]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - MdeModulePkg/Include/Library/NetLib.h
1. Add EFI_COMPONENT_NAME2_PROTOCOL support for UNDI driver.
[mirror_edk2.git] / MdeModulePkg / Include / Library / NetLib.h
... / ...
CommitLineData
1/** @file\r
2 This library is only intended to be used by UEFI network stack modules.\r
3 It provides basic functions for the UEFI network stack.\r
4\r
5Copyright (c) 2005 - 2012, Intel Corporation. All rights reserved.<BR>\r
6This program and the accompanying materials\r
7are licensed and made available under the terms and conditions of the BSD License\r
8which accompanies this distribution. The full text of the license may be found at<BR>\r
9http://opensource.org/licenses/bsd-license.php\r
10\r
11THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
12WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
13\r
14**/\r
15\r
16#ifndef _NET_LIB_H_\r
17#define _NET_LIB_H_\r
18\r
19#include <Protocol/Ip6.h>\r
20\r
21#include <Library/BaseLib.h>\r
22#include <Library/BaseMemoryLib.h>\r
23\r
24typedef UINT32 IP4_ADDR;\r
25typedef UINT32 TCP_SEQNO;\r
26typedef UINT16 TCP_PORTNO;\r
27\r
28\r
29#define NET_ETHER_ADDR_LEN 6\r
30#define NET_IFTYPE_ETHERNET 0x01\r
31\r
32#define NET_VLAN_TAG_LEN 4\r
33#define ETHER_TYPE_VLAN 0x8100\r
34\r
35#define EFI_IP_PROTO_UDP 0x11\r
36#define EFI_IP_PROTO_TCP 0x06\r
37#define EFI_IP_PROTO_ICMP 0x01\r
38#define IP4_PROTO_IGMP 0x02\r
39#define IP6_ICMP 58\r
40\r
41//\r
42// The address classification\r
43//\r
44#define IP4_ADDR_CLASSA 1\r
45#define IP4_ADDR_CLASSB 2\r
46#define IP4_ADDR_CLASSC 3\r
47#define IP4_ADDR_CLASSD 4\r
48#define IP4_ADDR_CLASSE 5\r
49\r
50#define IP4_MASK_NUM 33\r
51#define IP6_PREFIX_NUM 129\r
52\r
53#define IP6_HOP_BY_HOP 0\r
54#define IP6_DESTINATION 60\r
55#define IP6_ROUTING 43\r
56#define IP6_FRAGMENT 44\r
57#define IP6_AH 51\r
58#define IP6_ESP 50\r
59#define IP6_NO_NEXT_HEADER 59\r
60\r
61#define IP_VERSION_4 4\r
62#define IP_VERSION_6 6\r
63\r
64#define IP6_PREFIX_LENGTH 64\r
65\r
66#pragma pack(1)\r
67\r
68//\r
69// Ethernet head definition\r
70//\r
71typedef struct {\r
72 UINT8 DstMac [NET_ETHER_ADDR_LEN];\r
73 UINT8 SrcMac [NET_ETHER_ADDR_LEN];\r
74 UINT16 EtherType;\r
75} ETHER_HEAD;\r
76\r
77//\r
78// 802.1Q VLAN Tag Control Information\r
79//\r
80typedef union {\r
81 struct {\r
82 UINT16 Vid : 12; // Unique VLAN identifier (0 to 4094)\r
83 UINT16 Cfi : 1; // Canonical Format Indicator\r
84 UINT16 Priority : 3; // 802.1Q priority level (0 to 7)\r
85 } Bits;\r
86 UINT16 Uint16;\r
87} VLAN_TCI;\r
88\r
89#define VLAN_TCI_CFI_CANONICAL_MAC 0\r
90#define VLAN_TCI_CFI_NON_CANONICAL_MAC 1\r
91\r
92//\r
93// The EFI_IP4_HEADER is hard to use because the source and\r
94// destination address are defined as EFI_IPv4_ADDRESS, which\r
95// is a structure. Two structures can't be compared or masked\r
96// directly. This is why there is an internal representation.\r
97//\r
98typedef struct {\r
99 UINT8 HeadLen : 4;\r
100 UINT8 Ver : 4;\r
101 UINT8 Tos;\r
102 UINT16 TotalLen;\r
103 UINT16 Id;\r
104 UINT16 Fragment;\r
105 UINT8 Ttl;\r
106 UINT8 Protocol;\r
107 UINT16 Checksum;\r
108 IP4_ADDR Src;\r
109 IP4_ADDR Dst;\r
110} IP4_HEAD;\r
111\r
112\r
113//\r
114// ICMP head definition. Each ICMP message is categorized as either an error\r
115// message or query message. Two message types have their own head format.\r
116//\r
117typedef struct {\r
118 UINT8 Type;\r
119 UINT8 Code;\r
120 UINT16 Checksum;\r
121} IP4_ICMP_HEAD;\r
122\r
123typedef struct {\r
124 IP4_ICMP_HEAD Head;\r
125 UINT32 Fourth; // 4th filed of the head, it depends on Type.\r
126 IP4_HEAD IpHead;\r
127} IP4_ICMP_ERROR_HEAD;\r
128\r
129typedef struct {\r
130 IP4_ICMP_HEAD Head;\r
131 UINT16 Id;\r
132 UINT16 Seq;\r
133} IP4_ICMP_QUERY_HEAD;\r
134\r
135typedef struct {\r
136 UINT8 Type;\r
137 UINT8 Code;\r
138 UINT16 Checksum;\r
139} IP6_ICMP_HEAD;\r
140\r
141typedef struct {\r
142 IP6_ICMP_HEAD Head;\r
143 UINT32 Fourth;\r
144 EFI_IP6_HEADER IpHead;\r
145} IP6_ICMP_ERROR_HEAD;\r
146\r
147typedef struct {\r
148 IP6_ICMP_HEAD Head;\r
149 UINT32 Fourth;\r
150} IP6_ICMP_INFORMATION_HEAD;\r
151\r
152//\r
153// UDP header definition\r
154//\r
155typedef struct {\r
156 UINT16 SrcPort;\r
157 UINT16 DstPort;\r
158 UINT16 Length;\r
159 UINT16 Checksum;\r
160} EFI_UDP_HEADER;\r
161\r
162//\r
163// TCP header definition\r
164//\r
165typedef struct {\r
166 TCP_PORTNO SrcPort;\r
167 TCP_PORTNO DstPort;\r
168 TCP_SEQNO Seq;\r
169 TCP_SEQNO Ack;\r
170 UINT8 Res : 4;\r
171 UINT8 HeadLen : 4;\r
172 UINT8 Flag;\r
173 UINT16 Wnd;\r
174 UINT16 Checksum;\r
175 UINT16 Urg;\r
176} TCP_HEAD;\r
177\r
178#pragma pack()\r
179\r
180#define NET_MAC_EQUAL(pMac1, pMac2, Len) \\r
181 (CompareMem ((pMac1), (pMac2), Len) == 0)\r
182\r
183#define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \\r
184 (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))\r
185\r
186#define NTOHL(x) SwapBytes32 (x)\r
187\r
188#define HTONL(x) NTOHL(x)\r
189\r
190#define NTOHS(x) SwapBytes16 (x)\r
191\r
192#define HTONS(x) NTOHS(x)\r
193#define NTOHLL(x) SwapBytes64 (x)\r
194#define HTONLL(x) NTOHLL(x)\r
195#define NTOHLLL(x) Ip6Swap128 (x)\r
196#define HTONLLL(x) NTOHLLL(x)\r
197\r
198//\r
199// Test the IP's attribute, All the IPs are in host byte order.\r
200//\r
201#define IP4_IS_MULTICAST(Ip) (((Ip) & 0xF0000000) == 0xE0000000)\r
202#define IP4_IS_LOCAL_BROADCAST(Ip) ((Ip) == 0xFFFFFFFF)\r
203#define IP4_NET_EQUAL(Ip1, Ip2, NetMask) (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))\r
204#define IP4_IS_VALID_NETMASK(Ip) (NetGetMaskLength (Ip) != IP4_MASK_NUM)\r
205\r
206#define IP6_IS_MULTICAST(Ip6) (((Ip6)->Addr[0]) == 0xFF)\r
207\r
208//\r
209// Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.\r
210//\r
211#define EFI_IP4(EfiIpAddr) (*(IP4_ADDR *) ((EfiIpAddr).Addr))\r
212#define EFI_NTOHL(EfiIp) (NTOHL (EFI_IP4 ((EfiIp))))\r
213#define EFI_IP4_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)\r
214\r
215#define EFI_IP6_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0)\r
216\r
217#define IP4_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv4_ADDRESS)))\r
218#define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS)))\r
219#define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS)))\r
220\r
221//\r
222// The debug level definition. This value is also used as the\r
223// syslog's servity level. Don't change it.\r
224//\r
225#define NETDEBUG_LEVEL_TRACE 5\r
226#define NETDEBUG_LEVEL_WARNING 4\r
227#define NETDEBUG_LEVEL_ERROR 3\r
228\r
229//\r
230// Network debug message is sent out as syslog packet.\r
231//\r
232#define NET_SYSLOG_FACILITY 16 // Syslog local facility local use\r
233#define NET_SYSLOG_PACKET_LEN 512\r
234#define NET_SYSLOG_TX_TIMEOUT (500 * 1000 * 10) // 500ms\r
235#define NET_DEBUG_MSG_LEN 470 // 512 - (ether+ip4+udp4 head length)\r
236\r
237//\r
238// The debug output expects the ASCII format string, Use %a to print ASCII\r
239// string, and %s to print UNICODE string. PrintArg must be enclosed in ().\r
240// For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name));\r
241//\r
242#define NET_DEBUG_TRACE(Module, PrintArg) \\r
243 NetDebugOutput ( \\r
244 NETDEBUG_LEVEL_TRACE, \\r
245 Module, \\r
246 __FILE__, \\r
247 __LINE__, \\r
248 NetDebugASPrint PrintArg \\r
249 )\r
250\r
251#define NET_DEBUG_WARNING(Module, PrintArg) \\r
252 NetDebugOutput ( \\r
253 NETDEBUG_LEVEL_WARNING, \\r
254 Module, \\r
255 __FILE__, \\r
256 __LINE__, \\r
257 NetDebugASPrint PrintArg \\r
258 )\r
259\r
260#define NET_DEBUG_ERROR(Module, PrintArg) \\r
261 NetDebugOutput ( \\r
262 NETDEBUG_LEVEL_ERROR, \\r
263 Module, \\r
264 __FILE__, \\r
265 __LINE__, \\r
266 NetDebugASPrint PrintArg \\r
267 )\r
268\r
269/**\r
270 Allocate a buffer, then format the message to it. This is a\r
271 help function for the NET_DEBUG_XXX macros. The PrintArg of\r
272 these macros treats the variable length print parameters as a\r
273 single parameter, and pass it to the NetDebugASPrint. For\r
274 example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))\r
275 if extracted to:\r
276\r
277 NetDebugOutput (\r
278 NETDEBUG_LEVEL_TRACE,\r
