]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - MdeModulePkg/Include/Library/NetLib.h
MdeModulePkg: Add DNS QType and QClass values definition
[mirror_edk2.git] / MdeModulePkg / Include / Library / NetLib.h
... / ...
CommitLineData
1/** @file\r
2 This library is only intended to be used by UEFI network stack modules.\r
3 It provides basic functions for the UEFI network stack.\r
4\r
5Copyright (c) 2005 - 2016, Intel Corporation. All rights reserved.<BR>\r
6This program and the accompanying materials\r
7are licensed and made available under the terms and conditions of the BSD License\r
8which accompanies this distribution. The full text of the license may be found at<BR>\r
9http://opensource.org/licenses/bsd-license.php\r
10\r
11THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
12WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
13\r
14**/\r
15\r
16#ifndef _NET_LIB_H_\r
17#define _NET_LIB_H_\r
18\r
19#include <Protocol/Ip6.h>\r
20\r
21#include <Library/BaseLib.h>\r
22#include <Library/BaseMemoryLib.h>\r
23\r
24typedef UINT32 IP4_ADDR;\r
25typedef UINT32 TCP_SEQNO;\r
26typedef UINT16 TCP_PORTNO;\r
27\r
28\r
29#define NET_ETHER_ADDR_LEN 6\r
30#define NET_IFTYPE_ETHERNET 0x01\r
31\r
32#define NET_VLAN_TAG_LEN 4\r
33#define ETHER_TYPE_VLAN 0x8100\r
34\r
35#define EFI_IP_PROTO_UDP 0x11\r
36#define EFI_IP_PROTO_TCP 0x06\r
37#define EFI_IP_PROTO_ICMP 0x01\r
38#define IP4_PROTO_IGMP 0x02\r
39#define IP6_ICMP 58\r
40\r
41//\r
42// The address classification\r
43//\r
44#define IP4_ADDR_CLASSA 1\r
45#define IP4_ADDR_CLASSB 2\r
46#define IP4_ADDR_CLASSC 3\r
47#define IP4_ADDR_CLASSD 4\r
48#define IP4_ADDR_CLASSE 5\r
49\r
50#define IP4_MASK_NUM 33\r
51#define IP6_PREFIX_NUM 129\r
52\r
53#define IP6_HOP_BY_HOP 0\r
54#define IP6_DESTINATION 60\r
55#define IP6_ROUTING 43\r
56#define IP6_FRAGMENT 44\r
57#define IP6_AH 51\r
58#define IP6_ESP 50\r
59#define IP6_NO_NEXT_HEADER 59\r
60\r
61#define IP_VERSION_4 4\r
62#define IP_VERSION_6 6\r
63\r
64#define IP6_PREFIX_LENGTH 64\r
65\r
66//\r
67// DNS QTYPE values\r
68//\r
69#define DNS_TYPE_A 1\r
70#define DNS_TYPE_NS 2\r
71#define DNS_TYPE_CNAME 5\r
72#define DNS_TYPE_SOA 6\r
73#define DNS_TYPE_WKS 11\r
74#define DNS_TYPE_PTR 12\r
75#define DNS_TYPE_HINFO 13\r
76#define DNS_TYPE_MINFO 14\r
77#define DNS_TYPE_MX 15\r
78#define DNS_TYPE_TXT 16\r
79#define DNS_TYPE_AAAA 28\r
80#define DNS_TYPE_SRV_RR 33\r
81#define DNS_TYPE_AXFR 252\r
82#define DNS_TYPE_MAILB 253\r
83#define DNS_TYPE_ANY 255\r
84\r
85//\r
86// DNS QCLASS values\r
87//\r
88#define DNS_CLASS_INET 1\r
89#define DNS_CLASS_CH 3\r
90#define DNS_CLASS_HS 4\r
91#define DNS_CLASS_ANY 255\r
92\r
93#pragma pack(1)\r
94\r
95//\r
96// Ethernet head definition\r
97//\r
98typedef struct {\r
99 UINT8 DstMac [NET_ETHER_ADDR_LEN];\r
100 UINT8 SrcMac [NET_ETHER_ADDR_LEN];\r
101 UINT16 EtherType;\r
102} ETHER_HEAD;\r
103\r
104//\r
105// 802.1Q VLAN Tag Control Information\r
106//\r
107typedef union {\r
108 struct {\r
109 UINT16 Vid : 12; // Unique VLAN identifier (0 to 4094)\r
110 UINT16 Cfi : 1; // Canonical Format Indicator\r
111 UINT16 Priority : 3; // 802.1Q priority level (0 to 7)\r
112 } Bits;\r
113 UINT16 Uint16;\r
114} VLAN_TCI;\r
115\r
116#define VLAN_TCI_CFI_CANONICAL_MAC 0\r
117#define VLAN_TCI_CFI_NON_CANONICAL_MAC 1\r
118\r
119//\r
120// The EFI_IP4_HEADER is hard to use because the source and\r
121// destination address are defined as EFI_IPv4_ADDRESS, which\r
122// is a structure. Two structures can't be compared or masked\r
123// directly. This is why there is an internal representation.\r
124//\r
125typedef struct {\r
126 UINT8 HeadLen : 4;\r
127 UINT8 Ver : 4;\r
128 UINT8 Tos;\r
129 UINT16 TotalLen;\r
130 UINT16 Id;\r
131 UINT16 Fragment;\r
132 UINT8 Ttl;\r
133 UINT8 Protocol;\r
134 UINT16 Checksum;\r
135 IP4_ADDR Src;\r
136 IP4_ADDR Dst;\r
137} IP4_HEAD;\r
138\r
139\r
140//\r
141// ICMP head definition. Each ICMP message is categorized as either an error\r
142// message or query message. Two message types have their own head format.\r
143//\r
144typedef struct {\r
145 UINT8 Type;\r
146 UINT8 Code;\r
147 UINT16 Checksum;\r
148} IP4_ICMP_HEAD;\r
149\r
150typedef struct {\r
151 IP4_ICMP_HEAD Head;\r
152 UINT32 Fourth; // 4th filed of the head, it depends on Type.\r
153 IP4_HEAD IpHead;\r
154} IP4_ICMP_ERROR_HEAD;\r
155\r
156typedef struct {\r
157 IP4_ICMP_HEAD Head;\r
158 UINT16 Id;\r
159 UINT16 Seq;\r
160} IP4_ICMP_QUERY_HEAD;\r
161\r
162typedef struct {\r
163 UINT8 Type;\r
164 UINT8 Code;\r
165 UINT16 Checksum;\r
166} IP6_ICMP_HEAD;\r
167\r
168typedef struct {\r
169 IP6_ICMP_HEAD Head;\r
170 UINT32 Fourth;\r
171 EFI_IP6_HEADER IpHead;\r
172} IP6_ICMP_ERROR_HEAD;\r
173\r
174typedef struct {\r
175 IP6_ICMP_HEAD Head;\r
176 UINT32 Fourth;\r
177} IP6_ICMP_INFORMATION_HEAD;\r
178\r
179//\r
180// UDP header definition\r
181//\r
182typedef struct {\r
183 UINT16 SrcPort;\r
184 UINT16 DstPort;\r
185 UINT16 Length;\r
186 UINT16 Checksum;\r
187} EFI_UDP_HEADER;\r
188\r
189//\r
190// TCP header definition\r
191//\r
192typedef struct {\r
193 TCP_PORTNO SrcPort;\r
194 TCP_PORTNO DstPort;\r
195 TCP_SEQNO Seq;\r
196 TCP_SEQNO Ack;\r
197 UINT8 Res : 4;\r
198 UINT8 HeadLen : 4;\r
199 UINT8 Flag;\r
200 UINT16 Wnd;\r
201 UINT16 Checksum;\r
202 UINT16 Urg;\r
203} TCP_HEAD;\r
204\r
205#pragma pack()\r
206\r
207#define NET_MAC_EQUAL(pMac1, pMac2, Len) \\r
208 (CompareMem ((pMac1), (pMac2), Len) == 0)\r
209\r
210#define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \\r
211 (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))\r
212\r
213#define NTOHL(x) SwapBytes32 (x)\r
214\r
215#define HTONL(x) NTOHL(x)\r
216\r
217#define NTOHS(x) SwapBytes16 (x)\r
218\r
219#define HTONS(x) NTOHS(x)\r
220#define NTOHLL(x) SwapBytes64 (x)\r
221#define HTONLL(x) NTOHLL(x)\r
222#define NTOHLLL(x) Ip6Swap128 (x)\r
223#define HTONLLL(x) NTOHLLL(x)\r
224\r
225//\r
226// Test the IP's attribute, All the IPs are in host byte order.\r
227//\r
228#define IP4_IS_MULTICAST(Ip) (((Ip) & 0xF0000000) == 0xE0000000)\r
229#define IP4_IS_LOCAL_BROADCAST(Ip) ((Ip) == 0xFFFFFFFF)\r
230#define IP4_NET_EQUAL(Ip1, Ip2, NetMask) (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))\r
231#define IP4_IS_VALID_NETMASK(Ip) (NetGetMaskLength (Ip) != IP4_MASK_NUM)\r
232\r
233#define IP6_IS_MULTICAST(Ip6) (((Ip6)->Addr[0]) == 0xFF)\r
234\r
235//\r
236// Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.\r
237//\r
238#define EFI_IP4(EfiIpAddr) (*(IP4_ADDR *) ((EfiIpAddr).Addr))\r
239#define EFI_NTOHL(EfiIp) (NTOHL (EFI_IP4 ((EfiIp))))\r
240#define EFI_IP4_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)\r
241\r
242#define EFI_IP6_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0)\r
243\r
244#define IP4_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv4_ADDRESS)))\r
245#define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS)))\r
246#define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS)))\r
247\r
248//\r
249// The debug level definition. This value is also used as the\r
250// syslog's servity level. Don't change it.\r
251//\r
252#define NETDEBUG_LEVEL_TRACE 5\r
253#define NETDEBUG_LEVEL_WARNING 4\r
254#define NETDEBUG_LEVEL_ERROR 3\r
255\r
256//\r
257// Network debug message is sent out as syslog packet.\r
258//\r
259#define NET_SYSLOG_FACILITY 16 // Syslog local facility local use\r
260#define NET_SYSLOG_PACKET_LEN 512\r
261#define NET_SYSLOG_TX_TIMEOUT (500 * 1000 * 10) // 500ms\r
262#define NET_DEBUG_MSG_LEN 470 // 512 - (ether+ip4+udp4 head length)\r
263\r
264//\r
265// The debug output expects the ASCII format string, Use %a to print ASCII\r
266// string, and %s to print UNICODE string. PrintArg must be enclosed in ().\r
267// For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name));\r
268//\r
269#define NET_DEBUG_TRACE(Module, PrintArg) \\r
270 NetDebugOutput ( \\r
271 NETDEBUG_LEVEL_TRACE, \\r
272 Module, \\r
273 __FILE__, \\r
274 __LINE__, \\r
275 NetDebugASPrint PrintArg \\r
276 )\r
277\r
278#define NET_DEBUG_WARNING(Module, PrintArg) \\r
279 NetDebugOutput ( \\r
280 NETDEBUG_LEVEL_WARNING, \\r
281 Module, \\r
282 __FILE__, \\r
283 __LINE__, \\r
284 NetDebugASPrint PrintArg \\r
285 )\r
286\r
287#define NET_DEBUG_ERROR(Module, PrintArg) \\r
288 NetDebugOutput ( \\r
289 NETDEBUG_LEVEL_ERROR, \\r
290 Module, \\r
291 __FILE__, \\r
292 __LINE__, \\r
293 NetDebugASPrint PrintArg \\r
294 )\r
295\r
296/**\r
297 Allocate a buffer, then format the message to it. This is a\r
298 help function for the NET_DEBUG_XXX macros. The PrintArg of\r
299 these macros treats the variable length print parameters as a\r
300 single parameter, and pass it to the NetDebugASPrint. For\r
301 example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))\r
