]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - MdePkg/Include/Library/BaseLib.h
MdePkg/BaseLib: Add bit field population calculating methods
[mirror_edk2.git] / MdePkg / Include / Library / BaseLib.h
... / ...
CommitLineData
1/** @file\r
2 Provides string functions, linked list functions, math functions, synchronization\r
3 functions, file path functions, and CPU architecture-specific functions.\r
4\r
5Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>\r
6Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>\r
7This program and the accompanying materials\r
8are licensed and made available under the terms and conditions of the BSD License\r
9which accompanies this distribution. The full text of the license may be found at\r
10http://opensource.org/licenses/bsd-license.php.\r
11\r
12THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
13WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
14\r
15**/\r
16\r
17#ifndef __BASE_LIB__\r
18#define __BASE_LIB__\r
19\r
20//\r
21// Definitions for architecture-specific types\r
22//\r
23#if defined (MDE_CPU_IA32)\r
24///\r
25/// The IA-32 architecture context buffer used by SetJump() and LongJump().\r
26///\r
27typedef struct {\r
28 UINT32 Ebx;\r
29 UINT32 Esi;\r
30 UINT32 Edi;\r
31 UINT32 Ebp;\r
32 UINT32 Esp;\r
33 UINT32 Eip;\r
34} BASE_LIBRARY_JUMP_BUFFER;\r
35\r
36#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4\r
37\r
38#endif // defined (MDE_CPU_IA32)\r
39\r
40#if defined (MDE_CPU_IPF)\r
41\r
42///\r
43/// The Itanium architecture context buffer used by SetJump() and LongJump().\r
44///\r
45typedef struct {\r
46 UINT64 F2[2];\r
47 UINT64 F3[2];\r
48 UINT64 F4[2];\r
49 UINT64 F5[2];\r
50 UINT64 F16[2];\r
51 UINT64 F17[2];\r
52 UINT64 F18[2];\r
53 UINT64 F19[2];\r
54 UINT64 F20[2];\r
55 UINT64 F21[2];\r
56 UINT64 F22[2];\r
57 UINT64 F23[2];\r
58 UINT64 F24[2];\r
59 UINT64 F25[2];\r
60 UINT64 F26[2];\r
61 UINT64 F27[2];\r
62 UINT64 F28[2];\r
63 UINT64 F29[2];\r
64 UINT64 F30[2];\r
65 UINT64 F31[2];\r
66 UINT64 R4;\r
67 UINT64 R5;\r
68 UINT64 R6;\r
69 UINT64 R7;\r
70 UINT64 SP;\r
71 UINT64 BR0;\r
72 UINT64 BR1;\r
73 UINT64 BR2;\r
74 UINT64 BR3;\r
75 UINT64 BR4;\r
76 UINT64 BR5;\r
77 UINT64 InitialUNAT;\r
78 UINT64 AfterSpillUNAT;\r
79 UINT64 PFS;\r
80 UINT64 BSP;\r
81 UINT64 Predicates;\r
82 UINT64 LoopCount;\r
83 UINT64 FPSR;\r
84} BASE_LIBRARY_JUMP_BUFFER;\r
85\r
86#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 0x10\r
87\r
88#endif // defined (MDE_CPU_IPF)\r
89\r
90#if defined (MDE_CPU_X64)\r
91///\r
92/// The x64 architecture context buffer used by SetJump() and LongJump().\r
93///\r
94typedef struct {\r
95 UINT64 Rbx;\r
96 UINT64 Rsp;\r
97 UINT64 Rbp;\r
98 UINT64 Rdi;\r
99 UINT64 Rsi;\r
100 UINT64 R12;\r
101 UINT64 R13;\r
102 UINT64 R14;\r
103 UINT64 R15;\r
104 UINT64 Rip;\r
105 UINT64 MxCsr;\r
106 UINT8 XmmBuffer[160]; ///< XMM6-XMM15.\r
107} BASE_LIBRARY_JUMP_BUFFER;\r
108\r
109#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
110\r
111#endif // defined (MDE_CPU_X64)\r
112\r
113#if defined (MDE_CPU_EBC)\r
114///\r
115/// The EBC context buffer used by SetJump() and LongJump().\r
116///\r
117typedef struct {\r
118 UINT64 R0;\r
119 UINT64 R1;\r
120 UINT64 R2;\r
121 UINT64 R3;\r
122 UINT64 IP;\r
123} BASE_LIBRARY_JUMP_BUFFER;\r
124\r
125#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
126\r
127#endif // defined (MDE_CPU_EBC)\r
128\r
129#if defined (MDE_CPU_ARM)\r
130\r
131typedef struct {\r
132 UINT32 R3; ///< A copy of R13.\r
133 UINT32 R4;\r
134 UINT32 R5;\r
135 UINT32 R6;\r
136 UINT32 R7;\r
137 UINT32 R8;\r
138 UINT32 R9;\r
139 UINT32 R10;\r
140 UINT32 R11;\r
141 UINT32 R12;\r
142 UINT32 R14;\r
143} BASE_LIBRARY_JUMP_BUFFER;\r
144\r
145#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4\r
146\r
147#endif // defined (MDE_CPU_ARM)\r
148\r
149#if defined (MDE_CPU_AARCH64)\r
150typedef struct {\r
151 // GP regs\r
152 UINT64 X19;\r
153 UINT64 X20;\r
154 UINT64 X21;\r
155 UINT64 X22;\r
156 UINT64 X23;\r
157 UINT64 X24;\r
158 UINT64 X25;\r
159 UINT64 X26;\r
160 UINT64 X27;\r
161 UINT64 X28;\r
162 UINT64 FP;\r
163 UINT64 LR;\r
164 UINT64 IP0;\r
165\r
166 // FP regs\r
167 UINT64 D8;\r
168 UINT64 D9;\r
169 UINT64 D10;\r
170 UINT64 D11;\r
171 UINT64 D12;\r
172 UINT64 D13;\r
173 UINT64 D14;\r
174 UINT64 D15;\r
175} BASE_LIBRARY_JUMP_BUFFER;\r
176\r
177#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
178\r
179#endif // defined (MDE_CPU_AARCH64)\r
180\r
181\r
182//\r
183// String Services\r
184//\r
185\r
186\r
187/**\r
188 Returns the length of a Null-terminated Unicode string.\r
189\r
190 This function is similar as strlen_s defined in C11.\r
191\r
192 If String is not aligned on a 16-bit boundary, then ASSERT().\r
193\r
194 @param String A pointer to a Null-terminated Unicode string.\r
195 @param MaxSize The maximum number of Destination Unicode\r
196 char, including terminating null char.\r
197\r
198 @retval 0 If String is NULL.\r
199 @retval MaxSize If there is no null character in the first MaxSize characters of String.\r
200 @return The number of characters that percede the terminating null character.\r
201\r
202**/\r
203UINTN\r
204EFIAPI\r
205StrnLenS (\r
206 IN CONST CHAR16 *String,\r
207 IN UINTN MaxSize\r
208 );\r
209\r
210/**\r
211 Returns the size of a Null-terminated Unicode string in bytes, including the\r
212 Null terminator.\r
213\r
214 This function returns the size of the Null-terminated Unicode string\r
215 specified by String in bytes, including the Null terminator.\r
216\r
217 If String is not aligned on a 16-bit boundary, then ASSERT().\r
218\r
219 @param String A pointer to a Null-terminated Unicode string.\r
220 @param MaxSize The maximum number of Destination Unicode\r
221 char, including the Null terminator.\r
222\r
223 @retval 0 If String is NULL.\r
224 @retval (sizeof (CHAR16) * (MaxSize + 1))\r
225 If there is no Null terminator in the first MaxSize characters of\r
226 String.\r
227 @return The size of the Null-terminated Unicode string in bytes, including\r
228 the Null terminator.\r
229\r
230**/\r
231UINTN\r
232EFIAPI\r
233StrnSizeS (\r
234 IN CONST CHAR16 *String,\r
235 IN UINTN MaxSize\r
236 );\r
237\r
238/**\r
239 Copies the string pointed to by Source (including the terminating null char)\r
240 to the array pointed to by Destination.\r
241\r
242 This function is similar as strcpy_s defined in C11.\r
243\r
244 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
245 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
246 If an error would be returned, then the function will also ASSERT().\r
247\r
248 If an error is returned, then the Destination is unmodified.\r
249\r
250 @param Destination A pointer to a Null-terminated Unicode string.\r
251 @param DestMax The maximum number of Destination Unicode\r
252 char, including terminating null char.\r
253 @param Source A pointer to a Null-terminated Unicode string.\r
254\r
255 @retval RETURN_SUCCESS String is copied.\r
256 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).\r
257 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
258 If Source is NULL.\r
259 If PcdMaximumUnicodeStringLength is not zero,\r
260 and DestMax is greater than\r
261 PcdMaximumUnicodeStringLength.\r
262 If DestMax is 0.\r
263 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
264**/\r
265RETURN_STATUS\r
266EFIAPI\r
267StrCpyS (\r
268 OUT CHAR16 *Destination,\r
269 IN UINTN DestMax,\r
270 IN CONST CHAR16 *Source\r
271 );\r
272\r
273/**\r
274 Copies not more than Length successive char from the string pointed to by\r
275 Source to the array pointed to by Destination. If no null char is copied from\r
276 Source, then Destination[Length] is always set to null.\r
277\r
278 This function is similar as strncpy_s defined in C11.\r
279\r
280 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
281 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
282 If an error would be returned, then the function will also ASSERT().\r
283\r
284 If an error is returned, then the Destination is unmodified.\r
285\r
286 @param Destination A pointer to a Null-terminated Unicode string.\r
287 @param DestMax The maximum number of Destination Unicode\r
288 char, including terminating null char.\r
289 @param Source A pointer to a Null-terminated Unicode string.\r
290 @param Length The maximum number of Unicode characters to copy.\r
291\r
292 @retval RETURN_SUCCESS String is copied.\r
293 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than\r
294 MIN(StrLen(Source), Length).\r
295 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
296 If Source is NULL.\r
297 If PcdMaximumUnicodeStringLength is not zero,\r
298 and DestMax is greater than\r
299 PcdMaximumUnicodeStringLength.\r
300 If DestMax is 0.\r
301 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
302**/\r
303RETURN_STATUS\r
304EFIAPI\r
305StrnCpyS (\r
306 OUT CHAR16 *Destination,\r
307 IN UINTN DestMax,\r
308 IN CONST CHAR16 *Source,\r
309 IN UINTN Length\r
310 );\r
311\r
312/**\r
313 Appends a copy of the string pointed to by Source (including the terminating\r
314 null char) to the end of the string pointed to by Destination.\r
315\r
316 This function is similar as strcat_s defined in C11.\r
317\r
318 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
319 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
320 If an error would be returned, then the function will also ASSERT().\r
321\r
322 If an error is returned, then the Destination is unmodified.\r
323\r
324 @param Destination A pointer to a Null-terminated Unicode string.\r
325 @param DestMax The maximum number of Destination Unicode\r
326 char, including terminating null char.\r
327 @param Source A pointer to a Null-terminated Unicode string.\r
328\r
329 @retval RETURN_SUCCESS String is appended.\r
330 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than\r
331 StrLen(Destination).\r
332 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT\r
333 greater than StrLen(Source).\r
334 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
335 If Source is NULL.\r
336 If PcdMaximumUnicodeStringLength is not zero,\r
337 and DestMax is greater than\r
338 PcdMaximumUnicodeStringLength.\r
339 If DestMax is 0.\r
340 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
341**/\r
342RETURN_STATUS\r
343EFIAPI\r
344StrCatS (\r
345 IN OUT CHAR16 *Destination,\r
346 IN UINTN DestMax,\r
347 IN CONST CHAR16 *Source\r
348 );\r
349\r
350/**\r
351 Appends not more than Length successive char from the string pointed to by\r
352 Source to the end of the string pointed to by Destination. If no null char is\r
353 copied from Source, then Destination[StrLen(Destination) + Length] is always\r
354 set to null.\r
355\r
356 This function is similar as strncat_s defined in C11.\r
357\r
358 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
359 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
360 If an error would be returned, then the function will also ASSERT().\r
361\r
362 If an error is returned, then the Destination is unmodified.\r
363\r
364 @param Destination A pointer to a Null-terminated Unicode string.\r
365 @param DestMax The maximum number of Destination Unicode\r
366 char, including terminating null char.\r
367 @param Source A pointer to a Null-terminated Unicode string.\r
368 @param Length The maximum number of Unicode characters to copy.\r
369\r
370 @retval RETURN_SUCCESS String is appended.\r
371 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than\r
372 StrLen(Destination).\r
373 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT\r
374 greater than MIN(StrLen(Source), Length).\r
375 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
376 If Source is NULL.\r
377 If PcdMaximumUnicodeStringLength is not zero,\r
378 and DestMax is greater than\r
379 PcdMaximumUnicodeStringLength.\r
380 If DestMax is 0.\r
381 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
382**/\r
383RETURN_STATUS\r
384EFIAPI\r
385StrnCatS (\r
386 IN OUT CHAR16 *Destination,\r
387 IN UINTN DestMax,\r
388 IN CONST CHAR16 *Source,\r
389 IN UINTN Length\r
390 );\r
391\r
392/**\r
393 Convert a Null-terminated Unicode decimal string to a value of type UINTN.\r
394\r
395 This function outputs a value of type UINTN by interpreting the contents of\r
396 the Unicode string specified by String as a decimal number. The format of the\r
397 input Unicode string String is:\r
398\r
399 [spaces] [decimal digits].\r
400\r
401 The valid decimal digit character is in the range [0-9]. The function will\r
402 ignore the pad space, which includes spaces or tab characters, before\r
403 [decimal digits]. The running zero in the beginning of [decimal digits] will\r
404 be ignored. Then, the function stops at the first character that is a not a\r
405 valid decimal character or a Null-terminator, whichever one comes first.\r
406\r
407 If String is NULL, then ASSERT().\r
408 If Data is NULL, then ASSERT().\r
409 If String is not aligned in a 16-bit boundary, then ASSERT().\r
410 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
411 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
412 Null-terminator, then ASSERT().\r
413\r
414 If String has no valid decimal digits in the above format, then 0 is stored\r
415 at the location pointed to by Data.\r
416 If the number represented by String exceeds the range defined by UINTN, then\r
417 MAX_UINTN is stored at the location pointed to by Data.\r
418\r
419 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
420 is stored at the location pointed to by EndPointer. If String has no valid\r
421 decimal digits right after the optional pad spaces, the value of String is\r
422 stored at the location pointed to by EndPointer.\r
423\r
424 @param String Pointer to a Null-terminated Unicode string.\r
425 @param EndPointer Pointer to character that stops scan.\r
426 @param Data Pointer to the converted value.\r
427\r
428 @retval RETURN_SUCCESS Value is translated from String.\r
429 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
430 If Data is NULL.\r
431 If PcdMaximumUnicodeStringLength is not\r
432 zero, and String contains more than\r
433 PcdMaximumUnicodeStringLength Unicode\r
434 characters, not including the\r
435 Null-terminator.\r
436 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
437 the range defined by UINTN.\r
438\r
439**/\r
440RETURN_STATUS\r
441EFIAPI\r
442StrDecimalToUintnS (\r
443 IN CONST CHAR16 *String,\r
444 OUT CHAR16 **EndPointer, OPTIONAL\r
445 OUT UINTN *Data\r
446 );\r
447\r
448/**\r
449 Convert a Null-terminated Unicode decimal string to a value of type UINT64.\r
450\r
451 This function outputs a value of type UINT64 by interpreting the contents of\r
452 the Unicode string specified by String as a decimal number. The format of the\r
453 input Unicode string String is:\r
454\r
455 [spaces] [decimal digits].\r
456\r
457 The valid decimal digit character is in the range [0-9]. The function will\r
458 ignore the pad space, which includes spaces or tab characters, before\r
459 [decimal digits]. The running zero in the beginning of [decimal digits] will\r
460 be ignored. Then, the function stops at the first character that is a not a\r
461 valid decimal character or a Null-terminator, whichever one comes first.\r
462\r
463 If String is NULL, then ASSERT().\r
464 If Data is NULL, then ASSERT().\r
465 If String is not aligned in a 16-bit boundary, then ASSERT().\r
466 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
467 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
468 Null-terminator, then ASSERT().\r
469\r
470 If String has no valid decimal digits in the above format, then 0 is stored\r
471 at the location pointed to by Data.\r
472 If the number represented by String exceeds the range defined by UINT64, then\r
473 MAX_UINT64 is stored at the location pointed to by Data.\r
474\r
475 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
476 is stored at the location pointed to by EndPointer. If String has no valid\r
477 decimal digits right after the optional pad spaces, the value of String is\r
478 stored at the location pointed to by EndPointer.\r
479\r
480 @param String Pointer to a Null-terminated Unicode string.\r
481 @param EndPointer Pointer to character that stops scan.\r
482 @param Data Pointer to the converted value.\r
483\r
484 @retval RETURN_SUCCESS Value is translated from String.\r
485 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
486 If Data is NULL.\r
487 If PcdMaximumUnicodeStringLength is not\r
488 zero, and String contains more than\r
489 PcdMaximumUnicodeStringLength Unicode\r
490 characters, not including the\r
491 Null-terminator.\r
492 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
493 the range defined by UINT64.\r
494\r
495**/\r
496RETURN_STATUS\r
497EFIAPI\r
498StrDecimalToUint64S (\r
499 IN CONST CHAR16 *String,\r
500 OUT CHAR16 **EndPointer, OPTIONAL\r
501 OUT UINT64 *Data\r
502 );\r
503\r
504/**\r
505 Convert a Null-terminated Unicode hexadecimal string to a value of type\r
506 UINTN.\r
507\r
508 This function outputs a value of type UINTN by interpreting the contents of\r
509 the Unicode string specified by String as a hexadecimal number. The format of\r
510 the input Unicode string String is:\r
511\r
512 [spaces][zeros][x][hexadecimal digits].\r
513\r
514 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
515 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
516 If "x" appears in the input string, it must be prefixed with at least one 0.\r
517 The function will ignore the pad space, which includes spaces or tab\r
518 characters, before [zeros], [x] or [hexadecimal digit]. The running zero\r
519 before [x] or [hexadecimal digit] will be ignored. Then, the decoding starts\r
520 after [x] or the first valid hexadecimal digit. Then, the function stops at\r
521 the first character that is a not a valid hexadecimal character or NULL,\r
522 whichever one comes first.\r
523\r
524 If String is NULL, then ASSERT().\r
525 If Data is NULL, then ASSERT().\r
526 If String is not aligned in a 16-bit boundary, then ASSERT().\r
527 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
528 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
529 Null-terminator, then ASSERT().\r
530\r
531 If String has no valid hexadecimal digits in the above format, then 0 is\r
532 stored at the location pointed to by Data.\r
533 If the number represented by String exceeds the range defined by UINTN, then\r
534 MAX_UINTN is stored at the location pointed to by Data.\r
535\r
536 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
537 is stored at the location pointed to by EndPointer. If String has no valid\r
538 hexadecimal digits right after the optional pad spaces, the value of String\r
539 is stored at the location pointed to by EndPointer.\r
540\r
541 @param String Pointer to a Null-terminated Unicode string.\r
542 @param EndPointer Pointer to character that stops scan.\r
543 @param Data Pointer to the converted value.\r
544\r
545 @retval RETURN_SUCCESS Value is translated from String.\r
546 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
547 If Data is NULL.\r
548 If PcdMaximumUnicodeStringLength is not\r
549 zero, and String contains more than\r
550 PcdMaximumUnicodeStringLength Unicode\r
551 characters, not including the\r
552 Null-terminator.\r
553 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
554 the range defined by UINTN.\r
555\r
556**/\r
557RETURN_STATUS\r
558EFIAPI\r
559StrHexToUintnS (\r
560 IN CONST CHAR16 *String,\r
561 OUT CHAR16 **EndPointer, OPTIONAL\r
562 OUT UINTN *Data\r
563 );\r
564\r
565/**\r
566 Convert a Null-terminated Unicode hexadecimal string to a value of type\r
567 UINT64.\r
568\r
569 This function outputs a value of type UINT64 by interpreting the contents of\r
570 the Unicode string specified by String as a hexadecimal number. The format of\r
571 the input Unicode string String is:\r
572\r
573 [spaces][zeros][x][hexadecimal digits].\r
574\r
575 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
576 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
577 If "x" appears in the input string, it must be prefixed with at least one 0.\r
578 The function will ignore the pad space, which includes spaces or tab\r
579 characters, before [zeros], [x] or [hexadecimal digit]. The running zero\r
580 before [x] or [hexadecimal digit] will be ignored. Then, the decoding starts\r
581 after [x] or the first valid hexadecimal digit. Then, the function stops at\r
582 the first character that is a not a valid hexadecimal character or NULL,\r
583 whichever one comes first.\r
584\r
585 If String is NULL, then ASSERT().\r
586 If Data is NULL, then ASSERT().\r
587 If String is not aligned in a 16-bit boundary, then ASSERT().\r
588 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
