679 @param NumberOfPages The number of pages to convert\r
680 @param NewType The new type for the memory range\r
681\r
682 @retval EFI_INVALID_PARAMETER Invalid parameter\r
683 @retval EFI_NOT_FOUND Could not find a descriptor cover the specified\r
684 range or convertion not allowed.\r
685 @retval EFI_SUCCESS Successfully converts the memory range to the\r
686 specified type.\r
687\r
688**/\r
689EFI_STATUS\r
690CoreConvertPages (\r
691 IN UINT64 Start,\r
692 IN UINT64 NumberOfPages,\r
693 IN EFI_MEMORY_TYPE NewType\r
694 )\r
695{\r
696\r
697 UINT64 NumberOfBytes;\r
698 UINT64 End;\r
699 UINT64 RangeEnd;\r
700 UINT64 Attribute;\r
701 LIST_ENTRY *Link;\r
702 MEMORY_MAP *Entry;\r
703\r
704 Entry = NULL;\r
705 NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);\r
706 End = Start + NumberOfBytes - 1;\r
707\r
708 ASSERT (NumberOfPages);\r
709 ASSERT ((Start & EFI_PAGE_MASK) == 0);\r
710 ASSERT (End > Start) ;\r
711 ASSERT_LOCKED (&gMemoryLock);\r
712\r
713 if (NumberOfPages == 0 || ((Start & EFI_PAGE_MASK) != 0) || (Start > (Start + NumberOfBytes))) {\r
714 return EFI_INVALID_PARAMETER;\r
715 }\r
716\r
717 //\r
718 // Convert the entire range\r
719 //\r
720\r
721 while (Start < End) {\r
722\r
723 //\r
724 // Find the entry that the covers the range\r
725 //\r
726 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
727 Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
728\r
729 if (Entry->Start <= Start && Entry->End > Start) {\r
730 break;\r
731 }\r
732 }\r
733\r
734 if (Link == &gMemoryMap) {\r
735 DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: failed to find range %lx - %lx\n", Start, End));\r
736 return EFI_NOT_FOUND;\r
737 }\r
738\r
739 //\r
740 // Convert range to the end, or to the end of the descriptor\r
741 // if that's all we've got\r
742 //\r
743 RangeEnd = End;\r
744\r
745 ASSERT (Entry != NULL);\r
746 if (Entry->End < End) {\r
747 RangeEnd = Entry->End;\r
748 }\r
749\r
750 DEBUG ((DEBUG_PAGE, "ConvertRange: %lx-%lx to %d\n", Start, RangeEnd, NewType));\r
751\r
752 //\r
753 // Debug code - verify conversion is allowed\r
754 //\r
755 if (!(NewType == EfiConventionalMemory ? 1 : 0) ^ (Entry->Type == EfiConventionalMemory ? 1 : 0)) {\r
756 DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: Incompatible memory types\n"));\r
757 return EFI_NOT_FOUND;\r
758 }\r
759\r
760 //\r
761 // Update counters for the number of pages allocated to each memory type\r
762 //\r
763 if ((UINT32)Entry->Type < EfiMaxMemoryType) {\r
764 if ((Start >= mMemoryTypeStatistics[Entry->Type].BaseAddress && Start <= mMemoryTypeStatistics[Entry->Type].MaximumAddress) ||\r
765 (Start >= mDefaultBaseAddress && Start <= mDefaultMaximumAddress) ) {\r
766 if (NumberOfPages > mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages) {\r
767 mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages = 0;\r
768 } else {\r
769 mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages -= NumberOfPages;\r
770 }\r
771 }\r
772 }\r
773\r
774 if ((UINT32)NewType < EfiMaxMemoryType) {\r
775 if ((Start >= mMemoryTypeStatistics[NewType].BaseAddress && Start <= mMemoryTypeStatistics[NewType].MaximumAddress) ||\r
776 (Start >= mDefaultBaseAddress && Start <= mDefaultMaximumAddress) ) {\r
777 mMemoryTypeStatistics[NewType].CurrentNumberOfPages += NumberOfPages;\r
778 if (mMemoryTypeStatistics[NewType].CurrentNumberOfPages > gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages) {\r
779 gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages = (UINT32)mMemoryTypeStatistics[NewType].CurrentNumberOfPages;\r
780 }\r
781 }\r
782 }\r
783\r
784 //\r
785 // Pull range out of descriptor\r
786 //\r
787 if (Entry->Start == Start) {\r
788\r
789 //\r
790 // Clip start\r
791 //\r
792 Entry->Start = RangeEnd + 1;\r
793\r
794 } else if (Entry->End == RangeEnd) {\r
795\r
796 //\r
797 // Clip end\r
798 //\r
799 Entry->End = Start - 1;\r
800\r
801 } else {\r
802\r
803 //\r