302 if extracted to:\r
303\r
304 NetDebugOutput (\r
305 NETDEBUG_LEVEL_TRACE,\r
306 "Tcp",\r
307 __FILE__,\r
308 __LINE__,\r
309 NetDebugASPrint ("State transit to %a\n", Name)\r
310 )\r
311\r
312 @param Format The ASCII format string.\r
313 @param ... The variable length parameter whose format is determined\r
314 by the Format string.\r
315\r
316 @return The buffer containing the formatted message,\r
317 or NULL if memory allocation failed.\r
318\r
319**/\r
320CHAR8 *\r
321EFIAPI\r
322NetDebugASPrint (\r
323 IN CHAR8 *Format,\r
324 ...\r
325 );\r
326\r
327/**\r
328 Builds an UDP4 syslog packet and send it using SNP.\r
329\r
330 This function will locate a instance of SNP then send the message through it.\r
331 Because it isn't open the SNP BY_DRIVER, apply caution when using it.\r
332\r
333 @param Level The servity level of the message.\r
334 @param Module The Moudle that generates the log.\r
335 @param File The file that contains the log.\r
336 @param Line The exact line that contains the log.\r
337 @param Message The user message to log.\r
338\r
339 @retval EFI_INVALID_PARAMETER Any input parameter is invalid.\r
340 @retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet\r
341 @retval EFI_SUCCESS The log is discard because that it is more verbose\r
342 than the mNetDebugLevelMax. Or, it has been sent out.\r
343**/\r
344EFI_STATUS\r
345EFIAPI\r
346NetDebugOutput (\r
347 IN UINT32 Level,\r
348 IN UINT8 *Module,\r
349 IN UINT8 *File,\r
350 IN UINT32 Line,\r
351 IN UINT8 *Message\r
352 );\r
353\r
354\r
355/**\r
356 Return the length of the mask.\r
357\r
358 Return the length of the mask. Valid values are 0 to 32.\r
359 If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.\r
360 NetMask is in the host byte order.\r
361\r
362 @param[in] NetMask The netmask to get the length from.\r
363\r
364 @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid.\r
365\r
366**/\r
367INTN\r
368EFIAPI\r
369NetGetMaskLength (\r
370 IN IP4_ADDR NetMask\r
371 );\r
372\r
373/**\r
374 Return the class of the IP address, such as class A, B, C.\r
375 Addr is in host byte order.\r
376\r
377 The address of class A starts with 0.\r
378 If the address belong to class A, return IP4_ADDR_CLASSA.\r
379 The address of class B starts with 10.\r
380 If the address belong to class B, return IP4_ADDR_CLASSB.\r
381 The address of class C starts with 110.\r
382 If the address belong to class C, return IP4_ADDR_CLASSC.\r
383 The address of class D starts with 1110.\r
384 If the address belong to class D, return IP4_ADDR_CLASSD.\r
385 The address of class E starts with 1111.\r
386 If the address belong to class E, return IP4_ADDR_CLASSE.\r
387\r
388\r
389 @param[in] Addr The address to get the class from.\r
390\r
391 @return IP address class, such as IP4_ADDR_CLASSA.\r
392\r
393**/\r
394INTN\r
395EFIAPI\r
396NetGetIpClass (\r
397 IN IP4_ADDR Addr\r
398 );\r
399\r
400/**\r
401 Check whether the IP is a valid unicast address according to\r
402 the netmask. If NetMask is zero, use the IP address's class to get the default mask.\r
403\r
404 If Ip is 0, IP is not a valid unicast address.\r
405 Class D address is used for multicasting and class E address is reserved for future. If Ip\r
406 belongs to class D or class E, Ip is not a valid unicast address.\r
407 If all bits of the host address of Ip are 0 or 1, Ip is not a valid unicast address.\r
408\r
409 @param[in] Ip The IP to check against.\r
410 @param[in] NetMask The mask of the IP.\r
411\r
412 @return TRUE if Ip is a valid unicast address on the network, otherwise FALSE.\r
413\r
414**/\r
415BOOLEAN\r
416EFIAPI\r
417NetIp4IsUnicast (\r
418 IN IP4_ADDR Ip,\r
419 IN IP4_ADDR NetMask\r
420 );\r
421\r
422/**\r
423 Check whether the incoming IPv6 address is a valid unicast address.\r
424\r
425 If the address is a multicast address has binary 0xFF at the start, it is not\r
426 a valid unicast address. If the address is unspecified ::, it is not a valid\r
427 unicast address to be assigned to any node. If the address is loopback address\r
428 ::1, it is also not a valid unicast address to be assigned to any physical\r
429 interface.\r
430\r
431 @param[in] Ip6 The IPv6 address to check against.\r
432\r
433 @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.\r
434\r
435**/\r
436BOOLEAN\r
437EFIAPI\r
438NetIp6IsValidUnicast (\r
439 IN EFI_IPv6_ADDRESS *Ip6\r
440 );\r
441\r
442\r
443/**\r
444 Check whether the incoming Ipv6 address is the unspecified address or not.\r
445\r
446 @param[in] Ip6 - Ip6 address, in network order.\r
447\r
448 @retval TRUE - Yes, incoming Ipv6 address is the unspecified address.\r
449 @retval FALSE - The incoming Ipv6 address is not the unspecified address\r
450\r
451**/\r
452BOOLEAN\r
453EFIAPI\r
454NetIp6IsUnspecifiedAddr (\r
455 IN EFI_IPv6_ADDRESS *Ip6\r
456 );\r
457\r
458/**\r
459 Check whether the incoming Ipv6 address is a link-local address.\r
460\r
461 @param[in] Ip6 - Ip6 address, in network order.\r
462\r
463 @retval TRUE - The incoming Ipv6 address is a link-local address.\r
464 @retval FALSE - The incoming Ipv6 address is not a link-local address.\r
465\r
466**/\r
467BOOLEAN\r
468EFIAPI\r
469NetIp6IsLinkLocalAddr (\r
470 IN EFI_IPv6_ADDRESS *Ip6\r
471 );\r
472\r
473/**\r
474 Check whether the Ipv6 address1 and address2 are on the connected network.\r
475\r
476 @param[in] Ip1 - Ip6 address1, in network order.\r
477 @param[in] Ip2 - Ip6 address2, in network order.\r
478 @param[in] PrefixLength - The prefix length of the checking net.\r
479\r
480 @retval TRUE - Yes, the Ipv6 address1 and address2 are connected.\r
481 @retval FALSE - No the Ipv6 address1 and address2 are not connected.\r
482\r
483**/\r
484BOOLEAN\r
485EFIAPI\r
486NetIp6IsNetEqual (\r
487 EFI_IPv6_ADDRESS *Ip1,\r
488 EFI_IPv6_ADDRESS *Ip2,\r
489 UINT8 PrefixLength\r
490 );\r
491\r
492/**\r
493 Switches the endianess of an IPv6 address.\r
494\r
495 This function swaps the bytes in a 128-bit IPv6 address to switch the value\r
496 from little endian to big endian or vice versa. The byte swapped value is\r
497 returned.\r
498\r
499 @param Ip6 Points to an IPv6 address.\r
500\r
501 @return The byte swapped IPv6 address.\r
502\r
503**/\r
504EFI_IPv6_ADDRESS *\r
505EFIAPI\r
506Ip6Swap128 (\r
507 EFI_IPv6_ADDRESS *Ip6\r
508 );\r
509\r
510extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM];\r
511\r
512\r
513extern EFI_IPv4_ADDRESS mZeroIp4Addr;\r
514\r
515#define NET_IS_DIGIT(Ch) (('0' <= (Ch)) && ((Ch) <= '9'))\r
516#define NET_ROUNDUP(size, unit) (((size) + (unit) - 1) & (~((unit) - 1)))\r
517#define NET_IS_LOWER_CASE_CHAR(Ch) (('a' <= (Ch)) && ((Ch) <= 'z'))\r
518#define NET_IS_UPPER_CASE_CHAR(Ch) (('A' <= (Ch)) && ((Ch) <= 'Z'))\r
519\r
520#define TICKS_PER_MS 10000U\r
521#define TICKS_PER_SECOND 10000000U\r
522\r
523#define NET_RANDOM(Seed) ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)\r
524\r
525/**\r
526 Extract a UINT32 from a byte stream.\r
527\r
528 This function copies a UINT32 from a byte stream, and then converts it from Network\r
529 byte order to host byte order. Use this function to avoid alignment error.\r
530\r
531 @param[in] Buf The buffer to extract the UINT32.\r
532\r
533 @return The UINT32 extracted.\r
534\r
535**/\r
536UINT32\r
537EFIAPI\r
538NetGetUint32 (\r
539 IN UINT8 *Buf\r
540 );\r
541\r
542/**\r
543 Puts a UINT32 into the byte stream in network byte order.\r
544\r
545 Converts a UINT32 from host byte order to network byte order, then copies it to the\r
546 byte stream.\r
547\r
548 @param[in, out] Buf The buffer in which to put the UINT32.\r
549 @param[in] Data The data to be converted and put into the byte stream.\r
550\r
551**/\r
552VOID\r
553EFIAPI\r
554NetPutUint32 (\r
555 IN OUT UINT8 *Buf,\r
556 IN UINT32 Data\r
557 );\r
558\r
559/**\r
560 Initialize a random seed using current time and monotonic count.\r
561\r
562 Get current time and monotonic count first. Then initialize a random seed \r
563 based on some basic mathematics operation on the hour, day, minute, second,\r
564 nanosecond and year of the current time and the monotonic count value.\r
565\r
566 @return The random seed initialized with current time.\r
567\r
568**/\r
569UINT32\r
570EFIAPI\r
571NetRandomInitSeed (\r
572 VOID\r
573 );\r
574\r
575\r
576#define NET_LIST_USER_STRUCT(Entry, Type, Field) \\r
577 BASE_CR(Entry, Type, Field)\r
578\r
579#define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig) \\r
580 CR(Entry, Type, Field, Sig)\r
581\r
582//\r
583// Iterate through the double linked list. It is NOT delete safe\r
584//\r
585#define NET_LIST_FOR_EACH(Entry, ListHead) \\r
586 for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)\r
587\r
588//\r
