]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - MdeModulePkg/Library/DxeNetLib/DxeNetLib.c
Code clean up in NetLib:
[mirror_edk2.git] / MdeModulePkg / Library / DxeNetLib / DxeNetLib.c
... / ...
CommitLineData
1/** @file\r
2 Network library.\r
3\r
4Copyright (c) 2005 - 2009, Intel Corporation.<BR>\r
5All rights reserved. This program and the accompanying materials\r
6are licensed and made available under the terms and conditions of the BSD License\r
7which accompanies this distribution. The full text of the license may be found at\r
8http://opensource.org/licenses/bsd-license.php\r
9\r
10THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12**/\r
13\r
14#include <Uefi.h>\r
15\r
16#include <Protocol/DriverBinding.h>\r
17#include <Protocol/ServiceBinding.h>\r
18#include <Protocol/SimpleNetwork.h>\r
19#include <Protocol/ManagedNetwork.h>\r
20#include <Protocol/HiiConfigRouting.h>\r
21#include <Protocol/ComponentName.h>\r
22#include <Protocol/ComponentName2.h>\r
23\r
24#include <Guid/NicIp4ConfigNvData.h>\r
25\r
26#include <Library/NetLib.h>\r
27#include <Library/BaseLib.h>\r
28#include <Library/DebugLib.h>\r
29#include <Library/BaseMemoryLib.h>\r
30#include <Library/UefiBootServicesTableLib.h>\r
31#include <Library/UefiRuntimeServicesTableLib.h>\r
32#include <Library/MemoryAllocationLib.h>\r
33#include <Library/DevicePathLib.h>\r
34#include <Library/HiiLib.h>\r
35#include <Library/PrintLib.h>\r
36\r
37#define NIC_ITEM_CONFIG_SIZE sizeof (NIC_IP4_CONFIG_INFO) + sizeof (EFI_IP4_ROUTE_TABLE) * MAX_IP4_CONFIG_IN_VARIABLE\r
38\r
39//\r
40// All the supported IP4 maskes in host byte order.\r
41//\r
42GLOBAL_REMOVE_IF_UNREFERENCED IP4_ADDR gIp4AllMasks[IP4_MASK_NUM] = {\r
43 0x00000000,\r
44 0x80000000,\r
45 0xC0000000,\r
46 0xE0000000,\r
47 0xF0000000,\r
48 0xF8000000,\r
49 0xFC000000,\r
50 0xFE000000,\r
51\r
52 0xFF000000,\r
53 0xFF800000,\r
54 0xFFC00000,\r
55 0xFFE00000,\r
56 0xFFF00000,\r
57 0xFFF80000,\r
58 0xFFFC0000,\r
59 0xFFFE0000,\r
60\r
61 0xFFFF0000,\r
62 0xFFFF8000,\r
63 0xFFFFC000,\r
64 0xFFFFE000,\r
65 0xFFFFF000,\r
66 0xFFFFF800,\r
67 0xFFFFFC00,\r
68 0xFFFFFE00,\r
69\r
70 0xFFFFFF00,\r
71 0xFFFFFF80,\r
72 0xFFFFFFC0,\r
73 0xFFFFFFE0,\r
74 0xFFFFFFF0,\r
75 0xFFFFFFF8,\r
76 0xFFFFFFFC,\r
77 0xFFFFFFFE,\r
78 0xFFFFFFFF,\r
79};\r
80\r
81GLOBAL_REMOVE_IF_UNREFERENCED EFI_IPv4_ADDRESS mZeroIp4Addr = {{0, 0, 0, 0}};\r
82\r
83//\r
84// Any error level digitally larger than mNetDebugLevelMax\r
85// will be silently discarded.\r
86//\r
87GLOBAL_REMOVE_IF_UNREFERENCED UINTN mNetDebugLevelMax = NETDEBUG_LEVEL_ERROR;\r
88GLOBAL_REMOVE_IF_UNREFERENCED UINT32 mSyslogPacketSeq = 0xDEADBEEF;\r
89\r
90//\r
91// You can change mSyslogDstMac mSyslogDstIp and mSyslogSrcIp\r
92// here to direct the syslog packets to the syslog deamon. The\r
93// default is broadcast to both the ethernet and IP.\r
94//\r
95GLOBAL_REMOVE_IF_UNREFERENCED UINT8 mSyslogDstMac[NET_ETHER_ADDR_LEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};\r
96GLOBAL_REMOVE_IF_UNREFERENCED UINT32 mSyslogDstIp = 0xffffffff;\r
97GLOBAL_REMOVE_IF_UNREFERENCED UINT32 mSyslogSrcIp = 0;\r
98\r
99GLOBAL_REMOVE_IF_UNREFERENCED CHAR8 *mMonthName[] = {\r
100 "Jan",\r
101 "Feb",\r
102 "Mar",\r
103 "Apr",\r
104 "May",\r
105 "Jun",\r
106 "Jul",\r
107 "Aug",\r
108 "Sep",\r
109 "Oct",\r
110 "Nov",\r
111 "Dec"\r
112};\r
113\r
114/**\r
115 Locate the handles that support SNP, then open one of them\r
116 to send the syslog packets. The caller isn't required to close\r
117 the SNP after use because the SNP is opened by HandleProtocol.\r
118\r
119 @return The point to SNP if one is properly openned. Otherwise NULL\r
120\r
121**/\r
122EFI_SIMPLE_NETWORK_PROTOCOL *\r
123SyslogLocateSnp (\r
124 VOID\r
125 )\r
126{\r
127 EFI_SIMPLE_NETWORK_PROTOCOL *Snp;\r
128 EFI_STATUS Status;\r
129 EFI_HANDLE *Handles;\r
130 UINTN HandleCount;\r
131 UINTN Index;\r
132\r
133 //\r
134 // Locate the handles which has SNP installed.\r
135 //\r
136 Handles = NULL;\r
137 Status = gBS->LocateHandleBuffer (\r
138 ByProtocol,\r
139 &gEfiSimpleNetworkProtocolGuid,\r
140 NULL,\r
141 &HandleCount,\r
142 &Handles\r
143 );\r
144\r
145 if (EFI_ERROR (Status) || (HandleCount == 0)) {\r
146 return NULL;\r
147 }\r
148\r
149 //\r
150 // Try to open one of the ethernet SNP protocol to send packet\r
151 //\r
152 Snp = NULL;\r
153\r
154 for (Index = 0; Index < HandleCount; Index++) {\r
155 Status = gBS->HandleProtocol (\r
156 Handles[Index],\r
157 &gEfiSimpleNetworkProtocolGuid,\r
158 (VOID **) &Snp\r
159 );\r
160\r
161 if ((Status == EFI_SUCCESS) && (Snp != NULL) &&\r
162 (Snp->Mode->IfType == NET_IFTYPE_ETHERNET) &&\r
163 (Snp->Mode->MaxPacketSize >= NET_SYSLOG_PACKET_LEN)) {\r
164\r
165 break;\r
166 }\r
167\r
168 Snp = NULL;\r
169 }\r
170\r
171 FreePool (Handles);\r
172 return Snp;\r
173}\r
174\r
175/**\r
176 Transmit a syslog packet synchronously through SNP. The Packet\r
177 already has the ethernet header prepended. This function should\r
178 fill in the source MAC because it will try to locate a SNP each\r
179 time it is called to avoid the problem if SNP is unloaded.\r
180 This code snip is copied from MNP.\r
181\r
182 @param[in] Packet The Syslog packet\r
183 @param[in] Length The length of the packet\r
184\r
185 @retval EFI_DEVICE_ERROR Failed to locate a usable SNP protocol\r
186 @retval EFI_TIMEOUT Timeout happened to send the packet.\r
187 @retval EFI_SUCCESS Packet is sent.\r
188\r
189**/\r
190EFI_STATUS\r
191SyslogSendPacket (\r
192 IN CHAR8 *Packet,\r
193 IN UINT32 Length\r
194 )\r
195{\r
196 EFI_SIMPLE_NETWORK_PROTOCOL *Snp;\r
197 ETHER_HEAD *Ether;\r
198 EFI_STATUS Status;\r
199 EFI_EVENT TimeoutEvent;\r
200 UINT8 *TxBuf;\r
201\r
202 Snp = SyslogLocateSnp ();\r
203\r
204 if (Snp == NULL) {\r
205 return EFI_DEVICE_ERROR;\r
206 }\r
207\r
208 Ether = (ETHER_HEAD *) Packet;\r
209 CopyMem (Ether->SrcMac, Snp->Mode->CurrentAddress.Addr, NET_ETHER_ADDR_LEN);\r
210\r
211 //\r
212 // Start the timeout event.\r
213 //\r
214 Status = gBS->CreateEvent (\r
215 EVT_TIMER,\r
216 TPL_NOTIFY,\r
217 NULL,\r
218 NULL,\r
219 &TimeoutEvent\r
220 );\r
221\r
222 if (EFI_ERROR (Status)) {\r
223 return Status;\r
224 }\r
225\r
226 Status = gBS->SetTimer (TimeoutEvent, TimerRelative, NET_SYSLOG_TX_TIMEOUT);\r
227\r
228 if (EFI_ERROR (Status)) {\r
229 goto ON_EXIT;\r
230 }\r
231\r
232 for (;;) {\r
233 //\r
234 // Transmit the packet through SNP.\r
235 //\r
236 Status = Snp->Transmit (Snp, 0, Length, Packet, NULL, NULL, NULL);\r
237\r
238 if ((Status != EFI_SUCCESS) && (Status != EFI_NOT_READY)) {\r
239 Status = EFI_DEVICE_ERROR;\r
240 break;\r
241 }\r
242\r
243 //\r
244 // If Status is EFI_SUCCESS, the packet is put in the transmit queue.\r
245 // if Status is EFI_NOT_READY, the transmit engine of the network\r
246 // interface is busy. Both need to sync SNP.\r
247 //\r
248 TxBuf = NULL;\r
249\r
250 do {\r
251 //\r
252 // Get the recycled transmit buffer status.\r
253 //\r
254 Snp->GetStatus (Snp, NULL, (VOID **) &TxBuf);\r
255\r
256 if (!EFI_ERROR (gBS->CheckEvent (TimeoutEvent))) {\r
257 Status = EFI_TIMEOUT;\r
258 break;\r
259 }\r
260\r
261 } while (TxBuf == NULL);\r
262\r
263 if ((Status == EFI_SUCCESS) || (Status == EFI_TIMEOUT)) {\r
264 break;\r
265 }\r
266\r
267 //\r