804 // Pull it out of the center, clip current\r
805 //\r
806\r
807 //\r
808 // Add a new one\r
809 //\r
810 mMapStack[mMapDepth].Signature = MEMORY_MAP_SIGNATURE;\r
811 mMapStack[mMapDepth].FromPages = FALSE;\r
812 mMapStack[mMapDepth].Type = Entry->Type;\r
813 mMapStack[mMapDepth].Start = RangeEnd+1;\r
814 mMapStack[mMapDepth].End = Entry->End;\r
815\r
816 //\r
817 // Inherit Attribute from the Memory Descriptor that is being clipped\r
818 //\r
819 mMapStack[mMapDepth].Attribute = Entry->Attribute;\r
820\r
821 Entry->End = Start - 1;\r
822 ASSERT (Entry->Start < Entry->End);\r
823\r
824 Entry = &mMapStack[mMapDepth];\r
825 InsertTailList (&gMemoryMap, &Entry->Link);\r
826\r
827 mMapDepth += 1;\r
828 ASSERT (mMapDepth < MAX_MAP_DEPTH);\r
829 }\r
830\r
831 //\r
832 // The new range inherits the same Attribute as the Entry\r
833 //it is being cut out of\r
834 //\r
835 Attribute = Entry->Attribute;\r
836\r
837 //\r
838 // If the descriptor is empty, then remove it from the map\r
839 //\r
840 if (Entry->Start == Entry->End + 1) {\r
841 RemoveMemoryMapEntry (Entry);\r
842 Entry = NULL;\r
843 }\r
844\r
845 //\r
846 // Add our new range in\r
847 //\r
848 CoreAddRange (NewType, Start, RangeEnd, Attribute);\r
849 if (NewType == EfiConventionalMemory) {\r
850 //\r
851 // Avoid calling DEBUG_CLEAR_MEMORY() for an address of 0 because this\r
852 // macro will ASSERT() if address is 0. Instead, CoreAddRange() guarantees\r
853 // that the page starting at address 0 is always filled with zeros.\r
854 //\r
855 if (Start == 0) {\r
856 if (RangeEnd > EFI_PAGE_SIZE) {\r
857 DEBUG_CLEAR_MEMORY ((VOID *)(UINTN) EFI_PAGE_SIZE, (UINTN) (RangeEnd - EFI_PAGE_SIZE + 1));\r
858 }\r
859 } else {\r
860 DEBUG_CLEAR_MEMORY ((VOID *)(UINTN) Start, (UINTN) (RangeEnd - Start + 1));\r
861 }\r
862 }\r
863\r
864 //\r
865 // Move any map descriptor stack to general pool\r
866 //\r
867 CoreFreeMemoryMapStack ();\r
868\r
869 //\r
870 // Bump the starting address, and convert the next range\r
871 //\r
872 Start = RangeEnd + 1;\r
873 }\r
874\r
875 //\r
876 // Converted the whole range, done\r
877 //\r
878\r
879 return EFI_SUCCESS;\r
880}\r
881\r
882\r
883\r
884/**\r
885 Internal function. Finds a consecutive free page range below\r
886 the requested address.\r
887\r
888 @param MaxAddress The address that the range must be below\r
889 @param MinAddress The address that the range must be above\r
890 @param NumberOfPages Number of pages needed\r
891 @param NewType The type of memory the range is going to be\r
892 turned into\r
893 @param Alignment Bits to align with\r
894\r
895 @return The base address of the range, or 0 if the range was not found\r
896\r
897**/\r
898UINT64\r
899CoreFindFreePagesI (\r
900 IN UINT64 MaxAddress,\r
901 IN UINT64 MinAddress,\r
902 IN UINT64 NumberOfPages,\r
903 IN EFI_MEMORY_TYPE NewType,\r
904 IN UINTN Alignment\r
905 )\r
906{\r
907 UINT64 NumberOfBytes;\r
908 UINT64 Target;\r
909 UINT64 DescStart;\r
910 UINT64 DescEnd;\r
911 UINT64 DescNumberOfBytes;\r
912 LIST_ENTRY *Link;\r
913 MEMORY_MAP *Entry;\r
914\r
915 if ((MaxAddress < EFI_PAGE_MASK) ||(NumberOfPages == 0)) {\r
916 return 0;\r
917 }\r
918\r
919 if ((MaxAddress & EFI_PAGE_MASK) != EFI_PAGE_MASK) {\r
920\r
921 //\r
922 // If MaxAddress is not aligned to the end of a page\r
923 //\r
924\r
925 //\r
926 // Change MaxAddress to be 1 page lower\r
927 //\r
928 MaxAddress -= (EFI_PAGE_MASK + 1);\r
929\r
930 //\r
931 // Set MaxAddress to a page boundary\r
932 //\r
933 MaxAddress &= ~EFI_PAGE_MASK;\r
934\r
935 //\r
936 // Set MaxAddress to end of the page\r
937 //\r
938 MaxAddress |= EFI_PAGE_MASK;\r
939 }\r
940\r
941 NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);\r
942 Target = 0;\r
943\r
944 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
945 Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
946\r
947 //\r
948 // If it's not a free entry, don't bother with it\r
949 //\r
950 if (Entry->Type != EfiConventionalMemory) {\r