279 "Tcp",\r
280 __FILE__,\r
281 __LINE__,\r
282 NetDebugASPrint ("State transit to %a\n", Name)\r
283 )\r
284\r
285 @param Format The ASCII format string.\r
286 @param ... The variable length parameter whose format is determined\r
287 by the Format string.\r
288\r
289 @return The buffer containing the formatted message,\r
290 or NULL if memory allocation failed.\r
291\r
292**/\r
293CHAR8 *\r
294EFIAPI\r
295NetDebugASPrint (\r
296 IN CHAR8 *Format,\r
297 ...\r
298 );\r
299\r
300/**\r
301 Builds an UDP4 syslog packet and send it using SNP.\r
302\r
303 This function will locate a instance of SNP then send the message through it.\r
304 Because it isn't open the SNP BY_DRIVER, apply caution when using it.\r
305\r
306 @param Level The servity level of the message.\r
307 @param Module The Moudle that generates the log.\r
308 @param File The file that contains the log.\r
309 @param Line The exact line that contains the log.\r
310 @param Message The user message to log.\r
311\r
312 @retval EFI_INVALID_PARAMETER Any input parameter is invalid.\r
313 @retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet\r
314 @retval EFI_SUCCESS The log is discard because that it is more verbose\r
315 than the mNetDebugLevelMax. Or, it has been sent out.\r
316**/\r
317EFI_STATUS\r
318EFIAPI\r
319NetDebugOutput (\r
320 IN UINT32 Level,\r
321 IN UINT8 *Module,\r
322 IN UINT8 *File,\r
323 IN UINT32 Line,\r
324 IN UINT8 *Message\r
325 );\r
326\r
327\r
328/**\r
329 Return the length of the mask.\r
330\r
331 Return the length of the mask. Valid values are 0 to 32.\r
332 If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.\r
333 NetMask is in the host byte order.\r
334\r
335 @param[in] NetMask The netmask to get the length from.\r
336\r
337 @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid.\r
338\r
339**/\r
340INTN\r
341EFIAPI\r
342NetGetMaskLength (\r
343 IN IP4_ADDR NetMask\r
344 );\r
345\r
346/**\r
347 Return the class of the IP address, such as class A, B, C.\r
348 Addr is in host byte order.\r
349\r
350 The address of class A starts with 0.\r
351 If the address belong to class A, return IP4_ADDR_CLASSA.\r
352 The address of class B starts with 10.\r
353 If the address belong to class B, return IP4_ADDR_CLASSB.\r
354 The address of class C starts with 110.\r
355 If the address belong to class C, return IP4_ADDR_CLASSC.\r
356 The address of class D starts with 1110.\r
357 If the address belong to class D, return IP4_ADDR_CLASSD.\r
358 The address of class E starts with 1111.\r
359 If the address belong to class E, return IP4_ADDR_CLASSE.\r
360\r
361\r
362 @param[in] Addr The address to get the class from.\r
363\r
364 @return IP address class, such as IP4_ADDR_CLASSA.\r
365\r
366**/\r
367INTN\r
368EFIAPI\r
369NetGetIpClass (\r
370 IN IP4_ADDR Addr\r
371 );\r
372\r
373/**\r
374 Check whether the IP is a valid unicast address according to\r
375 the netmask. If NetMask is zero, use the IP address's class to get the default mask.\r
376\r
377 If Ip is 0, IP is not a valid unicast address.\r
378 Class D address is used for multicasting and class E address is reserved for future. If Ip\r
379 belongs to class D or class E, Ip is not a valid unicast address.\r
380 If all bits of the host address of Ip are 0 or 1, Ip is not a valid unicast address.\r
381\r
382 @param[in] Ip The IP to check against.\r
383 @param[in] NetMask The mask of the IP.\r
384\r
385 @return TRUE if Ip is a valid unicast address on the network, otherwise FALSE.\r
386\r
387**/\r
388BOOLEAN\r
389EFIAPI\r
390NetIp4IsUnicast (\r
391 IN IP4_ADDR Ip,\r
392 IN IP4_ADDR NetMask\r
393 );\r
394\r
395/**\r
396 Check whether the incoming IPv6 address is a valid unicast address.\r
397\r
398 If the address is a multicast address has binary 0xFF at the start, it is not\r
399 a valid unicast address. If the address is unspecified ::, it is not a valid\r
400 unicast address to be assigned to any node. If the address is loopback address\r
401 ::1, it is also not a valid unicast address to be assigned to any physical\r
402 interface.\r
403\r
404 @param[in] Ip6 The IPv6 address to check against.\r
405\r
406 @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.\r
407\r
408**/\r
409BOOLEAN\r
410EFIAPI\r
411NetIp6IsValidUnicast (\r
412 IN EFI_IPv6_ADDRESS *Ip6\r
413 );\r
414\r
415\r
416/**\r
417 Check whether the incoming Ipv6 address is the unspecified address or not.\r
418\r
419 @param[in] Ip6 - Ip6 address, in network order.\r
420\r
421 @retval TRUE - Yes, incoming Ipv6 address is the unspecified address.\r
422 @retval FALSE - The incoming Ipv6 address is not the unspecified address\r
423\r
424**/\r
425BOOLEAN\r
426EFIAPI\r
427NetIp6IsUnspecifiedAddr (\r
428 IN EFI_IPv6_ADDRESS *Ip6\r
429 );\r
430\r
431/**\r
432 Check whether the incoming Ipv6 address is a link-local address.\r
433\r
434 @param[in] Ip6 - Ip6 address, in network order.\r
435\r
436 @retval TRUE - The incoming Ipv6 address is a link-local address.\r
437 @retval FALSE - The incoming Ipv6 address is not a link-local address.\r
438\r
439**/\r
440BOOLEAN\r
441EFIAPI\r
442NetIp6IsLinkLocalAddr (\r
443 IN EFI_IPv6_ADDRESS *Ip6\r
444 );\r
445\r
446/**\r
447 Check whether the Ipv6 address1 and address2 are on the connected network.\r
448\r
449 @param[in] Ip1 - Ip6 address1, in network order.\r
450 @param[in] Ip2 - Ip6 address2, in network order.\r
451 @param[in] PrefixLength - The prefix length of the checking net.\r
452\r
453 @retval TRUE - Yes, the Ipv6 address1 and address2 are connected.\r
454 @retval FALSE - No the Ipv6 address1 and address2 are not connected.\r
455\r
456**/\r
457BOOLEAN\r
458EFIAPI\r
459NetIp6IsNetEqual (\r
460 EFI_IPv6_ADDRESS *Ip1,\r
461 EFI_IPv6_ADDRESS *Ip2,\r
462 UINT8 PrefixLength\r
463 );\r
464\r
465/**\r
466 Switches the endianess of an IPv6 address.\r
467\r
468 This function swaps the bytes in a 128-bit IPv6 address to switch the value\r
469 from little endian to big endian or vice versa. The byte swapped value is\r
470 returned.\r
471\r
472 @param Ip6 Points to an IPv6 address.\r
473\r
474 @return The byte swapped IPv6 address.\r
475\r
476**/\r
477EFI_IPv6_ADDRESS *\r
478EFIAPI\r
479Ip6Swap128 (\r
480 EFI_IPv6_ADDRESS *Ip6\r
481 );\r
482\r
483extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM];\r
484\r
485\r
486extern EFI_IPv4_ADDRESS mZeroIp4Addr;\r
487\r
488#define NET_IS_DIGIT(Ch) (('0' <= (Ch)) && ((Ch) <= '9'))\r
489#define NET_ROUNDUP(size, unit) (((size) + (unit) - 1) & (~((unit) - 1)))\r
490#define NET_IS_LOWER_CASE_CHAR(Ch) (('a' <= (Ch)) && ((Ch) <= 'z'))\r
491#define NET_IS_UPPER_CASE_CHAR(Ch) (('A' <= (Ch)) && ((Ch) <= 'Z'))\r
492\r
493#define TICKS_PER_MS 10000U\r
494#define TICKS_PER_SECOND 10000000U\r
495\r
496#define NET_RANDOM(Seed) ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)\r
497\r
498/**\r
499 Extract a UINT32 from a byte stream.\r
500\r
501 This function copies a UINT32 from a byte stream, and then converts it from Network\r
502 byte order to host byte order. Use this function to avoid alignment error.\r
503\r
504 @param[in] Buf The buffer to extract the UINT32.\r
505\r
506 @return The UINT32 extracted.\r
507\r
508**/\r
509UINT32\r
510EFIAPI\r
511NetGetUint32 (\r
512 IN UINT8 *Buf\r
513 );\r
514\r
515/**\r
516 Puts a UINT32 into the byte stream in network byte order.\r
517\r
518 Converts a UINT32 from host byte order to network byte order, then copies it to the\r
519 byte stream.\r
520\r
521 @param[in, out] Buf The buffer in which to put the UINT32.\r
522 @param[in] Data The data to be converted and put into the byte stream.\r
523\r
524**/\r
525VOID\r
526EFIAPI\r
527NetPutUint32 (\r
528 IN OUT UINT8 *Buf,\r
529 IN UINT32 Data\r
530 );\r
531\r
532/**\r
533 Initialize a random seed using current time.\r
534\r
535 Get current time first. Then initialize a random seed based on some basic\r
536 mathematical operations on the hour, day, minute, second, nanosecond and year\r
537 of the current time.\r
538\r
539 @return The random seed, initialized with current time.\r
540\r
541**/\r
542UINT32\r
543EFIAPI\r
544NetRandomInitSeed (\r
545 VOID\r
546 );\r
547\r
548\r
549#define NET_LIST_USER_STRUCT(Entry, Type, Field) \\r