268 // Status is EFI_NOT_READY. Restart the timer event and\r
269 // call Snp->Transmit again.\r
270 //\r
271 gBS->SetTimer (TimeoutEvent, TimerRelative, NET_SYSLOG_TX_TIMEOUT);\r
272 }\r
273\r
274 gBS->SetTimer (TimeoutEvent, TimerCancel, 0);\r
275\r
276ON_EXIT:\r
277 gBS->CloseEvent (TimeoutEvent);\r
278 return Status;\r
279}\r
280\r
281/**\r
282 Build a syslog packet, including the Ethernet/Ip/Udp headers\r
283 and user's message.\r
284\r
285 @param[in] Level Syslog servity level\r
286 @param[in] Module The module that generates the log\r
287 @param[in] File The file that contains the current log\r
288 @param[in] Line The line of code in the File that contains the current log\r
289 @param[in] Message The log message\r
290 @param[in] BufLen The lenght of the Buf\r
291 @param[out] Buf The buffer to put the packet data\r
292\r
293 @return The length of the syslog packet built.\r
294\r
295**/\r
296UINT32\r
297SyslogBuildPacket (\r
298 IN UINT32 Level,\r
299 IN UINT8 *Module,\r
300 IN UINT8 *File,\r
301 IN UINT32 Line,\r
302 IN UINT8 *Message,\r
303 IN UINT32 BufLen,\r
304 OUT CHAR8 *Buf\r
305 )\r
306{\r
307 ETHER_HEAD *Ether;\r
308 IP4_HEAD *Ip4;\r
309 EFI_UDP_HEADER *Udp4;\r
310 EFI_TIME Time;\r
311 UINT32 Pri;\r
312 UINT32 Len;\r
313\r
314 //\r
315 // Fill in the Ethernet header. Leave alone the source MAC.\r
316 // SyslogSendPacket will fill in the address for us.\r
317 //\r
318 Ether = (ETHER_HEAD *) Buf;\r
319 CopyMem (Ether->DstMac, mSyslogDstMac, NET_ETHER_ADDR_LEN);\r
320 ZeroMem (Ether->SrcMac, NET_ETHER_ADDR_LEN);\r
321\r
322 Ether->EtherType = HTONS (0x0800); // IPv4 protocol\r
323\r
324 Buf += sizeof (ETHER_HEAD);\r
325 BufLen -= sizeof (ETHER_HEAD);\r
326\r
327 //\r
328 // Fill in the IP header\r
329 //\r
330 Ip4 = (IP4_HEAD *) Buf;\r
331 Ip4->HeadLen = 5;\r
332 Ip4->Ver = 4;\r
333 Ip4->Tos = 0;\r
334 Ip4->TotalLen = 0;\r
335 Ip4->Id = (UINT16) mSyslogPacketSeq;\r
336 Ip4->Fragment = 0;\r
337 Ip4->Ttl = 16;\r
338 Ip4->Protocol = 0x11;\r
339 Ip4->Checksum = 0;\r
340 Ip4->Src = mSyslogSrcIp;\r
341 Ip4->Dst = mSyslogDstIp;\r
342\r
343 Buf += sizeof (IP4_HEAD);\r
344 BufLen -= sizeof (IP4_HEAD);\r
345\r
346 //\r
347 // Fill in the UDP header, Udp checksum is optional. Leave it zero.\r
348 //\r
349 Udp4 = (EFI_UDP_HEADER *) Buf;\r
350 Udp4->SrcPort = HTONS (514);\r
351 Udp4->DstPort = HTONS (514);\r
352 Udp4->Length = 0;\r
353 Udp4->Checksum = 0;\r
354\r
355 Buf += sizeof (EFI_UDP_HEADER);\r
356 BufLen -= sizeof (EFI_UDP_HEADER);\r
357\r
358 //\r
359 // Build the syslog message body with <PRI> Timestamp machine module Message\r
360 //\r
361 Pri = ((NET_SYSLOG_FACILITY & 31) << 3) | (Level & 7);\r
362 gRT->GetTime (&Time, NULL);\r
363\r
364 //\r
365 // Use %a to format the ASCII strings, %s to format UNICODE strings\r
366 //\r
367 Len = 0;\r
368 Len += (UINT32) AsciiSPrint (\r
369 Buf,\r
370 BufLen,\r
371 "<%d> %a %d %d:%d:%d ",\r
372 Pri,\r
373 mMonthName [Time.Month-1],\r
374 Time.Day,\r
375 Time.Hour,\r
376 Time.Minute,\r
377 Time.Second\r
378 );\r
379 Len--;\r
380\r
381 Len += (UINT32) AsciiSPrint (\r
382 Buf + Len,\r
383 BufLen - Len,\r
384 "Tiano %a: %a (Line: %d File: %a)",\r
385 Module,\r
386 Message,\r
387 Line,\r
388 File\r
389 );\r
390 Len--;\r
391\r
392 //\r
393 // OK, patch the IP length/checksum and UDP length fields.\r
394 //\r
395 Len += sizeof (EFI_UDP_HEADER);\r
396 Udp4->Length = HTONS ((UINT16) Len);\r
397\r
398 Len += sizeof (IP4_HEAD);\r
399 Ip4->TotalLen = HTONS ((UINT16) Len);\r
400 Ip4->Checksum = (UINT16) (~NetblockChecksum ((UINT8 *) Ip4, sizeof (IP4_HEAD)));\r
401\r
402 return Len + sizeof (ETHER_HEAD);\r
403}\r
404\r
405/**\r
406 Allocate a buffer, then format the message to it. This is a\r
407 help function for the NET_DEBUG_XXX macros. The PrintArg of\r
408 these macros treats the variable length print parameters as a\r
409 single parameter, and pass it to the NetDebugASPrint. For\r
410 example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))\r
411 if extracted to:\r
412\r
413 NetDebugOutput (\r
414 NETDEBUG_LEVEL_TRACE,\r
415 "Tcp",\r
416 __FILE__,\r
417 __LINE__,\r
418 NetDebugASPrint ("State transit to %a\n", Name)\r
419 )\r
420\r
421 @param Format The ASCII format string.\r
422 @param ... The variable length parameter whose format is determined\r
423 by the Format string.\r
424\r
425 @return The buffer containing the formatted message,\r
426 or NULL if failed to allocate memory.\r
427\r
428**/\r
429CHAR8 *\r
430NetDebugASPrint (\r
431 IN CHAR8 *Format,\r
432 ...\r
433 )\r
434{\r
435 VA_LIST Marker;\r
436 CHAR8 *Buf;\r
437\r
438 Buf = (CHAR8 *) AllocatePool (NET_DEBUG_MSG_LEN);\r
439\r
440 if (Buf == NULL) {\r
441 return NULL;\r
442 }\r
443\r
444 VA_START (Marker, Format);\r
445 AsciiVSPrint (Buf, NET_DEBUG_MSG_LEN, Format, Marker);\r
446 VA_END (Marker);\r
447\r
448 return Buf;\r
449}\r
450\r
451/**\r
452 Builds an UDP4 syslog packet and send it using SNP.\r
453\r
454 This function will locate a instance of SNP then send the message through it.\r
455 Because it isn't open the SNP BY_DRIVER, apply caution when using it.\r
456\r
457 @param Level The servity level of the message.\r
458 @param Module The Moudle that generates the log.\r
459 @param File The file that contains the log.\r
460 @param Line The exact line that contains the log.\r
461 @param Message The user message to log.\r
462\r
463 @retval EFI_INVALID_PARAMETER Any input parameter is invalid.\r
464 @retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet\r
465 @retval EFI_SUCCESS The log is discard because that it is more verbose\r
466 than the mNetDebugLevelMax. Or, it has been sent out.\r
467**/\r
468EFI_STATUS\r
469NetDebugOutput (\r
470 IN UINT32 Level,\r
471 IN UINT8 *Module,\r
472 IN UINT8 *File,\r
473 IN UINT32 Line,\r
474 IN UINT8 *Message\r
475 )\r
476{\r
477 CHAR8 *Packet;\r
478 UINT32 Len;\r
479 EFI_STATUS Status;\r
480\r
481 //\r
482 // Check whether the message should be sent out\r
483 //\r
484 if (Message == NULL) {\r
485 return EFI_INVALID_PARAMETER;\r
486 }\r
487\r
488 if (Level > mNetDebugLevelMax) {\r
489 Status = EFI_SUCCESS;\r
490 goto ON_EXIT;\r
491 }\r
492\r
493 //\r
494 // Allocate a maxium of 1024 bytes, the caller should ensure\r
495 // that the message plus the ethernet/ip/udp header is shorter\r
496 // than this\r
497 //\r
498 Packet = (CHAR8 *) AllocatePool (NET_SYSLOG_PACKET_LEN);\r
499\r
500 if (Packet == NULL) {\r
501 Status = EFI_OUT_OF_RESOURCES;\r
502 goto ON_EXIT;\r
503 }\r
504\r
505 //\r
506 // Build the message: Ethernet header + IP header + Udp Header + user data\r
507 //\r
508 Len = SyslogBuildPacket (\r
509 Level,\r
510 Module,\r
511 File,\r
512 Line,\r
513 Message,\r
514 NET_SYSLOG_PACKET_LEN,\r
515 Packet\r
516 );\r
517\r
518 mSyslogPacketSeq++;\r
519 Status = SyslogSendPacket (Packet, Len);\r
520 FreePool (Packet);\r
521\r
522ON_EXIT:\r
523 FreePool (Message);\r
524 return Status;\r
525}\r
526/**\r
527 Return the length of the mask.\r
528\r
529 Return the length of the mask, the correct value is from 0 to 32.\r
530 If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.\r
531 NetMask is in the host byte order.\r
532\r
533 @param[in] NetMask The netmask to get the length from.\r
534\r
535 @return The length of the netmask, IP4_MASK_NUM if the mask is invalid.\r