951 continue;\r
952 }\r
953\r
954 DescStart = Entry->Start;\r
955 DescEnd = Entry->End;\r
956\r
957 //\r
958 // If desc is past max allowed address or below min allowed address, skip it\r
959 //\r
960 if ((DescStart >= MaxAddress) || (DescEnd < MinAddress)) {\r
961 continue;\r
962 }\r
963\r
964 //\r
965 // If desc ends past max allowed address, clip the end\r
966 //\r
967 if (DescEnd >= MaxAddress) {\r
968 DescEnd = MaxAddress;\r
969 }\r
970\r
971 DescEnd = ((DescEnd + 1) & (~(Alignment - 1))) - 1;\r
972\r
973 //\r
974 // Compute the number of bytes we can used from this\r
975 // descriptor, and see it's enough to satisfy the request\r
976 //\r
977 DescNumberOfBytes = DescEnd - DescStart + 1;\r
978\r
979 if (DescNumberOfBytes >= NumberOfBytes) {\r
980 //\r
981 // If the start of the allocated range is below the min address allowed, skip it\r
982 //\r
983 if ((DescEnd - NumberOfBytes + 1) < MinAddress) {\r
984 continue;\r
985 }\r
986\r
987 //\r
988 // If this is the best match so far remember it\r
989 //\r
990 if (DescEnd > Target) {\r
991 Target = DescEnd;\r
992 }\r
993 }\r
994 }\r
995\r
996 //\r
997 // If this is a grow down, adjust target to be the allocation base\r
998 //\r
999 Target -= NumberOfBytes - 1;\r
1000\r
1001 //\r
1002 // If we didn't find a match, return 0\r
1003 //\r
1004 if ((Target & EFI_PAGE_MASK) != 0) {\r
1005 return 0;\r
1006 }\r
1007\r
1008 return Target;\r
1009}\r
1010\r
1011\r
1012/**\r
1013 Internal function. Finds a consecutive free page range below\r
1014 the requested address\r
1015\r
1016 @param MaxAddress The address that the range must be below\r
1017 @param NoPages Number of pages needed\r
1018 @param NewType The type of memory the range is going to be\r
1019 turned into\r
1020 @param Alignment Bits to align with\r
1021\r
1022 @return The base address of the range, or 0 if the range was not found.\r
1023\r
1024**/\r
1025UINT64\r
1026FindFreePages (\r
1027 IN UINT64 MaxAddress,\r
1028 IN UINT64 NoPages,\r
1029 IN EFI_MEMORY_TYPE NewType,\r
1030 IN UINTN Alignment\r
1031 )\r
1032{\r
1033 UINT64 Start;\r
1034\r
1035 //\r
1036 // Attempt to find free pages in the preferred bin based on the requested memory type\r
1037 //\r
1038 if ((UINT32)NewType < EfiMaxMemoryType && MaxAddress >= mMemoryTypeStatistics[NewType].MaximumAddress) {\r
1039 Start = CoreFindFreePagesI (\r
1040 mMemoryTypeStatistics[NewType].MaximumAddress, \r
1041 mMemoryTypeStatistics[NewType].BaseAddress, \r
1042 NoPages, \r
1043 NewType, \r
1044 Alignment\r
1045 );\r
1046 if (Start != 0) {\r
1047 return Start;\r
1048 }\r
1049 }\r
1050\r
1051 //\r
1052 // Attempt to find free pages in the default allocation bin\r
1053 //\r
1054 if (MaxAddress >= mDefaultMaximumAddress) {\r
1055 Start = CoreFindFreePagesI (mDefaultMaximumAddress, 0, NoPages, NewType, Alignment);\r
1056 if (Start != 0) {\r
1057 if (Start < mDefaultBaseAddress) {\r
1058 mDefaultBaseAddress = Start;\r
1059 }\r
1060 return Start;\r
1061 }\r
1062 }\r
1063\r
1064 //\r
1065 // The allocation did not succeed in any of the prefered bins even after \r
1066 // promoting resources. Attempt to find free pages anywhere is the requested \r
1067 // address range. If this allocation fails, then there are not enough \r
1068 // resources anywhere to satisfy the request.\r
1069 //\r
1070 Start = CoreFindFreePagesI (MaxAddress, 0, NoPages, NewType, Alignment);\r
1071 if (Start != 0) {\r
1072 return Start;\r
1073 }\r
1074\r
1075 //\r
1076 // If allocations from the preferred bins fail, then attempt to promote memory resources.\r
1077 //\r
1078 if (!PromoteMemoryResource ()) {\r
1079 return 0;\r
1080 }\r
1081\r
1082 //\r
1083 // If any memory resources were promoted, then re-attempt the allocation\r
1084 //\r
1085 return FindFreePages (MaxAddress, NoPages, NewType, Alignment);\r
1086}\r
1087\r
1088\r
1089/**\r
1090 Allocates pages from the memory map.\r
1091\r
1092 @param Type The type of allocation to perform\r