550 BASE_CR(Entry, Type, Field)\r
551\r
552#define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig) \\r
553 CR(Entry, Type, Field, Sig)\r
554\r
555//\r
556// Iterate through the double linked list. It is NOT delete safe\r
557//\r
558#define NET_LIST_FOR_EACH(Entry, ListHead) \\r
559 for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)\r
560\r
561//\r
562// Iterate through the double linked list. This is delete-safe.\r
563// Don't touch NextEntry. Also, don't use this macro if list\r
564// entries other than the Entry may be deleted when processing\r
565// the current Entry.\r
566//\r
567#define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \\r
568 for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \\r
569 Entry != (ListHead); \\r
570 Entry = NextEntry, NextEntry = Entry->ForwardLink \\r
571 )\r
572\r
573//\r
574// Make sure the list isn't empty before getting the first/last record.\r
575//\r
576#define NET_LIST_HEAD(ListHead, Type, Field) \\r
577 NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)\r
578\r
579#define NET_LIST_TAIL(ListHead, Type, Field) \\r
580 NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)\r
581\r
582\r
583/**\r
584 Remove the first node entry on the list, and return the removed node entry.\r
585\r
586 Removes the first node entry from a doubly linked list. It is up to the caller of\r
587 this function to release the memory used by the first node, if that is required. On\r
588 exit, the removed node is returned.\r
589\r
590 If Head is NULL, then ASSERT().\r
591 If Head was not initialized, then ASSERT().\r
592 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
593 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,\r
594 then ASSERT().\r
595\r
596 @param[in, out] Head The list header.\r
597\r
598 @return The first node entry that is removed from the list, NULL if the list is empty.\r
599\r
600**/\r
601LIST_ENTRY *\r
602EFIAPI\r
603NetListRemoveHead (\r
604 IN OUT LIST_ENTRY *Head\r
605 );\r
606\r
607/**\r
608 Remove the last node entry on the list and return the removed node entry.\r
609\r
610 Removes the last node entry from a doubly linked list. It is up to the caller of\r
611 this function to release the memory used by the first node, if that is required. On\r
612 exit, the removed node is returned.\r
613\r
614 If Head is NULL, then ASSERT().\r
615 If Head was not initialized, then ASSERT().\r
616 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
617 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,\r
618 then ASSERT().\r
619\r
620 @param[in, out] Head The list head.\r
621\r
622 @return The last node entry that is removed from the list, NULL if the list is empty.\r
623\r
624**/\r
625LIST_ENTRY *\r
626EFIAPI\r
627NetListRemoveTail (\r
628 IN OUT LIST_ENTRY *Head\r
629 );\r
630\r
631/**\r
632 Insert a new node entry after a designated node entry of a doubly linked list.\r
633\r
634 Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry\r
635 of the doubly linked list.\r
636\r
637 @param[in, out] PrevEntry The entry after which to insert.\r
638 @param[in, out] NewEntry The new entry to insert.\r
639\r
640**/\r
641VOID\r
642EFIAPI\r
643NetListInsertAfter (\r
644 IN OUT LIST_ENTRY *PrevEntry,\r
645 IN OUT LIST_ENTRY *NewEntry\r
646 );\r
647\r
648/**\r
649 Insert a new node entry before a designated node entry of a doubly linked list.\r
650\r
651 Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry\r
652 of the doubly linked list.\r
653\r
654 @param[in, out] PostEntry The entry to insert before.\r
655 @param[in, out] NewEntry The new entry to insert.\r
656\r
657**/\r
658VOID\r
659EFIAPI\r
660NetListInsertBefore (\r
661 IN OUT LIST_ENTRY *PostEntry,\r
662 IN OUT LIST_ENTRY *NewEntry\r
663 );\r
664\r
665\r
666//\r
667// Object container: EFI network stack spec defines various kinds of\r
668// tokens. The drivers can share code to manage those objects.\r
669//\r
670typedef struct {\r
671 LIST_ENTRY Link;\r
672 VOID *Key;\r
673 VOID *Value;\r
674} NET_MAP_ITEM;\r
675\r
676typedef struct {\r
677 LIST_ENTRY Used;\r
678 LIST_ENTRY Recycled;\r
679 UINTN Count;\r
680} NET_MAP;\r
681\r
682#define NET_MAP_INCREAMENT 64\r
683\r
684/**\r
685 Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.\r
686\r
687 Initialize the forward and backward links of two head nodes donated by Map->Used\r
688 and Map->Recycled of two doubly linked lists.\r
689 Initializes the count of the <Key, Value> pairs in the netmap to zero.\r
690\r
691 If Map is NULL, then ASSERT().\r
692 If the address of Map->Used is NULL, then ASSERT().\r
693 If the address of Map->Recycled is NULl, then ASSERT().\r
694\r
695 @param[in, out] Map The netmap to initialize.\r
696\r
697**/\r
698VOID\r
699EFIAPI\r
700NetMapInit (\r
701 IN OUT NET_MAP *Map\r
702 );\r
703\r
704/**\r
705 To clean up the netmap, that is, release allocated memories.\r
706\r
707 Removes all nodes of the Used doubly linked list and frees memory of all related netmap items.\r
708 Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.\r
709 The number of the <Key, Value> pairs in the netmap is set to zero.\r
710\r
711 If Map is NULL, then ASSERT().\r
712\r
713 @param[in, out] Map The netmap to clean up.\r
714\r
715**/\r
716VOID\r
717EFIAPI\r
718NetMapClean (\r
719 IN OUT NET_MAP *Map\r
720 );\r
721\r
722/**\r
723 Test whether the netmap is empty and return true if it is.\r
724\r
725 If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.\r
726\r
727 If Map is NULL, then ASSERT().\r
728\r
729\r
730 @param[in] Map The net map to test.\r
731\r
732 @return TRUE if the netmap is empty, otherwise FALSE.\r
733\r
734**/\r
735BOOLEAN\r
736EFIAPI\r
737NetMapIsEmpty (\r
738 IN NET_MAP *Map\r
739 );\r
740\r
741/**\r
742 Return the number of the <Key, Value> pairs in the netmap.\r
743\r
744 @param[in] Map The netmap to get the entry number.\r
745\r
746 @return The entry number in the netmap.\r
747\r
748**/\r
749UINTN\r
750EFIAPI\r
751NetMapGetCount (\r
752 IN NET_MAP *Map\r
753 );\r
754\r
755/**\r
756 Allocate an item to save the <Key, Value> pair to the head of the netmap.\r
757\r
758 Allocate an item to save the <Key, Value> pair and add corresponding node entry\r
759 to the beginning of the Used doubly linked list. The number of the <Key, Value>\r
760 pairs in the netmap increase by 1.\r
761\r
762 If Map is NULL, then ASSERT().\r
763\r
764 @param[in, out] Map The netmap to insert into.\r
765 @param[in] Key The user's key.\r
766 @param[in] Value The user's value for the key.\r
767\r
768 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.\r
769 @retval EFI_SUCCESS The item is inserted to the head.\r
770\r
771**/\r
772EFI_STATUS\r
773EFIAPI\r
774NetMapInsertHead (\r
775 IN OUT NET_MAP *Map,\r
776 IN VOID *Key,\r
777 IN VOID *Value OPTIONAL\r
778 );\r
779\r
780/**\r
781 Allocate an item to save the <Key, Value> pair to the tail of the netmap.\r
782\r
783 Allocate an item to save the <Key, Value> pair and add corresponding node entry\r
784 to the tail of the Used doubly linked list. The number of the <Key, Value>\r
785 pairs in the netmap increase by 1.\r
786\r
787 If Map is NULL, then ASSERT().\r
788\r
789 @param[in, out] Map The netmap to insert into.\r
790 @param[in] Key The user's key.\r
791 @param[in] Value The user's value for the key.\r
792\r
793 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.\r
794 @retval EFI_SUCCESS The item is inserted to the tail.\r
795\r
796**/\r
797EFI_STATUS\r
798EFIAPI\r
799NetMapInsertTail (\r
800 IN OUT NET_MAP *Map,\r
801 IN VOID *Key,\r
802 IN VOID *Value OPTIONAL\r
803 );\r
804\r
805/**\r
806 Finds the key in the netmap and returns the point to the item containing the Key.\r
807\r
808 Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every\r
809 item with the key to search. It returns the point to the item contains the Key if found.\r
810\r
811 If Map is NULL, then ASSERT().\r
812\r
813 @param[in] Map The netmap to search within.\r
814 @param[in] Key The key to search.\r
815\r
816 @return The point to the item contains the Key, or NULL if Key isn't in the map.\r
817\r
818**/\r
819NET_MAP_ITEM *\r
820EFIAPI\r