536\r
537**/\r
538INTN\r
539EFIAPI\r
540NetGetMaskLength (\r
541 IN IP4_ADDR NetMask\r
542 )\r
543{\r
544 INTN Index;\r
545\r
546 for (Index = 0; Index < IP4_MASK_NUM; Index++) {\r
547 if (NetMask == gIp4AllMasks[Index]) {\r
548 break;\r
549 }\r
550 }\r
551\r
552 return Index;\r
553}\r
554\r
555\r
556\r
557/**\r
558 Return the class of the IP address, such as class A, B, C.\r
559 Addr is in host byte order.\r
560\r
561 The address of class A starts with 0.\r
562 If the address belong to class A, return IP4_ADDR_CLASSA.\r
563 The address of class B starts with 10.\r
564 If the address belong to class B, return IP4_ADDR_CLASSB.\r
565 The address of class C starts with 110.\r
566 If the address belong to class C, return IP4_ADDR_CLASSC.\r
567 The address of class D starts with 1110.\r
568 If the address belong to class D, return IP4_ADDR_CLASSD.\r
569 The address of class E starts with 1111.\r
570 If the address belong to class E, return IP4_ADDR_CLASSE.\r
571\r
572\r
573 @param[in] Addr The address to get the class from.\r
574\r
575 @return IP address class, such as IP4_ADDR_CLASSA.\r
576\r
577**/\r
578INTN\r
579EFIAPI\r
580NetGetIpClass (\r
581 IN IP4_ADDR Addr\r
582 )\r
583{\r
584 UINT8 ByteOne;\r
585\r
586 ByteOne = (UINT8) (Addr >> 24);\r
587\r
588 if ((ByteOne & 0x80) == 0) {\r
589 return IP4_ADDR_CLASSA;\r
590\r
591 } else if ((ByteOne & 0xC0) == 0x80) {\r
592 return IP4_ADDR_CLASSB;\r
593\r
594 } else if ((ByteOne & 0xE0) == 0xC0) {\r
595 return IP4_ADDR_CLASSC;\r
596\r
597 } else if ((ByteOne & 0xF0) == 0xE0) {\r
598 return IP4_ADDR_CLASSD;\r
599\r
600 } else {\r
601 return IP4_ADDR_CLASSE;\r
602\r
603 }\r
604}\r
605\r
606\r
607/**\r
608 Check whether the IP is a valid unicast address according to\r
609 the netmask. If NetMask is zero, use the IP address's class to get the default mask.\r
610\r
611 If Ip is 0, IP is not a valid unicast address.\r
612 Class D address is used for multicasting and class E address is reserved for future. If Ip\r
613 belongs to class D or class E, IP is not a valid unicast address.\r
614 If all bits of the host address of IP are 0 or 1, IP is also not a valid unicast address.\r
615\r
616 @param[in] Ip The IP to check against.\r
617 @param[in] NetMask The mask of the IP.\r
618\r
619 @return TRUE if IP is a valid unicast address on the network, otherwise FALSE.\r
620\r
621**/\r
622BOOLEAN\r
623EFIAPI\r
624NetIp4IsUnicast (\r
625 IN IP4_ADDR Ip,\r
626 IN IP4_ADDR NetMask\r
627 )\r
628{\r
629 INTN Class;\r
630\r
631 Class = NetGetIpClass (Ip);\r
632\r
633 if ((Ip == 0) || (Class >= IP4_ADDR_CLASSD)) {\r
634 return FALSE;\r
635 }\r
636\r
637 if (NetMask == 0) {\r
638 NetMask = gIp4AllMasks[Class << 3];\r
639 }\r
640\r
641 if (((Ip &~NetMask) == ~NetMask) || ((Ip &~NetMask) == 0)) {\r
642 return FALSE;\r
643 }\r
644\r
645 return TRUE;\r
646}\r
647\r
648/**\r
649 Check whether the incoming IPv6 address is a valid unicast address.\r
650\r
651 If the address is a multicast address has binary 0xFF at the start, it is not\r
652 a valid unicast address. If the address is unspecified ::, it is not a valid\r
653 unicast address to be assigned to any node. If the address is loopback address\r
654 ::1, it is also not a valid unicast address to be assigned to any physical\r
655 interface.\r
656\r
657 @param[in] Ip6 The IPv6 address to check against.\r
658\r
659 @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.\r
660\r
661**/\r
662BOOLEAN\r
663NetIp6IsValidUnicast (\r
664 IN EFI_IPv6_ADDRESS *Ip6\r
665 )\r
666{\r
667 UINT8 Byte;\r
668 UINT8 Index;\r
669\r
670 if (Ip6->Addr[0] == 0xFF) {\r
671 return FALSE;\r
672 }\r
673\r
674 for (Index = 0; Index < 15; Index++) {\r
675 if (Ip6->Addr[Index] != 0) {\r
676 return TRUE;\r
677 }\r
678 }\r
679\r
680 Byte = Ip6->Addr[Index];\r
681\r
682 if (Byte == 0x0 || Byte == 0x1) {\r
683 return FALSE;\r
684 }\r
685\r
686 return TRUE;\r
687}\r
688\r
689/**\r
690 Check whether the incoming Ipv6 address is the unspecified address or not.\r
691\r
692 @param[in] Ip6 - Ip6 address, in network order.\r
693\r
694 @retval TRUE - Yes, unspecified\r
695 @retval FALSE - No\r
696\r
697**/\r
698BOOLEAN\r
699NetIp6IsUnspecifiedAddr (\r
700 IN EFI_IPv6_ADDRESS *Ip6\r
701 )\r
702{\r
703 UINT8 Index;\r
704\r
705 for (Index = 0; Index < 16; Index++) {\r
706 if (Ip6->Addr[Index] != 0) {\r
707 return FALSE;\r
708 }\r
709 }\r
710\r
711 return TRUE;\r
712}\r
713\r
714/**\r
715 Check whether the incoming Ipv6 address is a link-local address.\r
716\r
717 @param[in] Ip6 - Ip6 address, in network order.\r
718\r
719 @retval TRUE - Yes, link-local address\r
720 @retval FALSE - No\r
721\r
722**/\r
723BOOLEAN\r
724NetIp6IsLinkLocalAddr (\r
725 IN EFI_IPv6_ADDRESS *Ip6\r
726 )\r
727{\r
728 UINT8 Index;\r
729\r
730 ASSERT (Ip6 != NULL);\r
731\r
732 if (Ip6->Addr[0] != 0xFE) {\r
733 return FALSE;\r
734 }\r
735\r
736 if (Ip6->Addr[1] != 0x80) {\r
737 return FALSE;\r
738 }\r
739\r
740 for (Index = 2; Index < 8; Index++) {\r
741 if (Ip6->Addr[Index] != 0) {\r
742 return FALSE;\r
743 }\r
744 }\r
745\r
746 return TRUE;\r
747}\r
748\r
749/**\r
750 Check whether the Ipv6 address1 and address2 are on the connected network.\r
751\r
752 @param[in] Ip1 - Ip6 address1, in network order.\r
753 @param[in] Ip2 - Ip6 address2, in network order.\r
754 @param[in] PrefixLength - The prefix length of the checking net.\r
755\r
756 @retval TRUE - Yes, connected.\r
757 @retval FALSE - No.\r
758\r
759**/\r
760BOOLEAN\r
761NetIp6IsNetEqual (\r
762 EFI_IPv6_ADDRESS *Ip1,\r
763 EFI_IPv6_ADDRESS *Ip2,\r
764 UINT8 PrefixLength\r
765 )\r
766{\r
767 UINT8 Byte;\r
768 UINT8 Bit;\r
769 UINT8 Mask;\r
770\r
771 ASSERT (Ip1 != NULL && Ip2 != NULL);\r
772\r
773 if (PrefixLength == 0) {\r
774 return TRUE;\r
775 }\r
776\r
777 Byte = (UINT8) (PrefixLength / 8);\r
778 Bit = (UINT8) (PrefixLength % 8);\r
779\r
780 if (CompareMem (Ip1, Ip2, Byte) != 0) {\r
781 return FALSE;\r
782 }\r
783\r
784 if (Bit > 0) {\r
785 Mask = (UINT8) (0xFF << (8 - Bit));\r
786\r
787 if ((Ip1->Addr[Byte] & Mask) != (Ip2->Addr[Byte] & Mask)) {\r
788 return FALSE;\r
789 }\r
790 }\r
791\r
792 return TRUE;\r
793}\r
794\r
795\r
796/**\r
797 Switches the endianess of an IPv6 address\r
798\r
799 This function swaps the bytes in a 128-bit IPv6 address to switch the value\r
800 from little endian to big endian or vice versa. The byte swapped value is\r
801 returned.\r
802\r
803 @param Ip6 Points to an IPv6 address\r
804\r
805 @return The byte swapped IPv6 address.\r
806\r
807**/\r
808EFI_IPv6_ADDRESS *\r
809Ip6Swap128 (\r
810 EFI_IPv6_ADDRESS *Ip6\r
811 )\r
812{\r
813 UINT64 High;\r
814 UINT64 Low;\r
815\r
816 CopyMem (&High, Ip6, sizeof (UINT64));\r
817 CopyMem (&Low, &Ip6->Addr[8], sizeof (UINT64));\r
818\r
819 High = SwapBytes64 (High);\r
820 Low = SwapBytes64 (Low);\r
821\r
822 CopyMem (Ip6, &Low, sizeof (UINT64));\r
823 CopyMem (&Ip6->Addr[8], &High, sizeof (UINT64));\r
824\r
825 return Ip6;\r
826}\r
827\r
828/**\r
829 Initialize a random seed using current time.\r
830\r
831 Get current time first. Then initialize a random seed based on some basic\r
832 mathematics operation on the hour, day, minute, second, nanosecond and year\r
833 of the current time.\r
834\r