1093 @param MemoryType The type of memory to turn the allocated pages\r
1094 into\r
1095 @param NumberOfPages The number of pages to allocate\r
1096 @param Memory A pointer to receive the base allocated memory\r
1097 address\r
1098\r
1099 @return Status. On success, Memory is filled in with the base address allocated\r
1100 @retval EFI_INVALID_PARAMETER Parameters violate checking rules defined in\r
1101 spec.\r
1102 @retval EFI_NOT_FOUND Could not allocate pages match the requirement.\r
1103 @retval EFI_OUT_OF_RESOURCES No enough pages to allocate.\r
1104 @retval EFI_SUCCESS Pages successfully allocated.\r
1105\r
1106**/\r
1107EFI_STATUS\r
1108EFIAPI\r
1109CoreAllocatePages (\r
1110 IN EFI_ALLOCATE_TYPE Type,\r
1111 IN EFI_MEMORY_TYPE MemoryType,\r
1112 IN UINTN NumberOfPages,\r
1113 IN OUT EFI_PHYSICAL_ADDRESS *Memory\r
1114 )\r
1115{\r
1116 EFI_STATUS Status;\r
1117 UINT64 Start;\r
1118 UINT64 MaxAddress;\r
1119 UINTN Alignment;\r
1120\r
1121 if ((UINT32)Type >= MaxAllocateType) {\r
1122 return EFI_INVALID_PARAMETER;\r
1123 }\r
1124\r
1125 if ((MemoryType >= EfiMaxMemoryType && MemoryType <= 0x7fffffff) ||\r
1126 MemoryType == EfiConventionalMemory) {\r
1127 return EFI_INVALID_PARAMETER;\r
1128 }\r
1129\r
1130 if (Memory == NULL) {\r
1131 return EFI_INVALID_PARAMETER;\r
1132 }\r
1133\r
1134 Alignment = EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT;\r
1135\r
1136 if (MemoryType == EfiACPIReclaimMemory ||\r
1137 MemoryType == EfiACPIMemoryNVS ||\r
1138 MemoryType == EfiRuntimeServicesCode ||\r
1139 MemoryType == EfiRuntimeServicesData) {\r
1140\r
1141 Alignment = EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT;\r
1142 }\r
1143\r
1144 if (Type == AllocateAddress) {\r
1145 if ((*Memory & (Alignment - 1)) != 0) {\r
1146 return EFI_NOT_FOUND;\r
1147 }\r
1148 }\r
1149\r
1150 NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1;\r
1151 NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1);\r
1152\r
1153 //\r
1154 // If this is for below a particular address, then\r
1155 //\r
1156 Start = *Memory;\r
1157\r
1158 //\r
1159 // The max address is the max natively addressable address for the processor\r
1160 //\r
1161 MaxAddress = MAX_ADDRESS;\r
1162\r
1163 if (Type == AllocateMaxAddress) {\r
1164 MaxAddress = Start;\r
1165 }\r
1166\r
1167 CoreAcquireMemoryLock ();\r
1168\r
1169 //\r
1170 // If not a specific address, then find an address to allocate\r
1171 //\r
1172 if (Type != AllocateAddress) {\r
1173 Start = FindFreePages (MaxAddress, NumberOfPages, MemoryType, Alignment);\r
1174 if (Start == 0) {\r
1175 Status = EFI_OUT_OF_RESOURCES;\r
1176 goto Done;\r
1177 }\r
1178 }\r
1179\r
1180 //\r
1181 // Convert pages from FreeMemory to the requested type\r
1182 //\r
1183 Status = CoreConvertPages (Start, NumberOfPages, MemoryType);\r
1184\r
1185Done:\r
1186 CoreReleaseMemoryLock ();\r
1187\r
1188 if (!EFI_ERROR (Status)) {\r
1189 *Memory = Start;\r
1190 }\r
1191\r
1192 return Status;\r
1193}\r
1194\r
1195\r
1196/**\r
1197 Frees previous allocated pages.\r
1198\r
1199 @param Memory Base address of memory being freed\r
1200 @param NumberOfPages The number of pages to free\r
1201\r
1202 @retval EFI_NOT_FOUND Could not find the entry that covers the range\r
1203 @retval EFI_INVALID_PARAMETER Address not aligned\r
1204 @return EFI_SUCCESS -Pages successfully freed.\r
1205\r
1206**/\r
1207EFI_STATUS\r
1208EFIAPI\r
1209CoreFreePages (\r
1210 IN EFI_PHYSICAL_ADDRESS Memory,\r
1211 IN UINTN NumberOfPages\r
1212 )\r
1213{\r
1214 EFI_STATUS Status;\r
1215 LIST_ENTRY *Link;\r
1216 MEMORY_MAP *Entry;\r
1217 UINTN Alignment;\r
1218\r
1219 //\r
1220 // Free the range\r
1221 //\r
1222 CoreAcquireMemoryLock ();\r
1223\r
1224 //\r
1225 // Find the entry that the covers the range\r
1226 //\r
1227 Entry = NULL;\r
1228 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
1229 Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
1230 if (Entry->Start <= Memory && Entry->End > Memory) {\r