589// Iterate through the double linked list. This is delete-safe.\r
590// Don't touch NextEntry. Also, don't use this macro if list\r
591// entries other than the Entry may be deleted when processing\r
592// the current Entry.\r
593//\r
594#define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \\r
595 for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \\r
596 Entry != (ListHead); \\r
597 Entry = NextEntry, NextEntry = Entry->ForwardLink \\r
598 )\r
599\r
600//\r
601// Make sure the list isn't empty before getting the first/last record.\r
602//\r
603#define NET_LIST_HEAD(ListHead, Type, Field) \\r
604 NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)\r
605\r
606#define NET_LIST_TAIL(ListHead, Type, Field) \\r
607 NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)\r
608\r
609\r
610/**\r
611 Remove the first node entry on the list, and return the removed node entry.\r
612\r
613 Removes the first node entry from a doubly linked list. It is up to the caller of\r
614 this function to release the memory used by the first node, if that is required. On\r
615 exit, the removed node is returned.\r
616\r
617 If Head is NULL, then ASSERT().\r
618 If Head was not initialized, then ASSERT().\r
619 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
620 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,\r
621 then ASSERT().\r
622\r
623 @param[in, out] Head The list header.\r
624\r
625 @return The first node entry that is removed from the list, NULL if the list is empty.\r
626\r
627**/\r
628LIST_ENTRY *\r
629EFIAPI\r
630NetListRemoveHead (\r
631 IN OUT LIST_ENTRY *Head\r
632 );\r
633\r
634/**\r
635 Remove the last node entry on the list and return the removed node entry.\r
636\r
637 Removes the last node entry from a doubly linked list. It is up to the caller of\r
638 this function to release the memory used by the first node, if that is required. On\r
639 exit, the removed node is returned.\r
640\r
641 If Head is NULL, then ASSERT().\r
642 If Head was not initialized, then ASSERT().\r
643 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
644 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,\r
645 then ASSERT().\r
646\r
647 @param[in, out] Head The list head.\r
648\r
649 @return The last node entry that is removed from the list, NULL if the list is empty.\r
650\r
651**/\r
652LIST_ENTRY *\r
653EFIAPI\r
654NetListRemoveTail (\r
655 IN OUT LIST_ENTRY *Head\r
656 );\r
657\r
658/**\r
659 Insert a new node entry after a designated node entry of a doubly linked list.\r
660\r
661 Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry\r
662 of the doubly linked list.\r
663\r
664 @param[in, out] PrevEntry The entry after which to insert.\r
665 @param[in, out] NewEntry The new entry to insert.\r
666\r
667**/\r
668VOID\r
669EFIAPI\r
670NetListInsertAfter (\r
671 IN OUT LIST_ENTRY *PrevEntry,\r
672 IN OUT LIST_ENTRY *NewEntry\r
673 );\r
674\r
675/**\r
676 Insert a new node entry before a designated node entry of a doubly linked list.\r
677\r
678 Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry\r
679 of the doubly linked list.\r
680\r
681 @param[in, out] PostEntry The entry to insert before.\r
682 @param[in, out] NewEntry The new entry to insert.\r
683\r
684**/\r
685VOID\r
686EFIAPI\r
687NetListInsertBefore (\r
688 IN OUT LIST_ENTRY *PostEntry,\r
689 IN OUT LIST_ENTRY *NewEntry\r
690 );\r
691\r
692/**\r
693 Callback function which provided by user to remove one node in NetDestroyLinkList process.\r
694 \r
695 @param[in] Entry The entry to be removed.\r
696 @param[in] Context Pointer to the callback context corresponds to the Context in NetDestroyLinkList.\r
697\r
698 @retval EFI_SUCCESS The entry has been removed successfully.\r
699 @retval Others Fail to remove the entry.\r
700\r
701**/\r
702typedef\r
703EFI_STATUS\r
704(EFIAPI *NET_DESTROY_LINK_LIST_CALLBACK) (\r
705 IN LIST_ENTRY *Entry,\r
706 IN VOID *Context OPTIONAL\r
707 );\r
708\r
709/**\r
710 Safe destroy nodes in a linked list, and return the length of the list after all possible operations finished.\r
711\r
712 Destroy network children list by list traversals is not safe due to graph dependencies between nodes.\r
713 This function performs a safe traversal to destroy these nodes by checking to see if the node being destroyed\r
714 has been removed from the list or not.\r
715 If it has been removed, then restart the traversal from the head.\r
716 If it hasn't been removed, then continue with the next node directly.\r
717 This function will end the iterate and return the CallBack's last return value if error happens,\r
718 or retrun EFI_SUCCESS if 2 complete passes are made with no changes in the number of children in the list. \r
719\r
720 @param[in] List The head of the list.\r
721 @param[in] CallBack Pointer to the callback function to destroy one node in the list.\r
722 @param[in] Context Pointer to the callback function's context: corresponds to the\r
723 parameter Context in NET_DESTROY_LINK_LIST_CALLBACK.\r
724 @param[out] ListLength The length of the link list if the function returns successfully.\r
725\r
726 @retval EFI_SUCCESS Two complete passes are made with no changes in the number of children.\r
727 @retval EFI_INVALID_PARAMETER The input parameter is invalid.\r
728 @retval Others Return the CallBack's last return value.\r
729\r
730**/\r
731EFI_STATUS\r
732EFIAPI\r
733NetDestroyLinkList (\r
734 IN LIST_ENTRY *List,\r
735 IN NET_DESTROY_LINK_LIST_CALLBACK CallBack,\r
736 IN VOID *Context, OPTIONAL\r
737 OUT UINTN *ListLength OPTIONAL\r
738 );\r
739\r
740/**\r
741 This function checks the input Handle to see if it's one of these handles in ChildHandleBuffer.\r
742\r
743 @param[in] Handle Handle to be checked.\r
744 @param[in] NumberOfChildren Number of Handles in ChildHandleBuffer.\r
745 @param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL\r
746 if NumberOfChildren is 0.\r
747\r
748 @retval TURE Found the input Handle in ChildHandleBuffer.\r
749 @retval FALSE Can't find the input Handle in ChildHandleBuffer.\r
750\r
751**/\r
752BOOLEAN\r
753EFIAPI\r
754NetIsInHandleBuffer (\r
755 IN EFI_HANDLE Handle,\r
756 IN UINTN NumberOfChildren,\r
757 IN EFI_HANDLE *ChildHandleBuffer OPTIONAL\r
758 );\r
759\r
760//\r
761// Object container: EFI network stack spec defines various kinds of\r
762// tokens. The drivers can share code to manage those objects.\r
763//\r
764typedef struct {\r
765 LIST_ENTRY Link;\r
766 VOID *Key;\r
767 VOID *Value;\r
768} NET_MAP_ITEM;\r
769\r
770typedef struct {\r
771 LIST_ENTRY Used;\r
772 LIST_ENTRY Recycled;\r
773 UINTN Count;\r
774} NET_MAP;\r
775\r
776#define NET_MAP_INCREAMENT 64\r
777\r
778/**\r
779 Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.\r
780\r
781 Initialize the forward and backward links of two head nodes donated by Map->Used\r
782 and Map->Recycled of two doubly linked lists.\r
783 Initializes the count of the <Key, Value> pairs in the netmap to zero.\r
784\r
785 If Map is NULL, then ASSERT().\r
786 If the address of Map->Used is NULL, then ASSERT().\r
787 If the address of Map->Recycled is NULl, then ASSERT().\r
788\r
789 @param[in, out] Map The netmap to initialize.\r
790\r
791**/\r
792VOID\r
793EFIAPI\r
794NetMapInit (\r
795 IN OUT NET_MAP *Map\r
796 );\r
797\r
798/**\r
799 To clean up the netmap, that is, release allocated memories.\r
800\r
801 Removes all nodes of the Used doubly linked list and frees memory of all related netmap items.\r
802 Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.\r
803 The number of the <Key, Value> pairs in the netmap is set to zero.\r
804\r
805 If Map is NULL, then ASSERT().\r
806\r
807 @param[in, out] Map The netmap to clean up.\r
808\r
809**/\r
810VOID\r
811EFIAPI\r
812NetMapClean (\r
813 IN OUT NET_MAP *Map\r
814 );\r
815\r
816/**\r
817 Test whether the netmap is empty and return true if it is.\r
818\r
819 If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.\r
820\r
821 If Map is NULL, then ASSERT().\r
822\r
823\r
824 @param[in] Map The net map to test.\r
825\r
826 @return TRUE if the netmap is empty, otherwise FALSE.\r
827\r
828**/\r
829BOOLEAN\r
830EFIAPI\r
831NetMapIsEmpty (\r
832 IN NET_MAP *Map\r
833 );\r
834\r
835/**\r
836 Return the number of the <Key, Value> pairs in the netmap.\r
837\r
838 @param[in] Map The netmap to get the entry number.\r
839\r
840 @return The entry number in the netmap.\r
841\r
842**/\r
843UINTN\r
844EFIAPI\r
845NetMapGetCount (\r
846 IN NET_MAP *Map\r
847 );\r
848\r
849/**\r
850 Allocate an item to save the <Key, Value> pair to the head of the netmap.\r
851\r
852 Allocate an item to save the <Key, Value> pair and add corresponding node entry\r
853 to the beginning of the Used doubly linked list. The number of the <Key, Value>\r