835 @return The random seed initialized with current time.\r
836\r
837**/\r
838UINT32\r
839EFIAPI\r
840NetRandomInitSeed (\r
841 VOID\r
842 )\r
843{\r
844 EFI_TIME Time;\r
845 UINT32 Seed;\r
846\r
847 gRT->GetTime (&Time, NULL);\r
848 Seed = (~Time.Hour << 24 | Time.Day << 16 | Time.Minute << 8 | Time.Second);\r
849 Seed ^= Time.Nanosecond;\r
850 Seed ^= Time.Year << 7;\r
851\r
852 return Seed;\r
853}\r
854\r
855\r
856/**\r
857 Extract a UINT32 from a byte stream.\r
858\r
859 Copy a UINT32 from a byte stream, then converts it from Network\r
860 byte order to host byte order. Use this function to avoid alignment error.\r
861\r
862 @param[in] Buf The buffer to extract the UINT32.\r
863\r
864 @return The UINT32 extracted.\r
865\r
866**/\r
867UINT32\r
868EFIAPI\r
869NetGetUint32 (\r
870 IN UINT8 *Buf\r
871 )\r
872{\r
873 UINT32 Value;\r
874\r
875 CopyMem (&Value, Buf, sizeof (UINT32));\r
876 return NTOHL (Value);\r
877}\r
878\r
879\r
880/**\r
881 Put a UINT32 to the byte stream in network byte order.\r
882\r
883 Converts a UINT32 from host byte order to network byte order. Then copy it to the\r
884 byte stream.\r
885\r
886 @param[in, out] Buf The buffer to put the UINT32.\r
887 @param[in] Data The data to put.\r
888\r
889**/\r
890VOID\r
891EFIAPI\r
892NetPutUint32 (\r
893 IN OUT UINT8 *Buf,\r
894 IN UINT32 Data\r
895 )\r
896{\r
897 Data = HTONL (Data);\r
898 CopyMem (Buf, &Data, sizeof (UINT32));\r
899}\r
900\r
901\r
902/**\r
903 Remove the first node entry on the list, and return the removed node entry.\r
904\r
905 Removes the first node Entry from a doubly linked list. It is up to the caller of\r
906 this function to release the memory used by the first node if that is required. On\r
907 exit, the removed node is returned.\r
908\r
909 If Head is NULL, then ASSERT().\r
910 If Head was not initialized, then ASSERT().\r
911 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
912 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,\r
913 then ASSERT().\r
914\r
915 @param[in, out] Head The list header.\r
916\r
917 @return The first node entry that is removed from the list, NULL if the list is empty.\r
918\r
919**/\r
920LIST_ENTRY *\r
921EFIAPI\r
922NetListRemoveHead (\r
923 IN OUT LIST_ENTRY *Head\r
924 )\r
925{\r
926 LIST_ENTRY *First;\r
927\r
928 ASSERT (Head != NULL);\r
929\r
930 if (IsListEmpty (Head)) {\r
931 return NULL;\r
932 }\r
933\r
934 First = Head->ForwardLink;\r
935 Head->ForwardLink = First->ForwardLink;\r
936 First->ForwardLink->BackLink = Head;\r
937\r
938 DEBUG_CODE (\r
939 First->ForwardLink = (LIST_ENTRY *) NULL;\r
940 First->BackLink = (LIST_ENTRY *) NULL;\r
941 );\r
942\r
943 return First;\r
944}\r
945\r
946\r
947/**\r
948 Remove the last node entry on the list and and return the removed node entry.\r
949\r
950 Removes the last node entry from a doubly linked list. It is up to the caller of\r
951 this function to release the memory used by the first node if that is required. On\r
952 exit, the removed node is returned.\r
953\r
954 If Head is NULL, then ASSERT().\r
955 If Head was not initialized, then ASSERT().\r
956 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
957 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,\r
958 then ASSERT().\r
959\r
960 @param[in, out] Head The list head.\r
961\r
962 @return The last node entry that is removed from the list, NULL if the list is empty.\r
963\r
964**/\r
965LIST_ENTRY *\r
966EFIAPI\r
967NetListRemoveTail (\r
968 IN OUT LIST_ENTRY *Head\r
969 )\r
970{\r
971 LIST_ENTRY *Last;\r
972\r
973 ASSERT (Head != NULL);\r
974\r
975 if (IsListEmpty (Head)) {\r
976 return NULL;\r
977 }\r
978\r
979 Last = Head->BackLink;\r
980 Head->BackLink = Last->BackLink;\r
981 Last->BackLink->ForwardLink = Head;\r
982\r
983 DEBUG_CODE (\r
984 Last->ForwardLink = (LIST_ENTRY *) NULL;\r
985 Last->BackLink = (LIST_ENTRY *) NULL;\r
986 );\r
987\r
988 return Last;\r
989}\r
990\r
991\r
992/**\r
993 Insert a new node entry after a designated node entry of a doubly linked list.\r
994\r
995 Inserts a new node entry donated by NewEntry after the node entry donated by PrevEntry\r
996 of the doubly linked list.\r
997\r
998 @param[in, out] PrevEntry The previous entry to insert after.\r
999 @param[in, out] NewEntry The new entry to insert.\r
1000\r
1001**/\r
1002VOID\r
1003EFIAPI\r
1004NetListInsertAfter (\r
1005 IN OUT LIST_ENTRY *PrevEntry,\r
1006 IN OUT LIST_ENTRY *NewEntry\r
1007 )\r
1008{\r
1009 NewEntry->BackLink = PrevEntry;\r
1010 NewEntry->ForwardLink = PrevEntry->ForwardLink;\r
1011 PrevEntry->ForwardLink->BackLink = NewEntry;\r
1012 PrevEntry->ForwardLink = NewEntry;\r
1013}\r
1014\r
1015\r
1016/**\r
1017 Insert a new node entry before a designated node entry of a doubly linked list.\r
1018\r
1019 Inserts a new node entry donated by NewEntry after the node entry donated by PostEntry\r
1020 of the doubly linked list.\r
1021\r
1022 @param[in, out] PostEntry The entry to insert before.\r
1023 @param[in, out] NewEntry The new entry to insert.\r
1024\r
1025**/\r
1026VOID\r
1027EFIAPI\r
1028NetListInsertBefore (\r
1029 IN OUT LIST_ENTRY *PostEntry,\r
1030 IN OUT LIST_ENTRY *NewEntry\r
1031 )\r
1032{\r
1033 NewEntry->ForwardLink = PostEntry;\r
1034 NewEntry->BackLink = PostEntry->BackLink;\r
1035 PostEntry->BackLink->ForwardLink = NewEntry;\r
1036 PostEntry->BackLink = NewEntry;\r
1037}\r
1038\r
1039\r
1040/**\r
1041 Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.\r
1042\r
1043 Initialize the forward and backward links of two head nodes donated by Map->Used\r
1044 and Map->Recycled of two doubly linked lists.\r
1045 Initializes the count of the <Key, Value> pairs in the netmap to zero.\r
1046\r
1047 If Map is NULL, then ASSERT().\r
1048 If the address of Map->Used is NULL, then ASSERT().\r
1049 If the address of Map->Recycled is NULl, then ASSERT().\r
1050\r
1051 @param[in, out] Map The netmap to initialize.\r
1052\r
1053**/\r
1054VOID\r
1055EFIAPI\r
1056NetMapInit (\r
1057 IN OUT NET_MAP *Map\r
1058 )\r
1059{\r
1060 ASSERT (Map != NULL);\r
1061\r
1062 InitializeListHead (&Map->Used);\r
1063 InitializeListHead (&Map->Recycled);\r
1064 Map->Count = 0;\r
1065}\r
1066\r
1067\r
1068/**\r
1069 To clean up the netmap, that is, release allocated memories.\r
1070\r
1071 Removes all nodes of the Used doubly linked list and free memory of all related netmap items.\r
1072 Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.\r
1073 The number of the <Key, Value> pairs in the netmap is set to be zero.\r
1074\r
1075 If Map is NULL, then ASSERT().\r
1076\r
1077 @param[in, out] Map The netmap to clean up.\r
1078\r
1079**/\r
1080VOID\r
1081EFIAPI\r
1082NetMapClean (\r
1083 IN OUT NET_MAP *Map\r
1084 )\r
1085{\r
1086 NET_MAP_ITEM *Item;\r
1087 LIST_ENTRY *Entry;\r
1088 LIST_ENTRY *Next;\r
1089\r
1090 ASSERT (Map != NULL);\r
1091\r
1092 NET_LIST_FOR_EACH_SAFE (Entry, Next, &Map->Used) {\r
1093 Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link);\r
1094\r
1095 RemoveEntryList (&Item->Link);\r
1096 Map->Count--;\r
1097\r
1098 gBS->FreePool (Item);\r
1099 }\r
1100\r
1101 ASSERT ((Map->Count == 0) && IsListEmpty (&Map->Used));\r
1102\r
1103 NET_LIST_FOR_EACH_SAFE (Entry, Next, &Map->Recycled) {\r
1104 Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link);\r
1105\r