1231 break;\r
1232 }\r
1233 }\r
1234 if (Link == &gMemoryMap) {\r
1235 Status = EFI_NOT_FOUND;\r
1236 goto Done;\r
1237 }\r
1238\r
1239 Alignment = EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT;\r
1240\r
1241 ASSERT (Entry != NULL);\r
1242 if (Entry->Type == EfiACPIReclaimMemory ||\r
1243 Entry->Type == EfiACPIMemoryNVS ||\r
1244 Entry->Type == EfiRuntimeServicesCode ||\r
1245 Entry->Type == EfiRuntimeServicesData) {\r
1246\r
1247 Alignment = EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT;\r
1248\r
1249 }\r
1250\r
1251 if ((Memory & (Alignment - 1)) != 0) {\r
1252 Status = EFI_INVALID_PARAMETER;\r
1253 goto Done;\r
1254 }\r
1255\r
1256 NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1;\r
1257 NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1);\r
1258\r
1259 Status = CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);\r
1260\r
1261 if (EFI_ERROR (Status)) {\r
1262 goto Done;\r
1263 }\r
1264\r
1265Done:\r
1266 CoreReleaseMemoryLock ();\r
1267 return Status;\r
1268}\r
1269\r
1270/**\r
1271 This function checks to see if the last memory map descriptor in a memory map\r
1272 can be merged with any of the other memory map descriptors in a memorymap.\r
1273 Memory descriptors may be merged if they are adjacent and have the same type\r
1274 and attributes.\r
1275\r
1276 @param MemoryMap A pointer to the start of the memory map.\r
1277 @param MemoryMapDescriptor A pointer to the last descriptor in MemoryMap.\r
1278 @param DescriptorSize The size, in bytes, of an individual\r
1279 EFI_MEMORY_DESCRIPTOR.\r
1280\r
1281 @return A pointer to the next available descriptor in MemoryMap\r
1282\r
1283**/\r
1284EFI_MEMORY_DESCRIPTOR *\r
1285MergeMemoryMapDescriptor (\r
1286 IN EFI_MEMORY_DESCRIPTOR *MemoryMap,\r
1287 IN EFI_MEMORY_DESCRIPTOR *MemoryMapDescriptor,\r
1288 IN UINTN DescriptorSize\r
1289 )\r
1290{\r
1291 //\r
1292 // Traverse the array of descriptors in MemoryMap\r
1293 //\r
1294 for (; MemoryMap != MemoryMapDescriptor; MemoryMap = NEXT_MEMORY_DESCRIPTOR (MemoryMap, DescriptorSize)) {\r
1295 //\r
1296 // Check to see if the Type fields are identical.\r
1297 //\r
1298 if (MemoryMap->Type != MemoryMapDescriptor->Type) {\r
1299 continue;\r
1300 }\r
1301\r
1302 //\r
1303 // Check to see if the Attribute fields are identical.\r
1304 //\r
1305 if (MemoryMap->Attribute != MemoryMapDescriptor->Attribute) {\r
1306 continue;\r
1307 }\r
1308\r
1309 //\r
1310 // Check to see if MemoryMapDescriptor is immediately above MemoryMap\r
1311 //\r
1312 if (MemoryMap->PhysicalStart + EFI_PAGES_TO_SIZE ((UINTN)MemoryMap->NumberOfPages) == MemoryMapDescriptor->PhysicalStart) { \r
1313 //\r
1314 // Merge MemoryMapDescriptor into MemoryMap\r
1315 //\r
1316 MemoryMap->NumberOfPages += MemoryMapDescriptor->NumberOfPages;\r
1317\r
1318 //\r
1319 // Return MemoryMapDescriptor as the next available slot int he MemoryMap array\r
1320 //\r
1321 return MemoryMapDescriptor;\r
1322 }\r
1323\r
1324 //\r
1325 // Check to see if MemoryMapDescriptor is immediately below MemoryMap\r
1326 //\r
1327 if (MemoryMap->PhysicalStart - EFI_PAGES_TO_SIZE ((UINTN)MemoryMapDescriptor->NumberOfPages) == MemoryMapDescriptor->PhysicalStart) {\r
1328 //\r
1329 // Merge MemoryMapDescriptor into MemoryMap\r
1330 //\r
1331 MemoryMap->PhysicalStart = MemoryMapDescriptor->PhysicalStart;\r
1332 MemoryMap->VirtualStart = MemoryMapDescriptor->VirtualStart;\r
1333 MemoryMap->NumberOfPages += MemoryMapDescriptor->NumberOfPages;\r
1334\r
1335 //\r
1336 // Return MemoryMapDescriptor as the next available slot int he MemoryMap array\r
1337 //\r
1338 return MemoryMapDescriptor;\r
1339 }\r
1340 }\r
1341\r
1342 //\r
1343 // MemoryMapDescrtiptor could not be merged with any descriptors in MemoryMap.\r
1344 //\r
1345 // Return the slot immediately after MemoryMapDescriptor as the next available \r
1346 // slot in the MemoryMap array\r
1347 //\r
1348 return NEXT_MEMORY_DESCRIPTOR (MemoryMapDescriptor, DescriptorSize);\r