589 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
590 Null-terminator, then ASSERT().\r
591\r
592 If String has no valid hexadecimal digits in the above format, then 0 is\r
593 stored at the location pointed to by Data.\r
594 If the number represented by String exceeds the range defined by UINT64, then\r
595 MAX_UINT64 is stored at the location pointed to by Data.\r
596\r
597 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
598 is stored at the location pointed to by EndPointer. If String has no valid\r
599 hexadecimal digits right after the optional pad spaces, the value of String\r
600 is stored at the location pointed to by EndPointer.\r
601\r
602 @param String Pointer to a Null-terminated Unicode string.\r
603 @param EndPointer Pointer to character that stops scan.\r
604 @param Data Pointer to the converted value.\r
605\r
606 @retval RETURN_SUCCESS Value is translated from String.\r
607 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
608 If Data is NULL.\r
609 If PcdMaximumUnicodeStringLength is not\r
610 zero, and String contains more than\r
611 PcdMaximumUnicodeStringLength Unicode\r
612 characters, not including the\r
613 Null-terminator.\r
614 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
615 the range defined by UINT64.\r
616\r
617**/\r
618RETURN_STATUS\r
619EFIAPI\r
620StrHexToUint64S (\r
621 IN CONST CHAR16 *String,\r
622 OUT CHAR16 **EndPointer, OPTIONAL\r
623 OUT UINT64 *Data\r
624 );\r
625\r
626/**\r
627 Returns the length of a Null-terminated Ascii string.\r
628\r
629 This function is similar as strlen_s defined in C11.\r
630\r
631 @param String A pointer to a Null-terminated Ascii string.\r
632 @param MaxSize The maximum number of Destination Ascii\r
633 char, including terminating null char.\r
634\r
635 @retval 0 If String is NULL.\r
636 @retval MaxSize If there is no null character in the first MaxSize characters of String.\r
637 @return The number of characters that percede the terminating null character.\r
638\r
639**/\r
640UINTN\r
641EFIAPI\r
642AsciiStrnLenS (\r
643 IN CONST CHAR8 *String,\r
644 IN UINTN MaxSize\r
645 );\r
646\r
647/**\r
648 Returns the size of a Null-terminated Ascii string in bytes, including the\r
649 Null terminator.\r
650\r
651 This function returns the size of the Null-terminated Ascii string specified\r
652 by String in bytes, including the Null terminator.\r
653\r
654 @param String A pointer to a Null-terminated Ascii string.\r
655 @param MaxSize The maximum number of Destination Ascii\r
656 char, including the Null terminator.\r
657\r
658 @retval 0 If String is NULL.\r
659 @retval (sizeof (CHAR8) * (MaxSize + 1))\r
660 If there is no Null terminator in the first MaxSize characters of\r
661 String.\r
662 @return The size of the Null-terminated Ascii string in bytes, including the\r
663 Null terminator.\r
664\r
665**/\r
666UINTN\r
667EFIAPI\r
668AsciiStrnSizeS (\r
669 IN CONST CHAR8 *String,\r
670 IN UINTN MaxSize\r
671 );\r
672\r
673/**\r
674 Copies the string pointed to by Source (including the terminating null char)\r
675 to the array pointed to by Destination.\r
676\r
677 This function is similar as strcpy_s defined in C11.\r
678\r
679 If an error would be returned, then the function will also ASSERT().\r
680\r
681 If an error is returned, then the Destination is unmodified.\r
682\r
683 @param Destination A pointer to a Null-terminated Ascii string.\r
684 @param DestMax The maximum number of Destination Ascii\r
685 char, including terminating null char.\r
686 @param Source A pointer to a Null-terminated Ascii string.\r
687\r
688 @retval RETURN_SUCCESS String is copied.\r
689 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).\r
690 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
691 If Source is NULL.\r
692 If PcdMaximumAsciiStringLength is not zero,\r
693 and DestMax is greater than\r
694 PcdMaximumAsciiStringLength.\r
695 If DestMax is 0.\r
696 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
697**/\r
698RETURN_STATUS\r
699EFIAPI\r
700AsciiStrCpyS (\r
701 OUT CHAR8 *Destination,\r
702 IN UINTN DestMax,\r
703 IN CONST CHAR8 *Source\r
704 );\r
705\r
706/**\r
707 Copies not more than Length successive char from the string pointed to by\r
708 Source to the array pointed to by Destination. If no null char is copied from\r
709 Source, then Destination[Length] is always set to null.\r
710\r
711 This function is similar as strncpy_s defined in C11.\r
712\r
713 If an error would be returned, then the function will also ASSERT().\r
714\r
715 If an error is returned, then the Destination is unmodified.\r
716\r
717 @param Destination A pointer to a Null-terminated Ascii string.\r
718 @param DestMax The maximum number of Destination Ascii\r
719 char, including terminating null char.\r
720 @param Source A pointer to a Null-terminated Ascii string.\r
721 @param Length The maximum number of Ascii characters to copy.\r
722\r
723 @retval RETURN_SUCCESS String is copied.\r
724 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than\r
725 MIN(StrLen(Source), Length).\r
726 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
727 If Source is NULL.\r
728 If PcdMaximumAsciiStringLength is not zero,\r
729 and DestMax is greater than\r
730 PcdMaximumAsciiStringLength.\r
731 If DestMax is 0.\r
732 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
733**/\r
734RETURN_STATUS\r
735EFIAPI\r
736AsciiStrnCpyS (\r
737 OUT CHAR8 *Destination,\r
738 IN UINTN DestMax,\r
739 IN CONST CHAR8 *Source,\r
740 IN UINTN Length\r
741 );\r
742\r
743/**\r
744 Appends a copy of the string pointed to by Source (including the terminating\r
745 null char) to the end of the string pointed to by Destination.\r
746\r
747 This function is similar as strcat_s defined in C11.\r
748\r
749 If an error would be returned, then the function will also ASSERT().\r
750\r
751 If an error is returned, then the Destination is unmodified.\r
752\r
753 @param Destination A pointer to a Null-terminated Ascii string.\r
754 @param DestMax The maximum number of Destination Ascii\r
755 char, including terminating null char.\r
756 @param Source A pointer to a Null-terminated Ascii string.\r
757\r
758 @retval RETURN_SUCCESS String is appended.\r
759 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than\r
760 StrLen(Destination).\r
761 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT\r
762 greater than StrLen(Source).\r
763 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
764 If Source is NULL.\r
765 If PcdMaximumAsciiStringLength is not zero,\r
766 and DestMax is greater than\r
767 PcdMaximumAsciiStringLength.\r
768 If DestMax is 0.\r
769 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
770**/\r
771RETURN_STATUS\r
772EFIAPI\r
773AsciiStrCatS (\r
774 IN OUT CHAR8 *Destination,\r
775 IN UINTN DestMax,\r
776 IN CONST CHAR8 *Source\r
777 );\r
778\r
779/**\r
780 Appends not more than Length successive char from the string pointed to by\r
781 Source to the end of the string pointed to by Destination. If no null char is\r
782 copied from Source, then Destination[StrLen(Destination) + Length] is always\r
783 set to null.\r
784\r
785 This function is similar as strncat_s defined in C11.\r
786\r
787 If an error would be returned, then the function will also ASSERT().\r
788\r
789 If an error is returned, then the Destination is unmodified.\r
790\r
791 @param Destination A pointer to a Null-terminated Ascii string.\r
792 @param DestMax The maximum number of Destination Ascii\r
793 char, including terminating null char.\r
794 @param Source A pointer to a Null-terminated Ascii string.\r
795 @param Length The maximum number of Ascii characters to copy.\r
796\r
797 @retval RETURN_SUCCESS String is appended.\r
798 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than\r
799 StrLen(Destination).\r
800 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT\r
801 greater than MIN(StrLen(Source), Length).\r
802 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
803 If Source is NULL.\r
804 If PcdMaximumAsciiStringLength is not zero,\r
805 and DestMax is greater than\r
806 PcdMaximumAsciiStringLength.\r
807 If DestMax is 0.\r
808 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
809**/\r
810RETURN_STATUS\r
811EFIAPI\r
812AsciiStrnCatS (\r
813 IN OUT CHAR8 *Destination,\r
814 IN UINTN DestMax,\r
815 IN CONST CHAR8 *Source,\r
816 IN UINTN Length\r
817 );\r
818\r
819/**\r
820 Convert a Null-terminated Ascii decimal string to a value of type UINTN.\r
821\r
822 This function outputs a value of type UINTN by interpreting the contents of\r
823 the Ascii string specified by String as a decimal number. The format of the\r
824 input Ascii string String is:\r
825\r
826 [spaces] [decimal digits].\r
827\r
828 The valid decimal digit character is in the range [0-9]. The function will\r
829 ignore the pad space, which includes spaces or tab characters, before\r
830 [decimal digits]. The running zero in the beginning of [decimal digits] will\r
831 be ignored. Then, the function stops at the first character that is a not a\r
832 valid decimal character or a Null-terminator, whichever one comes first.\r
833\r
834 If String is NULL, then ASSERT().\r
835 If Data is NULL, then ASSERT().\r
836 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
837 PcdMaximumAsciiStringLength Ascii characters, not including the\r
838 Null-terminator, then ASSERT().\r
839\r
840 If String has no valid decimal digits in the above format, then 0 is stored\r
841 at the location pointed to by Data.\r
842 If the number represented by String exceeds the range defined by UINTN, then\r
843 MAX_UINTN is stored at the location pointed to by Data.\r
844\r
845 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
846 is stored at the location pointed to by EndPointer. If String has no valid\r
847 decimal digits right after the optional pad spaces, the value of String is\r
848 stored at the location pointed to by EndPointer.\r
849\r
850 @param String Pointer to a Null-terminated Ascii string.\r
851 @param EndPointer Pointer to character that stops scan.\r
852 @param Data Pointer to the converted value.\r
853\r
854 @retval RETURN_SUCCESS Value is translated from String.\r
855 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
856 If Data is NULL.\r
857 If PcdMaximumAsciiStringLength is not zero,\r
858 and String contains more than\r
859 PcdMaximumAsciiStringLength Ascii\r
860 characters, not including the\r
861 Null-terminator.\r
862 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
863 the range defined by UINTN.\r
864\r
865**/\r
866RETURN_STATUS\r
867EFIAPI\r
868AsciiStrDecimalToUintnS (\r
869 IN CONST CHAR8 *String,\r
870 OUT CHAR8 **EndPointer, OPTIONAL\r
871 OUT UINTN *Data\r
872 );\r
873\r
874/**\r
875 Convert a Null-terminated Ascii decimal string to a value of type UINT64.\r
876\r
877 This function outputs a value of type UINT64 by interpreting the contents of\r
878 the Ascii string specified by String as a decimal number. The format of the\r
879 input Ascii string String is:\r
880\r
881 [spaces] [decimal digits].\r
882\r
883 The valid decimal digit character is in the range [0-9]. The function will\r
884 ignore the pad space, which includes spaces or tab characters, before\r
885 [decimal digits]. The running zero in the beginning of [decimal digits] will\r
886 be ignored. Then, the function stops at the first character that is a not a\r
887 valid decimal character or a Null-terminator, whichever one comes first.\r
888\r
889 If String is NULL, then ASSERT().\r
890 If Data is NULL, then ASSERT().\r
891 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
892 PcdMaximumAsciiStringLength Ascii characters, not including the\r
893 Null-terminator, then ASSERT().\r
894\r
895 If String has no valid decimal digits in the above format, then 0 is stored\r
896 at the location pointed to by Data.\r
897 If the number represented by String exceeds the range defined by UINT64, then\r
898 MAX_UINT64 is stored at the location pointed to by Data.\r
899\r
900 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
901 is stored at the location pointed to by EndPointer. If String has no valid\r
902 decimal digits right after the optional pad spaces, the value of String is\r
903 stored at the location pointed to by EndPointer.\r
904\r
905 @param String Pointer to a Null-terminated Ascii string.\r
906 @param EndPointer Pointer to character that stops scan.\r
907 @param Data Pointer to the converted value.\r
908\r
909 @retval RETURN_SUCCESS Value is translated from String.\r
910 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
911 If Data is NULL.\r
912 If PcdMaximumAsciiStringLength is not zero,\r
913 and String contains more than\r
914 PcdMaximumAsciiStringLength Ascii\r
915 characters, not including the\r
916 Null-terminator.\r
917 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
918 the range defined by UINT64.\r
919\r
920**/\r
921RETURN_STATUS\r
922EFIAPI\r
923AsciiStrDecimalToUint64S (\r
924 IN CONST CHAR8 *String,\r
925 OUT CHAR8 **EndPointer, OPTIONAL\r
926 OUT UINT64 *Data\r
927 );\r
928\r
929/**\r
930 Convert a Null-terminated Ascii hexadecimal string to a value of type UINTN.\r
931\r
932 This function outputs a value of type UINTN by interpreting the contents of\r
933 the Ascii string specified by String as a hexadecimal number. The format of\r
934 the input Ascii string String is:\r
935\r
936 [spaces][zeros][x][hexadecimal digits].\r
937\r
938 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
939 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If\r
940 "x" appears in the input string, it must be prefixed with at least one 0. The\r
941 function will ignore the pad space, which includes spaces or tab characters,\r
942 before [zeros], [x] or [hexadecimal digits]. The running zero before [x] or\r
943 [hexadecimal digits] will be ignored. Then, the decoding starts after [x] or\r
944 the first valid hexadecimal digit. Then, the function stops at the first\r
945 character that is a not a valid hexadecimal character or Null-terminator,\r
946 whichever on comes first.\r
947\r
948 If String is NULL, then ASSERT().\r
949 If Data is NULL, then ASSERT().\r
950 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
951 PcdMaximumAsciiStringLength Ascii characters, not including the\r
952 Null-terminator, then ASSERT().\r
953\r
954 If String has no valid hexadecimal digits in the above format, then 0 is\r
955 stored at the location pointed to by Data.\r
956 If the number represented by String exceeds the range defined by UINTN, then\r
957 MAX_UINTN is stored at the location pointed to by Data.\r
958\r
959 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
960 is stored at the location pointed to by EndPointer. If String has no valid\r
961 hexadecimal digits right after the optional pad spaces, the value of String\r
962 is stored at the location pointed to by EndPointer.\r
963\r
964 @param String Pointer to a Null-terminated Ascii string.\r
965 @param EndPointer Pointer to character that stops scan.\r
966 @param Data Pointer to the converted value.\r
967\r
968 @retval RETURN_SUCCESS Value is translated from String.\r
969 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
970 If Data is NULL.\r
971 If PcdMaximumAsciiStringLength is not zero,\r
972 and String contains more than\r
973 PcdMaximumAsciiStringLength Ascii\r
974 characters, not including the\r
975 Null-terminator.\r
976 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
977 the range defined by UINTN.\r
978\r
979**/\r
980RETURN_STATUS\r
981EFIAPI\r
982AsciiStrHexToUintnS (\r
983 IN CONST CHAR8 *String,\r
984 OUT CHAR8 **EndPointer, OPTIONAL\r
985 OUT UINTN *Data\r
986 );\r
987\r
988/**\r
989 Convert a Null-terminated Ascii hexadecimal string to a value of type UINT64.\r
990\r
991 This function outputs a value of type UINT64 by interpreting the contents of\r
992 the Ascii string specified by String as a hexadecimal number. The format of\r
993 the input Ascii string String is:\r
994\r
995 [spaces][zeros][x][hexadecimal digits].\r
996\r
997 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
998 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If\r
999 "x" appears in the input string, it must be prefixed with at least one 0. The\r
1000 function will ignore the pad space, which includes spaces or tab characters,\r
1001 before [zeros], [x] or [hexadecimal digits]. The running zero before [x] or\r
1002 [hexadecimal digits] will be ignored. Then, the decoding starts after [x] or\r
1003 the first valid hexadecimal digit. Then, the function stops at the first\r
1004 character that is a not a valid hexadecimal character or Null-terminator,\r
1005 whichever on comes first.\r
1006\r
1007 If String is NULL, then ASSERT().\r
1008 If Data is NULL, then ASSERT().\r
1009 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
1010 PcdMaximumAsciiStringLength Ascii characters, not including the\r
1011 Null-terminator, then ASSERT().\r
1012\r
1013 If String has no valid hexadecimal digits in the above format, then 0 is\r
1014 stored at the location pointed to by Data.\r
1015 If the number represented by String exceeds the range defined by UINT64, then\r
1016 MAX_UINT64 is stored at the location pointed to by Data.\r
1017\r
1018 If EndPointer is not NULL, a pointer to the character that stopped the scan\r
1019 is stored at the location pointed to by EndPointer. If String has no valid\r
1020 hexadecimal digits right after the optional pad spaces, the value of String\r
1021 is stored at the location pointed to by EndPointer.\r
1022\r
1023 @param String Pointer to a Null-terminated Ascii string.\r
1024 @param EndPointer Pointer to character that stops scan.\r
1025 @param Data Pointer to the converted value.\r
1026\r
1027 @retval RETURN_SUCCESS Value is translated from String.\r
1028 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
1029 If Data is NULL.\r
1030 If PcdMaximumAsciiStringLength is not zero,\r
1031 and String contains more than\r
1032 PcdMaximumAsciiStringLength Ascii\r
1033 characters, not including the\r
1034 Null-terminator.\r
1035 @retval RETURN_UNSUPPORTED If the number represented by String exceeds\r
1036 the range defined by UINT64.\r
1037\r
1038**/\r
1039RETURN_STATUS\r
1040EFIAPI\r
1041AsciiStrHexToUint64S (\r
1042 IN CONST CHAR8 *String,\r
1043 OUT CHAR8 **EndPointer, OPTIONAL\r
1044 OUT UINT64 *Data\r
1045 );\r
1046\r
1047\r
1048#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
1049\r
1050/**\r
1051 [ATTENTION] This function is deprecated for security reason.\r
1052\r
1053 Copies one Null-terminated Unicode string to another Null-terminated Unicode\r
1054 string and returns the new Unicode string.\r
1055\r
1056 This function copies the contents of the Unicode string Source to the Unicode\r
1057 string Destination, and returns Destination. If Source and Destination\r
1058 overlap, then the results are undefined.\r
1059\r
1060 If Destination is NULL, then ASSERT().\r
1061 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
1062 If Source is NULL, then ASSERT().\r
1063 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
1064 If Source and Destination overlap, then ASSERT().\r
1065 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
1066 PcdMaximumUnicodeStringLength Unicode characters not including the\r
1067 Null-terminator, then ASSERT().\r
1068\r
1069 @param Destination The pointer to a Null-terminated Unicode string.\r
1070 @param Source The pointer to a Null-terminated Unicode string.\r
1071\r
1072 @return Destination.\r
1073\r
1074**/\r
1075CHAR16 *\r
1076EFIAPI\r
1077StrCpy (\r
1078 OUT CHAR16 *Destination,\r
1079 IN CONST CHAR16 *Source\r
1080 );\r
1081\r
1082\r
1083/**\r
1084 [ATTENTION] This function is deprecated for security reason.\r
1085\r
1086 Copies up to a specified length from one Null-terminated Unicode string to\r
1087 another Null-terminated Unicode string and returns the new Unicode string.\r
1088\r
1089 This function copies the contents of the Unicode string Source to the Unicode\r
1090 string Destination, and returns Destination. At most, Length Unicode\r
1091 characters are copied from Source to Destination. If Length is 0, then\r
1092 Destination is returned unmodified. If Length is greater that the number of\r
1093 Unicode characters in Source, then Destination is padded with Null Unicode\r
1094 characters. If Source and Destination overlap, then the results are\r
1095 undefined.\r
1096\r
1097 If Length > 0 and Destination is NULL, then ASSERT().\r
1098 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
1099 If Length > 0 and Source is NULL, then ASSERT().\r
1100 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
1101 If Source and Destination overlap, then ASSERT().\r
1102 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than\r