1106 RemoveEntryList (&Item->Link);\r
1107 gBS->FreePool (Item);\r
1108 }\r
1109\r
1110 ASSERT (IsListEmpty (&Map->Recycled));\r
1111}\r
1112\r
1113\r
1114/**\r
1115 Test whether the netmap is empty and return true if it is.\r
1116\r
1117 If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.\r
1118\r
1119 If Map is NULL, then ASSERT().\r
1120\r
1121\r
1122 @param[in] Map The net map to test.\r
1123\r
1124 @return TRUE if the netmap is empty, otherwise FALSE.\r
1125\r
1126**/\r
1127BOOLEAN\r
1128EFIAPI\r
1129NetMapIsEmpty (\r
1130 IN NET_MAP *Map\r
1131 )\r
1132{\r
1133 ASSERT (Map != NULL);\r
1134 return (BOOLEAN) (Map->Count == 0);\r
1135}\r
1136\r
1137\r
1138/**\r
1139 Return the number of the <Key, Value> pairs in the netmap.\r
1140\r
1141 @param[in] Map The netmap to get the entry number.\r
1142\r
1143 @return The entry number in the netmap.\r
1144\r
1145**/\r
1146UINTN\r
1147EFIAPI\r
1148NetMapGetCount (\r
1149 IN NET_MAP *Map\r
1150 )\r
1151{\r
1152 return Map->Count;\r
1153}\r
1154\r
1155\r
1156/**\r
1157 Return one allocated item.\r
1158\r
1159 If the Recycled doubly linked list of the netmap is empty, it will try to allocate\r
1160 a batch of items if there are enough resources and add corresponding nodes to the begining\r
1161 of the Recycled doubly linked list of the netmap. Otherwise, it will directly remove\r
1162 the fist node entry of the Recycled doubly linked list and return the corresponding item.\r
1163\r
1164 If Map is NULL, then ASSERT().\r
1165\r
1166 @param[in, out] Map The netmap to allocate item for.\r
1167\r
1168 @return The allocated item. If NULL, the\r
1169 allocation failed due to resource limit.\r
1170\r
1171**/\r
1172NET_MAP_ITEM *\r
1173NetMapAllocItem (\r
1174 IN OUT NET_MAP *Map\r
1175 )\r
1176{\r
1177 NET_MAP_ITEM *Item;\r
1178 LIST_ENTRY *Head;\r
1179 UINTN Index;\r
1180\r
1181 ASSERT (Map != NULL);\r
1182\r
1183 Head = &Map->Recycled;\r
1184\r
1185 if (IsListEmpty (Head)) {\r
1186 for (Index = 0; Index < NET_MAP_INCREAMENT; Index++) {\r
1187 Item = AllocatePool (sizeof (NET_MAP_ITEM));\r
1188\r
1189 if (Item == NULL) {\r
1190 if (Index == 0) {\r
1191 return NULL;\r
1192 }\r
1193\r
1194 break;\r
1195 }\r
1196\r
1197 InsertHeadList (Head, &Item->Link);\r
1198 }\r
1199 }\r
1200\r
1201 Item = NET_LIST_HEAD (Head, NET_MAP_ITEM, Link);\r
1202 NetListRemoveHead (Head);\r
1203\r
1204 return Item;\r
1205}\r
1206\r
1207\r
1208/**\r
1209 Allocate an item to save the <Key, Value> pair to the head of the netmap.\r
1210\r
1211 Allocate an item to save the <Key, Value> pair and add corresponding node entry\r
1212 to the beginning of the Used doubly linked list. The number of the <Key, Value>\r
1213 pairs in the netmap increase by 1.\r
1214\r
1215 If Map is NULL, then ASSERT().\r
1216\r
1217 @param[in, out] Map The netmap to insert into.\r
1218 @param[in] Key The user's key.\r
1219 @param[in] Value The user's value for the key.\r
1220\r
1221 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.\r
1222 @retval EFI_SUCCESS The item is inserted to the head.\r
1223\r
1224**/\r
1225EFI_STATUS\r
1226EFIAPI\r
1227NetMapInsertHead (\r
1228 IN OUT NET_MAP *Map,\r
1229 IN VOID *Key,\r
1230 IN VOID *Value OPTIONAL\r
1231 )\r
1232{\r
1233 NET_MAP_ITEM *Item;\r
1234\r
1235 ASSERT (Map != NULL);\r
1236\r
1237 Item = NetMapAllocItem (Map);\r
1238\r
1239 if (Item == NULL) {\r
1240 return EFI_OUT_OF_RESOURCES;\r
1241 }\r
1242\r
1243 Item->Key = Key;\r
1244 Item->Value = Value;\r
1245 InsertHeadList (&Map->Used, &Item->Link);\r
1246\r
1247 Map->Count++;\r
1248 return EFI_SUCCESS;\r
1249}\r
1250\r
1251\r
1252/**\r
1253 Allocate an item to save the <Key, Value> pair to the tail of the netmap.\r
1254\r
1255 Allocate an item to save the <Key, Value> pair and add corresponding node entry\r
1256 to the tail of the Used doubly linked list. The number of the <Key, Value>\r
1257 pairs in the netmap increase by 1.\r
1258\r
1259 If Map is NULL, then ASSERT().\r
1260\r
1261 @param[in, out] Map The netmap to insert into.\r
1262 @param[in] Key The user's key.\r
1263 @param[in] Value The user's value for the key.\r
1264\r
1265 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.\r
1266 @retval EFI_SUCCESS The item is inserted to the tail.\r
1267\r
1268**/\r
1269EFI_STATUS\r
1270EFIAPI\r
1271NetMapInsertTail (\r
1272 IN OUT NET_MAP *Map,\r
1273 IN VOID *Key,\r
1274 IN VOID *Value OPTIONAL\r
1275 )\r
1276{\r
1277 NET_MAP_ITEM *Item;\r
1278\r
1279 ASSERT (Map != NULL);\r
1280\r
1281 Item = NetMapAllocItem (Map);\r
1282\r
1283 if (Item == NULL) {\r
1284 return EFI_OUT_OF_RESOURCES;\r
1285 }\r
1286\r
1287 Item->Key = Key;\r
1288 Item->Value = Value;\r
1289 InsertTailList (&Map->Used, &Item->Link);\r
1290\r
1291 Map->Count++;\r
1292\r
1293 return EFI_SUCCESS;\r
1294}\r
1295\r
1296\r
1297/**\r
1298 Check whether the item is in the Map and return TRUE if it is.\r
1299\r
1300 @param[in] Map The netmap to search within.\r
1301 @param[in] Item The item to search.\r
1302\r
1303 @return TRUE if the item is in the netmap, otherwise FALSE.\r
1304\r
1305**/\r
1306BOOLEAN\r
1307NetItemInMap (\r
1308 IN NET_MAP *Map,\r
1309 IN NET_MAP_ITEM *Item\r
1310 )\r
1311{\r
1312 LIST_ENTRY *ListEntry;\r
1313\r
1314 NET_LIST_FOR_EACH (ListEntry, &Map->Used) {\r
1315 if (ListEntry == &Item->Link) {\r
1316 return TRUE;\r
1317 }\r
1318 }\r
1319\r
1320 return FALSE;\r
1321}\r
1322\r
1323\r
1324/**\r
1325 Find the key in the netmap and returns the point to the item contains the Key.\r
1326\r
1327 Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every\r
1328 item with the key to search. It returns the point to the item contains the Key if found.\r
1329\r
1330 If Map is NULL, then ASSERT().\r
1331\r
1332 @param[in] Map The netmap to search within.\r
1333 @param[in] Key The key to search.\r
1334\r
1335 @return The point to the item contains the Key, or NULL if Key isn't in the map.\r
1336\r
1337**/\r
1338NET_MAP_ITEM *\r
1339EFIAPI\r
1340NetMapFindKey (\r
1341 IN NET_MAP *Map,\r
1342 IN VOID *Key\r
1343 )\r
1344{\r
1345 LIST_ENTRY *Entry;\r
1346 NET_MAP_ITEM *Item;\r
1347\r
1348 ASSERT (Map != NULL);\r
1349\r
1350 NET_LIST_FOR_EACH (Entry, &Map->Used) {\r
1351 Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link);\r
1352\r
1353 if (Item->Key == Key) {\r
1354 return Item;\r
1355 }\r
1356 }\r
1357\r
1358 return NULL;\r
1359}\r
1360\r
1361\r
1362/**\r
1363 Remove the node entry of the item from the netmap and return the key of the removed item.\r
1364\r
1365 Remove the node entry of the item from the Used doubly linked list of the netmap.\r
1366 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node\r
1367 entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,\r
1368 Value will point to the value of the item. It returns the key of the removed item.\r
1369\r
1370 If Map is NULL, then ASSERT().\r
1371 If Item is NULL, then ASSERT().\r
1372 if item in not in the netmap, then ASSERT().\r
1373\r
1374 @param[in, out] Map The netmap to remove the item from.\r
1375 @param[in, out] Item The item to remove.\r
1376 @param[out] Value The variable to receive the value if not NULL.\r
1377\r
1378 @return The key of the removed item.\r
1379\r
1380**/\r
1381VOID *\r
1382EFIAPI\r
1383NetMapRemoveItem (\r
1384 IN OUT NET_MAP *Map,\r