821NetMapFindKey (\r
822 IN NET_MAP *Map,\r
823 IN VOID *Key\r
824 );\r
825\r
826/**\r
827 Remove the node entry of the item from the netmap and return the key of the removed item.\r
828\r
829 Remove the node entry of the item from the Used doubly linked list of the netmap.\r
830 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node\r
831 entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,\r
832 Value will point to the value of the item. It returns the key of the removed item.\r
833\r
834 If Map is NULL, then ASSERT().\r
835 If Item is NULL, then ASSERT().\r
836 if item in not in the netmap, then ASSERT().\r
837\r
838 @param[in, out] Map The netmap to remove the item from.\r
839 @param[in, out] Item The item to remove.\r
840 @param[out] Value The variable to receive the value if not NULL.\r
841\r
842 @return The key of the removed item.\r
843\r
844**/\r
845VOID *\r
846EFIAPI\r
847NetMapRemoveItem (\r
848 IN OUT NET_MAP *Map,\r
849 IN OUT NET_MAP_ITEM *Item,\r
850 OUT VOID **Value OPTIONAL\r
851 );\r
852\r
853/**\r
854 Remove the first node entry on the netmap and return the key of the removed item.\r
855\r
856 Remove the first node entry from the Used doubly linked list of the netmap.\r
857 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node\r
858 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,\r
859 parameter Value will point to the value of the item. It returns the key of the removed item.\r
860\r
861 If Map is NULL, then ASSERT().\r
862 If the Used doubly linked list is empty, then ASSERT().\r
863\r
864 @param[in, out] Map The netmap to remove the head from.\r
865 @param[out] Value The variable to receive the value if not NULL.\r
866\r
867 @return The key of the item removed.\r
868\r
869**/\r
870VOID *\r
871EFIAPI\r
872NetMapRemoveHead (\r
873 IN OUT NET_MAP *Map,\r
874 OUT VOID **Value OPTIONAL\r
875 );\r
876\r
877/**\r
878 Remove the last node entry on the netmap and return the key of the removed item.\r
879\r
880 Remove the last node entry from the Used doubly linked list of the netmap.\r
881 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node\r
882 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,\r
883 parameter Value will point to the value of the item. It returns the key of the removed item.\r
884\r
885 If Map is NULL, then ASSERT().\r
886 If the Used doubly linked list is empty, then ASSERT().\r
887\r
888 @param[in, out] Map The netmap to remove the tail from.\r
889 @param[out] Value The variable to receive the value if not NULL.\r
890\r
891 @return The key of the item removed.\r
892\r
893**/\r
894VOID *\r
895EFIAPI\r
896NetMapRemoveTail (\r
897 IN OUT NET_MAP *Map,\r
898 OUT VOID **Value OPTIONAL\r
899 );\r
900\r
901typedef\r
902EFI_STATUS\r
903(EFIAPI *NET_MAP_CALLBACK) (\r
904 IN NET_MAP *Map,\r
905 IN NET_MAP_ITEM *Item,\r
906 IN VOID *Arg\r
907 );\r
908\r
909/**\r
910 Iterate through the netmap and call CallBack for each item.\r
911\r
912 It will contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break\r
913 from the loop. It returns the CallBack's last return value. This function is\r
914 delete safe for the current item.\r
915\r
916 If Map is NULL, then ASSERT().\r
917 If CallBack is NULL, then ASSERT().\r
918\r
919 @param[in] Map The Map to iterate through.\r
920 @param[in] CallBack The callback function to call for each item.\r
921 @param[in] Arg The opaque parameter to the callback.\r
922\r
923 @retval EFI_SUCCESS There is no item in the netmap, or CallBack for each item\r
924 returns EFI_SUCCESS.\r
925 @retval Others It returns the CallBack's last return value.\r
926\r
927**/\r
928EFI_STATUS\r
929EFIAPI\r
930NetMapIterate (\r
931 IN NET_MAP *Map,\r
932 IN NET_MAP_CALLBACK CallBack,\r
933 IN VOID *Arg OPTIONAL\r
934 );\r
935\r
936\r
937//\r
938// Helper functions to implement driver binding and service binding protocols.\r
939//\r
940/**\r
941 Create a child of the service that is identified by ServiceBindingGuid.\r
942\r
943 Get the ServiceBinding Protocol first, then use it to create a child.\r
944\r
945 If ServiceBindingGuid is NULL, then ASSERT().\r
946 If ChildHandle is NULL, then ASSERT().\r
947\r
948 @param[in] Controller The controller which has the service installed.\r
949 @param[in] Image The image handle used to open service.\r
950 @param[in] ServiceBindingGuid The service's Guid.\r
951 @param[in, out] ChildHandle The handle to receive the created child.\r
952\r
953 @retval EFI_SUCCESS The child was successfully created.\r
954 @retval Others Failed to create the child.\r
955\r
956**/\r
957EFI_STATUS\r
958EFIAPI\r
959NetLibCreateServiceChild (\r
960 IN EFI_HANDLE Controller,\r
961 IN EFI_HANDLE Image,\r
962 IN EFI_GUID *ServiceBindingGuid,\r
963 IN OUT EFI_HANDLE *ChildHandle\r
964 );\r
965\r
966/**\r
967 Destroy a child of the service that is identified by ServiceBindingGuid.\r
968\r
969 Get the ServiceBinding Protocol first, then use it to destroy a child.\r
970\r
971 If ServiceBindingGuid is NULL, then ASSERT().\r
972\r
973 @param[in] Controller The controller which has the service installed.\r
974 @param[in] Image The image handle used to open service.\r
975 @param[in] ServiceBindingGuid The service's Guid.\r
976 @param[in] ChildHandle The child to destroy.\r
977\r
978 @retval EFI_SUCCESS The child was destroyed.\r
979 @retval Others Failed to destroy the child.\r
980\r
981**/\r
982EFI_STATUS\r
983EFIAPI\r
984NetLibDestroyServiceChild (\r
985 IN EFI_HANDLE Controller,\r
986 IN EFI_HANDLE Image,\r
987 IN EFI_GUID *ServiceBindingGuid,\r
988 IN EFI_HANDLE ChildHandle\r
989 );\r
990\r
991/**\r
992 Get handle with Simple Network Protocol installed on it.\r
993\r
994 There should be MNP Service Binding Protocol installed on the input ServiceHandle.\r
995 If Simple Network Protocol is already installed on the ServiceHandle, the\r
996 ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,\r
997 try to find its parent handle with SNP installed.\r
998\r
999 @param[in] ServiceHandle The handle where network service binding protocols are\r
1000 installed on.\r
1001 @param[out] Snp The pointer to store the address of the SNP instance.\r
1002 This is an optional parameter that may be NULL.\r
1003\r
1004 @return The SNP handle, or NULL if not found.\r
1005\r
1006**/\r
1007EFI_HANDLE\r
1008EFIAPI\r
1009NetLibGetSnpHandle (\r
1010 IN EFI_HANDLE ServiceHandle,\r
1011 OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL\r
1012 );\r
1013\r
1014/**\r
1015 Retrieve VLAN ID of a VLAN device handle.\r
1016\r
1017 Search VLAN device path node in Device Path of specified ServiceHandle and\r
1018 return its VLAN ID. If no VLAN device path node found, then this ServiceHandle\r
1019 is not a VLAN device handle, and 0 will be returned.\r
1020\r
1021 @param[in] ServiceHandle The handle where network service binding protocols are\r
1022 installed on.\r
1023\r
1024 @return VLAN ID of the device handle, or 0 if not a VLAN device.\r
1025\r
1026**/\r
1027UINT16\r
1028EFIAPI\r
1029NetLibGetVlanId (\r
1030 IN EFI_HANDLE ServiceHandle\r
1031 );\r
1032\r
1033/**\r
1034 Find VLAN device handle with specified VLAN ID.\r
1035\r
1036 The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.\r
1037 This function will append VLAN device path node to the parent device path,\r
1038 and then use LocateDevicePath() to find the correct VLAN device handle.\r
1039\r
1040 @param[in] ControllerHandle The handle where network service binding protocols are\r
1041 installed on.\r
1042 @param[in] VlanId The configured VLAN ID for the VLAN device.\r
1043\r
1044 @return The VLAN device handle, or NULL if not found.\r
1045\r
1046**/\r
1047EFI_HANDLE\r
1048EFIAPI\r
1049NetLibGetVlanHandle (\r
1050 IN EFI_HANDLE ControllerHandle,\r
1051 IN UINT16 VlanId\r
1052 );\r
1053\r
1054/**\r
1055 Get MAC address associated with the network service handle.\r
1056\r
1057 There should be MNP Service Binding Protocol installed on the input ServiceHandle.\r
1058 If SNP is installed on the ServiceHandle or its parent handle, MAC address will\r
1059 be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.\r
1060\r
1061 @param[in] ServiceHandle The handle where network service binding protocols are\r