1103 PcdMaximumUnicodeStringLength, then ASSERT().\r
1104 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
1105 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
1106 then ASSERT().\r
1107\r
1108 @param Destination The pointer to a Null-terminated Unicode string.\r
1109 @param Source The pointer to a Null-terminated Unicode string.\r
1110 @param Length The maximum number of Unicode characters to copy.\r
1111\r
1112 @return Destination.\r
1113\r
1114**/\r
1115CHAR16 *\r
1116EFIAPI\r
1117StrnCpy (\r
1118 OUT CHAR16 *Destination,\r
1119 IN CONST CHAR16 *Source,\r
1120 IN UINTN Length\r
1121 );\r
1122#endif // !defined (DISABLE_NEW_DEPRECATED_INTERFACES)\r
1123\r
1124/**\r
1125 Returns the length of a Null-terminated Unicode string.\r
1126\r
1127 This function returns the number of Unicode characters in the Null-terminated\r
1128 Unicode string specified by String.\r
1129\r
1130 If String is NULL, then ASSERT().\r
1131 If String is not aligned on a 16-bit boundary, then ASSERT().\r
1132 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1133 PcdMaximumUnicodeStringLength Unicode characters not including the\r
1134 Null-terminator, then ASSERT().\r
1135\r
1136 @param String Pointer to a Null-terminated Unicode string.\r
1137\r
1138 @return The length of String.\r
1139\r
1140**/\r
1141UINTN\r
1142EFIAPI\r
1143StrLen (\r
1144 IN CONST CHAR16 *String\r
1145 );\r
1146\r
1147\r
1148/**\r
1149 Returns the size of a Null-terminated Unicode string in bytes, including the\r
1150 Null terminator.\r
1151\r
1152 This function returns the size, in bytes, of the Null-terminated Unicode string\r
1153 specified by String.\r
1154\r
1155 If String is NULL, then ASSERT().\r
1156 If String is not aligned on a 16-bit boundary, then ASSERT().\r
1157 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1158 PcdMaximumUnicodeStringLength Unicode characters not including the\r
1159 Null-terminator, then ASSERT().\r
1160\r
1161 @param String The pointer to a Null-terminated Unicode string.\r
1162\r
1163 @return The size of String.\r
1164\r
1165**/\r
1166UINTN\r
1167EFIAPI\r
1168StrSize (\r
1169 IN CONST CHAR16 *String\r
1170 );\r
1171\r
1172\r
1173/**\r
1174 Compares two Null-terminated Unicode strings, and returns the difference\r
1175 between the first mismatched Unicode characters.\r
1176\r
1177 This function compares the Null-terminated Unicode string FirstString to the\r
1178 Null-terminated Unicode string SecondString. If FirstString is identical to\r
1179 SecondString, then 0 is returned. Otherwise, the value returned is the first\r
1180 mismatched Unicode character in SecondString subtracted from the first\r
1181 mismatched Unicode character in FirstString.\r
1182\r
1183 If FirstString is NULL, then ASSERT().\r
1184 If FirstString is not aligned on a 16-bit boundary, then ASSERT().\r
1185 If SecondString is NULL, then ASSERT().\r
1186 If SecondString is not aligned on a 16-bit boundary, then ASSERT().\r
1187 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more\r
1188 than PcdMaximumUnicodeStringLength Unicode characters not including the\r
1189 Null-terminator, then ASSERT().\r
1190 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more\r
1191 than PcdMaximumUnicodeStringLength Unicode characters, not including the\r
1192 Null-terminator, then ASSERT().\r
1193\r
1194 @param FirstString The pointer to a Null-terminated Unicode string.\r
1195 @param SecondString The pointer to a Null-terminated Unicode string.\r
1196\r
1197 @retval 0 FirstString is identical to SecondString.\r
1198 @return others FirstString is not identical to SecondString.\r
1199\r
1200**/\r
1201INTN\r
1202EFIAPI\r
1203StrCmp (\r
1204 IN CONST CHAR16 *FirstString,\r
1205 IN CONST CHAR16 *SecondString\r
1206 );\r
1207\r
1208\r
1209/**\r
1210 Compares up to a specified length the contents of two Null-terminated Unicode strings,\r
1211 and returns the difference between the first mismatched Unicode characters.\r
1212\r
1213 This function compares the Null-terminated Unicode string FirstString to the\r
1214 Null-terminated Unicode string SecondString. At most, Length Unicode\r
1215 characters will be compared. If Length is 0, then 0 is returned. If\r
1216 FirstString is identical to SecondString, then 0 is returned. Otherwise, the\r
1217 value returned is the first mismatched Unicode character in SecondString\r
1218 subtracted from the first mismatched Unicode character in FirstString.\r
1219\r
1220 If Length > 0 and FirstString is NULL, then ASSERT().\r
1221 If Length > 0 and FirstString is not aligned on a 16-bit boundary, then ASSERT().\r
1222 If Length > 0 and SecondString is NULL, then ASSERT().\r
1223 If Length > 0 and SecondString is not aligned on a 16-bit boundary, then ASSERT().\r
1224 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than\r
1225 PcdMaximumUnicodeStringLength, then ASSERT().\r
1226 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more than\r
1227 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
1228 then ASSERT().\r
1229 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more than\r
1230 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
1231 then ASSERT().\r
1232\r
1233 @param FirstString The pointer to a Null-terminated Unicode string.\r
1234 @param SecondString The pointer to a Null-terminated Unicode string.\r
1235 @param Length The maximum number of Unicode characters to compare.\r
1236\r
1237 @retval 0 FirstString is identical to SecondString.\r
1238 @return others FirstString is not identical to SecondString.\r
1239\r
1240**/\r
1241INTN\r
1242EFIAPI\r
1243StrnCmp (\r
1244 IN CONST CHAR16 *FirstString,\r
1245 IN CONST CHAR16 *SecondString,\r
1246 IN UINTN Length\r
1247 );\r
1248\r
1249\r
1250#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
1251\r
1252/**\r
1253 [ATTENTION] This function is deprecated for security reason.\r
1254\r
1255 Concatenates one Null-terminated Unicode string to another Null-terminated\r
1256 Unicode string, and returns the concatenated Unicode string.\r
1257\r
1258 This function concatenates two Null-terminated Unicode strings. The contents\r
1259 of Null-terminated Unicode string Source are concatenated to the end of\r
1260 Null-terminated Unicode string Destination. The Null-terminated concatenated\r
1261 Unicode String is returned. If Source and Destination overlap, then the\r
1262 results are undefined.\r
1263\r
1264 If Destination is NULL, then ASSERT().\r
1265 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
1266 If Source is NULL, then ASSERT().\r
1267 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
1268 If Source and Destination overlap, then ASSERT().\r
1269 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more\r
1270 than PcdMaximumUnicodeStringLength Unicode characters, not including the\r
1271 Null-terminator, then ASSERT().\r
1272 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
1273 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
1274 Null-terminator, then ASSERT().\r
1275 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination\r
1276 and Source results in a Unicode string with more than\r
1277 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
1278 Null-terminator, then ASSERT().\r
1279\r
1280 @param Destination The pointer to a Null-terminated Unicode string.\r
1281 @param Source The pointer to a Null-terminated Unicode string.\r
1282\r
1283 @return Destination.\r
1284\r
1285**/\r
1286CHAR16 *\r
1287EFIAPI\r
1288StrCat (\r
1289 IN OUT CHAR16 *Destination,\r
1290 IN CONST CHAR16 *Source\r
1291 );\r
1292\r
1293\r
1294/**\r
1295 [ATTENTION] This function is deprecated for security reason.\r
1296\r
1297 Concatenates up to a specified length one Null-terminated Unicode to the end\r
1298 of another Null-terminated Unicode string, and returns the concatenated\r
1299 Unicode string.\r
1300\r
1301 This function concatenates two Null-terminated Unicode strings. The contents\r
1302 of Null-terminated Unicode string Source are concatenated to the end of\r
1303 Null-terminated Unicode string Destination, and Destination is returned. At\r
1304 most, Length Unicode characters are concatenated from Source to the end of\r
1305 Destination, and Destination is always Null-terminated. If Length is 0, then\r
1306 Destination is returned unmodified. If Source and Destination overlap, then\r
1307 the results are undefined.\r
1308\r
1309 If Destination is NULL, then ASSERT().\r
1310 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
1311 If Length > 0 and Source is NULL, then ASSERT().\r
1312 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
1313 If Source and Destination overlap, then ASSERT().\r
1314 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than\r
1315 PcdMaximumUnicodeStringLength, then ASSERT().\r
1316 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more\r
1317 than PcdMaximumUnicodeStringLength Unicode characters, not including the\r
1318 Null-terminator, then ASSERT().\r
1319 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
1320 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
1321 Null-terminator, then ASSERT().\r
1322 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination\r
1323 and Source results in a Unicode string with more than PcdMaximumUnicodeStringLength\r
1324 Unicode characters, not including the Null-terminator, then ASSERT().\r
1325\r
1326 @param Destination The pointer to a Null-terminated Unicode string.\r
1327 @param Source The pointer to a Null-terminated Unicode string.\r
1328 @param Length The maximum number of Unicode characters to concatenate from\r
1329 Source.\r
1330\r
1331 @return Destination.\r
1332\r
1333**/\r
1334CHAR16 *\r
1335EFIAPI\r
1336StrnCat (\r
1337 IN OUT CHAR16 *Destination,\r
1338 IN CONST CHAR16 *Source,\r
1339 IN UINTN Length\r
1340 );\r
1341#endif // !defined (DISABLE_NEW_DEPRECATED_INTERFACES)\r
1342\r
1343/**\r
1344 Returns the first occurrence of a Null-terminated Unicode sub-string\r
1345 in a Null-terminated Unicode string.\r
1346\r
1347 This function scans the contents of the Null-terminated Unicode string\r
1348 specified by String and returns the first occurrence of SearchString.\r
1349 If SearchString is not found in String, then NULL is returned. If\r
1350 the length of SearchString is zero, then String is returned.\r
1351\r
1352 If String is NULL, then ASSERT().\r
1353 If String is not aligned on a 16-bit boundary, then ASSERT().\r
1354 If SearchString is NULL, then ASSERT().\r
1355 If SearchString is not aligned on a 16-bit boundary, then ASSERT().\r
1356\r
1357 If PcdMaximumUnicodeStringLength is not zero, and SearchString\r
1358 or String contains more than PcdMaximumUnicodeStringLength Unicode\r
1359 characters, not including the Null-terminator, then ASSERT().\r
1360\r
1361 @param String The pointer to a Null-terminated Unicode string.\r
1362 @param SearchString The pointer to a Null-terminated Unicode string to search for.\r
1363\r
1364 @retval NULL If the SearchString does not appear in String.\r
1365 @return others If there is a match.\r
1366\r
1367**/\r
1368CHAR16 *\r
1369EFIAPI\r
1370StrStr (\r
1371 IN CONST CHAR16 *String,\r
1372 IN CONST CHAR16 *SearchString\r
1373 );\r
1374\r
1375/**\r
1376 Convert a Null-terminated Unicode decimal string to a value of\r
1377 type UINTN.\r
1378\r
1379 This function returns a value of type UINTN by interpreting the contents\r
1380 of the Unicode string specified by String as a decimal number. The format\r
1381 of the input Unicode string String is:\r
1382\r
1383 [spaces] [decimal digits].\r
1384\r
1385 The valid decimal digit character is in the range [0-9]. The\r
1386 function will ignore the pad space, which includes spaces or\r
1387 tab characters, before [decimal digits]. The running zero in the\r
1388 beginning of [decimal digits] will be ignored. Then, the function\r
1389 stops at the first character that is a not a valid decimal character\r
1390 or a Null-terminator, whichever one comes first.\r
1391\r
1392 If String is NULL, then ASSERT().\r
1393 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1394 If String has only pad spaces, then 0 is returned.\r
1395 If String has no pad spaces or valid decimal digits,\r
1396 then 0 is returned.\r
1397 If the number represented by String overflows according\r
1398 to the range defined by UINTN, then MAX_UINTN is returned.\r
1399\r
1400 If PcdMaximumUnicodeStringLength is not zero, and String contains\r
1401 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
1402 the Null-terminator, then ASSERT().\r
1403\r
1404 @param String The pointer to a Null-terminated Unicode string.\r
1405\r
1406 @retval Value translated from String.\r
1407\r
1408**/\r
1409UINTN\r
1410EFIAPI\r
1411StrDecimalToUintn (\r
1412 IN CONST CHAR16 *String\r
1413 );\r
1414\r
1415/**\r
1416 Convert a Null-terminated Unicode decimal string to a value of\r
1417 type UINT64.\r
1418\r
1419 This function returns a value of type UINT64 by interpreting the contents\r
1420 of the Unicode string specified by String as a decimal number. The format\r
1421 of the input Unicode string String is:\r
1422\r
1423 [spaces] [decimal digits].\r
1424\r
1425 The valid decimal digit character is in the range [0-9]. The\r
1426 function will ignore the pad space, which includes spaces or\r
1427 tab characters, before [decimal digits]. The running zero in the\r
1428 beginning of [decimal digits] will be ignored. Then, the function\r
1429 stops at the first character that is a not a valid decimal character\r
1430 or a Null-terminator, whichever one comes first.\r
1431\r
1432 If String is NULL, then ASSERT().\r
1433 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1434 If String has only pad spaces, then 0 is returned.\r
1435 If String has no pad spaces or valid decimal digits,\r
1436 then 0 is returned.\r
1437 If the number represented by String overflows according\r
1438 to the range defined by UINT64, then MAX_UINT64 is returned.\r
1439\r
1440 If PcdMaximumUnicodeStringLength is not zero, and String contains\r
1441 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
1442 the Null-terminator, then ASSERT().\r
1443\r
1444 @param String The pointer to a Null-terminated Unicode string.\r
1445\r
1446 @retval Value translated from String.\r
1447\r
1448**/\r
1449UINT64\r
1450EFIAPI\r
1451StrDecimalToUint64 (\r
1452 IN CONST CHAR16 *String\r
1453 );\r
1454\r
1455\r
1456/**\r
1457 Convert a Null-terminated Unicode hexadecimal string to a value of type UINTN.\r
1458\r
1459 This function returns a value of type UINTN by interpreting the contents\r
1460 of the Unicode string specified by String as a hexadecimal number.\r
1461 The format of the input Unicode string String is:\r
1462\r
1463 [spaces][zeros][x][hexadecimal digits].\r
1464\r
1465 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
1466 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
1467 If "x" appears in the input string, it must be prefixed with at least one 0.\r
1468 The function will ignore the pad space, which includes spaces or tab characters,\r
1469 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or\r
1470 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the\r
1471 first valid hexadecimal digit. Then, the function stops at the first character\r
1472 that is a not a valid hexadecimal character or NULL, whichever one comes first.\r
1473\r
1474 If String is NULL, then ASSERT().\r
1475 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1476 If String has only pad spaces, then zero is returned.\r
1477 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,\r
1478 then zero is returned.\r
1479 If the number represented by String overflows according to the range defined by\r
1480 UINTN, then MAX_UINTN is returned.\r
1481\r
1482 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1483 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,\r
1484 then ASSERT().\r
1485\r
1486 @param String The pointer to a Null-terminated Unicode string.\r
1487\r
1488 @retval Value translated from String.\r
1489\r
1490**/\r
1491UINTN\r
1492EFIAPI\r
1493StrHexToUintn (\r
1494 IN CONST CHAR16 *String\r
1495 );\r
1496\r
1497\r
1498/**\r
1499 Convert a Null-terminated Unicode hexadecimal string to a value of type UINT64.\r
1500\r
1501 This function returns a value of type UINT64 by interpreting the contents\r
1502 of the Unicode string specified by String as a hexadecimal number.\r
1503 The format of the input Unicode string String is\r
1504\r
1505 [spaces][zeros][x][hexadecimal digits].\r
1506\r
1507 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
1508 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
1509 If "x" appears in the input string, it must be prefixed with at least one 0.\r
1510 The function will ignore the pad space, which includes spaces or tab characters,\r
1511 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or\r
1512 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the\r
1513 first valid hexadecimal digit. Then, the function stops at the first character that is\r
1514 a not a valid hexadecimal character or NULL, whichever one comes first.\r
1515\r
1516 If String is NULL, then ASSERT().\r
1517 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1518 If String has only pad spaces, then zero is returned.\r
1519 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,\r
1520 then zero is returned.\r
1521 If the number represented by String overflows according to the range defined by\r
1522 UINT64, then MAX_UINT64 is returned.\r
1523\r
1524 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1525 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,\r
1526 then ASSERT().\r
1527\r
1528 @param String The pointer to a Null-terminated Unicode string.\r
1529\r
1530 @retval Value translated from String.\r
1531\r
1532**/\r
1533UINT64\r
1534EFIAPI\r
1535StrHexToUint64 (\r
1536 IN CONST CHAR16 *String\r
1537 );\r
1538\r
1539/**\r
1540 Convert a Null-terminated Unicode string to IPv6 address and prefix length.\r
1541\r
1542 This function outputs a value of type IPv6_ADDRESS and may output a value\r
1543 of type UINT8 by interpreting the contents of the Unicode string specified\r
1544 by String. The format of the input Unicode string String is as follows:\r
1545\r
1546 X:X:X:X:X:X:X:X[/P]\r
1547\r
1548 X contains one to four hexadecimal digit characters in the range [0-9], [a-f] and\r
1549 [A-F]. X is converted to a value of type UINT16, whose low byte is stored in low\r
1550 memory address and high byte is stored in high memory address. P contains decimal\r
1551 digit characters in the range [0-9]. The running zero in the beginning of P will\r
1552 be ignored. /P is optional.\r
1553\r
1554 When /P is not in the String, the function stops at the first character that is\r
1555 not a valid hexadecimal digit character after eight X's are converted.\r
1556\r
1557 When /P is in the String, the function stops at the first character that is not\r
1558 a valid decimal digit character after P is converted.\r
1559\r
1560 "::" can be used to compress one or more groups of X when X contains only 0.\r
1561 The "::" can only appear once in the String.\r
1562\r
1563 If String is NULL, then ASSERT().\r
1564\r
1565 If Address is NULL, then ASSERT().\r
1566\r
1567 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1568\r
1569 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1570 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
1571 Null-terminator, then ASSERT().\r
1572\r
1573 If EndPointer is not NULL and Address is translated from String, a pointer\r
1574 to the character that stopped the scan is stored at the location pointed to\r
1575 by EndPointer.\r
1576\r
1577 @param String Pointer to a Null-terminated Unicode string.\r
1578 @param EndPointer Pointer to character that stops scan.\r
1579 @param Address Pointer to the converted IPv6 address.\r
1580 @param PrefixLength Pointer to the converted IPv6 address prefix\r
1581 length. MAX_UINT8 is returned when /P is\r
1582 not in the String.\r
1583\r
1584 @retval RETURN_SUCCESS Address is translated from String.\r
1585 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
1586 If Data is NULL.\r
1587 @retval RETURN_UNSUPPORTED If X contains more than four hexadecimal\r
1588 digit characters.\r
1589 If String contains "::" and number of X\r
1590 is not less than 8.\r
1591 If P starts with character that is not a\r
1592 valid decimal digit character.\r
1593 If the decimal number converted from P\r
1594 exceeds 128.\r
1595\r
1596**/\r
1597RETURN_STATUS\r
1598EFIAPI\r
1599StrToIpv6Address (\r
1600 IN CONST CHAR16 *String,\r
1601 OUT CHAR16 **EndPointer, OPTIONAL\r
1602 OUT IPv6_ADDRESS *Address,\r
1603 OUT UINT8 *PrefixLength OPTIONAL\r
1604 );\r
1605\r
1606/**\r