854 pairs in the netmap increase by 1.\r
855\r
856 If Map is NULL, then ASSERT().\r
857\r
858 @param[in, out] Map The netmap to insert into.\r
859 @param[in] Key The user's key.\r
860 @param[in] Value The user's value for the key.\r
861\r
862 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.\r
863 @retval EFI_SUCCESS The item is inserted to the head.\r
864\r
865**/\r
866EFI_STATUS\r
867EFIAPI\r
868NetMapInsertHead (\r
869 IN OUT NET_MAP *Map,\r
870 IN VOID *Key,\r
871 IN VOID *Value OPTIONAL\r
872 );\r
873\r
874/**\r
875 Allocate an item to save the <Key, Value> pair to the tail of the netmap.\r
876\r
877 Allocate an item to save the <Key, Value> pair and add corresponding node entry\r
878 to the tail of the Used doubly linked list. The number of the <Key, Value>\r
879 pairs in the netmap increase by 1.\r
880\r
881 If Map is NULL, then ASSERT().\r
882\r
883 @param[in, out] Map The netmap to insert into.\r
884 @param[in] Key The user's key.\r
885 @param[in] Value The user's value for the key.\r
886\r
887 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.\r
888 @retval EFI_SUCCESS The item is inserted to the tail.\r
889\r
890**/\r
891EFI_STATUS\r
892EFIAPI\r
893NetMapInsertTail (\r
894 IN OUT NET_MAP *Map,\r
895 IN VOID *Key,\r
896 IN VOID *Value OPTIONAL\r
897 );\r
898\r
899/**\r
900 Finds the key in the netmap and returns the point to the item containing the Key.\r
901\r
902 Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every\r
903 item with the key to search. It returns the point to the item contains the Key if found.\r
904\r
905 If Map is NULL, then ASSERT().\r
906\r
907 @param[in] Map The netmap to search within.\r
908 @param[in] Key The key to search.\r
909\r
910 @return The point to the item contains the Key, or NULL if Key isn't in the map.\r
911\r
912**/\r
913NET_MAP_ITEM *\r
914EFIAPI\r
915NetMapFindKey (\r
916 IN NET_MAP *Map,\r
917 IN VOID *Key\r
918 );\r
919\r
920/**\r
921 Remove the node entry of the item from the netmap and return the key of the removed item.\r
922\r
923 Remove the node entry of the item from the Used doubly linked list of the netmap.\r
924 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node\r
925 entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,\r
926 Value will point to the value of the item. It returns the key of the removed item.\r
927\r
928 If Map is NULL, then ASSERT().\r
929 If Item is NULL, then ASSERT().\r
930 if item in not in the netmap, then ASSERT().\r
931\r
932 @param[in, out] Map The netmap to remove the item from.\r
933 @param[in, out] Item The item to remove.\r
934 @param[out] Value The variable to receive the value if not NULL.\r
935\r
936 @return The key of the removed item.\r
937\r
938**/\r
939VOID *\r
940EFIAPI\r
941NetMapRemoveItem (\r
942 IN OUT NET_MAP *Map,\r
943 IN OUT NET_MAP_ITEM *Item,\r
944 OUT VOID **Value OPTIONAL\r
945 );\r
946\r
947/**\r
948 Remove the first node entry on the netmap and return the key of the removed item.\r
949\r
950 Remove the first node entry from the Used doubly linked list of the netmap.\r
951 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node\r
952 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,\r
953 parameter Value will point to the value of the item. It returns the key of the removed item.\r
954\r
955 If Map is NULL, then ASSERT().\r
956 If the Used doubly linked list is empty, then ASSERT().\r
957\r
958 @param[in, out] Map The netmap to remove the head from.\r
959 @param[out] Value The variable to receive the value if not NULL.\r
960\r
961 @return The key of the item removed.\r
962\r
963**/\r
964VOID *\r
965EFIAPI\r
966NetMapRemoveHead (\r
967 IN OUT NET_MAP *Map,\r
968 OUT VOID **Value OPTIONAL\r
969 );\r
970\r
971/**\r
972 Remove the last node entry on the netmap and return the key of the removed item.\r
973\r
974 Remove the last node entry from the Used doubly linked list of the netmap.\r
975 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node\r
976 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,\r
977 parameter Value will point to the value of the item. It returns the key of the removed item.\r
978\r
979 If Map is NULL, then ASSERT().\r
980 If the Used doubly linked list is empty, then ASSERT().\r
981\r
982 @param[in, out] Map The netmap to remove the tail from.\r
983 @param[out] Value The variable to receive the value if not NULL.\r
984\r
985 @return The key of the item removed.\r
986\r
987**/\r
988VOID *\r
989EFIAPI\r
990NetMapRemoveTail (\r
991 IN OUT NET_MAP *Map,\r
992 OUT VOID **Value OPTIONAL\r
993 );\r
994\r
995typedef\r
996EFI_STATUS\r
997(EFIAPI *NET_MAP_CALLBACK) (\r
998 IN NET_MAP *Map,\r
999 IN NET_MAP_ITEM *Item,\r
1000 IN VOID *Arg\r
1001 );\r
1002\r
1003/**\r
1004 Iterate through the netmap and call CallBack for each item.\r
1005\r
1006 It will contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break\r
1007 from the loop. It returns the CallBack's last return value. This function is\r
1008 delete safe for the current item.\r
1009\r
1010 If Map is NULL, then ASSERT().\r
1011 If CallBack is NULL, then ASSERT().\r
1012\r
1013 @param[in] Map The Map to iterate through.\r
1014 @param[in] CallBack The callback function to call for each item.\r
1015 @param[in] Arg The opaque parameter to the callback.\r
1016\r
1017 @retval EFI_SUCCESS There is no item in the netmap, or CallBack for each item\r
1018 returns EFI_SUCCESS.\r
1019 @retval Others It returns the CallBack's last return value.\r
1020\r
1021**/\r
1022EFI_STATUS\r
1023EFIAPI\r
1024NetMapIterate (\r
1025 IN NET_MAP *Map,\r
1026 IN NET_MAP_CALLBACK CallBack,\r
1027 IN VOID *Arg OPTIONAL\r
1028 );\r
1029\r
1030\r
1031//\r
1032// Helper functions to implement driver binding and service binding protocols.\r
1033//\r
1034/**\r
1035 Create a child of the service that is identified by ServiceBindingGuid.\r
1036\r
1037 Get the ServiceBinding Protocol first, then use it to create a child.\r
1038\r
1039 If ServiceBindingGuid is NULL, then ASSERT().\r
1040 If ChildHandle is NULL, then ASSERT().\r
1041\r
1042 @param[in] Controller The controller which has the service installed.\r
1043 @param[in] Image The image handle used to open service.\r
1044 @param[in] ServiceBindingGuid The service's Guid.\r
1045 @param[in, out] ChildHandle The handle to receive the created child.\r
1046\r
1047 @retval EFI_SUCCESS The child was successfully created.\r
1048 @retval Others Failed to create the child.\r
1049\r
1050**/\r
1051EFI_STATUS\r
1052EFIAPI\r
1053NetLibCreateServiceChild (\r
1054 IN EFI_HANDLE Controller,\r
1055 IN EFI_HANDLE Image,\r
1056 IN EFI_GUID *ServiceBindingGuid,\r
1057 IN OUT EFI_HANDLE *ChildHandle\r
1058 );\r
1059\r
1060/**\r
1061 Destroy a child of the service that is identified by ServiceBindingGuid.\r
1062\r
1063 Get the ServiceBinding Protocol first, then use it to destroy a child.\r
1064\r
1065 If ServiceBindingGuid is NULL, then ASSERT().\r
1066\r
1067 @param[in] Controller The controller which has the service installed.\r
1068 @param[in] Image The image handle used to open service.\r
1069 @param[in] ServiceBindingGuid The service's Guid.\r
1070 @param[in] ChildHandle The child to destroy.\r
1071\r
1072 @retval EFI_SUCCESS The child was destroyed.\r
1073 @retval Others Failed to destroy the child.\r
1074\r
1075**/\r
1076EFI_STATUS\r
1077EFIAPI\r
1078NetLibDestroyServiceChild (\r
1079 IN EFI_HANDLE Controller,\r
1080 IN EFI_HANDLE Image,\r
1081 IN EFI_GUID *ServiceBindingGuid,\r
1082 IN EFI_HANDLE ChildHandle\r
1083 );\r
1084\r
1085/**\r
1086 Get handle with Simple Network Protocol installed on it.\r
1087\r
1088 There should be MNP Service Binding Protocol installed on the input ServiceHandle.\r
1089 If Simple Network Protocol is already installed on the ServiceHandle, the\r
1090 ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,\r
1091 try to find its parent handle with SNP installed.\r
1092\r
1093 @param[in] ServiceHandle The handle where network service binding protocols are\r
1094 installed on.\r
1095 @param[out] Snp The pointer to store the address of the SNP instance.\r
1096 This is an optional parameter that may be NULL.\r
1097\r
1098 @return The SNP handle, or NULL if not found.\r
1099\r
1100**/\r
1101EFI_HANDLE\r
1102EFIAPI\r
1103NetLibGetSnpHandle (\r
1104 IN EFI_HANDLE ServiceHandle,\r
1105 OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL\r
1106 );\r
1107\r
1108/**\r
1109 Retrieve VLAN ID of a VLAN device handle.\r
1110\r
1111 Search VLAN device path node in Device Path of specified ServiceHandle and\r
1112 return its VLAN ID. If no VLAN device path node found, then this ServiceHandle\r
1113 is not a VLAN device handle, and 0 will be returned.\r