1385 IN OUT NET_MAP_ITEM *Item,\r
1386 OUT VOID **Value OPTIONAL\r
1387 )\r
1388{\r
1389 ASSERT ((Map != NULL) && (Item != NULL));\r
1390 ASSERT (NetItemInMap (Map, Item));\r
1391\r
1392 RemoveEntryList (&Item->Link);\r
1393 Map->Count--;\r
1394 InsertHeadList (&Map->Recycled, &Item->Link);\r
1395\r
1396 if (Value != NULL) {\r
1397 *Value = Item->Value;\r
1398 }\r
1399\r
1400 return Item->Key;\r
1401}\r
1402\r
1403\r
1404/**\r
1405 Remove the first node entry on the netmap and return the key of the removed item.\r
1406\r
1407 Remove the first node entry from the Used doubly linked list of the netmap.\r
1408 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node\r
1409 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,\r
1410 parameter Value will point to the value of the item. It returns the key of the removed item.\r
1411\r
1412 If Map is NULL, then ASSERT().\r
1413 If the Used doubly linked list is empty, then ASSERT().\r
1414\r
1415 @param[in, out] Map The netmap to remove the head from.\r
1416 @param[out] Value The variable to receive the value if not NULL.\r
1417\r
1418 @return The key of the item removed.\r
1419\r
1420**/\r
1421VOID *\r
1422EFIAPI\r
1423NetMapRemoveHead (\r
1424 IN OUT NET_MAP *Map,\r
1425 OUT VOID **Value OPTIONAL\r
1426 )\r
1427{\r
1428 NET_MAP_ITEM *Item;\r
1429\r
1430 //\r
1431 // Often, it indicates a programming error to remove\r
1432 // the first entry in an empty list\r
1433 //\r
1434 ASSERT (Map && !IsListEmpty (&Map->Used));\r
1435\r
1436 Item = NET_LIST_HEAD (&Map->Used, NET_MAP_ITEM, Link);\r
1437 RemoveEntryList (&Item->Link);\r
1438 Map->Count--;\r
1439 InsertHeadList (&Map->Recycled, &Item->Link);\r
1440\r
1441 if (Value != NULL) {\r
1442 *Value = Item->Value;\r
1443 }\r
1444\r
1445 return Item->Key;\r
1446}\r
1447\r
1448\r
1449/**\r
1450 Remove the last node entry on the netmap and return the key of the removed item.\r
1451\r
1452 Remove the last node entry from the Used doubly linked list of the netmap.\r
1453 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node\r
1454 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,\r
1455 parameter Value will point to the value of the item. It returns the key of the removed item.\r
1456\r
1457 If Map is NULL, then ASSERT().\r
1458 If the Used doubly linked list is empty, then ASSERT().\r
1459\r
1460 @param[in, out] Map The netmap to remove the tail from.\r
1461 @param[out] Value The variable to receive the value if not NULL.\r
1462\r
1463 @return The key of the item removed.\r
1464\r
1465**/\r
1466VOID *\r
1467EFIAPI\r
1468NetMapRemoveTail (\r
1469 IN OUT NET_MAP *Map,\r
1470 OUT VOID **Value OPTIONAL\r
1471 )\r
1472{\r
1473 NET_MAP_ITEM *Item;\r
1474\r
1475 //\r
1476 // Often, it indicates a programming error to remove\r
1477 // the last entry in an empty list\r
1478 //\r
1479 ASSERT (Map && !IsListEmpty (&Map->Used));\r
1480\r
1481 Item = NET_LIST_TAIL (&Map->Used, NET_MAP_ITEM, Link);\r
1482 RemoveEntryList (&Item->Link);\r
1483 Map->Count--;\r
1484 InsertHeadList (&Map->Recycled, &Item->Link);\r
1485\r
1486 if (Value != NULL) {\r
1487 *Value = Item->Value;\r
1488 }\r
1489\r
1490 return Item->Key;\r
1491}\r
1492\r
1493\r
1494/**\r
1495 Iterate through the netmap and call CallBack for each item.\r
1496\r
1497 It will contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break\r
1498 from the loop. It returns the CallBack's last return value. This function is\r
1499 delete safe for the current item.\r
1500\r
1501 If Map is NULL, then ASSERT().\r
1502 If CallBack is NULL, then ASSERT().\r
1503\r
1504 @param[in] Map The Map to iterate through.\r
1505 @param[in] CallBack The callback function to call for each item.\r
1506 @param[in] Arg The opaque parameter to the callback.\r
1507\r
1508 @retval EFI_SUCCESS There is no item in the netmap or CallBack for each item\r
1509 return EFI_SUCCESS.\r
1510 @retval Others It returns the CallBack's last return value.\r
1511\r
1512**/\r
1513EFI_STATUS\r
1514EFIAPI\r
1515NetMapIterate (\r
1516 IN NET_MAP *Map,\r
1517 IN NET_MAP_CALLBACK CallBack,\r
1518 IN VOID *Arg\r
1519 )\r
1520{\r
1521\r
1522 LIST_ENTRY *Entry;\r
1523 LIST_ENTRY *Next;\r
1524 LIST_ENTRY *Head;\r
1525 NET_MAP_ITEM *Item;\r
1526 EFI_STATUS Result;\r
1527\r
1528 ASSERT ((Map != NULL) && (CallBack != NULL));\r
1529\r
1530 Head = &Map->Used;\r
1531\r
1532 if (IsListEmpty (Head)) {\r
1533 return EFI_SUCCESS;\r
1534 }\r
1535\r
1536 NET_LIST_FOR_EACH_SAFE (Entry, Next, Head) {\r
1537 Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link);\r
1538 Result = CallBack (Map, Item, Arg);\r
1539\r
1540 if (EFI_ERROR (Result)) {\r
1541 return Result;\r
1542 }\r
1543 }\r
1544\r
1545 return EFI_SUCCESS;\r
1546}\r
1547\r
1548\r
1549/**\r
1550 This is the default unload handle for all the network drivers.\r
1551\r
1552 Disconnect the driver specified by ImageHandle from all the devices in the handle database.\r
1553 Uninstall all the protocols installed in the driver entry point.\r
1554\r
1555 @param[in] ImageHandle The drivers' driver image.\r
1556\r
1557 @retval EFI_SUCCESS The image is unloaded.\r
1558 @retval Others Failed to unload the image.\r
1559\r
1560**/\r
1561EFI_STATUS\r
1562EFIAPI\r
1563NetLibDefaultUnload (\r
1564 IN EFI_HANDLE ImageHandle\r
1565 )\r
1566{\r
1567 EFI_STATUS Status;\r
1568 EFI_HANDLE *DeviceHandleBuffer;\r
1569 UINTN DeviceHandleCount;\r
1570 UINTN Index;\r
1571 EFI_DRIVER_BINDING_PROTOCOL *DriverBinding;\r
1572 EFI_COMPONENT_NAME_PROTOCOL *ComponentName;\r
1573 EFI_COMPONENT_NAME2_PROTOCOL *ComponentName2;\r
1574\r
1575 //\r
1576 // Get the list of all the handles in the handle database.\r
1577 // If there is an error getting the list, then the unload\r
1578 // operation fails.\r
1579 //\r
1580 Status = gBS->LocateHandleBuffer (\r
1581 AllHandles,\r
1582 NULL,\r
1583 NULL,\r
1584 &DeviceHandleCount,\r
1585 &DeviceHandleBuffer\r
1586 );\r
1587\r
1588 if (EFI_ERROR (Status)) {\r
1589 return Status;\r
1590 }\r
1591\r
1592 //\r
1593 // Disconnect the driver specified by ImageHandle from all\r
1594 // the devices in the handle database.\r
1595 //\r
1596 for (Index = 0; Index < DeviceHandleCount; Index++) {\r
1597 Status = gBS->DisconnectController (\r
1598 DeviceHandleBuffer[Index],\r
1599 ImageHandle,\r
1600 NULL\r
1601 );\r
1602 }\r
1603\r
1604 //\r
1605 // Uninstall all the protocols installed in the driver entry point\r
1606 //\r
1607 for (Index = 0; Index < DeviceHandleCount; Index++) {\r
1608 Status = gBS->HandleProtocol (\r
1609 DeviceHandleBuffer[Index],\r
1610 &gEfiDriverBindingProtocolGuid,\r
1611 (VOID **) &DriverBinding\r
1612 );\r
1613\r
1614 if (EFI_ERROR (Status)) {\r
1615 continue;\r
1616 }\r
1617\r
1618 if (DriverBinding->ImageHandle != ImageHandle) {\r
1619 continue;\r
1620 }\r
1621\r
1622 gBS->UninstallProtocolInterface (\r
1623 ImageHandle,\r
1624 &gEfiDriverBindingProtocolGuid,\r
1625 DriverBinding\r
1626 );\r
1627 Status = gBS->HandleProtocol (\r
1628 DeviceHandleBuffer[Index],\r
1629 &gEfiComponentNameProtocolGuid,\r
1630 (VOID **) &ComponentName\r
1631 );\r
1632 if (!EFI_ERROR (Status)) {\r
1633 gBS->UninstallProtocolInterface (\r
1634 ImageHandle,\r
1635 &gEfiComponentNameProtocolGuid,\r
1636 ComponentName\r
1637 );\r
1638 }\r
1639\r