1607 Convert a Null-terminated Unicode string to IPv4 address and prefix length.\r
1608\r
1609 This function outputs a value of type IPv4_ADDRESS and may output a value\r
1610 of type UINT8 by interpreting the contents of the Unicode string specified\r
1611 by String. The format of the input Unicode string String is as follows:\r
1612\r
1613 D.D.D.D[/P]\r
1614\r
1615 D and P are decimal digit characters in the range [0-9]. The running zero in\r
1616 the beginning of D and P will be ignored. /P is optional.\r
1617\r
1618 When /P is not in the String, the function stops at the first character that is\r
1619 not a valid decimal digit character after four D's are converted.\r
1620\r
1621 When /P is in the String, the function stops at the first character that is not\r
1622 a valid decimal digit character after P is converted.\r
1623\r
1624 If String is NULL, then ASSERT().\r
1625\r
1626 If Address is NULL, then ASSERT().\r
1627\r
1628 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1629\r
1630 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
1631 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
1632 Null-terminator, then ASSERT().\r
1633\r
1634 If EndPointer is not NULL and Address is translated from String, a pointer\r
1635 to the character that stopped the scan is stored at the location pointed to\r
1636 by EndPointer.\r
1637\r
1638 @param String Pointer to a Null-terminated Unicode string.\r
1639 @param EndPointer Pointer to character that stops scan.\r
1640 @param Address Pointer to the converted IPv4 address.\r
1641 @param PrefixLength Pointer to the converted IPv4 address prefix\r
1642 length. MAX_UINT8 is returned when /P is\r
1643 not in the String.\r
1644\r
1645 @retval RETURN_SUCCESS Address is translated from String.\r
1646 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
1647 If Data is NULL.\r
1648 @retval RETURN_UNSUPPORTED If String is not in the correct format.\r
1649 If any decimal number converted from D\r
1650 exceeds 255.\r
1651 If the decimal number converted from P\r
1652 exceeds 32.\r
1653\r
1654**/\r
1655RETURN_STATUS\r
1656EFIAPI\r
1657StrToIpv4Address (\r
1658 IN CONST CHAR16 *String,\r
1659 OUT CHAR16 **EndPointer, OPTIONAL\r
1660 OUT IPv4_ADDRESS *Address,\r
1661 OUT UINT8 *PrefixLength OPTIONAL\r
1662 );\r
1663\r
1664#define GUID_STRING_LENGTH 36\r
1665\r
1666/**\r
1667 Convert a Null-terminated Unicode GUID string to a value of type\r
1668 EFI_GUID.\r
1669\r
1670 This function outputs a GUID value by interpreting the contents of\r
1671 the Unicode string specified by String. The format of the input\r
1672 Unicode string String consists of 36 characters, as follows:\r
1673\r
1674 aabbccdd-eeff-gghh-iijj-kkllmmnnoopp\r
1675\r
1676 The pairs aa - pp are two characters in the range [0-9], [a-f] and\r
1677 [A-F], with each pair representing a single byte hexadecimal value.\r
1678\r
1679 The mapping between String and the EFI_GUID structure is as follows:\r
1680 aa Data1[24:31]\r
1681 bb Data1[16:23]\r
1682 cc Data1[8:15]\r
1683 dd Data1[0:7]\r
1684 ee Data2[8:15]\r
1685 ff Data2[0:7]\r
1686 gg Data3[8:15]\r
1687 hh Data3[0:7]\r
1688 ii Data4[0:7]\r
1689 jj Data4[8:15]\r
1690 kk Data4[16:23]\r
1691 ll Data4[24:31]\r
1692 mm Data4[32:39]\r
1693 nn Data4[40:47]\r
1694 oo Data4[48:55]\r
1695 pp Data4[56:63]\r
1696\r
1697 If String is NULL, then ASSERT().\r
1698 If Guid is NULL, then ASSERT().\r
1699 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1700\r
1701 @param String Pointer to a Null-terminated Unicode string.\r
1702 @param Guid Pointer to the converted GUID.\r
1703\r
1704 @retval RETURN_SUCCESS Guid is translated from String.\r
1705 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
1706 If Data is NULL.\r
1707 @retval RETURN_UNSUPPORTED If String is not as the above format.\r
1708\r
1709**/\r
1710RETURN_STATUS\r
1711EFIAPI\r
1712StrToGuid (\r
1713 IN CONST CHAR16 *String,\r
1714 OUT GUID *Guid\r
1715 );\r
1716\r
1717/**\r
1718 Convert a Null-terminated Unicode hexadecimal string to a byte array.\r
1719\r
1720 This function outputs a byte array by interpreting the contents of\r
1721 the Unicode string specified by String in hexadecimal format. The format of\r
1722 the input Unicode string String is:\r
1723\r
1724 [XX]*\r
1725\r
1726 X is a hexadecimal digit character in the range [0-9], [a-f] and [A-F].\r
1727 The function decodes every two hexadecimal digit characters as one byte. The\r
1728 decoding stops after Length of characters and outputs Buffer containing\r
1729 (Length / 2) bytes.\r
1730\r
1731 If String is not aligned in a 16-bit boundary, then ASSERT().\r
1732\r
1733 If String is NULL, then ASSERT().\r
1734\r
1735 If Buffer is NULL, then ASSERT().\r
1736\r
1737 If Length is not multiple of 2, then ASSERT().\r
1738\r
1739 If PcdMaximumUnicodeStringLength is not zero and Length is greater than\r
1740 PcdMaximumUnicodeStringLength, then ASSERT().\r
1741\r
1742 If MaxBufferSize is less than (Length / 2), then ASSERT().\r
1743\r
1744 @param String Pointer to a Null-terminated Unicode string.\r
1745 @param Length The number of Unicode characters to decode.\r
1746 @param Buffer Pointer to the converted bytes array.\r
1747 @param MaxBufferSize The maximum size of Buffer.\r
1748\r
1749 @retval RETURN_SUCCESS Buffer is translated from String.\r
1750 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
1751 If Data is NULL.\r
1752 If Length is not multiple of 2.\r
1753 If PcdMaximumUnicodeStringLength is not zero,\r
1754 and Length is greater than\r
1755 PcdMaximumUnicodeStringLength.\r
1756 @retval RETURN_UNSUPPORTED If Length of characters from String contain\r
1757 a character that is not valid hexadecimal\r
1758 digit characters, or a Null-terminator.\r
1759 @retval RETURN_BUFFER_TOO_SMALL If MaxBufferSize is less than (Length / 2).\r
1760**/\r
1761RETURN_STATUS\r
1762EFIAPI\r
1763StrHexToBytes (\r
1764 IN CONST CHAR16 *String,\r
1765 IN UINTN Length,\r
1766 OUT UINT8 *Buffer,\r
1767 IN UINTN MaxBufferSize\r
1768 );\r
1769\r
1770#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
1771\r
1772/**\r
1773 [ATTENTION] This function is deprecated for security reason.\r
1774\r
1775 Convert a Null-terminated Unicode string to a Null-terminated\r
1776 ASCII string and returns the ASCII string.\r
1777\r
1778 This function converts the content of the Unicode string Source\r
1779 to the ASCII string Destination by copying the lower 8 bits of\r
1780 each Unicode character. It returns Destination.\r
1781\r
1782 The caller is responsible to make sure Destination points to a buffer with size\r
1783 equal or greater than ((StrLen (Source) + 1) * sizeof (CHAR8)) in bytes.\r
1784\r
1785 If any Unicode characters in Source contain non-zero value in\r
1786 the upper 8 bits, then ASSERT().\r
1787\r
1788 If Destination is NULL, then ASSERT().\r
1789 If Source is NULL, then ASSERT().\r
1790 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
1791 If Source and Destination overlap, then ASSERT().\r
1792\r
1793 If PcdMaximumUnicodeStringLength is not zero, and Source contains\r
1794 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
1795 the Null-terminator, then ASSERT().\r
1796\r
1797 If PcdMaximumAsciiStringLength is not zero, and Source contains more\r
1798 than PcdMaximumAsciiStringLength Unicode characters not including the\r
1799 Null-terminator, then ASSERT().\r
1800\r
1801 @param Source The pointer to a Null-terminated Unicode string.\r
1802 @param Destination The pointer to a Null-terminated ASCII string.\r
1803\r
1804 @return Destination.\r
1805\r
1806**/\r
1807CHAR8 *\r
1808EFIAPI\r
1809UnicodeStrToAsciiStr (\r
1810 IN CONST CHAR16 *Source,\r
1811 OUT CHAR8 *Destination\r
1812 );\r
1813\r
1814#endif // !defined (DISABLE_NEW_DEPRECATED_INTERFACES)\r
1815\r
1816/**\r
1817 Convert a Null-terminated Unicode string to a Null-terminated\r
1818 ASCII string.\r
1819\r
1820 This function is similar to AsciiStrCpyS.\r
1821\r
1822 This function converts the content of the Unicode string Source\r
1823 to the ASCII string Destination by copying the lower 8 bits of\r
1824 each Unicode character. The function terminates the ASCII string\r
1825 Destination by appending a Null-terminator character at the end.\r
1826\r
1827 The caller is responsible to make sure Destination points to a buffer with size\r
1828 equal or greater than ((StrLen (Source) + 1) * sizeof (CHAR8)) in bytes.\r
1829\r
1830 If any Unicode characters in Source contain non-zero value in\r
1831 the upper 8 bits, then ASSERT().\r
1832\r
1833 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
1834 If an error would be returned, then the function will also ASSERT().\r
1835\r
1836 If an error is returned, then the Destination is unmodified.\r
1837\r
1838 @param Source The pointer to a Null-terminated Unicode string.\r
1839 @param Destination The pointer to a Null-terminated ASCII string.\r
1840 @param DestMax The maximum number of Destination Ascii\r
1841 char, including terminating null char.\r
1842\r
1843 @retval RETURN_SUCCESS String is converted.\r
1844 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).\r
1845 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
1846 If Source is NULL.\r
1847 If PcdMaximumAsciiStringLength is not zero,\r
1848 and DestMax is greater than\r
1849 PcdMaximumAsciiStringLength.\r
1850 If PcdMaximumUnicodeStringLength is not zero,\r
1851 and DestMax is greater than\r
1852 PcdMaximumUnicodeStringLength.\r
1853 If DestMax is 0.\r
1854 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
1855\r
1856**/\r
1857RETURN_STATUS\r
1858EFIAPI\r
1859UnicodeStrToAsciiStrS (\r
1860 IN CONST CHAR16 *Source,\r
1861 OUT CHAR8 *Destination,\r
1862 IN UINTN DestMax\r
1863 );\r
1864\r
1865/**\r
1866 Convert not more than Length successive characters from a Null-terminated\r
1867 Unicode string to a Null-terminated Ascii string. If no null char is copied\r
1868 from Source, then Destination[Length] is always set to null.\r
1869\r
1870 This function converts not more than Length successive characters from the\r
1871 Unicode string Source to the Ascii string Destination by copying the lower 8\r
1872 bits of each Unicode character. The function terminates the Ascii string\r
1873 Destination by appending a Null-terminator character at the end.\r
1874\r
1875 The caller is responsible to make sure Destination points to a buffer with size\r
1876 equal or greater than ((StrLen (Source) + 1) * sizeof (CHAR8)) in bytes.\r
1877\r
1878 If any Unicode characters in Source contain non-zero value in the upper 8\r
1879 bits, then ASSERT().\r
1880 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
1881 If an error would be returned, then the function will also ASSERT().\r
1882\r
1883 If an error is returned, then the Destination is unmodified.\r
1884\r
1885 @param Source The pointer to a Null-terminated Unicode string.\r
1886 @param Length The maximum number of Unicode characters to\r
1887 convert.\r
1888 @param Destination The pointer to a Null-terminated Ascii string.\r
1889 @param DestMax The maximum number of Destination Ascii\r
1890 char, including terminating null char.\r
1891 @param DestinationLength The number of Unicode characters converted.\r
1892\r
1893 @retval RETURN_SUCCESS String is converted.\r
1894 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
1895 If Source is NULL.\r
1896 If DestinationLength is NULL.\r
1897 If PcdMaximumAsciiStringLength is not zero,\r
1898 and Length or DestMax is greater than\r
1899 PcdMaximumAsciiStringLength.\r
1900 If PcdMaximumUnicodeStringLength is not\r
1901 zero, and Length or DestMax is greater than\r
1902 PcdMaximumUnicodeStringLength.\r
1903 If DestMax is 0.\r
1904 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than\r
1905 MIN(StrLen(Source), Length).\r
1906 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
1907\r
1908**/\r
1909RETURN_STATUS\r
1910EFIAPI\r
1911UnicodeStrnToAsciiStrS (\r
1912 IN CONST CHAR16 *Source,\r
1913 IN UINTN Length,\r
1914 OUT CHAR8 *Destination,\r
1915 IN UINTN DestMax,\r
1916 OUT UINTN *DestinationLength\r
1917 );\r
1918\r
1919#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
1920\r
1921/**\r
1922 [ATTENTION] This function is deprecated for security reason.\r
1923\r
1924 Copies one Null-terminated ASCII string to another Null-terminated ASCII\r
1925 string and returns the new ASCII string.\r
1926\r
1927 This function copies the contents of the ASCII string Source to the ASCII\r
1928 string Destination, and returns Destination. If Source and Destination\r
1929 overlap, then the results are undefined.\r
1930\r
1931 If Destination is NULL, then ASSERT().\r
1932 If Source is NULL, then ASSERT().\r
1933 If Source and Destination overlap, then ASSERT().\r
1934 If PcdMaximumAsciiStringLength is not zero and Source contains more than\r
1935 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1936 then ASSERT().\r
1937\r
1938 @param Destination The pointer to a Null-terminated ASCII string.\r
1939 @param Source The pointer to a Null-terminated ASCII string.\r
1940\r
1941 @return Destination\r
1942\r
1943**/\r
1944CHAR8 *\r
1945EFIAPI\r
1946AsciiStrCpy (\r
1947 OUT CHAR8 *Destination,\r
1948 IN CONST CHAR8 *Source\r
1949 );\r
1950\r
1951\r
1952/**\r
1953 [ATTENTION] This function is deprecated for security reason.\r
1954\r
1955 Copies up to a specified length one Null-terminated ASCII string to another\r
1956 Null-terminated ASCII string and returns the new ASCII string.\r
1957\r
1958 This function copies the contents of the ASCII string Source to the ASCII\r
1959 string Destination, and returns Destination. At most, Length ASCII characters\r
1960 are copied from Source to Destination. If Length is 0, then Destination is\r
1961 returned unmodified. If Length is greater that the number of ASCII characters\r
1962 in Source, then Destination is padded with Null ASCII characters. If Source\r
1963 and Destination overlap, then the results are undefined.\r
1964\r
1965 If Destination is NULL, then ASSERT().\r
1966 If Source is NULL, then ASSERT().\r
1967 If Source and Destination overlap, then ASSERT().\r
1968 If PcdMaximumAsciiStringLength is not zero, and Length is greater than\r
1969 PcdMaximumAsciiStringLength, then ASSERT().\r
1970 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
1971 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
1972 then ASSERT().\r
1973\r
1974 @param Destination The pointer to a Null-terminated ASCII string.\r
1975 @param Source The pointer to a Null-terminated ASCII string.\r
1976 @param Length The maximum number of ASCII characters to copy.\r
1977\r
1978 @return Destination\r
1979\r
1980**/\r
1981CHAR8 *\r
1982EFIAPI\r
1983AsciiStrnCpy (\r
1984 OUT CHAR8 *Destination,\r
1985 IN CONST CHAR8 *Source,\r
1986 IN UINTN Length\r
1987 );\r
1988#endif // !defined (DISABLE_NEW_DEPRECATED_INTERFACES)\r
1989\r
1990/**\r
1991 Returns the length of a Null-terminated ASCII string.\r
1992\r
1993 This function returns the number of ASCII characters in the Null-terminated\r
1994 ASCII string specified by String.\r
1995\r
1996 If Length > 0 and Destination is NULL, then ASSERT().\r
1997 If Length > 0 and Source is NULL, then ASSERT().\r
1998 If PcdMaximumAsciiStringLength is not zero and String contains more than\r
1999 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2000 then ASSERT().\r
2001\r
2002 @param String The pointer to a Null-terminated ASCII string.\r
2003\r
2004 @return The length of String.\r
2005\r
2006**/\r
2007UINTN\r
2008EFIAPI\r
2009AsciiStrLen (\r
2010 IN CONST CHAR8 *String\r
2011 );\r
2012\r
2013\r
2014/**\r
2015 Returns the size of a Null-terminated ASCII string in bytes, including the\r
2016 Null terminator.\r
2017\r
2018 This function returns the size, in bytes, of the Null-terminated ASCII string\r
2019 specified by String.\r
2020\r
2021 If String is NULL, then ASSERT().\r
2022 If PcdMaximumAsciiStringLength is not zero and String contains more than\r
2023 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2024 then ASSERT().\r
2025\r
2026 @param String The pointer to a Null-terminated ASCII string.\r
2027\r
2028 @return The size of String.\r
2029\r
2030**/\r
2031UINTN\r
2032EFIAPI\r
2033AsciiStrSize (\r
2034 IN CONST CHAR8 *String\r
2035 );\r
2036\r
2037\r
2038/**\r
2039 Compares two Null-terminated ASCII strings, and returns the difference\r
2040 between the first mismatched ASCII characters.\r
2041\r
2042 This function compares the Null-terminated ASCII string FirstString to the\r
2043 Null-terminated ASCII string SecondString. If FirstString is identical to\r
2044 SecondString, then 0 is returned. Otherwise, the value returned is the first\r
2045 mismatched ASCII character in SecondString subtracted from the first\r
2046 mismatched ASCII character in FirstString.\r
2047\r
2048 If FirstString is NULL, then ASSERT().\r
2049 If SecondString is NULL, then ASSERT().\r
2050 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than\r
2051 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2052 then ASSERT().\r
2053 If PcdMaximumAsciiStringLength is not zero and SecondString contains more\r
2054 than PcdMaximumAsciiStringLength ASCII characters not including the\r
2055 Null-terminator, then ASSERT().\r
2056\r
2057 @param FirstString The pointer to a Null-terminated ASCII string.\r
2058 @param SecondString The pointer to a Null-terminated ASCII string.\r
2059\r
2060 @retval ==0 FirstString is identical to SecondString.\r
2061 @retval !=0 FirstString is not identical to SecondString.\r
2062\r
2063**/\r
2064INTN\r
2065EFIAPI\r
2066AsciiStrCmp (\r
2067 IN CONST CHAR8 *FirstString,\r
2068 IN CONST CHAR8 *SecondString\r
2069 );\r
2070\r
2071\r
2072/**\r
2073 Performs a case insensitive comparison of two Null-terminated ASCII strings,\r
2074 and returns the difference between the first mismatched ASCII characters.\r
2075\r
2076 This function performs a case insensitive comparison of the Null-terminated\r
2077 ASCII string FirstString to the Null-terminated ASCII string SecondString. If\r
2078 FirstString is identical to SecondString, then 0 is returned. Otherwise, the\r
2079 value returned is the first mismatched lower case ASCII character in\r
2080 SecondString subtracted from the first mismatched lower case ASCII character\r
2081 in FirstString.\r
2082\r
2083 If FirstString is NULL, then ASSERT().\r
2084 If SecondString is NULL, then ASSERT().\r
2085 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than\r
2086 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2087 then ASSERT().\r
2088 If PcdMaximumAsciiStringLength is not zero and SecondString contains more\r
2089 than PcdMaximumAsciiStringLength ASCII characters not including the\r
2090 Null-terminator, then ASSERT().\r
2091\r
2092 @param FirstString The pointer to a Null-terminated ASCII string.\r
2093 @param SecondString The pointer to a Null-terminated ASCII string.\r
2094\r
2095 @retval ==0 FirstString is identical to SecondString using case insensitive\r
2096 comparisons.\r
2097 @retval !=0 FirstString is not identical to SecondString using case\r
2098 insensitive comparisons.\r
2099\r
2100**/\r
2101INTN\r
2102EFIAPI\r
2103AsciiStriCmp (\r
2104 IN CONST CHAR8 *FirstString,\r
2105 IN CONST CHAR8 *SecondString\r
2106 );\r
2107\r
2108\r
2109/**\r
2110 Compares two Null-terminated ASCII strings with maximum lengths, and returns\r
2111 the difference between the first mismatched ASCII characters.\r
2112\r
2113 This function compares the Null-terminated ASCII string FirstString to the\r
2114 Null-terminated ASCII string SecondString. At most, Length ASCII characters\r
2115 will be compared. If Length is 0, then 0 is returned. If FirstString is\r
2116 identical to SecondString, then 0 is returned. Otherwise, the value returned\r
2117 is the first mismatched ASCII character in SecondString subtracted from the\r
2118 first mismatched ASCII character in FirstString.\r
2119\r
2120 If Length > 0 and FirstString is NULL, then ASSERT().\r
2121 If Length > 0 and SecondString is NULL, then ASSERT().\r
2122 If PcdMaximumAsciiStringLength is not zero, and Length is greater than\r
2123 PcdMaximumAsciiStringLength, then ASSERT().\r
2124 If PcdMaximumAsciiStringLength is not zero, and FirstString contains more than\r
2125 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
2126 then ASSERT().\r
2127 If PcdMaximumAsciiStringLength is not zero, and SecondString contains more than\r
2128 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
2129 then ASSERT().\r
2130\r
2131 @param FirstString The pointer to a Null-terminated ASCII string.\r
2132 @param SecondString The pointer to a Null-terminated ASCII string.\r
2133 @param Length The maximum number of ASCII characters for compare.\r
2134\r
2135 @retval ==0 FirstString is identical to SecondString.\r