1114\r
1115 @param[in] ServiceHandle The handle where network service binding protocols are\r
1116 installed on.\r
1117\r
1118 @return VLAN ID of the device handle, or 0 if not a VLAN device.\r
1119\r
1120**/\r
1121UINT16\r
1122EFIAPI\r
1123NetLibGetVlanId (\r
1124 IN EFI_HANDLE ServiceHandle\r
1125 );\r
1126\r
1127/**\r
1128 Find VLAN device handle with specified VLAN ID.\r
1129\r
1130 The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.\r
1131 This function will append VLAN device path node to the parent device path,\r
1132 and then use LocateDevicePath() to find the correct VLAN device handle.\r
1133\r
1134 @param[in] ControllerHandle The handle where network service binding protocols are\r
1135 installed on.\r
1136 @param[in] VlanId The configured VLAN ID for the VLAN device.\r
1137\r
1138 @return The VLAN device handle, or NULL if not found.\r
1139\r
1140**/\r
1141EFI_HANDLE\r
1142EFIAPI\r
1143NetLibGetVlanHandle (\r
1144 IN EFI_HANDLE ControllerHandle,\r
1145 IN UINT16 VlanId\r
1146 );\r
1147\r
1148/**\r
1149 Get MAC address associated with the network service handle.\r
1150\r
1151 There should be MNP Service Binding Protocol installed on the input ServiceHandle.\r
1152 If SNP is installed on the ServiceHandle or its parent handle, MAC address will\r
1153 be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.\r
1154\r
1155 @param[in] ServiceHandle The handle where network service binding protocols are\r
1156 installed on.\r
1157 @param[out] MacAddress The pointer to store the returned MAC address.\r
1158 @param[out] AddressSize The length of returned MAC address.\r
1159\r
1160 @retval EFI_SUCCESS MAC address was returned successfully.\r
1161 @retval Others Failed to get SNP mode data.\r
1162\r
1163**/\r
1164EFI_STATUS\r
1165EFIAPI\r
1166NetLibGetMacAddress (\r
1167 IN EFI_HANDLE ServiceHandle,\r
1168 OUT EFI_MAC_ADDRESS *MacAddress,\r
1169 OUT UINTN *AddressSize\r
1170 );\r
1171\r
1172/**\r
1173 Convert MAC address of the NIC associated with specified Service Binding Handle\r
1174 to a unicode string. Callers are responsible for freeing the string storage.\r
1175\r
1176 Locate simple network protocol associated with the Service Binding Handle and\r
1177 get the mac address from SNP. Then convert the mac address into a unicode\r
1178 string. It takes 2 unicode characters to represent a 1 byte binary buffer.\r
1179 Plus one unicode character for the null-terminator.\r
1180\r
1181 @param[in] ServiceHandle The handle where network service binding protocol is\r
1182 installed.\r
1183 @param[in] ImageHandle The image handle used to act as the agent handle to\r
1184 get the simple network protocol. This parameter is\r
1185 optional and may be NULL.\r
1186 @param[out] MacString The pointer to store the address of the string\r
1187 representation of the mac address.\r
1188\r
1189 @retval EFI_SUCCESS Converted the mac address a unicode string successfully.\r
1190 @retval EFI_OUT_OF_RESOURCES There are not enough memory resources.\r
1191 @retval Others Failed to open the simple network protocol.\r
1192\r
1193**/\r
1194EFI_STATUS\r
1195EFIAPI\r
1196NetLibGetMacString (\r
1197 IN EFI_HANDLE ServiceHandle,\r
1198 IN EFI_HANDLE ImageHandle, OPTIONAL\r
1199 OUT CHAR16 **MacString\r
1200 );\r
1201\r
1202/**\r
1203 Detect media status for specified network device.\r
1204\r
1205 The underlying UNDI driver may or may not support reporting media status from\r
1206 GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine\r
1207 will try to invoke Snp->GetStatus() to get the media status. If media is already\r
1208 present, it returns directly. If media is not present, it will stop SNP and then\r
1209 restart SNP to get the latest media status. This provides an opportunity to get \r
1210 the correct media status for old UNDI driver, which doesn't support reporting \r
1211 media status from GET_STATUS command.\r
1212 Note: there are two limitations for the current algorithm:\r
1213 1) For UNDI with this capability, when the cable is not attached, there will\r
1214 be an redundant Stop/Start() process.\r
1215 2) for UNDI without this capability, in case that network cable is attached when\r
1216 Snp->Initialize() is invoked while network cable is unattached later,\r
1217 NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer\r
1218 apps to wait for timeout time.\r
1219\r
1220 @param[in] ServiceHandle The handle where network service binding protocols are\r
1221 installed.\r
1222 @param[out] MediaPresent The pointer to store the media status.\r
1223\r
1224 @retval EFI_SUCCESS Media detection success.\r
1225 @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle.\r
1226 @retval EFI_UNSUPPORTED The network device does not support media detection.\r
1227 @retval EFI_DEVICE_ERROR SNP is in an unknown state.\r
1228\r
1229**/\r
1230EFI_STATUS\r
1231EFIAPI\r
1232NetLibDetectMedia (\r
1233 IN EFI_HANDLE ServiceHandle,\r
1234 OUT BOOLEAN *MediaPresent\r
1235 );\r
1236\r
1237/**\r
1238 Create an IPv4 device path node.\r
1239\r
1240 The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.\r
1241 The header subtype of IPv4 device path node is MSG_IPv4_DP.\r
1242 The length of the IPv4 device path node in bytes is 19.\r
1243 Get other information from parameters to make up the whole IPv4 device path node.\r
1244\r
1245 @param[in, out] Node The pointer to the IPv4 device path node.\r
1246 @param[in] Controller The controller handle.\r
1247 @param[in] LocalIp The local IPv4 address.\r
1248 @param[in] LocalPort The local port.\r
1249 @param[in] RemoteIp The remote IPv4 address.\r
1250 @param[in] RemotePort The remote port.\r
1251 @param[in] Protocol The protocol type in the IP header.\r
1252 @param[in] UseDefaultAddress Whether this instance is using default address or not.\r
1253\r
1254**/\r
1255VOID\r
1256EFIAPI\r
1257NetLibCreateIPv4DPathNode (\r
1258 IN OUT IPv4_DEVICE_PATH *Node,\r
1259 IN EFI_HANDLE Controller,\r
1260 IN IP4_ADDR LocalIp,\r
1261 IN UINT16 LocalPort,\r
1262 IN IP4_ADDR RemoteIp,\r
1263 IN UINT16 RemotePort,\r
1264 IN UINT16 Protocol,\r
1265 IN BOOLEAN UseDefaultAddress\r
1266 );\r
1267\r
1268/**\r
1269 Create an IPv6 device path node.\r
1270\r
1271 The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.\r
1272 The header subtype of IPv6 device path node is MSG_IPv6_DP.\r
1273 The length of the IPv6 device path node in bytes is 43.\r
1274 Get other information from parameters to make up the whole IPv6 device path node.\r
1275\r
1276 @param[in, out] Node The pointer to the IPv6 device path node.\r
1277 @param[in] Controller The controller handle.\r
1278 @param[in] LocalIp The local IPv6 address.\r
1279 @param[in] LocalPort The local port.\r
1280 @param[in] RemoteIp The remote IPv6 address.\r
1281 @param[in] RemotePort The remote port.\r
1282 @param[in] Protocol The protocol type in the IP header.\r
1283\r
1284**/\r
1285VOID\r
1286EFIAPI\r
1287NetLibCreateIPv6DPathNode (\r
1288 IN OUT IPv6_DEVICE_PATH *Node,\r
1289 IN EFI_HANDLE Controller,\r
1290 IN EFI_IPv6_ADDRESS *LocalIp,\r
1291 IN UINT16 LocalPort,\r
1292 IN EFI_IPv6_ADDRESS *RemoteIp,\r
1293 IN UINT16 RemotePort,\r
1294 IN UINT16 Protocol\r
1295 );\r
1296\r
1297\r
1298/**\r
1299 Find the UNDI/SNP handle from controller and protocol GUID.\r
1300\r
1301 For example, IP will open an MNP child to transmit/receive\r
1302 packets. When MNP is stopped, IP should also be stopped. IP\r
1303 needs to find its own private data that is related the IP's\r
1304 service binding instance that is installed on the UNDI/SNP handle.\r
1305 The controller is then either an MNP or an ARP child handle. Note that\r
1306 IP opens these handles using BY_DRIVER. Use that infomation to get the\r
1307 UNDI/SNP handle.\r
1308\r
1309 @param[in] Controller The protocol handle to check.\r
1310 @param[in] ProtocolGuid The protocol that is related with the handle.\r
1311\r
1312 @return The UNDI/SNP handle or NULL for errors.\r
1313\r
1314**/\r
1315EFI_HANDLE\r
1316EFIAPI\r
1317NetLibGetNicHandle (\r
1318 IN EFI_HANDLE Controller,\r
1319 IN EFI_GUID *ProtocolGuid\r
1320 );\r
1321\r
1322/**\r
1323 This is the default unload handle for all the network drivers.\r
1324\r
1325 Disconnect the driver specified by ImageHandle from all the devices in the handle database.\r
1326 Uninstall all the protocols installed in the driver entry point.\r
1327\r
1328 @param[in] ImageHandle The drivers' driver image.\r
1329\r
1330 @retval EFI_SUCCESS The image is unloaded.\r
1331 @retval Others Failed to unload the image.\r
1332\r
1333**/\r
1334EFI_STATUS\r
1335EFIAPI\r
1336NetLibDefaultUnload (\r
1337 IN EFI_HANDLE ImageHandle\r
1338 );\r
1339\r
1340/**\r
1341 Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.\r