1640 Status = gBS->HandleProtocol (\r
1641 DeviceHandleBuffer[Index],\r
1642 &gEfiComponentName2ProtocolGuid,\r
1643 (VOID **) &ComponentName2\r
1644 );\r
1645 if (!EFI_ERROR (Status)) {\r
1646 gBS->UninstallProtocolInterface (\r
1647 ImageHandle,\r
1648 &gEfiComponentName2ProtocolGuid,\r
1649 ComponentName2\r
1650 );\r
1651 }\r
1652 }\r
1653\r
1654 //\r
1655 // Free the buffer containing the list of handles from the handle database\r
1656 //\r
1657 if (DeviceHandleBuffer != NULL) {\r
1658 gBS->FreePool (DeviceHandleBuffer);\r
1659 }\r
1660\r
1661 return EFI_SUCCESS;\r
1662}\r
1663\r
1664\r
1665\r
1666/**\r
1667 Create a child of the service that is identified by ServiceBindingGuid.\r
1668\r
1669 Get the ServiceBinding Protocol first, then use it to create a child.\r
1670\r
1671 If ServiceBindingGuid is NULL, then ASSERT().\r
1672 If ChildHandle is NULL, then ASSERT().\r
1673\r
1674 @param[in] Controller The controller which has the service installed.\r
1675 @param[in] Image The image handle used to open service.\r
1676 @param[in] ServiceBindingGuid The service's Guid.\r
1677 @param[in, out] ChildHandle The handle to receive the create child.\r
1678\r
1679 @retval EFI_SUCCESS The child is successfully created.\r
1680 @retval Others Failed to create the child.\r
1681\r
1682**/\r
1683EFI_STATUS\r
1684EFIAPI\r
1685NetLibCreateServiceChild (\r
1686 IN EFI_HANDLE Controller,\r
1687 IN EFI_HANDLE Image,\r
1688 IN EFI_GUID *ServiceBindingGuid,\r
1689 IN OUT EFI_HANDLE *ChildHandle\r
1690 )\r
1691{\r
1692 EFI_STATUS Status;\r
1693 EFI_SERVICE_BINDING_PROTOCOL *Service;\r
1694\r
1695\r
1696 ASSERT ((ServiceBindingGuid != NULL) && (ChildHandle != NULL));\r
1697\r
1698 //\r
1699 // Get the ServiceBinding Protocol\r
1700 //\r
1701 Status = gBS->OpenProtocol (\r
1702 Controller,\r
1703 ServiceBindingGuid,\r
1704 (VOID **) &Service,\r
1705 Image,\r
1706 Controller,\r
1707 EFI_OPEN_PROTOCOL_GET_PROTOCOL\r
1708 );\r
1709\r
1710 if (EFI_ERROR (Status)) {\r
1711 return Status;\r
1712 }\r
1713\r
1714 //\r
1715 // Create a child\r
1716 //\r
1717 Status = Service->CreateChild (Service, ChildHandle);\r
1718 return Status;\r
1719}\r
1720\r
1721\r
1722/**\r
1723 Destory a child of the service that is identified by ServiceBindingGuid.\r
1724\r
1725 Get the ServiceBinding Protocol first, then use it to destroy a child.\r
1726\r
1727 If ServiceBindingGuid is NULL, then ASSERT().\r
1728\r
1729 @param[in] Controller The controller which has the service installed.\r
1730 @param[in] Image The image handle used to open service.\r
1731 @param[in] ServiceBindingGuid The service's Guid.\r
1732 @param[in] ChildHandle The child to destory.\r
1733\r
1734 @retval EFI_SUCCESS The child is successfully destoried.\r
1735 @retval Others Failed to destory the child.\r
1736\r
1737**/\r
1738EFI_STATUS\r
1739EFIAPI\r
1740NetLibDestroyServiceChild (\r
1741 IN EFI_HANDLE Controller,\r
1742 IN EFI_HANDLE Image,\r
1743 IN EFI_GUID *ServiceBindingGuid,\r
1744 IN EFI_HANDLE ChildHandle\r
1745 )\r
1746{\r
1747 EFI_STATUS Status;\r
1748 EFI_SERVICE_BINDING_PROTOCOL *Service;\r
1749\r
1750 ASSERT (ServiceBindingGuid != NULL);\r
1751\r
1752 //\r
1753 // Get the ServiceBinding Protocol\r
1754 //\r
1755 Status = gBS->OpenProtocol (\r
1756 Controller,\r
1757 ServiceBindingGuid,\r
1758 (VOID **) &Service,\r
1759 Image,\r
1760 Controller,\r
1761 EFI_OPEN_PROTOCOL_GET_PROTOCOL\r
1762 );\r
1763\r
1764 if (EFI_ERROR (Status)) {\r
1765 return Status;\r
1766 }\r
1767\r
1768 //\r
1769 // destory the child\r
1770 //\r
1771 Status = Service->DestroyChild (Service, ChildHandle);\r
1772 return Status;\r
1773}\r
1774\r
1775\r
1776/**\r
1777 Convert the mac address of the simple network protocol installed on\r
1778 SnpHandle to a unicode string. Callers are responsible for freeing the\r
1779 string storage.\r
1780\r
1781 Get the mac address of the Simple Network protocol from the SnpHandle. Then convert\r
1782 the mac address into a unicode string. It takes 2 unicode characters to represent \r
1783 a 1 byte binary buffer. Plus one unicode character for the null-terminator.\r
1784\r
1785\r
1786 @param[in] SnpHandle The handle where the simple network protocol is\r
1787 installed on.\r
1788 @param[in] ImageHandle The image handle used to act as the agent handle to\r
1789 get the simple network protocol.\r
1790 @param[out] MacString The pointer to store the address of the string\r
1791 representation of the mac address.\r
1792\r
1793 @retval EFI_SUCCESS Convert the mac address a unicode string successfully.\r
1794 @retval EFI_OUT_OF_RESOURCES There are not enough memory resource.\r
1795 @retval Others Failed to open the simple network protocol.\r
1796\r
1797**/\r
1798EFI_STATUS\r
1799EFIAPI\r
1800NetLibGetMacString (\r
1801 IN EFI_HANDLE SnpHandle,\r
1802 IN EFI_HANDLE ImageHandle,\r
1803 OUT CHAR16 **MacString\r
1804 )\r
1805{\r
1806 EFI_STATUS Status;\r
1807 EFI_SIMPLE_NETWORK_PROTOCOL *Snp;\r
1808 EFI_SIMPLE_NETWORK_MODE *Mode;\r
1809 CHAR16 *MacAddress;\r
1810 UINT8 *HwAddress;\r
1811 UINTN Index;\r
1812\r
1813 *MacString = NULL;\r
1814\r
1815 //\r
1816 // Get the Simple Network protocol from the SnpHandle.\r
1817 //\r
1818 Status = gBS->OpenProtocol (\r
1819 SnpHandle,\r
1820 &gEfiSimpleNetworkProtocolGuid,\r
1821 (VOID **) &Snp,\r
1822 ImageHandle,\r
1823 SnpHandle,\r
1824 EFI_OPEN_PROTOCOL_GET_PROTOCOL\r
1825 );\r
1826 if (EFI_ERROR (Status)) {\r
1827 return Status;\r
1828 }\r
1829\r
1830 Mode = Snp->Mode;\r
1831\r
1832 //\r
1833 // It takes 2 unicode characters to represent a 1 byte binary buffer.\r
1834 // Plus one unicode character for the null-terminator.\r
1835 //\r
1836 MacAddress = AllocatePool ((2 * Mode->HwAddressSize + 1) * sizeof (CHAR16));\r
1837 if (MacAddress == NULL) {\r
1838 return EFI_OUT_OF_RESOURCES;\r
1839 }\r
1840 *MacString = MacAddress;\r
1841\r
1842 //\r
1843 // Convert the mac address into a unicode string.\r
1844 //\r
1845 HwAddress = Mode->CurrentAddress.Addr;\r
1846 for (Index = 0; Index < Mode->HwAddressSize; Index++) {\r
1847 MacAddress += UnicodeValueToString (MacAddress, PREFIX_ZERO | RADIX_HEX, *(HwAddress++), 2);\r
1848 }\r
1849\r
1850 MacAddress[Mode->HwAddressSize * 2] = L'\0';\r
1851\r
1852\r
1853 return EFI_SUCCESS;\r
1854}\r
1855\r
1856/**\r
1857 Check the default address used by the IPv4 driver is static or dynamic (acquired\r
1858 from DHCP).\r
1859\r
1860 If the controller handle does not have the NIC Ip4 Config Protocol installed, the\r
1861 default address is static. If the EFI variable to save the configuration is not found,\r
1862 the default address is static. Otherwise, get the result from the EFI variable which\r
1863 saving the configuration.\r
1864\r
1865 @param[in] Controller The controller handle which has the NIC Ip4 Config Protocol\r
1866 relative with the default address to judge.\r
1867\r
1868 @retval TRUE If the default address is static.\r
1869 @retval FALSE If the default address is acquired from DHCP.\r
1870\r
1871**/\r
1872BOOLEAN\r
1873NetLibDefaultAddressIsStatic (\r
1874 IN EFI_HANDLE Controller\r
1875 )\r
1876{\r
1877 EFI_STATUS Status;\r
1878 EFI_HII_CONFIG_ROUTING_PROTOCOL *HiiConfigRouting;\r
1879 UINTN Len;\r
1880 NIC_IP4_CONFIG_INFO *ConfigInfo;\r
1881 BOOLEAN IsStatic;\r