2136 @retval !=0 FirstString is not identical to SecondString.\r
2137\r
2138**/\r
2139INTN\r
2140EFIAPI\r
2141AsciiStrnCmp (\r
2142 IN CONST CHAR8 *FirstString,\r
2143 IN CONST CHAR8 *SecondString,\r
2144 IN UINTN Length\r
2145 );\r
2146\r
2147\r
2148#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
2149\r
2150/**\r
2151 [ATTENTION] This function is deprecated for security reason.\r
2152\r
2153 Concatenates one Null-terminated ASCII string to another Null-terminated\r
2154 ASCII string, and returns the concatenated ASCII string.\r
2155\r
2156 This function concatenates two Null-terminated ASCII strings. The contents of\r
2157 Null-terminated ASCII string Source are concatenated to the end of Null-\r
2158 terminated ASCII string Destination. The Null-terminated concatenated ASCII\r
2159 String is returned.\r
2160\r
2161 If Destination is NULL, then ASSERT().\r
2162 If Source is NULL, then ASSERT().\r
2163 If PcdMaximumAsciiStringLength is not zero and Destination contains more than\r
2164 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2165 then ASSERT().\r
2166 If PcdMaximumAsciiStringLength is not zero and Source contains more than\r
2167 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2168 then ASSERT().\r
2169 If PcdMaximumAsciiStringLength is not zero and concatenating Destination and\r
2170 Source results in a ASCII string with more than PcdMaximumAsciiStringLength\r
2171 ASCII characters, then ASSERT().\r
2172\r
2173 @param Destination The pointer to a Null-terminated ASCII string.\r
2174 @param Source The pointer to a Null-terminated ASCII string.\r
2175\r
2176 @return Destination\r
2177\r
2178**/\r
2179CHAR8 *\r
2180EFIAPI\r
2181AsciiStrCat (\r
2182 IN OUT CHAR8 *Destination,\r
2183 IN CONST CHAR8 *Source\r
2184 );\r
2185\r
2186\r
2187/**\r
2188 [ATTENTION] This function is deprecated for security reason.\r
2189\r
2190 Concatenates up to a specified length one Null-terminated ASCII string to\r
2191 the end of another Null-terminated ASCII string, and returns the\r
2192 concatenated ASCII string.\r
2193\r
2194 This function concatenates two Null-terminated ASCII strings. The contents\r
2195 of Null-terminated ASCII string Source are concatenated to the end of Null-\r
2196 terminated ASCII string Destination, and Destination is returned. At most,\r
2197 Length ASCII characters are concatenated from Source to the end of\r
2198 Destination, and Destination is always Null-terminated. If Length is 0, then\r
2199 Destination is returned unmodified. If Source and Destination overlap, then\r
2200 the results are undefined.\r
2201\r
2202 If Length > 0 and Destination is NULL, then ASSERT().\r
2203 If Length > 0 and Source is NULL, then ASSERT().\r
2204 If Source and Destination overlap, then ASSERT().\r
2205 If PcdMaximumAsciiStringLength is not zero, and Length is greater than\r
2206 PcdMaximumAsciiStringLength, then ASSERT().\r
2207 If PcdMaximumAsciiStringLength is not zero, and Destination contains more than\r
2208 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
2209 then ASSERT().\r
2210 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
2211 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
2212 then ASSERT().\r
2213 If PcdMaximumAsciiStringLength is not zero, and concatenating Destination and\r
2214 Source results in a ASCII string with more than PcdMaximumAsciiStringLength\r
2215 ASCII characters, not including the Null-terminator, then ASSERT().\r
2216\r
2217 @param Destination The pointer to a Null-terminated ASCII string.\r
2218 @param Source The pointer to a Null-terminated ASCII string.\r
2219 @param Length The maximum number of ASCII characters to concatenate from\r
2220 Source.\r
2221\r
2222 @return Destination\r
2223\r
2224**/\r
2225CHAR8 *\r
2226EFIAPI\r
2227AsciiStrnCat (\r
2228 IN OUT CHAR8 *Destination,\r
2229 IN CONST CHAR8 *Source,\r
2230 IN UINTN Length\r
2231 );\r
2232#endif // !defined (DISABLE_NEW_DEPRECATED_INTERFACES)\r
2233\r
2234/**\r
2235 Returns the first occurrence of a Null-terminated ASCII sub-string\r
2236 in a Null-terminated ASCII string.\r
2237\r
2238 This function scans the contents of the ASCII string specified by String\r
2239 and returns the first occurrence of SearchString. If SearchString is not\r
2240 found in String, then NULL is returned. If the length of SearchString is zero,\r
2241 then String is returned.\r
2242\r
2243 If String is NULL, then ASSERT().\r
2244 If SearchString is NULL, then ASSERT().\r
2245\r
2246 If PcdMaximumAsciiStringLength is not zero, and SearchString or\r
2247 String contains more than PcdMaximumAsciiStringLength Unicode characters\r
2248 not including the Null-terminator, then ASSERT().\r
2249\r
2250 @param String The pointer to a Null-terminated ASCII string.\r
2251 @param SearchString The pointer to a Null-terminated ASCII string to search for.\r
2252\r
2253 @retval NULL If the SearchString does not appear in String.\r
2254 @retval others If there is a match return the first occurrence of SearchingString.\r
2255 If the length of SearchString is zero,return String.\r
2256\r
2257**/\r
2258CHAR8 *\r
2259EFIAPI\r
2260AsciiStrStr (\r
2261 IN CONST CHAR8 *String,\r
2262 IN CONST CHAR8 *SearchString\r
2263 );\r
2264\r
2265\r
2266/**\r
2267 Convert a Null-terminated ASCII decimal string to a value of type\r
2268 UINTN.\r
2269\r
2270 This function returns a value of type UINTN by interpreting the contents\r
2271 of the ASCII string String as a decimal number. The format of the input\r
2272 ASCII string String is:\r
2273\r
2274 [spaces] [decimal digits].\r
2275\r
2276 The valid decimal digit character is in the range [0-9]. The function will\r
2277 ignore the pad space, which includes spaces or tab characters, before the digits.\r
2278 The running zero in the beginning of [decimal digits] will be ignored. Then, the\r
2279 function stops at the first character that is a not a valid decimal character or\r
2280 Null-terminator, whichever on comes first.\r
2281\r
2282 If String has only pad spaces, then 0 is returned.\r
2283 If String has no pad spaces or valid decimal digits, then 0 is returned.\r
2284 If the number represented by String overflows according to the range defined by\r
2285 UINTN, then MAX_UINTN is returned.\r
2286 If String is NULL, then ASSERT().\r
2287 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
2288 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2289 then ASSERT().\r
2290\r
2291 @param String The pointer to a Null-terminated ASCII string.\r
2292\r
2293 @retval The value translated from String.\r
2294\r
2295**/\r
2296UINTN\r
2297EFIAPI\r
2298AsciiStrDecimalToUintn (\r
2299 IN CONST CHAR8 *String\r
2300 );\r
2301\r
2302\r
2303/**\r
2304 Convert a Null-terminated ASCII decimal string to a value of type\r
2305 UINT64.\r
2306\r
2307 This function returns a value of type UINT64 by interpreting the contents\r
2308 of the ASCII string String as a decimal number. The format of the input\r
2309 ASCII string String is:\r
2310\r
2311 [spaces] [decimal digits].\r
2312\r
2313 The valid decimal digit character is in the range [0-9]. The function will\r
2314 ignore the pad space, which includes spaces or tab characters, before the digits.\r
2315 The running zero in the beginning of [decimal digits] will be ignored. Then, the\r
2316 function stops at the first character that is a not a valid decimal character or\r
2317 Null-terminator, whichever on comes first.\r
2318\r
2319 If String has only pad spaces, then 0 is returned.\r
2320 If String has no pad spaces or valid decimal digits, then 0 is returned.\r
2321 If the number represented by String overflows according to the range defined by\r
2322 UINT64, then MAX_UINT64 is returned.\r
2323 If String is NULL, then ASSERT().\r
2324 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
2325 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2326 then ASSERT().\r
2327\r
2328 @param String The pointer to a Null-terminated ASCII string.\r
2329\r
2330 @retval Value translated from String.\r
2331\r
2332**/\r
2333UINT64\r
2334EFIAPI\r
2335AsciiStrDecimalToUint64 (\r
2336 IN CONST CHAR8 *String\r
2337 );\r
2338\r
2339\r
2340/**\r
2341 Convert a Null-terminated ASCII hexadecimal string to a value of type UINTN.\r
2342\r
2343 This function returns a value of type UINTN by interpreting the contents of\r
2344 the ASCII string String as a hexadecimal number. The format of the input ASCII\r
2345 string String is:\r
2346\r
2347 [spaces][zeros][x][hexadecimal digits].\r
2348\r
2349 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
2350 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"\r
2351 appears in the input string, it must be prefixed with at least one 0. The function\r
2352 will ignore the pad space, which includes spaces or tab characters, before [zeros],\r
2353 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]\r
2354 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal\r
2355 digit. Then, the function stops at the first character that is a not a valid\r
2356 hexadecimal character or Null-terminator, whichever on comes first.\r
2357\r
2358 If String has only pad spaces, then 0 is returned.\r
2359 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then\r
2360 0 is returned.\r
2361\r
2362 If the number represented by String overflows according to the range defined by UINTN,\r
2363 then MAX_UINTN is returned.\r
2364 If String is NULL, then ASSERT().\r
2365 If PcdMaximumAsciiStringLength is not zero,\r
2366 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including\r
2367 the Null-terminator, then ASSERT().\r
2368\r
2369 @param String The pointer to a Null-terminated ASCII string.\r
2370\r
2371 @retval Value translated from String.\r
2372\r
2373**/\r
2374UINTN\r
2375EFIAPI\r
2376AsciiStrHexToUintn (\r
2377 IN CONST CHAR8 *String\r
2378 );\r
2379\r
2380\r
2381/**\r
2382 Convert a Null-terminated ASCII hexadecimal string to a value of type UINT64.\r
2383\r
2384 This function returns a value of type UINT64 by interpreting the contents of\r
2385 the ASCII string String as a hexadecimal number. The format of the input ASCII\r
2386 string String is:\r
2387\r
2388 [spaces][zeros][x][hexadecimal digits].\r
2389\r
2390 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
2391 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"\r
2392 appears in the input string, it must be prefixed with at least one 0. The function\r
2393 will ignore the pad space, which includes spaces or tab characters, before [zeros],\r
2394 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]\r
2395 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal\r
2396 digit. Then, the function stops at the first character that is a not a valid\r
2397 hexadecimal character or Null-terminator, whichever on comes first.\r
2398\r
2399 If String has only pad spaces, then 0 is returned.\r
2400 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then\r
2401 0 is returned.\r
2402\r
2403 If the number represented by String overflows according to the range defined by UINT64,\r
2404 then MAX_UINT64 is returned.\r
2405 If String is NULL, then ASSERT().\r
2406 If PcdMaximumAsciiStringLength is not zero,\r
2407 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including\r
2408 the Null-terminator, then ASSERT().\r
2409\r
2410 @param String The pointer to a Null-terminated ASCII string.\r
2411\r
2412 @retval Value translated from String.\r
2413\r
2414**/\r
2415UINT64\r
2416EFIAPI\r
2417AsciiStrHexToUint64 (\r
2418 IN CONST CHAR8 *String\r
2419 );\r
2420\r
2421/**\r
2422 Convert a Null-terminated ASCII string to IPv6 address and prefix length.\r
2423\r
2424 This function outputs a value of type IPv6_ADDRESS and may output a value\r
2425 of type UINT8 by interpreting the contents of the ASCII string specified\r
2426 by String. The format of the input ASCII string String is as follows:\r
2427\r
2428 X:X:X:X:X:X:X:X[/P]\r
2429\r
2430 X contains one to four hexadecimal digit characters in the range [0-9], [a-f] and\r
2431 [A-F]. X is converted to a value of type UINT16, whose low byte is stored in low\r
2432 memory address and high byte is stored in high memory address. P contains decimal\r
2433 digit characters in the range [0-9]. The running zero in the beginning of P will\r
2434 be ignored. /P is optional.\r
2435\r
2436 When /P is not in the String, the function stops at the first character that is\r
2437 not a valid hexadecimal digit character after eight X's are converted.\r
2438\r
2439 When /P is in the String, the function stops at the first character that is not\r
2440 a valid decimal digit character after P is converted.\r
2441\r
2442 "::" can be used to compress one or more groups of X when X contains only 0.\r
2443 The "::" can only appear once in the String.\r
2444\r
2445 If String is NULL, then ASSERT().\r
2446\r
2447 If Address is NULL, then ASSERT().\r
2448\r
2449 If EndPointer is not NULL and Address is translated from String, a pointer\r
2450 to the character that stopped the scan is stored at the location pointed to\r
2451 by EndPointer.\r
2452\r
2453 @param String Pointer to a Null-terminated ASCII string.\r
2454 @param EndPointer Pointer to character that stops scan.\r
2455 @param Address Pointer to the converted IPv6 address.\r
2456 @param PrefixLength Pointer to the converted IPv6 address prefix\r
2457 length. MAX_UINT8 is returned when /P is\r
2458 not in the String.\r
2459\r
2460 @retval RETURN_SUCCESS Address is translated from String.\r
2461 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
2462 If Data is NULL.\r
2463 @retval RETURN_UNSUPPORTED If X contains more than four hexadecimal\r
2464 digit characters.\r
2465 If String contains "::" and number of X\r
2466 is not less than 8.\r
2467 If P starts with character that is not a\r
2468 valid decimal digit character.\r
2469 If the decimal number converted from P\r
2470 exceeds 128.\r
2471\r
2472**/\r
2473RETURN_STATUS\r
2474EFIAPI\r
2475AsciiStrToIpv6Address (\r
2476 IN CONST CHAR8 *String,\r
2477 OUT CHAR8 **EndPointer, OPTIONAL\r
2478 OUT IPv6_ADDRESS *Address,\r
2479 OUT UINT8 *PrefixLength OPTIONAL\r
2480 );\r
2481\r
2482/**\r
2483 Convert a Null-terminated ASCII string to IPv4 address and prefix length.\r
2484\r
2485 This function outputs a value of type IPv4_ADDRESS and may output a value\r
2486 of type UINT8 by interpreting the contents of the ASCII string specified\r
2487 by String. The format of the input ASCII string String is as follows:\r
2488\r
2489 D.D.D.D[/P]\r
2490\r
2491 D and P are decimal digit characters in the range [0-9]. The running zero in\r
2492 the beginning of D and P will be ignored. /P is optional.\r
2493\r
2494 When /P is not in the String, the function stops at the first character that is\r
2495 not a valid decimal digit character after four D's are converted.\r
2496\r
2497 When /P is in the String, the function stops at the first character that is not\r
2498 a valid decimal digit character after P is converted.\r
2499\r
2500 If String is NULL, then ASSERT().\r
2501\r
2502 If Address is NULL, then ASSERT().\r
2503\r
2504 If EndPointer is not NULL and Address is translated from String, a pointer\r
2505 to the character that stopped the scan is stored at the location pointed to\r
2506 by EndPointer.\r
2507\r
2508 @param String Pointer to a Null-terminated ASCII string.\r
2509 @param EndPointer Pointer to character that stops scan.\r
2510 @param Address Pointer to the converted IPv4 address.\r
2511 @param PrefixLength Pointer to the converted IPv4 address prefix\r
2512 length. MAX_UINT8 is returned when /P is\r
2513 not in the String.\r
2514\r
2515 @retval RETURN_SUCCESS Address is translated from String.\r
2516 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
2517 If Data is NULL.\r
2518 @retval RETURN_UNSUPPORTED If String is not in the correct format.\r
2519 If any decimal number converted from D\r
2520 exceeds 255.\r
2521 If the decimal number converted from P\r
2522 exceeds 32.\r
2523\r
2524**/\r
2525RETURN_STATUS\r
2526EFIAPI\r
2527AsciiStrToIpv4Address (\r
2528 IN CONST CHAR8 *String,\r
2529 OUT CHAR8 **EndPointer, OPTIONAL\r
2530 OUT IPv4_ADDRESS *Address,\r
2531 OUT UINT8 *PrefixLength OPTIONAL\r
2532 );\r
2533\r
2534/**\r
2535 Convert a Null-terminated ASCII GUID string to a value of type\r
2536 EFI_GUID.\r
2537\r
2538 This function outputs a GUID value by interpreting the contents of\r
2539 the ASCII string specified by String. The format of the input\r
2540 ASCII string String consists of 36 characters, as follows:\r
2541\r
2542 aabbccdd-eeff-gghh-iijj-kkllmmnnoopp\r
2543\r
2544 The pairs aa - pp are two characters in the range [0-9], [a-f] and\r
2545 [A-F], with each pair representing a single byte hexadecimal value.\r
2546\r
2547 The mapping between String and the EFI_GUID structure is as follows:\r
2548 aa Data1[24:31]\r
2549 bb Data1[16:23]\r
2550 cc Data1[8:15]\r
2551 dd Data1[0:7]\r
2552 ee Data2[8:15]\r
2553 ff Data2[0:7]\r
2554 gg Data3[8:15]\r
2555 hh Data3[0:7]\r
2556 ii Data4[0:7]\r
2557 jj Data4[8:15]\r
2558 kk Data4[16:23]\r
2559 ll Data4[24:31]\r
2560 mm Data4[32:39]\r
2561 nn Data4[40:47]\r
2562 oo Data4[48:55]\r
2563 pp Data4[56:63]\r
2564\r
2565 If String is NULL, then ASSERT().\r
2566 If Guid is NULL, then ASSERT().\r
2567\r
2568 @param String Pointer to a Null-terminated ASCII string.\r
2569 @param Guid Pointer to the converted GUID.\r
2570\r
2571 @retval RETURN_SUCCESS Guid is translated from String.\r
2572 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
2573 If Data is NULL.\r
2574 @retval RETURN_UNSUPPORTED If String is not as the above format.\r
2575\r
2576**/\r
2577RETURN_STATUS\r
2578EFIAPI\r
2579AsciiStrToGuid (\r
2580 IN CONST CHAR8 *String,\r
2581 OUT GUID *Guid\r
2582 );\r
2583\r
2584/**\r
2585 Convert a Null-terminated ASCII hexadecimal string to a byte array.\r
2586\r
2587 This function outputs a byte array by interpreting the contents of\r
2588 the ASCII string specified by String in hexadecimal format. The format of\r
2589 the input ASCII string String is:\r
2590\r
2591 [XX]*\r
2592\r
2593 X is a hexadecimal digit character in the range [0-9], [a-f] and [A-F].\r
2594 The function decodes every two hexadecimal digit characters as one byte. The\r
2595 decoding stops after Length of characters and outputs Buffer containing\r
2596 (Length / 2) bytes.\r
2597\r
2598 If String is NULL, then ASSERT().\r
2599\r
2600 If Buffer is NULL, then ASSERT().\r
2601\r
2602 If Length is not multiple of 2, then ASSERT().\r
2603\r
2604 If PcdMaximumAsciiStringLength is not zero and Length is greater than\r
2605 PcdMaximumAsciiStringLength, then ASSERT().\r
2606\r
2607 If MaxBufferSize is less than (Length / 2), then ASSERT().\r
2608\r
2609 @param String Pointer to a Null-terminated ASCII string.\r
2610 @param Length The number of ASCII characters to decode.\r
2611 @param Buffer Pointer to the converted bytes array.\r
2612 @param MaxBufferSize The maximum size of Buffer.\r
2613\r
2614 @retval RETURN_SUCCESS Buffer is translated from String.\r
2615 @retval RETURN_INVALID_PARAMETER If String is NULL.\r
2616 If Data is NULL.\r
2617 If Length is not multiple of 2.\r
2618 If PcdMaximumAsciiStringLength is not zero,\r
2619 and Length is greater than\r
2620 PcdMaximumAsciiStringLength.\r
2621 @retval RETURN_UNSUPPORTED If Length of characters from String contain\r
2622 a character that is not valid hexadecimal\r
2623 digit characters, or a Null-terminator.\r
2624 @retval RETURN_BUFFER_TOO_SMALL If MaxBufferSize is less than (Length / 2).\r
2625**/\r
2626RETURN_STATUS\r
2627EFIAPI\r
2628AsciiStrHexToBytes (\r
2629 IN CONST CHAR8 *String,\r
2630 IN UINTN Length,\r
2631 OUT UINT8 *Buffer,\r
2632 IN UINTN MaxBufferSize\r
2633 );\r
2634\r
2635#ifndef DISABLE_NEW_DEPRECATED_INTERFACES\r
2636\r
2637/**\r
2638 [ATTENTION] This function is deprecated for security reason.\r
2639\r
2640 Convert one Null-terminated ASCII string to a Null-terminated\r
2641 Unicode string and returns the Unicode string.\r
2642\r
2643 This function converts the contents of the ASCII string Source to the Unicode\r
2644 string Destination, and returns Destination. The function terminates the\r
2645 Unicode string Destination by appending a Null-terminator character at the end.\r
2646 The caller is responsible to make sure Destination points to a buffer with size\r
2647 equal or greater than ((AsciiStrLen (Source) + 1) * sizeof (CHAR16)) in bytes.\r
2648\r
2649 If Destination is NULL, then ASSERT().\r
2650 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
2651 If Source is NULL, then ASSERT().\r
2652 If Source and Destination overlap, then ASSERT().\r
2653 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
2654 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
2655 then ASSERT().\r