1342\r
1343 @param[in] String The pointer to the Ascii string.\r
1344 @param[out] Ip4Address The pointer to the converted IPv4 address.\r
1345\r
1346 @retval EFI_SUCCESS Converted to an IPv4 address successfully.\r
1347 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip4Address is NULL.\r
1348\r
1349**/\r
1350EFI_STATUS\r
1351EFIAPI\r
1352NetLibAsciiStrToIp4 (\r
1353 IN CONST CHAR8 *String,\r
1354 OUT EFI_IPv4_ADDRESS *Ip4Address\r
1355 );\r
1356\r
1357/**\r
1358 Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the\r
1359 string is defined in RFC 4291 - Text Pepresentation of Addresses.\r
1360\r
1361 @param[in] String The pointer to the Ascii string.\r
1362 @param[out] Ip6Address The pointer to the converted IPv6 address.\r
1363\r
1364 @retval EFI_SUCCESS Converted to an IPv6 address successfully.\r
1365 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip6Address is NULL.\r
1366\r
1367**/\r
1368EFI_STATUS\r
1369EFIAPI\r
1370NetLibAsciiStrToIp6 (\r
1371 IN CONST CHAR8 *String,\r
1372 OUT EFI_IPv6_ADDRESS *Ip6Address\r
1373 );\r
1374\r
1375/**\r
1376 Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.\r
1377\r
1378 @param[in] String The pointer to the Ascii string.\r
1379 @param[out] Ip4Address The pointer to the converted IPv4 address.\r
1380\r
1381 @retval EFI_SUCCESS Converted to an IPv4 address successfully.\r
1382 @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip4Address is NULL.\r
1383 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to lack of resources.\r
1384\r
1385**/\r
1386EFI_STATUS\r
1387EFIAPI\r
1388NetLibStrToIp4 (\r
1389 IN CONST CHAR16 *String,\r
1390 OUT EFI_IPv4_ADDRESS *Ip4Address\r
1391 );\r
1392\r
1393/**\r
1394 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS. The format of\r
1395 the string is defined in RFC 4291 - Text Pepresentation of Addresses.\r
1396\r
1397 @param[in] String The pointer to the Ascii string.\r
1398 @param[out] Ip6Address The pointer to the converted IPv6 address.\r
1399\r
1400 @retval EFI_SUCCESS Converted to an IPv6 address successfully.\r
1401 @retval EFI_INVALID_PARAMETER The string is malformated or Ip6Address is NULL.\r
1402 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to a lack of resources.\r
1403\r
1404**/\r
1405EFI_STATUS\r
1406EFIAPI\r
1407NetLibStrToIp6 (\r
1408 IN CONST CHAR16 *String,\r
1409 OUT EFI_IPv6_ADDRESS *Ip6Address\r
1410 );\r
1411\r
1412/**\r
1413 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.\r
1414 The format of the string is defined in RFC 4291 - Text Pepresentation of Addresses\r
1415 Prefixes: ipv6-address/prefix-length.\r
1416\r
1417 @param[in] String The pointer to the Ascii string.\r
1418 @param[out] Ip6Address The pointer to the converted IPv6 address.\r
1419 @param[out] PrefixLength The pointer to the converted prefix length.\r
1420\r
1421 @retval EFI_SUCCESS Converted to an IPv6 address successfully.\r
1422 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip6Address is NULL.\r
1423 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to a lack of resources.\r
1424\r
1425**/\r
1426EFI_STATUS\r
1427EFIAPI\r
1428NetLibStrToIp6andPrefix (\r
1429 IN CONST CHAR16 *String,\r
1430 OUT EFI_IPv6_ADDRESS *Ip6Address,\r
1431 OUT UINT8 *PrefixLength\r
1432 );\r
1433\r
1434/**\r
1435\r
1436 Convert one EFI_IPv6_ADDRESS to Null-terminated Unicode string.\r
1437 The text representation of address is defined in RFC 4291.\r
1438 \r
1439 @param[in] Ip6Address The pointer to the IPv6 address.\r
1440 @param[out] String The buffer to return the converted string.\r
1441 @param[in] StringSize The length in bytes of the input String.\r
1442 \r
1443 @retval EFI_SUCCESS Convert to string successfully.\r
1444 @retval EFI_INVALID_PARAMETER The input parameter is invalid.\r
1445 @retval EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result. BufferSize has been \r
1446 updated with the size needed to complete the request.\r
1447**/\r
1448EFI_STATUS\r
1449EFIAPI\r
1450NetLibIp6ToStr (\r
1451 IN EFI_IPv6_ADDRESS *Ip6Address,\r
1452 OUT CHAR16 *String,\r
1453 IN UINTN StringSize\r
1454 );\r
1455\r
1456//\r
1457// Various signatures\r
1458//\r
1459#define NET_BUF_SIGNATURE SIGNATURE_32 ('n', 'b', 'u', 'f')\r
1460#define NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c')\r
1461#define NET_QUE_SIGNATURE SIGNATURE_32 ('n', 'b', 'q', 'u')\r
1462\r
1463\r
1464#define NET_PROTO_DATA 64 // Opaque buffer for protocols\r
1465#define NET_BUF_HEAD 1 // Trim or allocate space from head\r
1466#define NET_BUF_TAIL 0 // Trim or allocate space from tail\r
1467#define NET_VECTOR_OWN_FIRST 0x01 // We allocated the 1st block in the vector\r
1468\r
1469#define NET_CHECK_SIGNATURE(PData, SIGNATURE) \\r
1470 ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))\r
1471\r
1472//\r
1473// Single memory block in the vector.\r
1474//\r
1475typedef struct {\r
1476 UINT32 Len; // The block's length\r
1477 UINT8 *Bulk; // The block's Data\r
1478} NET_BLOCK;\r
1479\r
1480typedef VOID (EFIAPI *NET_VECTOR_EXT_FREE) (VOID *Arg);\r
1481\r
1482//\r
1483//NET_VECTOR contains several blocks to hold all packet's\r
1484//fragments and other house-keeping stuff for sharing. It\r
1485//doesn't specify the where actual packet fragment begins.\r
1486//\r
1487typedef struct {\r
1488 UINT32 Signature;\r
1489 INTN RefCnt; // Reference count to share NET_VECTOR.\r
1490 NET_VECTOR_EXT_FREE Free; // external function to free NET_VECTOR\r
1491 VOID *Arg; // opeque argument to Free\r
1492 UINT32 Flag; // Flags, NET_VECTOR_OWN_FIRST\r
1493 UINT32 Len; // Total length of the assocated BLOCKs\r
1494\r
1495 UINT32 BlockNum;\r
1496 NET_BLOCK Block[1];\r
1497} NET_VECTOR;\r
1498\r
1499//\r
1500//NET_BLOCK_OP operates on the NET_BLOCK. It specifies\r
1501//where the actual fragment begins and ends\r
1502//\r
1503typedef struct {\r
1504 UINT8 *BlockHead; // Block's head, or the smallest valid Head\r
1505 UINT8 *BlockTail; // Block's tail. BlockTail-BlockHead=block length\r
1506 UINT8 *Head; // 1st byte of the data in the block\r
1507 UINT8 *Tail; // Tail of the data in the block, Tail-Head=Size\r
1508 UINT32 Size; // The size of the data\r
1509} NET_BLOCK_OP;\r
1510\r
1511typedef union {\r
1512 IP4_HEAD *Ip4;\r
1513 EFI_IP6_HEADER *Ip6;\r
1514} NET_IP_HEAD;\r
1515\r
1516//\r
1517//NET_BUF is the buffer manage structure used by the\r
1518//network stack. Every network packet may be fragmented. The Vector points to\r
1519//memory blocks used by each fragment, and BlockOp\r
1520//specifies where each fragment begins and ends.\r
1521//\r
1522//It also contains an opaque area for the protocol to store\r
1523//per-packet information. Protocol must be careful not\r
1524//to overwrite the members after that.\r
1525//\r
1526typedef struct {\r
1527 UINT32 Signature;\r
1528 INTN RefCnt;\r
1529 LIST_ENTRY List; // The List this NET_BUF is on\r
1530\r
1531 NET_IP_HEAD Ip; // Network layer header, for fast access\r
1532 TCP_HEAD *Tcp; // Transport layer header, for fast access\r
1533 EFI_UDP_HEADER *Udp; // User Datagram Protocol header\r
1534 UINT8 ProtoData [NET_PROTO_DATA]; //Protocol specific data\r
1535\r
1536 NET_VECTOR *Vector; // The vector containing the packet\r
1537\r
1538 UINT32 BlockOpNum; // Total number of BlockOp in the buffer\r
1539 UINT32 TotalSize; // Total size of the actual packet\r
1540 NET_BLOCK_OP BlockOp[1]; // Specify the position of actual packet\r
1541} NET_BUF;\r
1542\r
1543//\r
1544//A queue of NET_BUFs. It is a thin extension of\r
1545//NET_BUF functions.\r
1546//\r
1547typedef struct {\r
1548 UINT32 Signature;\r
1549 INTN RefCnt;\r
1550 LIST_ENTRY List; // The List this buffer queue is on\r
1551\r
1552 LIST_ENTRY BufList; // list of queued buffers\r
1553 UINT32 BufSize; // total length of DATA in the buffers\r
1554 UINT32 BufNum; // total number of buffers on the chain\r
1555} NET_BUF_QUEUE;\r
1556\r
1557//\r
1558// Pseudo header for TCP and UDP checksum\r
1559//\r
1560#pragma pack(1)\r
1561typedef struct {\r
1562 IP4_ADDR SrcIp;\r
1563 IP4_ADDR DstIp;\r
1564 UINT8 Reserved;\r
1565 UINT8 Protocol;\r
1566 UINT16 Len;\r
1567} NET_PSEUDO_HDR;\r
1568\r
1569typedef struct {\r
1570 EFI_IPv6_ADDRESS SrcIp;\r
1571 EFI_IPv6_ADDRESS DstIp;\r
1572 UINT32 Len;\r
1573 UINT32 Reserved:24;\r
1574 UINT32 NextHeader:8;\r
1575} NET_IP6_PSEUDO_HDR;\r
1576#pragma pack()\r
1577\r
1578//\r
1579// The fragment entry table used in network interfaces. This is\r
1580// the same as NET_BLOCK now. Use two different to distinguish\r
1581// the two in case that NET_BLOCK be enhanced later.\r
1582//\r
1583typedef struct {\r
1584 UINT32 Len;\r
1585 UINT8 *Bulk;\r
1586} NET_FRAGMENT;\r
1587\r
1588#define NET_GET_REF(PData) ((PData)->RefCnt++)\r