1062 installed on.\r
1063 @param[out] MacAddress The pointer to store the returned MAC address.\r
1064 @param[out] AddressSize The length of returned MAC address.\r
1065\r
1066 @retval EFI_SUCCESS MAC address was returned successfully.\r
1067 @retval Others Failed to get SNP mode data.\r
1068\r
1069**/\r
1070EFI_STATUS\r
1071EFIAPI\r
1072NetLibGetMacAddress (\r
1073 IN EFI_HANDLE ServiceHandle,\r
1074 OUT EFI_MAC_ADDRESS *MacAddress,\r
1075 OUT UINTN *AddressSize\r
1076 );\r
1077\r
1078/**\r
1079 Convert MAC address of the NIC associated with specified Service Binding Handle\r
1080 to a unicode string. Callers are responsible for freeing the string storage.\r
1081\r
1082 Locate simple network protocol associated with the Service Binding Handle and\r
1083 get the mac address from SNP. Then convert the mac address into a unicode\r
1084 string. It takes 2 unicode characters to represent a 1 byte binary buffer.\r
1085 Plus one unicode character for the null-terminator.\r
1086\r
1087 @param[in] ServiceHandle The handle where network service binding protocol is\r
1088 installed.\r
1089 @param[in] ImageHandle The image handle used to act as the agent handle to\r
1090 get the simple network protocol. This parameter is\r
1091 optional and may be NULL.\r
1092 @param[out] MacString The pointer to store the address of the string\r
1093 representation of the mac address.\r
1094\r
1095 @retval EFI_SUCCESS Converted the mac address a unicode string successfully.\r
1096 @retval EFI_OUT_OF_RESOURCES There are not enough memory resources.\r
1097 @retval Others Failed to open the simple network protocol.\r
1098\r
1099**/\r
1100EFI_STATUS\r
1101EFIAPI\r
1102NetLibGetMacString (\r
1103 IN EFI_HANDLE ServiceHandle,\r
1104 IN EFI_HANDLE ImageHandle, OPTIONAL\r
1105 OUT CHAR16 **MacString\r
1106 );\r
1107\r
1108/**\r
1109 Detect media status for specified network device.\r
1110\r
1111 The underlying UNDI driver may or may not support reporting media status from\r
1112 GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine\r
1113 will try to invoke Snp->GetStatus() to get the media status. If media is already\r
1114 present, it returns directly. If media is not present, it will stop SNP and then\r
1115 restart SNP to get the latest media status. This provides an opportunity to get \r
1116 the correct media status for old UNDI driver, which doesn't support reporting \r
1117 media status from GET_STATUS command.\r
1118 Note: there are two limitations for the current algorithm:\r
1119 1) For UNDI with this capability, when the cable is not attached, there will\r
1120 be an redundant Stop/Start() process.\r
1121 2) for UNDI without this capability, in case that network cable is attached when\r
1122 Snp->Initialize() is invoked while network cable is unattached later,\r
1123 NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer\r
1124 apps to wait for timeout time.\r
1125\r
1126 @param[in] ServiceHandle The handle where network service binding protocols are\r
1127 installed.\r
1128 @param[out] MediaPresent The pointer to store the media status.\r
1129\r
1130 @retval EFI_SUCCESS Media detection success.\r
1131 @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle.\r
1132 @retval EFI_UNSUPPORTED The network device does not support media detection.\r
1133 @retval EFI_DEVICE_ERROR SNP is in an unknown state.\r
1134\r
1135**/\r
1136EFI_STATUS\r
1137EFIAPI\r
1138NetLibDetectMedia (\r
1139 IN EFI_HANDLE ServiceHandle,\r
1140 OUT BOOLEAN *MediaPresent\r
1141 );\r
1142\r
1143/**\r
1144 Create an IPv4 device path node.\r
1145\r
1146 The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.\r
1147 The header subtype of IPv4 device path node is MSG_IPv4_DP.\r
1148 The length of the IPv4 device path node in bytes is 19.\r
1149 Get other information from parameters to make up the whole IPv4 device path node.\r
1150\r
1151 @param[in, out] Node The pointer to the IPv4 device path node.\r
1152 @param[in] Controller The controller handle.\r
1153 @param[in] LocalIp The local IPv4 address.\r
1154 @param[in] LocalPort The local port.\r
1155 @param[in] RemoteIp The remote IPv4 address.\r
1156 @param[in] RemotePort The remote port.\r
1157 @param[in] Protocol The protocol type in the IP header.\r
1158 @param[in] UseDefaultAddress Whether this instance is using default address or not.\r
1159\r
1160**/\r
1161VOID\r
1162EFIAPI\r
1163NetLibCreateIPv4DPathNode (\r
1164 IN OUT IPv4_DEVICE_PATH *Node,\r
1165 IN EFI_HANDLE Controller,\r
1166 IN IP4_ADDR LocalIp,\r
1167 IN UINT16 LocalPort,\r
1168 IN IP4_ADDR RemoteIp,\r
1169 IN UINT16 RemotePort,\r
1170 IN UINT16 Protocol,\r
1171 IN BOOLEAN UseDefaultAddress\r
1172 );\r
1173\r
1174/**\r
1175 Create an IPv6 device path node.\r
1176\r
1177 The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.\r
1178 The header subtype of IPv6 device path node is MSG_IPv6_DP.\r
1179 The length of the IPv6 device path node in bytes is 43.\r
1180 Get other information from parameters to make up the whole IPv6 device path node.\r
1181\r
1182 @param[in, out] Node The pointer to the IPv6 device path node.\r
1183 @param[in] Controller The controller handle.\r
1184 @param[in] LocalIp The local IPv6 address.\r
1185 @param[in] LocalPort The local port.\r
1186 @param[in] RemoteIp The remote IPv6 address.\r
1187 @param[in] RemotePort The remote port.\r
1188 @param[in] Protocol The protocol type in the IP header.\r
1189\r
1190**/\r
1191VOID\r
1192EFIAPI\r
1193NetLibCreateIPv6DPathNode (\r
1194 IN OUT IPv6_DEVICE_PATH *Node,\r
1195 IN EFI_HANDLE Controller,\r
1196 IN EFI_IPv6_ADDRESS *LocalIp,\r
1197 IN UINT16 LocalPort,\r
1198 IN EFI_IPv6_ADDRESS *RemoteIp,\r
1199 IN UINT16 RemotePort,\r
1200 IN UINT16 Protocol\r
1201 );\r
1202\r
1203\r
1204/**\r
1205 Find the UNDI/SNP handle from controller and protocol GUID.\r
1206\r
1207 For example, IP will open an MNP child to transmit/receive\r
1208 packets. When MNP is stopped, IP should also be stopped. IP\r
1209 needs to find its own private data that is related the IP's\r
1210 service binding instance that is installed on the UNDI/SNP handle.\r
1211 The controller is then either an MNP or an ARP child handle. Note that\r
1212 IP opens these handles using BY_DRIVER. Use that infomation to get the\r
1213 UNDI/SNP handle.\r
1214\r
1215 @param[in] Controller The protocol handle to check.\r
1216 @param[in] ProtocolGuid The protocol that is related with the handle.\r
1217\r
1218 @return The UNDI/SNP handle or NULL for errors.\r
1219\r
1220**/\r
1221EFI_HANDLE\r
1222EFIAPI\r
1223NetLibGetNicHandle (\r
1224 IN EFI_HANDLE Controller,\r
1225 IN EFI_GUID *ProtocolGuid\r
1226 );\r
1227\r
1228/**\r
1229 This is the default unload handle for all the network drivers.\r
1230\r
1231 Disconnect the driver specified by ImageHandle from all the devices in the handle database.\r
1232 Uninstall all the protocols installed in the driver entry point.\r
1233\r
1234 @param[in] ImageHandle The drivers' driver image.\r
1235\r
1236 @retval EFI_SUCCESS The image is unloaded.\r
1237 @retval Others Failed to unload the image.\r
1238\r
1239**/\r
1240EFI_STATUS\r
1241EFIAPI\r
1242NetLibDefaultUnload (\r
1243 IN EFI_HANDLE ImageHandle\r
1244 );\r
1245\r
1246/**\r
1247 Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.\r
1248\r
1249 @param[in] String The pointer to the Ascii string.\r
1250 @param[out] Ip4Address The pointer to the converted IPv4 address.\r
1251\r
1252 @retval EFI_SUCCESS Converted to an IPv4 address successfully.\r
1253 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip4Address is NULL.\r
1254\r
1255**/\r
1256EFI_STATUS\r
1257EFIAPI\r
1258NetLibAsciiStrToIp4 (\r
1259 IN CONST CHAR8 *String,\r
1260 OUT EFI_IPv4_ADDRESS *Ip4Address\r
1261 );\r
1262\r
1263/**\r
1264 Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the\r
1265 string is defined in RFC 4291 - Text Pepresentation of Addresses.\r
1266\r
1267 @param[in] String The pointer to the Ascii string.\r
1268 @param[out] Ip6Address The pointer to the converted IPv6 address.\r
1269\r
1270 @retval EFI_SUCCESS Converted to an IPv6 address successfully.\r