2656 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
2657 PcdMaximumUnicodeStringLength ASCII characters not including the\r
2658 Null-terminator, then ASSERT().\r
2659\r
2660 @param Source The pointer to a Null-terminated ASCII string.\r
2661 @param Destination The pointer to a Null-terminated Unicode string.\r
2662\r
2663 @return Destination.\r
2664\r
2665**/\r
2666CHAR16 *\r
2667EFIAPI\r
2668AsciiStrToUnicodeStr (\r
2669 IN CONST CHAR8 *Source,\r
2670 OUT CHAR16 *Destination\r
2671 );\r
2672\r
2673#endif // !defined (DISABLE_NEW_DEPRECATED_INTERFACES)\r
2674\r
2675/**\r
2676 Convert one Null-terminated ASCII string to a Null-terminated\r
2677 Unicode string.\r
2678\r
2679 This function is similar to StrCpyS.\r
2680\r
2681 This function converts the contents of the ASCII string Source to the Unicode\r
2682 string Destination. The function terminates the Unicode string Destination by\r
2683 appending a Null-terminator character at the end.\r
2684\r
2685 The caller is responsible to make sure Destination points to a buffer with size\r
2686 equal or greater than ((AsciiStrLen (Source) + 1) * sizeof (CHAR16)) in bytes.\r
2687\r
2688 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
2689 If an error would be returned, then the function will also ASSERT().\r
2690\r
2691 If an error is returned, then the Destination is unmodified.\r
2692\r
2693 @param Source The pointer to a Null-terminated ASCII string.\r
2694 @param Destination The pointer to a Null-terminated Unicode string.\r
2695 @param DestMax The maximum number of Destination Unicode\r
2696 char, including terminating null char.\r
2697\r
2698 @retval RETURN_SUCCESS String is converted.\r
2699 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).\r
2700 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
2701 If Source is NULL.\r
2702 If PcdMaximumUnicodeStringLength is not zero,\r
2703 and DestMax is greater than\r
2704 PcdMaximumUnicodeStringLength.\r
2705 If PcdMaximumAsciiStringLength is not zero,\r
2706 and DestMax is greater than\r
2707 PcdMaximumAsciiStringLength.\r
2708 If DestMax is 0.\r
2709 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
2710\r
2711**/\r
2712RETURN_STATUS\r
2713EFIAPI\r
2714AsciiStrToUnicodeStrS (\r
2715 IN CONST CHAR8 *Source,\r
2716 OUT CHAR16 *Destination,\r
2717 IN UINTN DestMax\r
2718 );\r
2719\r
2720/**\r
2721 Convert not more than Length successive characters from a Null-terminated\r
2722 Ascii string to a Null-terminated Unicode string. If no null char is copied\r
2723 from Source, then Destination[Length] is always set to null.\r
2724\r
2725 This function converts not more than Length successive characters from the\r
2726 Ascii string Source to the Unicode string Destination. The function\r
2727 terminates the Unicode string Destination by appending a Null-terminator\r
2728 character at the end.\r
2729\r
2730 The caller is responsible to make sure Destination points to a buffer with\r
2731 size not smaller than\r
2732 ((MIN(AsciiStrLen(Source), Length) + 1) * sizeof (CHAR8)) in bytes.\r
2733\r
2734 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
2735 If an error would be returned, then the function will also ASSERT().\r
2736\r
2737 If an error is returned, then Destination and DestinationLength are\r
2738 unmodified.\r
2739\r
2740 @param Source The pointer to a Null-terminated Ascii string.\r
2741 @param Length The maximum number of Ascii characters to convert.\r
2742 @param Destination The pointer to a Null-terminated Unicode string.\r
2743 @param DestMax The maximum number of Destination Unicode char,\r
2744 including terminating null char.\r
2745 @param DestinationLength The number of Ascii characters converted.\r
2746\r
2747 @retval RETURN_SUCCESS String is converted.\r
2748 @retval RETURN_INVALID_PARAMETER If Destination is NULL.\r
2749 If Source is NULL.\r
2750 If DestinationLength is NULL.\r
2751 If PcdMaximumUnicodeStringLength is not\r
2752 zero, and Length or DestMax is greater than\r
2753 PcdMaximumUnicodeStringLength.\r
2754 If PcdMaximumAsciiStringLength is not zero,\r
2755 and Length or DestMax is greater than\r
2756 PcdMaximumAsciiStringLength.\r
2757 If DestMax is 0.\r
2758 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than\r
2759 MIN(AsciiStrLen(Source), Length).\r
2760 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.\r
2761\r
2762**/\r
2763RETURN_STATUS\r
2764EFIAPI\r
2765AsciiStrnToUnicodeStrS (\r
2766 IN CONST CHAR8 *Source,\r
2767 IN UINTN Length,\r
2768 OUT CHAR16 *Destination,\r
2769 IN UINTN DestMax,\r
2770 OUT UINTN *DestinationLength\r
2771 );\r
2772\r
2773/**\r
2774 Converts an 8-bit value to an 8-bit BCD value.\r
2775\r
2776 Converts the 8-bit value specified by Value to BCD. The BCD value is\r
2777 returned.\r
2778\r
2779 If Value >= 100, then ASSERT().\r
2780\r
2781 @param Value The 8-bit value to convert to BCD. Range 0..99.\r
2782\r
2783 @return The BCD value.\r
2784\r
2785**/\r
2786UINT8\r
2787EFIAPI\r
2788DecimalToBcd8 (\r
2789 IN UINT8 Value\r
2790 );\r
2791\r
2792\r
2793/**\r
2794 Converts an 8-bit BCD value to an 8-bit value.\r
2795\r
2796 Converts the 8-bit BCD value specified by Value to an 8-bit value. The 8-bit\r
2797 value is returned.\r
2798\r
2799 If Value >= 0xA0, then ASSERT().\r
2800 If (Value & 0x0F) >= 0x0A, then ASSERT().\r
2801\r
2802 @param Value The 8-bit BCD value to convert to an 8-bit value.\r
2803\r
2804 @return The 8-bit value is returned.\r
2805\r
2806**/\r
2807UINT8\r
2808EFIAPI\r
2809BcdToDecimal8 (\r
2810 IN UINT8 Value\r
2811 );\r
2812\r
2813//\r
2814// File Path Manipulation Functions\r
2815//\r
2816\r
2817/**\r
2818 Removes the last directory or file entry in a path.\r
2819\r
2820 @param[in, out] Path The pointer to the path to modify.\r
2821\r
2822 @retval FALSE Nothing was found to remove.\r
2823 @retval TRUE A directory or file was removed.\r
2824**/\r
2825BOOLEAN\r
2826EFIAPI\r
2827PathRemoveLastItem(\r
2828 IN OUT CHAR16 *Path\r
2829 );\r
2830\r
2831/**\r
2832 Function to clean up paths.\r
2833 - Single periods in the path are removed.\r
2834 - Double periods in the path are removed along with a single parent directory.\r
2835 - Forward slashes L'/' are converted to backward slashes L'\'.\r
2836\r
2837 This will be done inline and the existing buffer may be larger than required\r
2838 upon completion.\r
2839\r
2840 @param[in] Path The pointer to the string containing the path.\r
2841\r
2842 @return Returns Path, otherwise returns NULL to indicate that an error has occurred.\r
2843**/\r
2844CHAR16*\r
2845EFIAPI\r
2846PathCleanUpDirectories(\r
2847 IN CHAR16 *Path\r
2848 );\r
2849\r
2850//\r
2851// Linked List Functions and Macros\r
2852//\r
2853\r
2854/**\r
2855 Initializes the head node of a doubly linked list that is declared as a\r
2856 global variable in a module.\r
2857\r
2858 Initializes the forward and backward links of a new linked list. After\r
2859 initializing a linked list with this macro, the other linked list functions\r
2860 may be used to add and remove nodes from the linked list. This macro results\r
2861 in smaller executables by initializing the linked list in the data section,\r
2862 instead if calling the InitializeListHead() function to perform the\r
2863 equivalent operation.\r
2864\r
2865 @param ListHead The head note of a list to initialize.\r
2866\r
2867**/\r
2868#define INITIALIZE_LIST_HEAD_VARIABLE(ListHead) {&(ListHead), &(ListHead)}\r
2869\r
2870\r
2871/**\r
2872 Checks whether FirstEntry and SecondEntry are part of the same doubly-linked\r
2873 list.\r
2874\r
2875 If FirstEntry is NULL, then ASSERT().\r
2876 If FirstEntry->ForwardLink is NULL, then ASSERT().\r
2877 If FirstEntry->BackLink is NULL, then ASSERT().\r
2878 If SecondEntry is NULL, then ASSERT();\r
2879 If PcdMaximumLinkedListLength is not zero, and List contains more than\r
2880 PcdMaximumLinkedListLength nodes, then ASSERT().\r
2881\r
2882 @param FirstEntry A pointer to a node in a linked list.\r
2883 @param SecondEntry A pointer to the node to locate.\r
2884\r
2885 @retval TRUE SecondEntry is in the same doubly-linked list as FirstEntry.\r
2886 @retval FALSE SecondEntry isn't in the same doubly-linked list as FirstEntry,\r
2887 or FirstEntry is invalid.\r
2888\r
2889**/\r
2890BOOLEAN\r
2891EFIAPI\r
2892IsNodeInList (\r
2893 IN CONST LIST_ENTRY *FirstEntry,\r
2894 IN CONST LIST_ENTRY *SecondEntry\r
2895 );\r
2896\r
2897\r
2898/**\r
2899 Initializes the head node of a doubly linked list, and returns the pointer to\r
2900 the head node of the doubly linked list.\r
2901\r
2902 Initializes the forward and backward links of a new linked list. After\r
2903 initializing a linked list with this function, the other linked list\r
2904 functions may be used to add and remove nodes from the linked list. It is up\r
2905 to the caller of this function to allocate the memory for ListHead.\r
2906\r
2907 If ListHead is NULL, then ASSERT().\r
2908\r
2909 @param ListHead A pointer to the head node of a new doubly linked list.\r
2910\r
2911 @return ListHead\r
2912\r
2913**/\r
2914LIST_ENTRY *\r
2915EFIAPI\r
2916InitializeListHead (\r
2917 IN OUT LIST_ENTRY *ListHead\r
2918 );\r
2919\r
2920\r
2921/**\r
2922 Adds a node to the beginning of a doubly linked list, and returns the pointer\r
2923 to the head node of the doubly linked list.\r
2924\r
2925 Adds the node Entry at the beginning of the doubly linked list denoted by\r
2926 ListHead, and returns ListHead.\r
2927\r
2928 If ListHead is NULL, then ASSERT().\r
2929 If Entry is NULL, then ASSERT().\r
2930 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
2931 InitializeListHead(), then ASSERT().\r
2932 If PcdMaximumLinkedListLength is not zero, and prior to insertion the number\r
2933 of nodes in ListHead, including the ListHead node, is greater than or\r
2934 equal to PcdMaximumLinkedListLength, then ASSERT().\r
2935\r
2936 @param ListHead A pointer to the head node of a doubly linked list.\r
2937 @param Entry A pointer to a node that is to be inserted at the beginning\r
2938 of a doubly linked list.\r
2939\r
2940 @return ListHead\r
2941\r
2942**/\r
2943LIST_ENTRY *\r
2944EFIAPI\r
2945InsertHeadList (\r
2946 IN OUT LIST_ENTRY *ListHead,\r
2947 IN OUT LIST_ENTRY *Entry\r
2948 );\r
2949\r
2950\r
2951/**\r
2952 Adds a node to the end of a doubly linked list, and returns the pointer to\r
2953 the head node of the doubly linked list.\r
2954\r
2955 Adds the node Entry to the end of the doubly linked list denoted by ListHead,\r
2956 and returns ListHead.\r
2957\r
2958 If ListHead is NULL, then ASSERT().\r
2959 If Entry is NULL, then ASSERT().\r
2960 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
2961 InitializeListHead(), then ASSERT().\r
2962 If PcdMaximumLinkedListLength is not zero, and prior to insertion the number\r
2963 of nodes in ListHead, including the ListHead node, is greater than or\r
2964 equal to PcdMaximumLinkedListLength, then ASSERT().\r
2965\r
2966 @param ListHead A pointer to the head node of a doubly linked list.\r
2967 @param Entry A pointer to a node that is to be added at the end of the\r
2968 doubly linked list.\r
2969\r
2970 @return ListHead\r
2971\r
2972**/\r
2973LIST_ENTRY *\r
2974EFIAPI\r
2975InsertTailList (\r
2976 IN OUT LIST_ENTRY *ListHead,\r
2977 IN OUT LIST_ENTRY *Entry\r
2978 );\r
2979\r
2980\r
2981/**\r
2982 Retrieves the first node of a doubly linked list.\r
2983\r
2984 Returns the first node of a doubly linked list. List must have been\r
2985 initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
2986 If List is empty, then List is returned.\r
2987\r
2988 If List is NULL, then ASSERT().\r
2989 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
2990 InitializeListHead(), then ASSERT().\r
2991 If PcdMaximumLinkedListLength is not zero, and the number of nodes\r
2992 in List, including the List node, is greater than or equal to\r
2993 PcdMaximumLinkedListLength, then ASSERT().\r
2994\r
2995 @param List A pointer to the head node of a doubly linked list.\r
2996\r
2997 @return The first node of a doubly linked list.\r
2998 @retval List The list is empty.\r
2999\r
3000**/\r
3001LIST_ENTRY *\r
3002EFIAPI\r
3003GetFirstNode (\r
3004 IN CONST LIST_ENTRY *List\r
3005 );\r
3006\r
3007\r
3008/**\r
3009 Retrieves the next node of a doubly linked list.\r
3010\r
3011 Returns the node of a doubly linked list that follows Node.\r
3012 List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE()\r
3013 or InitializeListHead(). If List is empty, then List is returned.\r
3014\r
3015 If List is NULL, then ASSERT().\r
3016 If Node is NULL, then ASSERT().\r
3017 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
3018 InitializeListHead(), then ASSERT().\r
3019 If PcdMaximumLinkedListLength is not zero, and List contains more than\r
3020 PcdMaximumLinkedListLength nodes, then ASSERT().\r
3021 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().\r
3022\r
3023 @param List A pointer to the head node of a doubly linked list.\r
3024 @param Node A pointer to a node in the doubly linked list.\r
3025\r
3026 @return The pointer to the next node if one exists. Otherwise List is returned.\r
3027\r
3028**/\r
3029LIST_ENTRY *\r
3030EFIAPI\r
3031GetNextNode (\r
3032 IN CONST LIST_ENTRY *List,\r
3033 IN CONST LIST_ENTRY *Node\r
3034 );\r
3035\r
3036\r
3037/**\r
3038 Retrieves the previous node of a doubly linked list.\r
3039\r
3040 Returns the node of a doubly linked list that precedes Node.\r
3041 List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE()\r
3042 or InitializeListHead(). If List is empty, then List is returned.\r
3043\r
3044 If List is NULL, then ASSERT().\r
3045 If Node is NULL, then ASSERT().\r
3046 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
3047 InitializeListHead(), then ASSERT().\r
3048 If PcdMaximumLinkedListLength is not zero, and List contains more than\r
3049 PcdMaximumLinkedListLength nodes, then ASSERT().\r
3050 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().\r
3051\r
3052 @param List A pointer to the head node of a doubly linked list.\r
3053 @param Node A pointer to a node in the doubly linked list.\r
3054\r
3055 @return The pointer to the previous node if one exists. Otherwise List is returned.\r
3056\r
3057**/\r
3058LIST_ENTRY *\r
3059EFIAPI\r
3060GetPreviousNode (\r
3061 IN CONST LIST_ENTRY *List,\r
3062 IN CONST LIST_ENTRY *Node\r
3063 );\r
3064\r
3065\r
3066/**\r
3067 Checks to see if a doubly linked list is empty or not.\r
3068\r
3069 Checks to see if the doubly linked list is empty. If the linked list contains\r
3070 zero nodes, this function returns TRUE. Otherwise, it returns FALSE.\r
3071\r
3072 If ListHead is NULL, then ASSERT().\r
3073 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
3074 InitializeListHead(), then ASSERT().\r
3075 If PcdMaximumLinkedListLength is not zero, and the number of nodes\r
3076 in List, including the List node, is greater than or equal to\r
3077 PcdMaximumLinkedListLength, then ASSERT().\r
3078\r
3079 @param ListHead A pointer to the head node of a doubly linked list.\r
3080\r
3081 @retval TRUE The linked list is empty.\r
3082 @retval FALSE The linked list is not empty.\r
3083\r
3084**/\r
3085BOOLEAN\r
3086EFIAPI\r
3087IsListEmpty (\r
3088 IN CONST LIST_ENTRY *ListHead\r
3089 );\r
3090\r
3091\r
3092/**\r
3093 Determines if a node in a doubly linked list is the head node of a the same\r
3094 doubly linked list. This function is typically used to terminate a loop that\r
3095 traverses all the nodes in a doubly linked list starting with the head node.\r
3096\r
3097 Returns TRUE if Node is equal to List. Returns FALSE if Node is one of the\r
3098 nodes in the doubly linked list specified by List. List must have been\r
3099 initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
3100\r
3101 If List is NULL, then ASSERT().\r
3102 If Node is NULL, then ASSERT().\r
3103 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(),\r
3104 then ASSERT().\r
3105 If PcdMaximumLinkedListLength is not zero, and the number of nodes\r
3106 in List, including the List node, is greater than or equal to\r
3107 PcdMaximumLinkedListLength, then ASSERT().\r
3108 If PcdVerifyNodeInList is TRUE and Node is not a node in List the and Node is not equal\r
3109 to List, then ASSERT().\r
3110\r
3111 @param List A pointer to the head node of a doubly linked list.\r
3112 @param Node A pointer to a node in the doubly linked list.\r
3113\r
3114 @retval TRUE Node is the head of the doubly-linked list pointed by List.\r
3115 @retval FALSE Node is not the head of the doubly-linked list pointed by List.\r
3116\r
3117**/\r
3118BOOLEAN\r
3119EFIAPI\r
3120IsNull (\r
3121 IN CONST LIST_ENTRY *List,\r
3122 IN CONST LIST_ENTRY *Node\r
3123 );\r
3124\r
3125\r
3126/**\r
3127 Determines if a node the last node in a doubly linked list.\r
3128\r
3129 Returns TRUE if Node is the last node in the doubly linked list specified by\r
3130 List. Otherwise, FALSE is returned. List must have been initialized with\r
3131 INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
3132\r
3133 If List is NULL, then ASSERT().\r
3134 If Node is NULL, then ASSERT().\r
3135 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
3136 InitializeListHead(), then ASSERT().\r
3137 If PcdMaximumLinkedListLength is not zero, and the number of nodes\r
3138 in List, including the List node, is greater than or equal to\r
3139 PcdMaximumLinkedListLength, then ASSERT().\r
3140 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().\r
3141\r
3142 @param List A pointer to the head node of a doubly linked list.\r
3143 @param Node A pointer to a node in the doubly linked list.\r
3144\r
3145 @retval TRUE Node is the last node in the linked list.\r
3146 @retval FALSE Node is not the last node in the linked list.\r
3147\r
3148**/\r
3149BOOLEAN\r
3150EFIAPI\r
3151IsNodeAtEnd (\r
3152 IN CONST LIST_ENTRY *List,\r
3153 IN CONST LIST_ENTRY *Node\r
3154 );\r
3155\r
3156\r
3157/**\r
3158 Swaps the location of two nodes in a doubly linked list, and returns the\r
3159 first node after the swap.\r
3160\r
3161 If FirstEntry is identical to SecondEntry, then SecondEntry is returned.\r
3162 Otherwise, the location of the FirstEntry node is swapped with the location\r
3163 of the SecondEntry node in a doubly linked list. SecondEntry must be in the\r
3164 same double linked list as FirstEntry and that double linked list must have\r
3165 been initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
3166 SecondEntry is returned after the nodes are swapped.\r
3167\r
3168 If FirstEntry is NULL, then ASSERT().\r
3169 If SecondEntry is NULL, then ASSERT().\r
3170 If PcdVerifyNodeInList is TRUE and SecondEntry and FirstEntry are not in the\r
3171 same linked list, then ASSERT().\r
3172 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
3173 linked list containing the FirstEntry and SecondEntry nodes, including\r
3174 the FirstEntry and SecondEntry nodes, is greater than or equal to\r
3175 PcdMaximumLinkedListLength, then ASSERT().\r
3176\r
3177 @param FirstEntry A pointer to a node in a linked list.\r
3178 @param SecondEntry A pointer to another node in the same linked list.\r
3179\r
3180 @return SecondEntry.\r
3181\r
3182**/\r
3183LIST_ENTRY *\r
3184EFIAPI\r
3185SwapListEntries (\r
3186 IN OUT LIST_ENTRY *FirstEntry,\r
3187 IN OUT LIST_ENTRY *SecondEntry\r
3188 );\r
3189\r
3190\r
3191/**\r
3192 Removes a node from a doubly linked list, and returns the node that follows\r
3193 the removed node.\r
3194\r
3195 Removes the node Entry from a doubly linked list. It is up to the caller of\r
3196 this function to release the memory used by this node if that is required. On\r
3197 exit, the node following Entry in the doubly linked list is returned. If\r
3198 Entry is the only node in the linked list, then the head node of the linked\r
3199 list is returned.\r
3200\r
3201 If Entry is NULL, then ASSERT().\r
3202 If Entry is the head node of an empty list, then ASSERT().\r
3203 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
3204 linked list containing Entry, including the Entry node, is greater than\r
3205 or equal to PcdMaximumLinkedListLength, then ASSERT().\r
3206\r
3207 @param Entry A pointer to a node in a linked list.\r
3208\r
3209 @return Entry.\r
3210\r
3211**/\r
3212LIST_ENTRY *\r
3213EFIAPI\r
3214RemoveEntryList (\r
3215 IN CONST LIST_ENTRY *Entry\r
3216 );\r
3217\r
3218//\r
3219// Math Services\r
3220//\r
3221\r
3222/**\r
3223 Shifts a 64-bit integer left between 0 and 63 bits. The low bits are filled\r
3224 with zeros. The shifted value is returned.\r
3225\r
3226 This function shifts the 64-bit value Operand to the left by Count bits. The\r
3227 low Count bits are set to zero. The shifted value is returned.\r
3228\r
3229 If Count is greater than 63, then ASSERT().\r
3230\r