1349}\r
1350\r
1351/**\r
1352 This function returns a copy of the current memory map. The map is an array of\r
1353 memory descriptors, each of which describes a contiguous block of memory.\r
1354\r
1355 @param MemoryMapSize A pointer to the size, in bytes, of the\r
1356 MemoryMap buffer. On input, this is the size of\r
1357 the buffer allocated by the caller. On output,\r
1358 it is the size of the buffer returned by the\r
1359 firmware if the buffer was large enough, or the\r
1360 size of the buffer needed to contain the map if\r
1361 the buffer was too small.\r
1362 @param MemoryMap A pointer to the buffer in which firmware places\r
1363 the current memory map.\r
1364 @param MapKey A pointer to the location in which firmware\r
1365 returns the key for the current memory map.\r
1366 @param DescriptorSize A pointer to the location in which firmware\r
1367 returns the size, in bytes, of an individual\r
1368 EFI_MEMORY_DESCRIPTOR.\r
1369 @param DescriptorVersion A pointer to the location in which firmware\r
1370 returns the version number associated with the\r
1371 EFI_MEMORY_DESCRIPTOR.\r
1372\r
1373 @retval EFI_SUCCESS The memory map was returned in the MemoryMap\r
1374 buffer.\r
1375 @retval EFI_BUFFER_TOO_SMALL The MemoryMap buffer was too small. The current\r
1376 buffer size needed to hold the memory map is\r
1377 returned in MemoryMapSize.\r
1378 @retval EFI_INVALID_PARAMETER One of the parameters has an invalid value.\r
1379\r
1380**/\r
1381EFI_STATUS\r
1382EFIAPI\r
1383CoreGetMemoryMap (\r
1384 IN OUT UINTN *MemoryMapSize,\r
1385 IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,\r
1386 OUT UINTN *MapKey,\r
1387 OUT UINTN *DescriptorSize,\r
1388 OUT UINT32 *DescriptorVersion\r
1389 )\r
1390{\r
1391 EFI_STATUS Status;\r
1392 UINTN Size;\r
1393 UINTN BufferSize;\r
1394 UINTN NumberOfRuntimeEntries;\r
1395 LIST_ENTRY *Link;\r
1396 MEMORY_MAP *Entry;\r
1397 EFI_GCD_MAP_ENTRY *GcdMapEntry;\r
1398 EFI_MEMORY_TYPE Type;\r
1399 EFI_MEMORY_DESCRIPTOR *MemoryMapStart;\r
1400\r
1401 //\r
1402 // Make sure the parameters are valid\r
1403 //\r
1404 if (MemoryMapSize == NULL) {\r
1405 return EFI_INVALID_PARAMETER;\r
1406 }\r
1407\r
1408 CoreAcquireGcdMemoryLock ();\r
1409\r
1410 //\r
1411 // Count the number of Reserved and MMIO entries that are marked for runtime use\r
1412 //\r
1413 NumberOfRuntimeEntries = 0;\r
1414 for (Link = mGcdMemorySpaceMap.ForwardLink; Link != &mGcdMemorySpaceMap; Link = Link->ForwardLink) {\r
1415 GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r
1416 if ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) ||\r
1417 (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo)) {\r
1418 if ((GcdMapEntry->Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) {\r
1419 NumberOfRuntimeEntries++;\r
1420 }\r
1421 }\r
1422 }\r
1423\r
1424 Size = sizeof (EFI_MEMORY_DESCRIPTOR);\r
1425\r
1426 //\r
1427 // Make sure Size != sizeof(EFI_MEMORY_DESCRIPTOR). This will\r
1428 // prevent people from having pointer math bugs in their code.\r
1429 // now you have to use *DescriptorSize to make things work.\r
1430 //\r
1431 Size += sizeof(UINT64) - (Size % sizeof (UINT64));\r
1432\r
1433 if (DescriptorSize != NULL) {\r
1434 *DescriptorSize = Size;\r
1435 }\r
1436\r
1437 if (DescriptorVersion != NULL) {\r
1438 *DescriptorVersion = EFI_MEMORY_DESCRIPTOR_VERSION;\r
1439 }\r
1440\r
1441 CoreAcquireMemoryLock ();\r
1442\r
1443 //\r
1444 // Compute the buffer size needed to fit the entire map\r
1445 //\r
1446 BufferSize = Size * NumberOfRuntimeEntries;\r
1447 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
1448 BufferSize += Size;\r
1449 }\r
1450\r
1451 if (*MemoryMapSize < BufferSize) {\r
1452 Status = EFI_BUFFER_TOO_SMALL;\r
1453 goto Done;\r
1454 }\r
1455\r
1456 if (MemoryMap == NULL) {\r
1457 Status = EFI_INVALID_PARAMETER;\r
1458 goto Done;\r
1459 }\r
1460\r
1461 //\r
1462 // Build the map\r
1463 //\r
1464 ZeroMem (MemoryMap, BufferSize);\r