1882 EFI_STRING ConfigHdr;\r
1883 EFI_STRING ConfigResp;\r
1884 EFI_STRING AccessProgress;\r
1885 EFI_STRING AccessResults;\r
1886 EFI_STRING String;\r
1887\r
1888 ConfigInfo = NULL;\r
1889 ConfigHdr = NULL;\r
1890 ConfigResp = NULL;\r
1891 AccessProgress = NULL;\r
1892 AccessResults = NULL;\r
1893 IsStatic = TRUE;\r
1894\r
1895 Status = gBS->LocateProtocol (\r
1896 &gEfiHiiConfigRoutingProtocolGuid,\r
1897 NULL,\r
1898 (VOID **) &HiiConfigRouting\r
1899 );\r
1900 if (EFI_ERROR (Status)) {\r
1901 return TRUE;\r
1902 }\r
1903\r
1904 //\r
1905 // Construct config request string header\r
1906 //\r
1907 ConfigHdr = HiiConstructConfigHdr (&gEfiNicIp4ConfigVariableGuid, EFI_NIC_IP4_CONFIG_VARIABLE, Controller);\r
1908 if (ConfigHdr == NULL) {\r
1909 return TRUE;\r
1910 }\r
1911\r
1912 Len = StrLen (ConfigHdr);\r
1913 ConfigResp = AllocateZeroPool ((Len + NIC_ITEM_CONFIG_SIZE * 2 + 100) * sizeof (CHAR16));\r
1914 if (ConfigResp == NULL) {\r
1915 goto ON_EXIT;\r
1916 }\r
1917 StrCpy (ConfigResp, ConfigHdr);\r
1918\r
1919 String = ConfigResp + Len;\r
1920 UnicodeSPrint (\r
1921 String,\r
1922 (8 + 4 + 7 + 4 + 1) * sizeof (CHAR16),\r
1923 L"&OFFSET=%04X&WIDTH=%04X",\r
1924 OFFSET_OF (NIC_IP4_CONFIG_INFO, Source),\r
1925 sizeof (UINT32)\r
1926 );\r
1927\r
1928 Status = HiiConfigRouting->ExtractConfig (\r
1929 HiiConfigRouting,\r
1930 ConfigResp,\r
1931 &AccessProgress,\r
1932 &AccessResults\r
1933 );\r
1934 if (EFI_ERROR (Status)) {\r
1935 goto ON_EXIT;\r
1936 }\r
1937\r
1938 ConfigInfo = AllocateZeroPool (sizeof (NIC_ITEM_CONFIG_SIZE));\r
1939 if (ConfigInfo == NULL) {\r
1940 goto ON_EXIT;\r
1941 }\r
1942\r
1943 ConfigInfo->Source = IP4_CONFIG_SOURCE_STATIC;\r
1944 Len = NIC_ITEM_CONFIG_SIZE;\r
1945 Status = HiiConfigRouting->ConfigToBlock (\r
1946 HiiConfigRouting,\r
1947 AccessResults,\r
1948 (UINT8 *) ConfigInfo,\r
1949 &Len,\r
1950 &AccessProgress\r
1951 );\r
1952 if (EFI_ERROR (Status)) {\r
1953 goto ON_EXIT;\r
1954 }\r
1955\r
1956 IsStatic = (BOOLEAN) (ConfigInfo->Source == IP4_CONFIG_SOURCE_STATIC);\r
1957\r
1958ON_EXIT:\r
1959\r
1960 if (AccessResults != NULL) {\r
1961 FreePool (AccessResults);\r
1962 }\r
1963 if (ConfigInfo != NULL) {\r
1964 FreePool (ConfigInfo);\r
1965 }\r
1966 if (ConfigResp != NULL) {\r
1967 FreePool (ConfigResp);\r
1968 }\r
1969 if (ConfigHdr != NULL) {\r
1970 FreePool (ConfigHdr);\r
1971 }\r
1972\r
1973 return IsStatic;\r
1974}\r
1975\r
1976/**\r
1977 Create an IPv4 device path node.\r
1978\r
1979 The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.\r
1980 The header subtype of IPv4 device path node is MSG_IPv4_DP.\r
1981 The length of the IPv4 device path node in bytes is 19.\r
1982 Get other info from parameters to make up the whole IPv4 device path node.\r
1983\r
1984 @param[in, out] Node Pointer to the IPv4 device path node.\r
1985 @param[in] Controller The controller handle.\r
1986 @param[in] LocalIp The local IPv4 address.\r
1987 @param[in] LocalPort The local port.\r
1988 @param[in] RemoteIp The remote IPv4 address.\r
1989 @param[in] RemotePort The remote port.\r
1990 @param[in] Protocol The protocol type in the IP header.\r
1991 @param[in] UseDefaultAddress Whether this instance is using default address or not.\r
1992\r
1993**/\r
1994VOID\r
1995EFIAPI\r
1996NetLibCreateIPv4DPathNode (\r
1997 IN OUT IPv4_DEVICE_PATH *Node,\r
1998 IN EFI_HANDLE Controller,\r
1999 IN IP4_ADDR LocalIp,\r
2000 IN UINT16 LocalPort,\r
2001 IN IP4_ADDR RemoteIp,\r
2002 IN UINT16 RemotePort,\r
2003 IN UINT16 Protocol,\r
2004 IN BOOLEAN UseDefaultAddress\r
2005 )\r
2006{\r
2007 Node->Header.Type = MESSAGING_DEVICE_PATH;\r
2008 Node->Header.SubType = MSG_IPv4_DP;\r
2009 SetDevicePathNodeLength (&Node->Header, 19);\r
2010\r
2011 CopyMem (&Node->LocalIpAddress, &LocalIp, sizeof (EFI_IPv4_ADDRESS));\r
2012 CopyMem (&Node->RemoteIpAddress, &RemoteIp, sizeof (EFI_IPv4_ADDRESS));\r
2013\r
2014 Node->LocalPort = LocalPort;\r
2015 Node->RemotePort = RemotePort;\r
2016\r
2017 Node->Protocol = Protocol;\r
2018\r
2019 if (!UseDefaultAddress) {\r
2020 Node->StaticIpAddress = TRUE;\r
2021 } else {\r
2022 Node->StaticIpAddress = NetLibDefaultAddressIsStatic (Controller);\r
2023 }\r
2024}\r
2025\r
2026/**\r
2027 Create an IPv6 device path node.\r
2028\r
2029 The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.\r
2030 The header subtype of IPv6 device path node is MSG_IPv6_DP.\r
2031 Get other info from parameters to make up the whole IPv6 device path node.\r
2032\r
2033 @param[in, out] Node Pointer to the IPv6 device path node.\r
2034 @param[in] Controller The controller handle.\r
2035 @param[in] LocalIp The local IPv6 address.\r
2036 @param[in] LocalPort The local port.\r
2037 @param[in] RemoteIp The remote IPv6 address.\r
2038 @param[in] RemotePort The remote port.\r
2039 @param[in] Protocol The protocol type in the IP header.\r
2040\r
2041**/\r
2042VOID\r
2043EFIAPI\r
2044NetLibCreateIPv6DPathNode (\r
2045 IN OUT IPv6_DEVICE_PATH *Node,\r
2046 IN EFI_HANDLE Controller,\r
2047 IN EFI_IPv6_ADDRESS *LocalIp,\r
2048 IN UINT16 LocalPort,\r
2049 IN EFI_IPv6_ADDRESS *RemoteIp,\r
2050 IN UINT16 RemotePort,\r
2051 IN UINT16 Protocol\r
2052 )\r
2053{\r
2054 Node->Header.Type = MESSAGING_DEVICE_PATH;\r
2055 Node->Header.SubType = MSG_IPv6_DP;\r
2056 SetDevicePathNodeLength (&Node->Header, sizeof (IPv6_DEVICE_PATH));\r
2057\r
2058 CopyMem (&Node->LocalIpAddress, LocalIp, sizeof (EFI_IPv6_ADDRESS));\r
2059 CopyMem (&Node->RemoteIpAddress, RemoteIp, sizeof (EFI_IPv6_ADDRESS));\r
2060\r
2061 Node->LocalPort = LocalPort;\r
2062 Node->RemotePort = RemotePort;\r
2063\r
2064 Node->Protocol = Protocol;\r
2065 Node->StaticIpAddress = FALSE;\r
2066}\r
2067\r
2068/**\r
2069 Find the UNDI/SNP handle from controller and protocol GUID.\r
2070\r
2071 For example, IP will open a MNP child to transmit/receive\r
2072 packets, when MNP is stopped, IP should also be stopped. IP\r
2073 needs to find its own private data which is related the IP's\r
2074 service binding instance that is install on UNDI/SNP handle.\r
2075 Now, the controller is either a MNP or ARP child handle. But\r
2076 IP opens these handle BY_DRIVER, use that info, we can get the\r
2077 UNDI/SNP handle.\r
2078\r
2079 @param[in] Controller Then protocol handle to check.\r
2080 @param[in] ProtocolGuid The protocol that is related with the handle.\r
2081\r
2082 @return The UNDI/SNP handle or NULL for errors.\r
2083\r
2084**/\r
2085EFI_HANDLE\r
2086EFIAPI\r
2087NetLibGetNicHandle (\r
2088 IN EFI_HANDLE Controller,\r
2089 IN EFI_GUID *ProtocolGuid\r
2090 )\r
2091{\r
2092 EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenBuffer;\r
2093 EFI_HANDLE Handle;\r
2094 EFI_STATUS Status;\r
2095 UINTN OpenCount;\r
2096 UINTN Index;\r
2097\r
2098 Status = gBS->OpenProtocolInformation (\r
2099 Controller,\r
2100 ProtocolGuid,\r
2101 &OpenBuffer,\r
2102 &OpenCount\r
2103 );\r
2104\r
2105 if (EFI_ERROR (Status)) {\r
2106 return NULL;\r
2107 }\r
2108\r
2109 Handle = NULL;\r
2110\r
2111 for (Index = 0; Index < OpenCount; Index++) {\r
2112 if (OpenBuffer[Index].Attributes & EFI_OPEN_PROTOCOL_BY_DRIVER) {\r
2113 Handle = OpenBuffer[Index].ControllerHandle;\r
2114 break;\r
2115 }\r
2116 }\r
2117\r
2118 gBS->FreePool (OpenBuffer);\r
2119 return Handle;\r
2120}\r