3231 @param Operand The 64-bit operand to shift left.\r
3232 @param Count The number of bits to shift left.\r
3233\r
3234 @return Operand << Count.\r
3235\r
3236**/\r
3237UINT64\r
3238EFIAPI\r
3239LShiftU64 (\r
3240 IN UINT64 Operand,\r
3241 IN UINTN Count\r
3242 );\r
3243\r
3244\r
3245/**\r
3246 Shifts a 64-bit integer right between 0 and 63 bits. This high bits are\r
3247 filled with zeros. The shifted value is returned.\r
3248\r
3249 This function shifts the 64-bit value Operand to the right by Count bits. The\r
3250 high Count bits are set to zero. The shifted value is returned.\r
3251\r
3252 If Count is greater than 63, then ASSERT().\r
3253\r
3254 @param Operand The 64-bit operand to shift right.\r
3255 @param Count The number of bits to shift right.\r
3256\r
3257 @return Operand >> Count\r
3258\r
3259**/\r
3260UINT64\r
3261EFIAPI\r
3262RShiftU64 (\r
3263 IN UINT64 Operand,\r
3264 IN UINTN Count\r
3265 );\r
3266\r
3267\r
3268/**\r
3269 Shifts a 64-bit integer right between 0 and 63 bits. The high bits are filled\r
3270 with original integer's bit 63. The shifted value is returned.\r
3271\r
3272 This function shifts the 64-bit value Operand to the right by Count bits. The\r
3273 high Count bits are set to bit 63 of Operand. The shifted value is returned.\r
3274\r
3275 If Count is greater than 63, then ASSERT().\r
3276\r
3277 @param Operand The 64-bit operand to shift right.\r
3278 @param Count The number of bits to shift right.\r
3279\r
3280 @return Operand >> Count\r
3281\r
3282**/\r
3283UINT64\r
3284EFIAPI\r
3285ARShiftU64 (\r
3286 IN UINT64 Operand,\r
3287 IN UINTN Count\r
3288 );\r
3289\r
3290\r
3291/**\r
3292 Rotates a 32-bit integer left between 0 and 31 bits, filling the low bits\r
3293 with the high bits that were rotated.\r
3294\r
3295 This function rotates the 32-bit value Operand to the left by Count bits. The\r
3296 low Count bits are fill with the high Count bits of Operand. The rotated\r
3297 value is returned.\r
3298\r
3299 If Count is greater than 31, then ASSERT().\r
3300\r
3301 @param Operand The 32-bit operand to rotate left.\r
3302 @param Count The number of bits to rotate left.\r
3303\r
3304 @return Operand << Count\r
3305\r
3306**/\r
3307UINT32\r
3308EFIAPI\r
3309LRotU32 (\r
3310 IN UINT32 Operand,\r
3311 IN UINTN Count\r
3312 );\r
3313\r
3314\r
3315/**\r
3316 Rotates a 32-bit integer right between 0 and 31 bits, filling the high bits\r
3317 with the low bits that were rotated.\r
3318\r
3319 This function rotates the 32-bit value Operand to the right by Count bits.\r
3320 The high Count bits are fill with the low Count bits of Operand. The rotated\r
3321 value is returned.\r
3322\r
3323 If Count is greater than 31, then ASSERT().\r
3324\r
3325 @param Operand The 32-bit operand to rotate right.\r
3326 @param Count The number of bits to rotate right.\r
3327\r
3328 @return Operand >> Count\r
3329\r
3330**/\r
3331UINT32\r
3332EFIAPI\r
3333RRotU32 (\r
3334 IN UINT32 Operand,\r
3335 IN UINTN Count\r
3336 );\r
3337\r
3338\r
3339/**\r
3340 Rotates a 64-bit integer left between 0 and 63 bits, filling the low bits\r
3341 with the high bits that were rotated.\r
3342\r
3343 This function rotates the 64-bit value Operand to the left by Count bits. The\r
3344 low Count bits are fill with the high Count bits of Operand. The rotated\r
3345 value is returned.\r
3346\r
3347 If Count is greater than 63, then ASSERT().\r
3348\r
3349 @param Operand The 64-bit operand to rotate left.\r
3350 @param Count The number of bits to rotate left.\r
3351\r
3352 @return Operand << Count\r
3353\r
3354**/\r
3355UINT64\r
3356EFIAPI\r
3357LRotU64 (\r
3358 IN UINT64 Operand,\r
3359 IN UINTN Count\r
3360 );\r
3361\r
3362\r
3363/**\r
3364 Rotates a 64-bit integer right between 0 and 63 bits, filling the high bits\r
3365 with the high low bits that were rotated.\r
3366\r
3367 This function rotates the 64-bit value Operand to the right by Count bits.\r
3368 The high Count bits are fill with the low Count bits of Operand. The rotated\r
3369 value is returned.\r
3370\r
3371 If Count is greater than 63, then ASSERT().\r
3372\r
3373 @param Operand The 64-bit operand to rotate right.\r
3374 @param Count The number of bits to rotate right.\r
3375\r
3376 @return Operand >> Count\r
3377\r
3378**/\r
3379UINT64\r
3380EFIAPI\r
3381RRotU64 (\r
3382 IN UINT64 Operand,\r
3383 IN UINTN Count\r
3384 );\r
3385\r
3386\r
3387/**\r
3388 Returns the bit position of the lowest bit set in a 32-bit value.\r
3389\r
3390 This function computes the bit position of the lowest bit set in the 32-bit\r
3391 value specified by Operand. If Operand is zero, then -1 is returned.\r
3392 Otherwise, a value between 0 and 31 is returned.\r
3393\r
3394 @param Operand The 32-bit operand to evaluate.\r
3395\r
3396 @retval 0..31 The lowest bit set in Operand was found.\r
3397 @retval -1 Operand is zero.\r
3398\r
3399**/\r
3400INTN\r
3401EFIAPI\r
3402LowBitSet32 (\r
3403 IN UINT32 Operand\r
3404 );\r
3405\r
3406\r
3407/**\r
3408 Returns the bit position of the lowest bit set in a 64-bit value.\r
3409\r
3410 This function computes the bit position of the lowest bit set in the 64-bit\r
3411 value specified by Operand. If Operand is zero, then -1 is returned.\r
3412 Otherwise, a value between 0 and 63 is returned.\r
3413\r
3414 @param Operand The 64-bit operand to evaluate.\r
3415\r
3416 @retval 0..63 The lowest bit set in Operand was found.\r
3417 @retval -1 Operand is zero.\r
3418\r
3419\r
3420**/\r
3421INTN\r
3422EFIAPI\r
3423LowBitSet64 (\r
3424 IN UINT64 Operand\r
3425 );\r
3426\r
3427\r
3428/**\r
3429 Returns the bit position of the highest bit set in a 32-bit value. Equivalent\r
3430 to log2(x).\r
3431\r
3432 This function computes the bit position of the highest bit set in the 32-bit\r
3433 value specified by Operand. If Operand is zero, then -1 is returned.\r
3434 Otherwise, a value between 0 and 31 is returned.\r
3435\r
3436 @param Operand The 32-bit operand to evaluate.\r
3437\r
3438 @retval 0..31 Position of the highest bit set in Operand if found.\r
3439 @retval -1 Operand is zero.\r
3440\r
3441**/\r
3442INTN\r
3443EFIAPI\r
3444HighBitSet32 (\r
3445 IN UINT32 Operand\r
3446 );\r
3447\r
3448\r
3449/**\r
3450 Returns the bit position of the highest bit set in a 64-bit value. Equivalent\r
3451 to log2(x).\r
3452\r
3453 This function computes the bit position of the highest bit set in the 64-bit\r
3454 value specified by Operand. If Operand is zero, then -1 is returned.\r
3455 Otherwise, a value between 0 and 63 is returned.\r
3456\r
3457 @param Operand The 64-bit operand to evaluate.\r
3458\r
3459 @retval 0..63 Position of the highest bit set in Operand if found.\r
3460 @retval -1 Operand is zero.\r
3461\r
3462**/\r
3463INTN\r
3464EFIAPI\r
3465HighBitSet64 (\r
3466 IN UINT64 Operand\r
3467 );\r
3468\r
3469\r
3470/**\r
3471 Returns the value of the highest bit set in a 32-bit value. Equivalent to\r
3472 1 << log2(x).\r
3473\r
3474 This function computes the value of the highest bit set in the 32-bit value\r
3475 specified by Operand. If Operand is zero, then zero is returned.\r
3476\r
3477 @param Operand The 32-bit operand to evaluate.\r
3478\r
3479 @return 1 << HighBitSet32(Operand)\r
3480 @retval 0 Operand is zero.\r
3481\r
3482**/\r
3483UINT32\r
3484EFIAPI\r
3485GetPowerOfTwo32 (\r
3486 IN UINT32 Operand\r
3487 );\r
3488\r
3489\r
3490/**\r
3491 Returns the value of the highest bit set in a 64-bit value. Equivalent to\r
3492 1 << log2(x).\r
3493\r
3494 This function computes the value of the highest bit set in the 64-bit value\r
3495 specified by Operand. If Operand is zero, then zero is returned.\r
3496\r
3497 @param Operand The 64-bit operand to evaluate.\r
3498\r
3499 @return 1 << HighBitSet64(Operand)\r
3500 @retval 0 Operand is zero.\r
3501\r
3502**/\r
3503UINT64\r
3504EFIAPI\r
3505GetPowerOfTwo64 (\r
3506 IN UINT64 Operand\r
3507 );\r
3508\r
3509\r
3510/**\r
3511 Switches the endianness of a 16-bit integer.\r
3512\r
3513 This function swaps the bytes in a 16-bit unsigned value to switch the value\r
3514 from little endian to big endian or vice versa. The byte swapped value is\r
3515 returned.\r
3516\r
3517 @param Value A 16-bit unsigned value.\r
3518\r
3519 @return The byte swapped Value.\r
3520\r
3521**/\r
3522UINT16\r
3523EFIAPI\r
3524SwapBytes16 (\r
3525 IN UINT16 Value\r
3526 );\r
3527\r
3528\r
3529/**\r
3530 Switches the endianness of a 32-bit integer.\r
3531\r
3532 This function swaps the bytes in a 32-bit unsigned value to switch the value\r
3533 from little endian to big endian or vice versa. The byte swapped value is\r
3534 returned.\r
3535\r
3536 @param Value A 32-bit unsigned value.\r
3537\r
3538 @return The byte swapped Value.\r
3539\r
3540**/\r
3541UINT32\r
3542EFIAPI\r
3543SwapBytes32 (\r
3544 IN UINT32 Value\r
3545 );\r
3546\r
3547\r
3548/**\r
3549 Switches the endianness of a 64-bit integer.\r
3550\r
3551 This function swaps the bytes in a 64-bit unsigned value to switch the value\r
3552 from little endian to big endian or vice versa. The byte swapped value is\r
3553 returned.\r
3554\r
3555 @param Value A 64-bit unsigned value.\r
3556\r
3557 @return The byte swapped Value.\r
3558\r
3559**/\r
3560UINT64\r
3561EFIAPI\r
3562SwapBytes64 (\r
3563 IN UINT64 Value\r
3564 );\r
3565\r
3566\r
3567/**\r
3568 Multiples a 64-bit unsigned integer by a 32-bit unsigned integer and\r
3569 generates a 64-bit unsigned result.\r
3570\r
3571 This function multiples the 64-bit unsigned value Multiplicand by the 32-bit\r
3572 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
3573 bit unsigned result is returned.\r
3574\r
3575 @param Multiplicand A 64-bit unsigned value.\r
3576 @param Multiplier A 32-bit unsigned value.\r
3577\r
3578 @return Multiplicand * Multiplier\r
3579\r
3580**/\r
3581UINT64\r
3582EFIAPI\r
3583MultU64x32 (\r
3584 IN UINT64 Multiplicand,\r
3585 IN UINT32 Multiplier\r
3586 );\r
3587\r
3588\r
3589/**\r
3590 Multiples a 64-bit unsigned integer by a 64-bit unsigned integer and\r
3591 generates a 64-bit unsigned result.\r
3592\r
3593 This function multiples the 64-bit unsigned value Multiplicand by the 64-bit\r
3594 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
3595 bit unsigned result is returned.\r
3596\r
3597 @param Multiplicand A 64-bit unsigned value.\r
3598 @param Multiplier A 64-bit unsigned value.\r
3599\r
3600 @return Multiplicand * Multiplier.\r
3601\r
3602**/\r
3603UINT64\r
3604EFIAPI\r
3605MultU64x64 (\r
3606 IN UINT64 Multiplicand,\r
3607 IN UINT64 Multiplier\r
3608 );\r
3609\r
3610\r
3611/**\r
3612 Multiples a 64-bit signed integer by a 64-bit signed integer and generates a\r
3613 64-bit signed result.\r
3614\r
3615 This function multiples the 64-bit signed value Multiplicand by the 64-bit\r
3616 signed value Multiplier and generates a 64-bit signed result. This 64-bit\r
3617 signed result is returned.\r
3618\r
3619 @param Multiplicand A 64-bit signed value.\r
3620 @param Multiplier A 64-bit signed value.\r
3621\r
3622 @return Multiplicand * Multiplier\r
3623\r
3624**/\r
3625INT64\r
3626EFIAPI\r
3627MultS64x64 (\r
3628 IN INT64 Multiplicand,\r
3629 IN INT64 Multiplier\r
3630 );\r
3631\r
3632\r
3633/**\r
3634 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
3635 a 64-bit unsigned result.\r
3636\r
3637 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
3638 unsigned value Divisor and generates a 64-bit unsigned quotient. This\r
3639 function returns the 64-bit unsigned quotient.\r
3640\r
3641 If Divisor is 0, then ASSERT().\r
3642\r
3643 @param Dividend A 64-bit unsigned value.\r
3644 @param Divisor A 32-bit unsigned value.\r
3645\r
3646 @return Dividend / Divisor.\r
3647\r
3648**/\r
3649UINT64\r
3650EFIAPI\r
3651DivU64x32 (\r
3652 IN UINT64 Dividend,\r
3653 IN UINT32 Divisor\r
3654 );\r
3655\r
3656\r
3657/**\r
3658 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
3659 a 32-bit unsigned remainder.\r
3660\r
3661 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
3662 unsigned value Divisor and generates a 32-bit remainder. This function\r
3663 returns the 32-bit unsigned remainder.\r
3664\r
3665 If Divisor is 0, then ASSERT().\r
3666\r
3667 @param Dividend A 64-bit unsigned value.\r
3668 @param Divisor A 32-bit unsigned value.\r
3669\r
3670 @return Dividend % Divisor.\r
3671\r
3672**/\r
3673UINT32\r
3674EFIAPI\r
3675ModU64x32 (\r
3676 IN UINT64 Dividend,\r
3677 IN UINT32 Divisor\r
3678 );\r
3679\r
3680\r
3681/**\r
3682 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
3683 a 64-bit unsigned result and an optional 32-bit unsigned remainder.\r
3684\r
3685 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
3686 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
3687 is not NULL, then the 32-bit unsigned remainder is returned in Remainder.\r
3688 This function returns the 64-bit unsigned quotient.\r
3689\r
3690 If Divisor is 0, then ASSERT().\r
3691\r
3692 @param Dividend A 64-bit unsigned value.\r
3693 @param Divisor A 32-bit unsigned value.\r
3694 @param Remainder A pointer to a 32-bit unsigned value. This parameter is\r
3695 optional and may be NULL.\r
3696\r
3697 @return Dividend / Divisor.\r
3698\r
3699**/\r
3700UINT64\r
3701EFIAPI\r
3702DivU64x32Remainder (\r
3703 IN UINT64 Dividend,\r
3704 IN UINT32 Divisor,\r
3705 OUT UINT32 *Remainder OPTIONAL\r
3706 );\r
3707\r
3708\r
3709/**\r
3710 Divides a 64-bit unsigned integer by a 64-bit unsigned integer and generates\r
3711 a 64-bit unsigned result and an optional 64-bit unsigned remainder.\r
3712\r
3713 This function divides the 64-bit unsigned value Dividend by the 64-bit\r
3714 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
3715 is not NULL, then the 64-bit unsigned remainder is returned in Remainder.\r
3716 This function returns the 64-bit unsigned quotient.\r
3717\r
3718 If Divisor is 0, then ASSERT().\r
3719\r
3720 @param Dividend A 64-bit unsigned value.\r
3721 @param Divisor A 64-bit unsigned value.\r
3722 @param Remainder A pointer to a 64-bit unsigned value. This parameter is\r
3723 optional and may be NULL.\r
3724\r
3725 @return Dividend / Divisor.\r
3726\r
3727**/\r
3728UINT64\r
3729EFIAPI\r
3730DivU64x64Remainder (\r
3731 IN UINT64 Dividend,\r
3732 IN UINT64 Divisor,\r
3733 OUT UINT64 *Remainder OPTIONAL\r
3734 );\r
3735\r
3736\r
3737/**\r
3738 Divides a 64-bit signed integer by a 64-bit signed integer and generates a\r
3739 64-bit signed result and a optional 64-bit signed remainder.\r
3740\r
3741 This function divides the 64-bit signed value Dividend by the 64-bit signed\r
3742 value Divisor and generates a 64-bit signed quotient. If Remainder is not\r
3743 NULL, then the 64-bit signed remainder is returned in Remainder. This\r
3744 function returns the 64-bit signed quotient.\r
3745\r
3746 It is the caller's responsibility to not call this function with a Divisor of 0.\r
3747 If Divisor is 0, then the quotient and remainder should be assumed to be\r
3748 the largest negative integer.\r
3749\r
3750 If Divisor is 0, then ASSERT().\r
3751\r
3752 @param Dividend A 64-bit signed value.\r
3753 @param Divisor A 64-bit signed value.\r
3754 @param Remainder A pointer to a 64-bit signed value. This parameter is\r
3755 optional and may be NULL.\r
3756\r
3757 @return Dividend / Divisor.\r
3758\r
3759**/\r
3760INT64\r
3761EFIAPI\r
3762DivS64x64Remainder (\r
3763 IN INT64 Dividend,\r
3764 IN INT64 Divisor,\r
3765 OUT INT64 *Remainder OPTIONAL\r
3766 );\r
3767\r
3768\r
3769/**\r
3770 Reads a 16-bit value from memory that may be unaligned.\r
3771\r
3772 This function returns the 16-bit value pointed to by Buffer. The function\r
3773 guarantees that the read operation does not produce an alignment fault.\r
3774\r
3775 If the Buffer is NULL, then ASSERT().\r
3776\r
3777 @param Buffer The pointer to a 16-bit value that may be unaligned.\r
3778\r
3779 @return The 16-bit value read from Buffer.\r
3780\r
3781**/\r
3782UINT16\r
3783EFIAPI\r
3784ReadUnaligned16 (\r
3785 IN CONST UINT16 *Buffer\r
3786 );\r
3787\r
3788\r
3789/**\r
3790 Writes a 16-bit value to memory that may be unaligned.\r
3791\r
3792 This function writes the 16-bit value specified by Value to Buffer. Value is\r
3793 returned. The function guarantees that the write operation does not produce\r
3794 an alignment fault.\r
3795\r
3796 If the Buffer is NULL, then ASSERT().\r
3797\r
3798 @param Buffer The pointer to a 16-bit value that may be unaligned.\r
3799 @param Value 16-bit value to write to Buffer.\r
3800\r
3801 @return The 16-bit value to write to Buffer.\r
3802\r
3803**/\r
3804UINT16\r
3805EFIAPI\r
3806WriteUnaligned16 (\r
3807 OUT UINT16 *Buffer,\r
3808 IN UINT16 Value\r
3809 );\r
3810\r
3811\r
3812/**\r
3813 Reads a 24-bit value from memory that may be unaligned.\r
3814\r
3815 This function returns the 24-bit value pointed to by Buffer. The function\r
3816 guarantees that the read operation does not produce an alignment fault.\r
3817\r
3818 If the Buffer is NULL, then ASSERT().\r
3819\r
3820 @param Buffer The pointer to a 24-bit value that may be unaligned.\r
3821\r
3822 @return The 24-bit value read from Buffer.\r
3823\r
3824**/\r
3825UINT32\r
3826EFIAPI\r
3827ReadUnaligned24 (\r
3828 IN CONST UINT32 *Buffer\r
3829 );\r
3830\r
3831\r
3832/**\r
3833 Writes a 24-bit value to memory that may be unaligned.\r
3834\r
3835 This function writes the 24-bit value specified by Value to Buffer. Value is\r
3836 returned. The function guarantees that the write operation does not produce\r
3837 an alignment fault.\r
3838\r
3839 If the Buffer is NULL, then ASSERT().\r
3840\r
3841 @param Buffer The pointer to a 24-bit value that may be unaligned.\r
3842 @param Value 24-bit value to write to Buffer.\r
3843\r
3844 @return The 24-bit value to write to Buffer.\r
3845\r
3846**/\r
3847UINT32\r
3848EFIAPI\r
3849WriteUnaligned24 (\r
3850 OUT UINT32 *Buffer,\r
3851 IN UINT32 Value\r
3852 );\r
3853\r
3854\r
3855/**\r
3856 Reads a 32-bit value from memory that may be unaligned.\r
3857\r
3858 This function returns the 32-bit value pointed to by Buffer. The function\r
3859 guarantees that the read operation does not produce an alignment fault.\r
3860\r
3861 If the Buffer is NULL, then ASSERT().\r
3862\r
3863 @param Buffer The pointer to a 32-bit value that may be unaligned.\r
3864\r
3865 @return The 32-bit value read from Buffer.\r
3866\r
3867**/\r
3868UINT32\r
3869EFIAPI\r
3870ReadUnaligned32 (\r
3871 IN CONST UINT32 *Buffer\r
3872 );\r
3873\r
3874\r
3875/**\r
3876 Writes a 32-bit value to memory that may be unaligned.\r
3877\r
3878 This function writes the 32-bit value specified by Value to Buffer. Value is\r
3879 returned. The function guarantees that the write operation does not produce\r
3880 an alignment fault.\r
3881\r
3882 If the Buffer is NULL, then ASSERT().\r
3883\r
3884 @param Buffer The pointer to a 32-bit value that may be unaligned.\r
3885 @param Value 32-bit value to write to Buffer.\r
3886\r
3887 @return The 32-bit value to write to Buffer.\r
3888\r
3889**/\r
3890UINT32\r
3891EFIAPI\r
3892WriteUnaligned32 (\r
3893 OUT UINT32 *Buffer,\r
3894 IN UINT32 Value\r
3895 );\r
3896\r
3897\r
3898/**\r
3899 Reads a 64-bit value from memory that may be unaligned.\r
3900\r
3901 This function returns the 64-bit value pointed to by Buffer. The function\r
3902 guarantees that the read operation does not produce an alignment fault.\r
3903\r
3904 If the Buffer is NULL, then ASSERT().\r
3905\r
3906 @param Buffer The pointer to a 64-bit value that may be unaligned.\r
3907\r
3908 @return The 64-bit value read from Buffer.\r
3909\r
3910**/\r
3911UINT64\r
3912EFIAPI\r
3913ReadUnaligned64 (\r
3914 IN CONST UINT64 *Buffer\r
3915 );\r
3916\r
3917\r
3918/**\r
3919 Writes a 64-bit value to memory that may be unaligned.\r
3920\r
3921 This function writes the 64-bit value specified by Value to Buffer. Value is\r
3922 returned. The function guarantees that the write operation does not produce\r
3923 an alignment fault.\r
3924\r
3925 If the Buffer is NULL, then ASSERT().\r
3926\r
3927 @param Buffer The pointer to a 64-bit value that may be unaligned.\r
3928 @param Value 64-bit value to write to Buffer.\r
3929\r
3930 @return The 64-bit value to write to Buffer.\r
3931\r
3932**/\r
3933UINT64\r
3934EFIAPI\r
3935WriteUnaligned64 (\r
3936 OUT UINT64 *Buffer,\r
3937 IN UINT64 Value\r
3938 );\r
3939\r
3940\r
3941//\r
3942// Bit Field Functions\r
3943//\r
3944\r
3945/**\r
3946 Returns a bit field from an 8-bit value.\r
3947\r
3948 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
3949\r
3950 If 8-bit operations are not supported, then ASSERT().\r
3951 If StartBit is greater than 7, then ASSERT().\r
3952 If EndBit is greater than 7, then ASSERT().\r
3953 If EndBit is less than StartBit, then ASSERT().\r
3954\r
3955 @param Operand Operand on which to perform the bitfield operation.\r
3956 @param StartBit The ordinal of the least significant bit in the bit field.\r