1465 MemoryMapStart = MemoryMap;\r
1466 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
1467 Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
1468 ASSERT (Entry->VirtualStart == 0);\r
1469\r
1470 //\r
1471 // Convert internal map into an EFI_MEMORY_DESCRIPTOR\r
1472 //\r
1473 MemoryMap->Type = Entry->Type;\r
1474 MemoryMap->PhysicalStart = Entry->Start;\r
1475 MemoryMap->VirtualStart = Entry->VirtualStart;\r
1476 MemoryMap->NumberOfPages = RShiftU64 (Entry->End - Entry->Start + 1, EFI_PAGE_SHIFT);\r
1477 //\r
1478 // If the memory type is EfiConventionalMemory, then determine if the range is part of a\r
1479 // memory type bin and needs to be converted to the same memory type as the rest of the\r
1480 // memory type bin in order to minimize EFI Memory Map changes across reboots. This\r
1481 // improves the chances for a successful S4 resume in the presence of minor page allocation\r
1482 // differences across reboots.\r
1483 //\r
1484 if (MemoryMap->Type == EfiConventionalMemory) {\r
1485 for (Type = (EFI_MEMORY_TYPE) 0; Type < EfiMaxMemoryType; Type++) {\r
1486 if (mMemoryTypeStatistics[Type].Special &&\r
1487 mMemoryTypeStatistics[Type].NumberOfPages > 0 &&\r
1488 Entry->Start >= mMemoryTypeStatistics[Type].BaseAddress &&\r
1489 Entry->End <= mMemoryTypeStatistics[Type].MaximumAddress) {\r
1490 MemoryMap->Type = Type;\r
1491 }\r
1492 }\r
1493 }\r
1494 MemoryMap->Attribute = Entry->Attribute;\r
1495 if (MemoryMap->Type < EfiMaxMemoryType) {\r
1496 if (mMemoryTypeStatistics[MemoryMap->Type].Runtime) {\r
1497 MemoryMap->Attribute |= EFI_MEMORY_RUNTIME;\r
1498 }\r
1499 }\r
1500\r
1501 //\r
1502 // Check to see if the new Memory Map Descriptor can be merged with an \r
1503 // existing descriptor if they are adjacent and have the same attributes\r
1504 //\r
1505 MemoryMap = MergeMemoryMapDescriptor (MemoryMapStart, MemoryMap, Size);\r
1506 }\r
1507\r
1508 for (Link = mGcdMemorySpaceMap.ForwardLink; Link != &mGcdMemorySpaceMap; Link = Link->ForwardLink) {\r
1509 GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);\r
1510 if ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) ||\r
1511 (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo)) {\r
1512 if ((GcdMapEntry->Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) {\r
1513 // \r
1514 // Create EFI_MEMORY_DESCRIPTOR for every Reserved and MMIO GCD entries\r
1515 // that are marked for runtime use\r
1516 //\r
1517 MemoryMap->PhysicalStart = GcdMapEntry->BaseAddress;\r
1518 MemoryMap->VirtualStart = 0;\r
1519 MemoryMap->NumberOfPages = RShiftU64 ((GcdMapEntry->EndAddress - GcdMapEntry->BaseAddress + 1), EFI_PAGE_SHIFT);\r
1520 MemoryMap->Attribute = GcdMapEntry->Attributes & ~EFI_MEMORY_PORT_IO;\r
1521\r
1522 if (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) {\r
1523 MemoryMap->Type = EfiReservedMemoryType;\r
1524 } else if (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) {\r
1525 if ((GcdMapEntry->Attributes & EFI_MEMORY_PORT_IO) == EFI_MEMORY_PORT_IO) {\r
1526 MemoryMap->Type = EfiMemoryMappedIOPortSpace;\r
1527 } else {\r
1528 MemoryMap->Type = EfiMemoryMappedIO;\r
1529 }\r
1530 }\r
1531\r
1532 //\r
1533 // Check to see if the new Memory Map Descriptor can be merged with an \r
1534 // existing descriptor if they are adjacent and have the same attributes\r
1535 //\r
1536 MemoryMap = MergeMemoryMapDescriptor (MemoryMapStart, MemoryMap, Size);\r
1537 }\r
1538 }\r
1539 }\r
1540\r
1541 //\r
1542 // Compute the size of the buffer actually used after all memory map descriptor merge operations\r
1543 //\r
1544 BufferSize = ((UINT8 *)MemoryMap - (UINT8 *)MemoryMapStart);\r
1545\r
1546 Status = EFI_SUCCESS;\r
1547\r
1548Done:\r
1549 //\r
1550 // Update the map key finally\r
1551 //\r
1552 if (MapKey != NULL) {\r
1553 *MapKey = mMemoryMapKey;\r
1554 }\r
1555\r
1556 CoreReleaseMemoryLock ();\r
1557\r
1558 CoreReleaseGcdMemoryLock ();\r
1559\r
1560 *MemoryMapSize = BufferSize;\r