1589#define NET_PUT_REF(PData) ((PData)->RefCnt--)\r
1590#define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)\r
1591\r
1592#define NET_BUF_SHARED(Buf) \\r
1593 (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))\r
1594\r
1595#define NET_VECTOR_SIZE(BlockNum) \\r
1596 (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))\r
1597\r
1598#define NET_BUF_SIZE(BlockOpNum) \\r
1599 (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))\r
1600\r
1601#define NET_HEADSPACE(BlockOp) \\r
1602 (UINTN)((BlockOp)->Head - (BlockOp)->BlockHead)\r
1603\r
1604#define NET_TAILSPACE(BlockOp) \\r
1605 (UINTN)((BlockOp)->BlockTail - (BlockOp)->Tail)\r
1606\r
1607/**\r
1608 Allocate a single block NET_BUF. Upon allocation, all the\r
1609 free space is in the tail room.\r
1610\r
1611 @param[in] Len The length of the block.\r
1612\r
1613 @return The pointer to the allocated NET_BUF, or NULL if the\r
1614 allocation failed due to resource limitations.\r
1615\r
1616**/\r
1617NET_BUF *\r
1618EFIAPI\r
1619NetbufAlloc (\r
1620 IN UINT32 Len\r
1621 );\r
1622\r
1623/**\r
1624 Free the net buffer and its associated NET_VECTOR.\r
1625\r
1626 Decrease the reference count of the net buffer by one. Free the associated net\r
1627 vector and itself if the reference count of the net buffer is decreased to 0.\r
1628 The net vector free operation decreases the reference count of the net\r
1629 vector by one, and performs the resource free operation when the reference count\r
1630 of the net vector is 0.\r
1631\r
1632 @param[in] Nbuf The pointer to the NET_BUF to be freed.\r
1633\r
1634**/\r
1635VOID\r
1636EFIAPI\r
1637NetbufFree (\r
1638 IN NET_BUF *Nbuf\r
1639 );\r
1640\r
1641/**\r
1642 Get the index of NET_BLOCK_OP that contains the byte at Offset in the net\r
1643 buffer.\r
1644\r
1645 For example, this function can be used to retrieve the IP header in the packet. It\r
1646 also can be used to get the fragment that contains the byte used\r
1647 mainly by the library implementation itself.\r
1648\r
1649 @param[in] Nbuf The pointer to the net buffer.\r
1650 @param[in] Offset The offset of the byte.\r
1651 @param[out] Index Index of the NET_BLOCK_OP that contains the byte at\r
1652 Offset.\r
1653\r
1654 @return The pointer to the Offset'th byte of data in the net buffer, or NULL\r
1655 if there is no such data in the net buffer.\r
1656\r
1657**/\r
1658UINT8 *\r
1659EFIAPI\r
1660NetbufGetByte (\r
1661 IN NET_BUF *Nbuf,\r
1662 IN UINT32 Offset,\r
1663 OUT UINT32 *Index OPTIONAL\r
1664 );\r
1665\r
1666/**\r
1667 Create a copy of the net buffer that shares the associated net vector.\r
1668\r
1669 The reference count of the newly created net buffer is set to 1. The reference\r
1670 count of the associated net vector is increased by one.\r
1671\r
1672 @param[in] Nbuf The pointer to the net buffer to be cloned.\r
1673\r
1674 @return The pointer to the cloned net buffer, or NULL if the\r
1675 allocation failed due to resource limitations.\r
1676\r
1677**/\r
1678NET_BUF *\r
1679EFIAPI\r
1680NetbufClone (\r
1681 IN NET_BUF *Nbuf\r
1682 );\r
1683\r
1684/**\r
1685 Create a duplicated copy of the net buffer with data copied and HeadSpace\r
1686 bytes of head space reserved.\r
1687\r
1688 The duplicated net buffer will allocate its own memory to hold the data of the\r
1689 source net buffer.\r
1690\r
1691 @param[in] Nbuf The pointer to the net buffer to be duplicated from.\r
1692 @param[in, out] Duplicate The pointer to the net buffer to duplicate to. If\r
1693 NULL, a new net buffer is allocated.\r
1694 @param[in] HeadSpace The length of the head space to reserve.\r
1695\r
1696 @return The pointer to the duplicated net buffer, or NULL if\r
1697 the allocation failed due to resource limitations.\r
1698\r
1699**/\r
1700NET_BUF *\r
1701EFIAPI\r
1702NetbufDuplicate (\r
1703 IN NET_BUF *Nbuf,\r
1704 IN OUT NET_BUF *Duplicate OPTIONAL,\r
1705 IN UINT32 HeadSpace\r
1706 );\r
1707\r
1708/**\r
1709 Create a NET_BUF structure which contains Len byte data of Nbuf starting from\r
1710 Offset.\r
1711\r
1712 A new NET_BUF structure will be created but the associated data in NET_VECTOR\r
1713 is shared. This function exists to perform IP packet fragmentation.\r
1714\r
1715 @param[in] Nbuf The pointer to the net buffer to be extracted.\r
1716 @param[in] Offset Starting point of the data to be included in the new\r
1717 net buffer.\r
1718 @param[in] Len The bytes of data to be included in the new net buffer.\r
1719 @param[in] HeadSpace The bytes of the head space to reserve for the protocol header.\r
1720\r
1721 @return The pointer to the cloned net buffer, or NULL if the\r
1722 allocation failed due to resource limitations.\r
1723\r
1724**/\r
1725NET_BUF *\r
1726EFIAPI\r
1727NetbufGetFragment (\r
1728 IN NET_BUF *Nbuf,\r
1729 IN UINT32 Offset,\r
1730 IN UINT32 Len,\r
1731 IN UINT32 HeadSpace\r
1732 );\r
1733\r
1734/**\r
1735 Reserve some space in the header room of the net buffer.\r
1736\r
1737 Upon allocation, all the space is in the tail room of the buffer. Call this\r
1738 function to move space to the header room. This function is quite limited\r
1739 in that it can only reserve space from the first block of an empty NET_BUF not\r
1740 built from the external. However, it should be enough for the network stack.\r
1741\r
1742 @param[in, out] Nbuf The pointer to the net buffer.\r
1743 @param[in] Len The length of buffer to be reserved from the header.\r
1744\r
1745**/\r
1746VOID\r
1747EFIAPI\r
1748NetbufReserve (\r
1749 IN OUT NET_BUF *Nbuf,\r
1750 IN UINT32 Len\r
1751 );\r
1752\r
1753/**\r
1754 Allocate Len bytes of space from the header or tail of the buffer.\r
1755\r
1756 @param[in, out] Nbuf The pointer to the net buffer.\r
1757 @param[in] Len The length of the buffer to be allocated.\r
1758 @param[in] FromHead The flag to indicate whether to reserve the data\r
1759 from head (TRUE) or tail (FALSE).\r
1760\r
1761 @return The pointer to the first byte of the allocated buffer,\r
1762 or NULL, if there is no sufficient space.\r
1763\r
1764**/\r
1765UINT8*\r
1766EFIAPI\r
1767NetbufAllocSpace (\r
1768 IN OUT NET_BUF *Nbuf,\r
1769 IN UINT32 Len,\r
1770 IN BOOLEAN FromHead\r
1771 );\r
1772\r
1773/**\r
1774 Trim Len bytes from the header or the tail of the net buffer.\r
1775\r
1776 @param[in, out] Nbuf The pointer to the net buffer.\r
1777 @param[in] Len The length of the data to be trimmed.\r
1778 @param[in] FromHead The flag to indicate whether trim data is from the \r
1779 head (TRUE) or the tail (FALSE).\r
1780\r
1781 @return The length of the actual trimmed data, which may be less\r
1782 than Len if the TotalSize of Nbuf is less than Len.\r
1783\r
1784**/\r
1785UINT32\r
1786EFIAPI\r
1787NetbufTrim (\r
1788 IN OUT NET_BUF *Nbuf,\r
1789 IN UINT32 Len,\r
1790 IN BOOLEAN FromHead\r
1791 );\r
1792\r
1793/**\r
1794 Copy Len bytes of data from the specific offset of the net buffer to the\r
1795 destination memory.\r
1796\r
1797 The Len bytes of data may cross several fragments of the net buffer.\r
1798\r
1799 @param[in] Nbuf The pointer to the net buffer.\r
1800 @param[in] Offset The sequence number of the first byte to copy.\r
1801 @param[in] Len The length of the data to copy.\r
1802 @param[in] Dest The destination of the data to copy to.\r
1803\r
1804 @return The length of the actual copied data, or 0 if the offset\r
1805 specified exceeds the total size of net buffer.\r
1806\r
1807**/\r
1808UINT32\r
1809EFIAPI\r
1810NetbufCopy (\r
1811 IN NET_BUF *Nbuf,\r
1812 IN UINT32 Offset,\r
1813 IN UINT32 Len,\r
1814 IN UINT8 *Dest\r
1815 );\r
1816\r
1817/**\r
1818 Build a NET_BUF from external blocks.\r
1819\r
1820 A new NET_BUF structure will be created from external blocks. An additional block\r
1821 of memory will be allocated to hold reserved HeadSpace bytes of header room\r
1822 and existing HeadLen bytes of header, but the external blocks are shared by the\r
1823 net buffer to avoid data copying.\r
1824\r
1825 @param[in] ExtFragment The pointer to the data block.\r
1826 @param[in] ExtNum The number of the data blocks.\r
1827 @param[in] HeadSpace The head space to be reserved.\r
1828 @param[in] HeadLen The length of the protocol header. The function\r
1829 pulls this amount of data into a linear block.\r
1830 @param[in] ExtFree The pointer to the caller-provided free function.\r
1831 @param[in] Arg The argument passed to ExtFree when ExtFree is\r
1832 called.\r
1833\r
1834 @return The pointer to the net buffer built from the data blocks,\r
1835 or NULL if the allocation failed due to resource\r
1836 limit.\r
1837\r
1838**/\r
1839NET_BUF *\r
1840EFIAPI\r
1841NetbufFromExt (\r
1842 IN NET_FRAGMENT *ExtFragment,\r
1843 IN UINT32 ExtNum,\r
1844 IN UINT32 HeadSpace,\r