1271 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip6Address is NULL.\r
1272\r
1273**/\r
1274EFI_STATUS\r
1275EFIAPI\r
1276NetLibAsciiStrToIp6 (\r
1277 IN CONST CHAR8 *String,\r
1278 OUT EFI_IPv6_ADDRESS *Ip6Address\r
1279 );\r
1280\r
1281/**\r
1282 Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.\r
1283\r
1284 @param[in] String The pointer to the Ascii string.\r
1285 @param[out] Ip4Address The pointer to the converted IPv4 address.\r
1286\r
1287 @retval EFI_SUCCESS Converted to an IPv4 address successfully.\r
1288 @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip4Address is NULL.\r
1289 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to lack of resources.\r
1290\r
1291**/\r
1292EFI_STATUS\r
1293EFIAPI\r
1294NetLibStrToIp4 (\r
1295 IN CONST CHAR16 *String,\r
1296 OUT EFI_IPv4_ADDRESS *Ip4Address\r
1297 );\r
1298\r
1299/**\r
1300 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS. The format of\r
1301 the string is defined in RFC 4291 - Text Pepresentation of Addresses.\r
1302\r
1303 @param[in] String The pointer to the Ascii string.\r
1304 @param[out] Ip6Address The pointer to the converted IPv6 address.\r
1305\r
1306 @retval EFI_SUCCESS Converted to an IPv6 address successfully.\r
1307 @retval EFI_INVALID_PARAMETER The string is malformated or Ip6Address is NULL.\r
1308 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to a lack of resources.\r
1309\r
1310**/\r
1311EFI_STATUS\r
1312EFIAPI\r
1313NetLibStrToIp6 (\r
1314 IN CONST CHAR16 *String,\r
1315 OUT EFI_IPv6_ADDRESS *Ip6Address\r
1316 );\r
1317\r
1318/**\r
1319 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.\r
1320 The format of the string is defined in RFC 4291 - Text Pepresentation of Addresses\r
1321 Prefixes: ipv6-address/prefix-length.\r
1322\r
1323 @param[in] String The pointer to the Ascii string.\r
1324 @param[out] Ip6Address The pointer to the converted IPv6 address.\r
1325 @param[out] PrefixLength The pointer to the converted prefix length.\r
1326\r
1327 @retval EFI_SUCCESS Converted to an IPv6 address successfully.\r
1328 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip6Address is NULL.\r
1329 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to a lack of resources.\r
1330\r
1331**/\r
1332EFI_STATUS\r
1333EFIAPI\r
1334NetLibStrToIp6andPrefix (\r
1335 IN CONST CHAR16 *String,\r
1336 OUT EFI_IPv6_ADDRESS *Ip6Address,\r
1337 OUT UINT8 *PrefixLength\r
1338 );\r
1339\r
1340//\r
1341// Various signatures\r
1342//\r
1343#define NET_BUF_SIGNATURE SIGNATURE_32 ('n', 'b', 'u', 'f')\r
1344#define NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c')\r
1345#define NET_QUE_SIGNATURE SIGNATURE_32 ('n', 'b', 'q', 'u')\r
1346\r
1347\r
1348#define NET_PROTO_DATA 64 // Opaque buffer for protocols\r
1349#define NET_BUF_HEAD 1 // Trim or allocate space from head\r
1350#define NET_BUF_TAIL 0 // Trim or allocate space from tail\r
1351#define NET_VECTOR_OWN_FIRST 0x01 // We allocated the 1st block in the vector\r
1352\r
1353#define NET_CHECK_SIGNATURE(PData, SIGNATURE) \\r
1354 ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))\r
1355\r
1356//\r
1357// Single memory block in the vector.\r
1358//\r
1359typedef struct {\r
1360 UINT32 Len; // The block's length\r
1361 UINT8 *Bulk; // The block's Data\r
1362} NET_BLOCK;\r
1363\r
1364typedef VOID (EFIAPI *NET_VECTOR_EXT_FREE) (VOID *Arg);\r
1365\r
1366//\r
1367//NET_VECTOR contains several blocks to hold all packet's\r
1368//fragments and other house-keeping stuff for sharing. It\r
1369//doesn't specify the where actual packet fragment begins.\r
1370//\r
1371typedef struct {\r
1372 UINT32 Signature;\r
1373 INTN RefCnt; // Reference count to share NET_VECTOR.\r
1374 NET_VECTOR_EXT_FREE Free; // external function to free NET_VECTOR\r
1375 VOID *Arg; // opeque argument to Free\r
1376 UINT32 Flag; // Flags, NET_VECTOR_OWN_FIRST\r
1377 UINT32 Len; // Total length of the assocated BLOCKs\r
1378\r
1379 UINT32 BlockNum;\r
1380 NET_BLOCK Block[1];\r
1381} NET_VECTOR;\r
1382\r
1383//\r
1384//NET_BLOCK_OP operates on the NET_BLOCK. It specifies\r
1385//where the actual fragment begins and ends\r
1386//\r
1387typedef struct {\r
1388 UINT8 *BlockHead; // Block's head, or the smallest valid Head\r
1389 UINT8 *BlockTail; // Block's tail. BlockTail-BlockHead=block length\r
1390 UINT8 *Head; // 1st byte of the data in the block\r
1391 UINT8 *Tail; // Tail of the data in the block, Tail-Head=Size\r
1392 UINT32 Size; // The size of the data\r
1393} NET_BLOCK_OP;\r
1394\r
1395typedef union {\r
1396 IP4_HEAD *Ip4;\r
1397 EFI_IP6_HEADER *Ip6;\r
1398} NET_IP_HEAD;\r
1399\r
1400//\r
1401//NET_BUF is the buffer manage structure used by the\r
1402//network stack. Every network packet may be fragmented. The Vector points to\r
1403//memory blocks used by each fragment, and BlockOp\r
1404//specifies where each fragment begins and ends.\r
1405//\r
1406//It also contains an opaque area for the protocol to store\r
1407//per-packet information. Protocol must be careful not\r
1408//to overwrite the members after that.\r
1409//\r
1410typedef struct {\r
1411 UINT32 Signature;\r
1412 INTN RefCnt;\r
1413 LIST_ENTRY List; // The List this NET_BUF is on\r
1414\r
1415 NET_IP_HEAD Ip; // Network layer header, for fast access\r
1416 TCP_HEAD *Tcp; // Transport layer header, for fast access\r
1417 EFI_UDP_HEADER *Udp; // User Datagram Protocol header\r
1418 UINT8 ProtoData [NET_PROTO_DATA]; //Protocol specific data\r
1419\r
1420 NET_VECTOR *Vector; // The vector containing the packet\r
1421\r
1422 UINT32 BlockOpNum; // Total number of BlockOp in the buffer\r
1423 UINT32 TotalSize; // Total size of the actual packet\r
1424 NET_BLOCK_OP BlockOp[1]; // Specify the position of actual packet\r
1425} NET_BUF;\r
1426\r
1427//\r
1428//A queue of NET_BUFs. It is a thin extension of\r
1429//NET_BUF functions.\r
1430//\r
1431typedef struct {\r
1432 UINT32 Signature;\r
1433 INTN RefCnt;\r
1434 LIST_ENTRY List; // The List this buffer queue is on\r
1435\r
1436 LIST_ENTRY BufList; // list of queued buffers\r
1437 UINT32 BufSize; // total length of DATA in the buffers\r
1438 UINT32 BufNum; // total number of buffers on the chain\r
1439} NET_BUF_QUEUE;\r
1440\r
1441//\r
1442// Pseudo header for TCP and UDP checksum\r
1443//\r
1444#pragma pack(1)\r
1445typedef struct {\r
1446 IP4_ADDR SrcIp;\r
1447 IP4_ADDR DstIp;\r
1448 UINT8 Reserved;\r
1449 UINT8 Protocol;\r
1450 UINT16 Len;\r
1451} NET_PSEUDO_HDR;\r
1452\r
1453typedef struct {\r
1454 EFI_IPv6_ADDRESS SrcIp;\r
1455 EFI_IPv6_ADDRESS DstIp;\r
1456 UINT32 Len;\r
1457 UINT32 Reserved:24;\r
1458 UINT32 NextHeader:8;\r
1459} NET_IP6_PSEUDO_HDR;\r
1460#pragma pack()\r
1461\r
1462//\r
1463// The fragment entry table used in network interfaces. This is\r
1464// the same as NET_BLOCK now. Use two different to distinguish\r
1465// the two in case that NET_BLOCK be enhanced later.\r
1466//\r
1467typedef struct {\r
1468 UINT32 Len;\r
1469 UINT8 *Bulk;\r
1470} NET_FRAGMENT;\r
1471\r
1472#define NET_GET_REF(PData) ((PData)->RefCnt++)\r
1473#define NET_PUT_REF(PData) ((PData)->RefCnt--)\r
1474#define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)\r
1475\r
1476#define NET_BUF_SHARED(Buf) \\r
1477 (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))\r
1478\r
1479#define NET_VECTOR_SIZE(BlockNum) \\r
1480 (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))\r
1481\r
1482#define NET_BUF_SIZE(BlockOpNum) \\r
1483 (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))\r
1484\r
1485#define NET_HEADSPACE(BlockOp) \\r
1486 (UINTN)((BlockOp)->Head - (BlockOp)->BlockHead)\r
1487\r
1488#define NET_TAILSPACE(BlockOp) \\r
1489 (UINTN)((BlockOp)->BlockTail - (BlockOp)->Tail)\r
1490\r
1491/**\r
1492 Allocate a single block NET_BUF. Upon allocation, all the\r
1493 free space is in the tail room.\r
1494\r
1495 @param[in] Len The length of the block.\r
1496\r
1497 @return The pointer to the allocated NET_BUF, or NULL if the\r
1498 allocation failed due to resource limitations.\r
1499\r
1500**/\r
1501NET_BUF *\r
1502EFIAPI\r
1503NetbufAlloc (\r
1504 IN UINT32 Len\r
1505 );\r
1506\r
1507/**\r
1508 Free the net buffer and its associated NET_VECTOR.\r