1561\r
1562 return Status;\r
1563}\r
1564\r
1565\r
1566/**\r
1567 Internal function. Used by the pool functions to allocate pages\r
1568 to back pool allocation requests.\r
1569\r
1570 @param PoolType The type of memory for the new pool pages\r
1571 @param NumberOfPages No of pages to allocate\r
1572 @param Alignment Bits to align.\r
1573\r
1574 @return The allocated memory, or NULL\r
1575\r
1576**/\r
1577VOID *\r
1578CoreAllocatePoolPages (\r
1579 IN EFI_MEMORY_TYPE PoolType,\r
1580 IN UINTN NumberOfPages,\r
1581 IN UINTN Alignment\r
1582 )\r
1583{\r
1584 UINT64 Start;\r
1585\r
1586 //\r
1587 // Find the pages to convert\r
1588 //\r
1589 Start = FindFreePages (MAX_ADDRESS, NumberOfPages, PoolType, Alignment);\r
1590\r
1591 //\r
1592 // Convert it to boot services data\r
1593 //\r
1594 if (Start == 0) {\r
1595 DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "AllocatePoolPages: failed to allocate %d pages\n", (UINT32)NumberOfPages));\r
1596 } else {\r
1597 CoreConvertPages (Start, NumberOfPages, PoolType);\r
1598 }\r
1599\r
1600 return (VOID *)(UINTN) Start;\r
1601}\r
1602\r
1603\r
1604/**\r
1605 Internal function. Frees pool pages allocated via AllocatePoolPages ()\r
1606\r
1607 @param Memory The base address to free\r
1608 @param NumberOfPages The number of pages to free\r
1609\r
1610**/\r
1611VOID\r
1612CoreFreePoolPages (\r
1613 IN EFI_PHYSICAL_ADDRESS Memory,\r
1614 IN UINTN NumberOfPages\r
1615 )\r
1616{\r
1617 CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);\r
1618}\r
1619\r
1620\r
1621\r
1622/**\r
1623 Make sure the memory map is following all the construction rules,\r
1624 it is the last time to check memory map error before exit boot services.\r
1625\r
1626 @param MapKey Memory map key\r
1627\r
1628 @retval EFI_INVALID_PARAMETER Memory map not consistent with construction\r
1629 rules.\r
1630 @retval EFI_SUCCESS Valid memory map.\r
1631\r
1632**/\r
1633EFI_STATUS\r
1634CoreTerminateMemoryMap (\r
1635 IN UINTN MapKey\r
1636 )\r
1637{\r
1638 EFI_STATUS Status;\r
1639 LIST_ENTRY *Link;\r
1640 MEMORY_MAP *Entry;\r
1641\r
1642 Status = EFI_SUCCESS;\r
1643\r
1644 CoreAcquireMemoryLock ();\r
1645\r
1646 if (MapKey == mMemoryMapKey) {\r
1647\r
1648 //\r
1649 // Make sure the memory map is following all the construction rules\r
1650 // This is the last chance we will be able to display any messages on\r
1651 // the console devices.\r
1652 //\r
1653\r
1654 for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {\r
1655 Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);\r
1656 if ((Entry->Attribute & EFI_MEMORY_RUNTIME) != 0) {\r
1657 if (Entry->Type == EfiACPIReclaimMemory || Entry->Type == EfiACPIMemoryNVS) {\r
1658 DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: ACPI memory entry has RUNTIME attribute set.\n"));\r
1659 Status = EFI_INVALID_PARAMETER;\r
1660 goto Done;\r
1661 }\r
1662 if ((Entry->Start & (EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT - 1)) != 0) {\r
1663 DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n"));\r
1664 Status = EFI_INVALID_PARAMETER;\r
1665 goto Done;\r
1666 }\r
1667 if (((Entry->End + 1) & (EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT - 1)) != 0) {\r
1668 DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n"));\r
1669 Status = EFI_INVALID_PARAMETER;\r
1670 goto Done;\r
1671 }\r
1672 }\r
1673 }\r
1674\r
1675 //\r
1676 // The map key they gave us matches what we expect. Fall through and\r
1677 // return success. In an ideal world we would clear out all of\r
1678 // EfiBootServicesCode and EfiBootServicesData. However this function\r
1679 // is not the last one called by ExitBootServices(), so we have to\r
1680 // preserve the memory contents.\r
1681 //\r
1682 } else {\r
1683 Status = EFI_INVALID_PARAMETER;\r
1684 }\r
1685\r
1686Done:\r
1687 CoreReleaseMemoryLock ();\r
1688\r
1689 return Status;\r
1690}\r
1691\r
1692\r
1693\r
1694\r
1695\r
1696\r
1697\r
1698\r
1699\r