1845 IN UINT32 HeadLen,\r
1846 IN NET_VECTOR_EXT_FREE ExtFree,\r
1847 IN VOID *Arg OPTIONAL\r
1848 );\r
1849\r
1850/**\r
1851 Build a fragment table to contain the fragments in the net buffer. This is the\r
1852 opposite operation of the NetbufFromExt.\r
1853\r
1854 @param[in] Nbuf Points to the net buffer.\r
1855 @param[in, out] ExtFragment The pointer to the data block.\r
1856 @param[in, out] ExtNum The number of the data blocks.\r
1857\r
1858 @retval EFI_BUFFER_TOO_SMALL The number of non-empty blocks is bigger than\r
1859 ExtNum.\r
1860 @retval EFI_SUCCESS The fragment table was built successfully.\r
1861\r
1862**/\r
1863EFI_STATUS\r
1864EFIAPI\r
1865NetbufBuildExt (\r
1866 IN NET_BUF *Nbuf,\r
1867 IN OUT NET_FRAGMENT *ExtFragment,\r
1868 IN OUT UINT32 *ExtNum\r
1869 );\r
1870\r
1871/**\r
1872 Build a net buffer from a list of net buffers.\r
1873\r
1874 All the fragments will be collected from the list of NEW_BUF, and then a new\r
1875 net buffer will be created through NetbufFromExt.\r
1876\r
1877 @param[in] BufList A List of the net buffer.\r
1878 @param[in] HeadSpace The head space to be reserved.\r
1879 @param[in] HeaderLen The length of the protocol header. The function\r
1880 pulls this amount of data into a linear block.\r
1881 @param[in] ExtFree The pointer to the caller provided free function.\r
1882 @param[in] Arg The argument passed to ExtFree when ExtFree is called.\r
1883\r
1884 @return The pointer to the net buffer built from the list of net\r
1885 buffers.\r
1886\r
1887**/\r
1888NET_BUF *\r
1889EFIAPI\r
1890NetbufFromBufList (\r
1891 IN LIST_ENTRY *BufList,\r
1892 IN UINT32 HeadSpace,\r
1893 IN UINT32 HeaderLen,\r
1894 IN NET_VECTOR_EXT_FREE ExtFree,\r
1895 IN VOID *Arg OPTIONAL\r
1896 );\r
1897\r
1898/**\r
1899 Free a list of net buffers.\r
1900\r
1901 @param[in, out] Head The pointer to the head of linked net buffers.\r
1902\r
1903**/\r
1904VOID\r
1905EFIAPI\r
1906NetbufFreeList (\r
1907 IN OUT LIST_ENTRY *Head\r
1908 );\r
1909\r
1910/**\r
1911 Initiate the net buffer queue.\r
1912\r
1913 @param[in, out] NbufQue The pointer to the net buffer queue to be initialized.\r
1914\r
1915**/\r
1916VOID\r
1917EFIAPI\r
1918NetbufQueInit (\r
1919 IN OUT NET_BUF_QUEUE *NbufQue\r
1920 );\r
1921\r
1922/**\r
1923 Allocate and initialize a net buffer queue.\r
1924\r
1925 @return The pointer to the allocated net buffer queue, or NULL if the\r
1926 allocation failed due to resource limit.\r
1927\r
1928**/\r
1929NET_BUF_QUEUE *\r
1930EFIAPI\r
1931NetbufQueAlloc (\r
1932 VOID\r
1933 );\r
1934\r
1935/**\r
1936 Free a net buffer queue.\r
1937\r
1938 Decrease the reference count of the net buffer queue by one. The real resource\r
1939 free operation isn't performed until the reference count of the net buffer\r
1940 queue is decreased to 0.\r
1941\r
1942 @param[in] NbufQue The pointer to the net buffer queue to be freed.\r
1943\r
1944**/\r
1945VOID\r
1946EFIAPI\r
1947NetbufQueFree (\r
1948 IN NET_BUF_QUEUE *NbufQue\r
1949 );\r
1950\r
1951/**\r
1952 Remove a net buffer from the head in the specific queue and return it.\r
1953\r
1954 @param[in, out] NbufQue The pointer to the net buffer queue.\r
1955\r
1956 @return The pointer to the net buffer removed from the specific queue,\r
1957 or NULL if there is no net buffer in the specific queue.\r
1958\r
1959**/\r
1960NET_BUF *\r
1961EFIAPI\r
1962NetbufQueRemove (\r
1963 IN OUT NET_BUF_QUEUE *NbufQue\r
1964 );\r
1965\r
1966/**\r
1967 Append a net buffer to the net buffer queue.\r
1968\r
1969 @param[in, out] NbufQue The pointer to the net buffer queue.\r
1970 @param[in, out] Nbuf The pointer to the net buffer to be appended.\r
1971\r
1972**/\r
1973VOID\r
1974EFIAPI\r
1975NetbufQueAppend (\r
1976 IN OUT NET_BUF_QUEUE *NbufQue,\r
1977 IN OUT NET_BUF *Nbuf\r
1978 );\r
1979\r
1980/**\r
1981 Copy Len bytes of data from the net buffer queue at the specific offset to the\r
1982 destination memory.\r
1983\r
1984 The copying operation is the same as NetbufCopy, but applies to the net buffer\r
1985 queue instead of the net buffer.\r
1986\r
1987 @param[in] NbufQue The pointer to the net buffer queue.\r
1988 @param[in] Offset The sequence number of the first byte to copy.\r
1989 @param[in] Len The length of the data to copy.\r
1990 @param[out] Dest The destination of the data to copy to.\r
1991\r
1992 @return The length of the actual copied data, or 0 if the offset\r
1993 specified exceeds the total size of net buffer queue.\r
1994\r
1995**/\r
1996UINT32\r
1997EFIAPI\r
1998NetbufQueCopy (\r
1999 IN NET_BUF_QUEUE *NbufQue,\r
2000 IN UINT32 Offset,\r
2001 IN UINT32 Len,\r
2002 OUT UINT8 *Dest\r
2003 );\r
2004\r
2005/**\r
2006 Trim Len bytes of data from the buffer queue and free any net buffer\r
2007 that is completely trimmed.\r
2008\r
2009 The trimming operation is the same as NetbufTrim but applies to the net buffer\r
2010 queue instead of the net buffer.\r
2011\r
2012 @param[in, out] NbufQue The pointer to the net buffer queue.\r
2013 @param[in] Len The length of the data to trim.\r
2014\r
2015 @return The actual length of the data trimmed.\r
2016\r
2017**/\r
2018UINT32\r
2019EFIAPI\r
2020NetbufQueTrim (\r
2021 IN OUT NET_BUF_QUEUE *NbufQue,\r
2022 IN UINT32 Len\r
2023 );\r
2024\r
2025\r
2026/**\r
2027 Flush the net buffer queue.\r
2028\r
2029 @param[in, out] NbufQue The pointer to the queue to be flushed.\r
2030\r
2031**/\r
2032VOID\r
2033EFIAPI\r
2034NetbufQueFlush (\r
2035 IN OUT NET_BUF_QUEUE *NbufQue\r
2036 );\r
2037\r
2038/**\r
2039 Compute the checksum for a bulk of data.\r
2040\r
2041 @param[in] Bulk The pointer to the data.\r
2042 @param[in] Len The length of the data, in bytes.\r
2043\r
2044 @return The computed checksum.\r
2045\r
2046**/\r
2047UINT16\r
2048EFIAPI\r
2049NetblockChecksum (\r
2050 IN UINT8 *Bulk,\r
2051 IN UINT32 Len\r
2052 );\r
2053\r
2054/**\r
2055 Add two checksums.\r
2056\r
2057 @param[in] Checksum1 The first checksum to be added.\r
2058 @param[in] Checksum2 The second checksum to be added.\r
2059\r
2060 @return The new checksum.\r
2061\r
2062**/\r
2063UINT16\r
2064EFIAPI\r
2065NetAddChecksum (\r
2066 IN UINT16 Checksum1,\r
2067 IN UINT16 Checksum2\r
2068 );\r
2069\r
2070/**\r
2071 Compute the checksum for a NET_BUF.\r
2072\r
2073 @param[in] Nbuf The pointer to the net buffer.\r
2074\r
2075 @return The computed checksum.\r
2076\r
2077**/\r
2078UINT16\r
2079EFIAPI\r
2080NetbufChecksum (\r
2081 IN NET_BUF *Nbuf\r
2082 );\r
2083\r
2084/**\r
2085 Compute the checksum for TCP/UDP pseudo header.\r
2086\r
2087 Src and Dst are in network byte order, and Len is in host byte order.\r
2088\r
2089 @param[in] Src The source address of the packet.\r
2090 @param[in] Dst The destination address of the packet.\r
2091 @param[in] Proto The protocol type of the packet.\r
2092 @param[in] Len The length of the packet.\r
2093\r
2094 @return The computed checksum.\r
2095\r
2096**/\r
2097UINT16\r
2098EFIAPI\r
2099NetPseudoHeadChecksum (\r
2100 IN IP4_ADDR Src,\r
2101 IN IP4_ADDR Dst,\r
2102 IN UINT8 Proto,\r
2103 IN UINT16 Len\r
2104 );\r
2105\r
2106/**\r
2107 Compute the checksum for the TCP6/UDP6 pseudo header.\r
2108\r
2109 Src and Dst are in network byte order, and Len is in host byte order.\r
2110\r
2111 @param[in] Src The source address of the packet.\r
2112 @param[in] Dst The destination address of the packet.\r
2113 @param[in] NextHeader The protocol type of the packet.\r
2114 @param[in] Len The length of the packet.\r
2115\r
2116 @return The computed checksum.\r
2117\r
2118**/\r
2119UINT16\r
2120EFIAPI\r
2121NetIp6PseudoHeadChecksum (\r
2122 IN EFI_IPv6_ADDRESS *Src,\r
2123 IN EFI_IPv6_ADDRESS *Dst,\r
2124 IN UINT8 NextHeader,\r
2125 IN UINT32 Len\r
2126 );\r
2127\r
2128/**\r
2129 The function frees the net buffer which allocated by the IP protocol. It releases \r
2130 only the net buffer and doesn't call the external free function. \r
2131\r
2132 This function should be called after finishing the process of mIpSec->ProcessExt() \r
2133 for outbound traffic. The (EFI_IPSEC2_PROTOCOL)->ProcessExt() allocates a new \r
2134 buffer for the ESP, so there needs a function to free the old net buffer.\r
2135\r
2136 @param[in] Nbuf The network buffer to be freed.\r
2137\r
2138**/\r
2139VOID\r
2140NetIpSecNetbufFree (\r
2141 NET_BUF *Nbuf\r
2142 );\r
2143\r
2144/**\r
2145 This function obtains the system guid from the smbios table.\r
2146\r
2147 @param[out] SystemGuid The pointer of the returned system guid.\r
2148\r
2149 @retval EFI_SUCCESS Successfully obtained the system guid.\r
2150 @retval EFI_NOT_FOUND Did not find the SMBIOS table.\r
2151\r
2152**/\r
2153EFI_STATUS\r
2154EFIAPI\r
2155NetLibGetSystemGuid (\r
2156 OUT EFI_GUID *SystemGuid\r
2157 );\r
2158\r
2159#endif\r