1509\r
1510 Decrease the reference count of the net buffer by one. Free the associated net\r
1511 vector and itself if the reference count of the net buffer is decreased to 0.\r
1512 The net vector free operation decreases the reference count of the net\r
1513 vector by one, and performs the resource free operation when the reference count\r
1514 of the net vector is 0.\r
1515\r
1516 @param[in] Nbuf The pointer to the NET_BUF to be freed.\r
1517\r
1518**/\r
1519VOID\r
1520EFIAPI\r
1521NetbufFree (\r
1522 IN NET_BUF *Nbuf\r
1523 );\r
1524\r
1525/**\r
1526 Get the index of NET_BLOCK_OP that contains the byte at Offset in the net\r
1527 buffer.\r
1528\r
1529 For example, this function can be used to retrieve the IP header in the packet. It\r
1530 also can be used to get the fragment that contains the byte used\r
1531 mainly by the library implementation itself.\r
1532\r
1533 @param[in] Nbuf The pointer to the net buffer.\r
1534 @param[in] Offset The offset of the byte.\r
1535 @param[out] Index Index of the NET_BLOCK_OP that contains the byte at\r
1536 Offset.\r
1537\r
1538 @return The pointer to the Offset'th byte of data in the net buffer, or NULL\r
1539 if there is no such data in the net buffer.\r
1540\r
1541**/\r
1542UINT8 *\r
1543EFIAPI\r
1544NetbufGetByte (\r
1545 IN NET_BUF *Nbuf,\r
1546 IN UINT32 Offset,\r
1547 OUT UINT32 *Index OPTIONAL\r
1548 );\r
1549\r
1550/**\r
1551 Create a copy of the net buffer that shares the associated net vector.\r
1552\r
1553 The reference count of the newly created net buffer is set to 1. The reference\r
1554 count of the associated net vector is increased by one.\r
1555\r
1556 @param[in] Nbuf The pointer to the net buffer to be cloned.\r
1557\r
1558 @return The pointer to the cloned net buffer, or NULL if the\r
1559 allocation failed due to resource limitations.\r
1560\r
1561**/\r
1562NET_BUF *\r
1563EFIAPI\r
1564NetbufClone (\r
1565 IN NET_BUF *Nbuf\r
1566 );\r
1567\r
1568/**\r
1569 Create a duplicated copy of the net buffer with data copied and HeadSpace\r
1570 bytes of head space reserved.\r
1571\r
1572 The duplicated net buffer will allocate its own memory to hold the data of the\r
1573 source net buffer.\r
1574\r
1575 @param[in] Nbuf The pointer to the net buffer to be duplicated from.\r
1576 @param[in, out] Duplicate The pointer to the net buffer to duplicate to. If\r
1577 NULL, a new net buffer is allocated.\r
1578 @param[in] HeadSpace The length of the head space to reserve.\r
1579\r
1580 @return The pointer to the duplicated net buffer, or NULL if\r
1581 the allocation failed due to resource limitations.\r
1582\r
1583**/\r
1584NET_BUF *\r
1585EFIAPI\r
1586NetbufDuplicate (\r
1587 IN NET_BUF *Nbuf,\r
1588 IN OUT NET_BUF *Duplicate OPTIONAL,\r
1589 IN UINT32 HeadSpace\r
1590 );\r
1591\r
1592/**\r
1593 Create a NET_BUF structure which contains Len byte data of Nbuf starting from\r
1594 Offset.\r
1595\r
1596 A new NET_BUF structure will be created but the associated data in NET_VECTOR\r
1597 is shared. This function exists to perform IP packet fragmentation.\r
1598\r
1599 @param[in] Nbuf The pointer to the net buffer to be extracted.\r
1600 @param[in] Offset Starting point of the data to be included in the new\r
1601 net buffer.\r
1602 @param[in] Len The bytes of data to be included in the new net buffer.\r
1603 @param[in] HeadSpace The bytes of the head space to reserve for the protocol header.\r
1604\r
1605 @return The pointer to the cloned net buffer, or NULL if the\r
1606 allocation failed due to resource limitations.\r
1607\r
1608**/\r
1609NET_BUF *\r
1610EFIAPI\r
1611NetbufGetFragment (\r
1612 IN NET_BUF *Nbuf,\r
1613 IN UINT32 Offset,\r
1614 IN UINT32 Len,\r
1615 IN UINT32 HeadSpace\r
1616 );\r
1617\r
1618/**\r
1619 Reserve some space in the header room of the net buffer.\r
1620\r
1621 Upon allocation, all the space is in the tail room of the buffer. Call this\r
1622 function to move space to the header room. This function is quite limited\r
1623 in that it can only reserve space from the first block of an empty NET_BUF not\r
1624 built from the external. However, it should be enough for the network stack.\r
1625\r
1626 @param[in, out] Nbuf The pointer to the net buffer.\r
1627 @param[in] Len The length of buffer to be reserved from the header.\r
1628\r
1629**/\r
1630VOID\r
1631EFIAPI\r
1632NetbufReserve (\r
1633 IN OUT NET_BUF *Nbuf,\r
1634 IN UINT32 Len\r
1635 );\r
1636\r
1637/**\r
1638 Allocate Len bytes of space from the header or tail of the buffer.\r
1639\r
1640 @param[in, out] Nbuf The pointer to the net buffer.\r
1641 @param[in] Len The length of the buffer to be allocated.\r
1642 @param[in] FromHead The flag to indicate whether to reserve the data\r
1643 from head (TRUE) or tail (FALSE).\r
1644\r
1645 @return The pointer to the first byte of the allocated buffer,\r
1646 or NULL, if there is no sufficient space.\r
1647\r
1648**/\r
1649UINT8*\r
1650EFIAPI\r
1651NetbufAllocSpace (\r
1652 IN OUT NET_BUF *Nbuf,\r
1653 IN UINT32 Len,\r
1654 IN BOOLEAN FromHead\r
1655 );\r
1656\r
1657/**\r
1658 Trim Len bytes from the header or the tail of the net buffer.\r
1659\r
1660 @param[in, out] Nbuf The pointer to the net buffer.\r
1661 @param[in] Len The length of the data to be trimmed.\r
1662 @param[in] FromHead The flag to indicate whether trim data is from the \r
1663 head (TRUE) or the tail (FALSE).\r
1664\r
1665 @return The length of the actual trimmed data, which may be less\r
1666 than Len if the TotalSize of Nbuf is less than Len.\r
1667\r
1668**/\r
1669UINT32\r
1670EFIAPI\r
1671NetbufTrim (\r
1672 IN OUT NET_BUF *Nbuf,\r
1673 IN UINT32 Len,\r
1674 IN BOOLEAN FromHead\r
1675 );\r
1676\r
1677/**\r
1678 Copy Len bytes of data from the specific offset of the net buffer to the\r
1679 destination memory.\r
1680\r
1681 The Len bytes of data may cross several fragments of the net buffer.\r
1682\r
1683 @param[in] Nbuf The pointer to the net buffer.\r
1684 @param[in] Offset The sequence number of the first byte to copy.\r
1685 @param[in] Len The length of the data to copy.\r
1686 @param[in] Dest The destination of the data to copy to.\r
1687\r
1688 @return The length of the actual copied data, or 0 if the offset\r
1689 specified exceeds the total size of net buffer.\r
1690\r
1691**/\r
1692UINT32\r
1693EFIAPI\r
1694NetbufCopy (\r
1695 IN NET_BUF *Nbuf,\r
1696 IN UINT32 Offset,\r
1697 IN UINT32 Len,\r
1698 IN UINT8 *Dest\r
1699 );\r
1700\r
1701/**\r
1702 Build a NET_BUF from external blocks.\r
1703\r
1704 A new NET_BUF structure will be created from external blocks. An additional block\r
1705 of memory will be allocated to hold reserved HeadSpace bytes of header room\r
1706 and existing HeadLen bytes of header, but the external blocks are shared by the\r
1707 net buffer to avoid data copying.\r
1708\r
1709 @param[in] ExtFragment The pointer to the data block.\r
1710 @param[in] ExtNum The number of the data blocks.\r
1711 @param[in] HeadSpace The head space to be reserved.\r
1712 @param[in] HeadLen The length of the protocol header. The function\r
1713 pulls this amount of data into a linear block.\r
1714 @param[in] ExtFree The pointer to the caller-provided free function.\r
1715 @param[in] Arg The argument passed to ExtFree when ExtFree is\r
1716 called.\r
1717\r
1718 @return The pointer to the net buffer built from the data blocks,\r
1719 or NULL if the allocation failed due to resource\r
1720 limit.\r
1721\r
1722**/\r
1723NET_BUF *\r
1724EFIAPI\r
1725NetbufFromExt (\r
1726 IN NET_FRAGMENT *ExtFragment,\r
1727 IN UINT32 ExtNum,\r
1728 IN UINT32 HeadSpace,\r
1729 IN UINT32 HeadLen,\r
1730 IN NET_VECTOR_EXT_FREE ExtFree,\r
1731 IN VOID *Arg OPTIONAL\r
1732 );\r
1733\r
1734/**\r
1735 Build a fragment table to contain the fragments in the net buffer. This is the\r
1736 opposite operation of the NetbufFromExt.\r
1737\r
1738 @param[in] Nbuf Points to the net buffer.\r
1739 @param[in, out] ExtFragment The pointer to the data block.\r
1740 @param[in, out] ExtNum The number of the data blocks.\r
1741\r
1742 @retval EFI_BUFFER_TOO_SMALL The number of non-empty blocks is bigger than\r
1743 ExtNum.\r
1744 @retval EFI_SUCCESS The fragment table was built successfully.\r
1745\r
1746**/\r
1747EFI_STATUS\r
1748EFIAPI\r
1749NetbufBuildExt (\r
1750 IN NET_BUF *Nbuf,\r
1751 IN OUT NET_FRAGMENT *ExtFragment,\r
1752 IN OUT UINT32 *ExtNum\r
1753 );\r
1754\r
1755/**\r
1756 Build a net buffer from a list of net buffers.\r
1757\r
1758 All the fragments will be collected from the list of NEW_BUF, and then a new\r
1759 net buffer will be created through NetbufFromExt.\r
1760\r
1761 @param[in] BufList A List of the net buffer.\r
1762 @param[in] HeadSpace The head space to be reserved.\r
1763 @param[in] HeaderLen The length of the protocol header. The function\r
1764 pulls this amount of data into a linear block.\r
1765 @param[in] ExtFree The pointer to the caller provided free function.\r
1766 @param[in] Arg The argument passed to ExtFree when ExtFree is called.\r
1767\r
1768 @return The pointer to the net buffer built from the list of net\r
1769 buffers.\r
1770\r
1771**/\r
1772NET_BUF *\r
1773EFIAPI\r
1774NetbufFromBufList (\r
1775 IN LIST_ENTRY *BufList,\r
1776 IN UINT32 HeadSpace,\r
1777 IN UINT32 HeaderLen,\r
1778 IN NET_VECTOR_EXT_FREE ExtFree,\r
1779 IN VOID *Arg OPTIONAL\r
1780 );\r
1781\r
1782/**\r
1783 Free a list of net buffers.\r
1784\r
1785 @param[in, out] Head The pointer to the head of linked net buffers.\r
1786\r
1787**/\r
1788VOID\r
1789EFIAPI\r
1790NetbufFreeList (\r
1791 IN OUT LIST_ENTRY *Head\r
1792 );\r
1793\r
1794/**\r
1795 Initiate the net buffer queue.\r
1796\r
1797 @param[in, out] NbufQue The pointer to the net buffer queue to be initialized.\r
1798\r
1799**/\r
1800VOID\r
1801EFIAPI\r
1802NetbufQueInit (\r
1803 IN OUT NET_BUF_QUEUE *NbufQue\r
1804 );\r
1805\r
1806/**\r
1807 Allocate and initialize a net buffer queue.\r
1808\r
1809 @return The pointer to the allocated net buffer queue, or NULL if the\r
1810 allocation failed due to resource limit.\r
1811\r
1812**/\r
1813NET_BUF_QUEUE *\r
1814EFIAPI\r
1815NetbufQueAlloc (\r
1816 VOID\r
1817 );\r
1818\r
1819/**\r
1820 Free a net buffer queue.\r
1821\r
1822 Decrease the reference count of the net buffer queue by one. The real resource\r
1823 free operation isn't performed until the reference count of the net buffer\r
1824 queue is decreased to 0.\r
1825\r
1826 @param[in] NbufQue The pointer to the net buffer queue to be freed.\r
1827\r
1828**/\r
1829VOID\r
1830EFIAPI\r
1831NetbufQueFree (\r
1832 IN NET_BUF_QUEUE *NbufQue\r
1833 );\r
1834\r
1835/**\r
1836 Remove a net buffer from the head in the specific queue and return it.\r
1837\r
1838 @param[in, out] NbufQue The pointer to the net buffer queue.\r
1839\r
1840 @return The pointer to the net buffer removed from the specific queue,\r
1841 or NULL if there is no net buffer in the specific queue.\r
1842\r
1843**/\r
1844NET_BUF *\r
1845EFIAPI\r
1846NetbufQueRemove (\r
1847 IN OUT NET_BUF_QUEUE *NbufQue\r
1848 );\r
1849\r
1850/**\r
1851 Append a net buffer to the net buffer queue.\r
1852\r
1853 @param[in, out] NbufQue The pointer to the net buffer queue.\r
1854 @param[in, out] Nbuf The pointer to the net buffer to be appended.\r
1855\r
1856**/\r
1857VOID\r
1858EFIAPI\r
1859NetbufQueAppend (\r
1860 IN OUT NET_BUF_QUEUE *NbufQue,\r
1861 IN OUT NET_BUF *Nbuf\r
1862 );\r
1863\r
1864/**\r
1865 Copy Len bytes of data from the net buffer queue at the specific offset to the\r
1866 destination memory.\r
1867\r
1868 The copying operation is the same as NetbufCopy, but applies to the net buffer\r
1869 queue instead of the net buffer.\r
1870\r
1871 @param[in] NbufQue The pointer to the net buffer queue.\r
1872 @param[in] Offset The sequence number of the first byte to copy.\r
1873 @param[in] Len The length of the data to copy.\r
1874 @param[out] Dest The destination of the data to copy to.\r
1875\r
1876 @return The length of the actual copied data, or 0 if the offset\r
1877 specified exceeds the total size of net buffer queue.\r
1878\r
1879**/\r
1880UINT32\r
1881EFIAPI\r
1882NetbufQueCopy (\r
1883 IN NET_BUF_QUEUE *NbufQue,\r
1884 IN UINT32 Offset,\r
1885 IN UINT32 Len,\r
1886 OUT UINT8 *Dest\r
1887 );\r
1888\r
1889/**\r
1890 Trim Len bytes of data from the buffer queue and free any net buffer\r
1891 that is completely trimmed.\r
1892\r
1893 The trimming operation is the same as NetbufTrim but applies to the net buffer\r
1894 queue instead of the net buffer.\r
1895\r
1896 @param[in, out] NbufQue The pointer to the net buffer queue.\r
1897 @param[in] Len The length of the data to trim.\r
1898\r
1899 @return The actual length of the data trimmed.\r
1900\r
1901**/\r
1902UINT32\r
1903EFIAPI\r
1904NetbufQueTrim (\r
1905 IN OUT NET_BUF_QUEUE *NbufQue,\r
1906 IN UINT32 Len\r
1907 );\r
1908\r
1909\r
1910/**\r
1911 Flush the net buffer queue.\r
1912\r
1913 @param[in, out] NbufQue The pointer to the queue to be flushed.\r
1914\r
1915**/\r
1916VOID\r
1917EFIAPI\r
1918NetbufQueFlush (\r
1919 IN OUT NET_BUF_QUEUE *NbufQue\r
1920 );\r
1921\r
1922/**\r
1923 Compute the checksum for a bulk of data.\r
1924\r
1925 @param[in] Bulk The pointer to the data.\r
1926 @param[in] Len The length of the data, in bytes.\r
1927\r
1928 @return The computed checksum.\r
1929\r
1930**/\r
1931UINT16\r
1932EFIAPI\r
1933NetblockChecksum (\r
1934 IN UINT8 *Bulk,\r
1935 IN UINT32 Len\r
1936 );\r
1937\r
1938/**\r
1939 Add two checksums.\r
1940\r
1941 @param[in] Checksum1 The first checksum to be added.\r
1942 @param[in] Checksum2 The second checksum to be added.\r
1943\r
1944 @return The new checksum.\r
1945\r
1946**/\r
1947UINT16\r
1948EFIAPI\r
1949NetAddChecksum (\r
1950 IN UINT16 Checksum1,\r
1951 IN UINT16 Checksum2\r
1952 );\r
1953\r
1954/**\r
1955 Compute the checksum for a NET_BUF.\r
1956\r
1957 @param[in] Nbuf The pointer to the net buffer.\r
1958\r
1959 @return The computed checksum.\r
1960\r
1961**/\r
1962UINT16\r
1963EFIAPI\r
1964NetbufChecksum (\r
1965 IN NET_BUF *Nbuf\r
1966 );\r
1967\r
1968/**\r
1969 Compute the checksum for TCP/UDP pseudo header.\r
1970\r
1971 Src and Dst are in network byte order, and Len is in host byte order.\r
1972\r
1973 @param[in] Src The source address of the packet.\r
1974 @param[in] Dst The destination address of the packet.\r
1975 @param[in] Proto The protocol type of the packet.\r
1976 @param[in] Len The length of the packet.\r
1977\r
1978 @return The computed checksum.\r
1979\r
1980**/\r
1981UINT16\r
1982EFIAPI\r
1983NetPseudoHeadChecksum (\r
1984 IN IP4_ADDR Src,\r
1985 IN IP4_ADDR Dst,\r
1986 IN UINT8 Proto,\r
1987 IN UINT16 Len\r
1988 );\r
1989\r
1990/**\r
1991 Compute the checksum for the TCP6/UDP6 pseudo header.\r
1992\r
1993 Src and Dst are in network byte order, and Len is in host byte order.\r
1994\r
1995 @param[in] Src The source address of the packet.\r
1996 @param[in] Dst The destination address of the packet.\r
1997 @param[in] NextHeader The protocol type of the packet.\r
1998 @param[in] Len The length of the packet.\r
1999\r
2000 @return The computed checksum.\r
2001\r
2002**/\r
2003UINT16\r
2004EFIAPI\r
2005NetIp6PseudoHeadChecksum (\r
2006 IN EFI_IPv6_ADDRESS *Src,\r
2007 IN EFI_IPv6_ADDRESS *Dst,\r
2008 IN UINT8 NextHeader,\r
2009 IN UINT32 Len\r
2010 );\r
2011\r
2012/**\r
2013 The function frees the net buffer which allocated by the IP protocol. It releases \r
2014 only the net buffer and doesn't call the external free function. \r
2015\r
2016 This function should be called after finishing the process of mIpSec->ProcessExt() \r
2017 for outbound traffic. The (EFI_IPSEC2_PROTOCOL)->ProcessExt() allocates a new \r
2018 buffer for the ESP, so there needs a function to free the old net buffer.\r
2019\r
2020 @param[in] Nbuf The network buffer to be freed.\r
2021\r
2022**/\r
2023VOID\r
2024NetIpSecNetbufFree (\r
2025 NET_BUF *Nbuf\r
2026 );\r
2027\r
2028/**\r
2029 This function obtains the system guid from the smbios table.\r
2030\r
2031 @param[out] SystemGuid The pointer of the returned system guid.\r
2032\r
2033 @retval EFI_SUCCESS Successfully obtained the system guid.\r
2034 @retval EFI_NOT_FOUND Did not find the SMBIOS table.\r
2035\r
2036**/\r
2037EFI_STATUS\r
2038EFIAPI\r
2039NetLibGetSystemGuid (\r
2040 OUT EFI_GUID *SystemGuid\r
2041 );\r
2042\r
2043#endif\r