3957 Range 0..7.\r
3958 @param EndBit The ordinal of the most significant bit in the bit field.\r
3959 Range 0..7.\r
3960\r
3961 @return The bit field read.\r
3962\r
3963**/\r
3964UINT8\r
3965EFIAPI\r
3966BitFieldRead8 (\r
3967 IN UINT8 Operand,\r
3968 IN UINTN StartBit,\r
3969 IN UINTN EndBit\r
3970 );\r
3971\r
3972\r
3973/**\r
3974 Writes a bit field to an 8-bit value, and returns the result.\r
3975\r
3976 Writes Value to the bit field specified by the StartBit and the EndBit in\r
3977 Operand. All other bits in Operand are preserved. The new 8-bit value is\r
3978 returned.\r
3979\r
3980 If 8-bit operations are not supported, then ASSERT().\r
3981 If StartBit is greater than 7, then ASSERT().\r
3982 If EndBit is greater than 7, then ASSERT().\r
3983 If EndBit is less than StartBit, then ASSERT().\r
3984 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
3985\r
3986 @param Operand Operand on which to perform the bitfield operation.\r
3987 @param StartBit The ordinal of the least significant bit in the bit field.\r
3988 Range 0..7.\r
3989 @param EndBit The ordinal of the most significant bit in the bit field.\r
3990 Range 0..7.\r
3991 @param Value New value of the bit field.\r
3992\r
3993 @return The new 8-bit value.\r
3994\r
3995**/\r
3996UINT8\r
3997EFIAPI\r
3998BitFieldWrite8 (\r
3999 IN UINT8 Operand,\r
4000 IN UINTN StartBit,\r
4001 IN UINTN EndBit,\r
4002 IN UINT8 Value\r
4003 );\r
4004\r
4005\r
4006/**\r
4007 Reads a bit field from an 8-bit value, performs a bitwise OR, and returns the\r
4008 result.\r
4009\r
4010 Performs a bitwise OR between the bit field specified by StartBit\r
4011 and EndBit in Operand and the value specified by OrData. All other bits in\r
4012 Operand are preserved. The new 8-bit value is returned.\r
4013\r
4014 If 8-bit operations are not supported, then ASSERT().\r
4015 If StartBit is greater than 7, then ASSERT().\r
4016 If EndBit is greater than 7, then ASSERT().\r
4017 If EndBit is less than StartBit, then ASSERT().\r
4018 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4019\r
4020 @param Operand Operand on which to perform the bitfield operation.\r
4021 @param StartBit The ordinal of the least significant bit in the bit field.\r
4022 Range 0..7.\r
4023 @param EndBit The ordinal of the most significant bit in the bit field.\r
4024 Range 0..7.\r
4025 @param OrData The value to OR with the read value from the value\r
4026\r
4027 @return The new 8-bit value.\r
4028\r
4029**/\r
4030UINT8\r
4031EFIAPI\r
4032BitFieldOr8 (\r
4033 IN UINT8 Operand,\r
4034 IN UINTN StartBit,\r
4035 IN UINTN EndBit,\r
4036 IN UINT8 OrData\r
4037 );\r
4038\r
4039\r
4040/**\r
4041 Reads a bit field from an 8-bit value, performs a bitwise AND, and returns\r
4042 the result.\r
4043\r
4044 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
4045 in Operand and the value specified by AndData. All other bits in Operand are\r
4046 preserved. The new 8-bit value is returned.\r
4047\r
4048 If 8-bit operations are not supported, then ASSERT().\r
4049 If StartBit is greater than 7, then ASSERT().\r
4050 If EndBit is greater than 7, then ASSERT().\r
4051 If EndBit is less than StartBit, then ASSERT().\r
4052 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4053\r
4054 @param Operand Operand on which to perform the bitfield operation.\r
4055 @param StartBit The ordinal of the least significant bit in the bit field.\r
4056 Range 0..7.\r
4057 @param EndBit The ordinal of the most significant bit in the bit field.\r
4058 Range 0..7.\r
4059 @param AndData The value to AND with the read value from the value.\r
4060\r
4061 @return The new 8-bit value.\r
4062\r
4063**/\r
4064UINT8\r
4065EFIAPI\r
4066BitFieldAnd8 (\r
4067 IN UINT8 Operand,\r
4068 IN UINTN StartBit,\r
4069 IN UINTN EndBit,\r
4070 IN UINT8 AndData\r
4071 );\r
4072\r
4073\r
4074/**\r
4075 Reads a bit field from an 8-bit value, performs a bitwise AND followed by a\r
4076 bitwise OR, and returns the result.\r
4077\r
4078 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
4079 in Operand and the value specified by AndData, followed by a bitwise\r
4080 OR with value specified by OrData. All other bits in Operand are\r
4081 preserved. The new 8-bit value is returned.\r
4082\r
4083 If 8-bit operations are not supported, then ASSERT().\r
4084 If StartBit is greater than 7, then ASSERT().\r
4085 If EndBit is greater than 7, then ASSERT().\r
4086 If EndBit is less than StartBit, then ASSERT().\r
4087 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4088 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4089\r
4090 @param Operand Operand on which to perform the bitfield operation.\r
4091 @param StartBit The ordinal of the least significant bit in the bit field.\r
4092 Range 0..7.\r
4093 @param EndBit The ordinal of the most significant bit in the bit field.\r
4094 Range 0..7.\r
4095 @param AndData The value to AND with the read value from the value.\r
4096 @param OrData The value to OR with the result of the AND operation.\r
4097\r
4098 @return The new 8-bit value.\r
4099\r
4100**/\r
4101UINT8\r
4102EFIAPI\r
4103BitFieldAndThenOr8 (\r
4104 IN UINT8 Operand,\r
4105 IN UINTN StartBit,\r
4106 IN UINTN EndBit,\r
4107 IN UINT8 AndData,\r
4108 IN UINT8 OrData\r
4109 );\r
4110\r
4111\r
4112/**\r
4113 Returns a bit field from a 16-bit value.\r
4114\r
4115 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
4116\r
4117 If 16-bit operations are not supported, then ASSERT().\r
4118 If StartBit is greater than 15, then ASSERT().\r
4119 If EndBit is greater than 15, then ASSERT().\r
4120 If EndBit is less than StartBit, then ASSERT().\r
4121\r
4122 @param Operand Operand on which to perform the bitfield operation.\r
4123 @param StartBit The ordinal of the least significant bit in the bit field.\r
4124 Range 0..15.\r
4125 @param EndBit The ordinal of the most significant bit in the bit field.\r
4126 Range 0..15.\r
4127\r
4128 @return The bit field read.\r
4129\r
4130**/\r
4131UINT16\r
4132EFIAPI\r
4133BitFieldRead16 (\r
4134 IN UINT16 Operand,\r
4135 IN UINTN StartBit,\r
4136 IN UINTN EndBit\r
4137 );\r
4138\r
4139\r
4140/**\r
4141 Writes a bit field to a 16-bit value, and returns the result.\r
4142\r
4143 Writes Value to the bit field specified by the StartBit and the EndBit in\r
4144 Operand. All other bits in Operand are preserved. The new 16-bit value is\r
4145 returned.\r
4146\r
4147 If 16-bit operations are not supported, then ASSERT().\r
4148 If StartBit is greater than 15, then ASSERT().\r
4149 If EndBit is greater than 15, then ASSERT().\r
4150 If EndBit is less than StartBit, then ASSERT().\r
4151 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4152\r
4153 @param Operand Operand on which to perform the bitfield operation.\r
4154 @param StartBit The ordinal of the least significant bit in the bit field.\r
4155 Range 0..15.\r
4156 @param EndBit The ordinal of the most significant bit in the bit field.\r
4157 Range 0..15.\r
4158 @param Value New value of the bit field.\r
4159\r
4160 @return The new 16-bit value.\r
4161\r
4162**/\r
4163UINT16\r
4164EFIAPI\r
4165BitFieldWrite16 (\r
4166 IN UINT16 Operand,\r
4167 IN UINTN StartBit,\r
4168 IN UINTN EndBit,\r
4169 IN UINT16 Value\r
4170 );\r
4171\r
4172\r
4173/**\r
4174 Reads a bit field from a 16-bit value, performs a bitwise OR, and returns the\r
4175 result.\r
4176\r
4177 Performs a bitwise OR between the bit field specified by StartBit\r
4178 and EndBit in Operand and the value specified by OrData. All other bits in\r
4179 Operand are preserved. The new 16-bit value is returned.\r
4180\r
4181 If 16-bit operations are not supported, then ASSERT().\r
4182 If StartBit is greater than 15, then ASSERT().\r
4183 If EndBit is greater than 15, then ASSERT().\r
4184 If EndBit is less than StartBit, then ASSERT().\r
4185 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4186\r
4187 @param Operand Operand on which to perform the bitfield operation.\r
4188 @param StartBit The ordinal of the least significant bit in the bit field.\r
4189 Range 0..15.\r
4190 @param EndBit The ordinal of the most significant bit in the bit field.\r
4191 Range 0..15.\r
4192 @param OrData The value to OR with the read value from the value\r
4193\r
4194 @return The new 16-bit value.\r
4195\r
4196**/\r
4197UINT16\r
4198EFIAPI\r
4199BitFieldOr16 (\r
4200 IN UINT16 Operand,\r
4201 IN UINTN StartBit,\r
4202 IN UINTN EndBit,\r
4203 IN UINT16 OrData\r
4204 );\r
4205\r
4206\r
4207/**\r
4208 Reads a bit field from a 16-bit value, performs a bitwise AND, and returns\r
4209 the result.\r
4210\r
4211 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
4212 in Operand and the value specified by AndData. All other bits in Operand are\r
4213 preserved. The new 16-bit value is returned.\r
4214\r
4215 If 16-bit operations are not supported, then ASSERT().\r
4216 If StartBit is greater than 15, then ASSERT().\r
4217 If EndBit is greater than 15, then ASSERT().\r
4218 If EndBit is less than StartBit, then ASSERT().\r
4219 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4220\r
4221 @param Operand Operand on which to perform the bitfield operation.\r
4222 @param StartBit The ordinal of the least significant bit in the bit field.\r
4223 Range 0..15.\r
4224 @param EndBit The ordinal of the most significant bit in the bit field.\r
4225 Range 0..15.\r
4226 @param AndData The value to AND with the read value from the value\r
4227\r
4228 @return The new 16-bit value.\r
4229\r
4230**/\r
4231UINT16\r
4232EFIAPI\r
4233BitFieldAnd16 (\r
4234 IN UINT16 Operand,\r
4235 IN UINTN StartBit,\r
4236 IN UINTN EndBit,\r
4237 IN UINT16 AndData\r
4238 );\r
4239\r
4240\r
4241/**\r
4242 Reads a bit field from a 16-bit value, performs a bitwise AND followed by a\r
4243 bitwise OR, and returns the result.\r
4244\r
4245 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
4246 in Operand and the value specified by AndData, followed by a bitwise\r
4247 OR with value specified by OrData. All other bits in Operand are\r
4248 preserved. The new 16-bit value is returned.\r
4249\r
4250 If 16-bit operations are not supported, then ASSERT().\r
4251 If StartBit is greater than 15, then ASSERT().\r
4252 If EndBit is greater than 15, then ASSERT().\r
4253 If EndBit is less than StartBit, then ASSERT().\r
4254 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4255 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4256\r
4257 @param Operand Operand on which to perform the bitfield operation.\r
4258 @param StartBit The ordinal of the least significant bit in the bit field.\r
4259 Range 0..15.\r
4260 @param EndBit The ordinal of the most significant bit in the bit field.\r
4261 Range 0..15.\r
4262 @param AndData The value to AND with the read value from the value.\r
4263 @param OrData The value to OR with the result of the AND operation.\r
4264\r
4265 @return The new 16-bit value.\r
4266\r
4267**/\r
4268UINT16\r
4269EFIAPI\r
4270BitFieldAndThenOr16 (\r
4271 IN UINT16 Operand,\r
4272 IN UINTN StartBit,\r
4273 IN UINTN EndBit,\r
4274 IN UINT16 AndData,\r
4275 IN UINT16 OrData\r
4276 );\r
4277\r
4278\r
4279/**\r
4280 Returns a bit field from a 32-bit value.\r
4281\r
4282 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
4283\r
4284 If 32-bit operations are not supported, then ASSERT().\r
4285 If StartBit is greater than 31, then ASSERT().\r
4286 If EndBit is greater than 31, then ASSERT().\r
4287 If EndBit is less than StartBit, then ASSERT().\r
4288\r
4289 @param Operand Operand on which to perform the bitfield operation.\r
4290 @param StartBit The ordinal of the least significant bit in the bit field.\r
4291 Range 0..31.\r
4292 @param EndBit The ordinal of the most significant bit in the bit field.\r
4293 Range 0..31.\r
4294\r
4295 @return The bit field read.\r
4296\r
4297**/\r
4298UINT32\r
4299EFIAPI\r
4300BitFieldRead32 (\r
4301 IN UINT32 Operand,\r
4302 IN UINTN StartBit,\r
4303 IN UINTN EndBit\r
4304 );\r
4305\r
4306\r
4307/**\r
4308 Writes a bit field to a 32-bit value, and returns the result.\r
4309\r
4310 Writes Value to the bit field specified by the StartBit and the EndBit in\r
4311 Operand. All other bits in Operand are preserved. The new 32-bit value is\r
4312 returned.\r
4313\r
4314 If 32-bit operations are not supported, then ASSERT().\r
4315 If StartBit is greater than 31, then ASSERT().\r
4316 If EndBit is greater than 31, then ASSERT().\r
4317 If EndBit is less than StartBit, then ASSERT().\r
4318 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4319\r
4320 @param Operand Operand on which to perform the bitfield operation.\r
4321 @param StartBit The ordinal of the least significant bit in the bit field.\r
4322 Range 0..31.\r
4323 @param EndBit The ordinal of the most significant bit in the bit field.\r
4324 Range 0..31.\r
4325 @param Value New value of the bit field.\r
4326\r
4327 @return The new 32-bit value.\r
4328\r
4329**/\r
4330UINT32\r
4331EFIAPI\r
4332BitFieldWrite32 (\r
4333 IN UINT32 Operand,\r
4334 IN UINTN StartBit,\r
4335 IN UINTN EndBit,\r
4336 IN UINT32 Value\r
4337 );\r
4338\r
4339\r
4340/**\r
4341 Reads a bit field from a 32-bit value, performs a bitwise OR, and returns the\r
4342 result.\r
4343\r
4344 Performs a bitwise OR between the bit field specified by StartBit\r
4345 and EndBit in Operand and the value specified by OrData. All other bits in\r
4346 Operand are preserved. The new 32-bit value is returned.\r
4347\r
4348 If 32-bit operations are not supported, then ASSERT().\r
4349 If StartBit is greater than 31, then ASSERT().\r
4350 If EndBit is greater than 31, then ASSERT().\r
4351 If EndBit is less than StartBit, then ASSERT().\r
4352 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4353\r
4354 @param Operand Operand on which to perform the bitfield operation.\r
4355 @param StartBit The ordinal of the least significant bit in the bit field.\r
4356 Range 0..31.\r
4357 @param EndBit The ordinal of the most significant bit in the bit field.\r
4358 Range 0..31.\r
4359 @param OrData The value to OR with the read value from the value.\r
4360\r
4361 @return The new 32-bit value.\r
4362\r
4363**/\r
4364UINT32\r
4365EFIAPI\r
4366BitFieldOr32 (\r
4367 IN UINT32 Operand,\r
4368 IN UINTN StartBit,\r
4369 IN UINTN EndBit,\r
4370 IN UINT32 OrData\r
4371 );\r
4372\r
4373\r
4374/**\r
4375 Reads a bit field from a 32-bit value, performs a bitwise AND, and returns\r
4376 the result.\r
4377\r
4378 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
4379 in Operand and the value specified by AndData. All other bits in Operand are\r
4380 preserved. The new 32-bit value is returned.\r
4381\r
4382 If 32-bit operations are not supported, then ASSERT().\r
4383 If StartBit is greater than 31, then ASSERT().\r
4384 If EndBit is greater than 31, then ASSERT().\r
4385 If EndBit is less than StartBit, then ASSERT().\r
4386 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4387\r
4388 @param Operand Operand on which to perform the bitfield operation.\r
4389 @param StartBit The ordinal of the least significant bit in the bit field.\r
4390 Range 0..31.\r
4391 @param EndBit The ordinal of the most significant bit in the bit field.\r
4392 Range 0..31.\r
4393 @param AndData The value to AND with the read value from the value\r
4394\r
4395 @return The new 32-bit value.\r
4396\r
4397**/\r
4398UINT32\r
4399EFIAPI\r
4400BitFieldAnd32 (\r
4401 IN UINT32 Operand,\r
4402 IN UINTN StartBit,\r
4403 IN UINTN EndBit,\r
4404 IN UINT32 AndData\r
4405 );\r
4406\r
4407\r
4408/**\r
4409 Reads a bit field from a 32-bit value, performs a bitwise AND followed by a\r
4410 bitwise OR, and returns the result.\r
4411\r
4412 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
4413 in Operand and the value specified by AndData, followed by a bitwise\r
4414 OR with value specified by OrData. All other bits in Operand are\r
4415 preserved. The new 32-bit value is returned.\r
4416\r
4417 If 32-bit operations are not supported, then ASSERT().\r
4418 If StartBit is greater than 31, then ASSERT().\r
4419 If EndBit is greater than 31, then ASSERT().\r
4420 If EndBit is less than StartBit, then ASSERT().\r
4421 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4422 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4423\r
4424 @param Operand Operand on which to perform the bitfield operation.\r
4425 @param StartBit The ordinal of the least significant bit in the bit field.\r
4426 Range 0..31.\r
4427 @param EndBit The ordinal of the most significant bit in the bit field.\r
4428 Range 0..31.\r
4429 @param AndData The value to AND with the read value from the value.\r
4430 @param OrData The value to OR with the result of the AND operation.\r
4431\r
4432 @return The new 32-bit value.\r
4433\r
4434**/\r
4435UINT32\r
4436EFIAPI\r
4437BitFieldAndThenOr32 (\r
4438 IN UINT32 Operand,\r
4439 IN UINTN StartBit,\r
4440 IN UINTN EndBit,\r
4441 IN UINT32 AndData,\r
4442 IN UINT32 OrData\r
4443 );\r
4444\r
4445\r
4446/**\r
4447 Returns a bit field from a 64-bit value.\r
4448\r
4449 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
4450\r
4451 If 64-bit operations are not supported, then ASSERT().\r
4452 If StartBit is greater than 63, then ASSERT().\r
4453 If EndBit is greater than 63, then ASSERT().\r
4454 If EndBit is less than StartBit, then ASSERT().\r
4455\r
4456 @param Operand Operand on which to perform the bitfield operation.\r
4457 @param StartBit The ordinal of the least significant bit in the bit field.\r
4458 Range 0..63.\r
4459 @param EndBit The ordinal of the most significant bit in the bit field.\r
4460 Range 0..63.\r
4461\r
4462 @return The bit field read.\r
4463\r
4464**/\r
4465UINT64\r
4466EFIAPI\r
4467BitFieldRead64 (\r
4468 IN UINT64 Operand,\r
4469 IN UINTN StartBit,\r
4470 IN UINTN EndBit\r
4471 );\r
4472\r
4473\r
4474/**\r
4475 Writes a bit field to a 64-bit value, and returns the result.\r
4476\r
4477 Writes Value to the bit field specified by the StartBit and the EndBit in\r
4478 Operand. All other bits in Operand are preserved. The new 64-bit value is\r
4479 returned.\r
4480\r
4481 If 64-bit operations are not supported, then ASSERT().\r
4482 If StartBit is greater than 63, then ASSERT().\r
4483 If EndBit is greater than 63, then ASSERT().\r
4484 If EndBit is less than StartBit, then ASSERT().\r
4485 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4486\r
4487 @param Operand Operand on which to perform the bitfield operation.\r
4488 @param StartBit The ordinal of the least significant bit in the bit field.\r
4489 Range 0..63.\r
4490 @param EndBit The ordinal of the most significant bit in the bit field.\r
4491 Range 0..63.\r
4492 @param Value New value of the bit field.\r
4493\r
4494 @return The new 64-bit value.\r
4495\r
4496**/\r
4497UINT64\r
4498EFIAPI\r
4499BitFieldWrite64 (\r
4500 IN UINT64 Operand,\r
4501 IN UINTN StartBit,\r
4502 IN UINTN EndBit,\r
4503 IN UINT64 Value\r
4504 );\r
4505\r
4506\r
4507/**\r
4508 Reads a bit field from a 64-bit value, performs a bitwise OR, and returns the\r
4509 result.\r
4510\r
4511 Performs a bitwise OR between the bit field specified by StartBit\r
4512 and EndBit in Operand and the value specified by OrData. All other bits in\r
4513 Operand are preserved. The new 64-bit value is returned.\r
4514\r
4515 If 64-bit operations are not supported, then ASSERT().\r
4516 If StartBit is greater than 63, then ASSERT().\r
4517 If EndBit is greater than 63, then ASSERT().\r
4518 If EndBit is less than StartBit, then ASSERT().\r
4519 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4520\r
4521 @param Operand Operand on which to perform the bitfield operation.\r
4522 @param StartBit The ordinal of the least significant bit in the bit field.\r
4523 Range 0..63.\r
4524 @param EndBit The ordinal of the most significant bit in the bit field.\r
4525 Range 0..63.\r
4526 @param OrData The value to OR with the read value from the value\r
4527\r
4528 @return The new 64-bit value.\r
4529\r
4530**/\r
4531UINT64\r
4532EFIAPI\r
4533BitFieldOr64 (\r
4534 IN UINT64 Operand,\r
4535 IN UINTN StartBit,\r
4536 IN UINTN EndBit,\r
4537 IN UINT64 OrData\r
4538 );\r
4539\r
4540\r
4541/**\r
4542 Reads a bit field from a 64-bit value, performs a bitwise AND, and returns\r
4543 the result.\r
4544\r
4545 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
4546 in Operand and the value specified by AndData. All other bits in Operand are\r
4547 preserved. The new 64-bit value is returned.\r
4548\r
4549 If 64-bit operations are not supported, then ASSERT().\r
4550 If StartBit is greater than 63, then ASSERT().\r
4551 If EndBit is greater than 63, then ASSERT().\r
4552 If EndBit is less than StartBit, then ASSERT().\r
4553 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4554\r
4555 @param Operand Operand on which to perform the bitfield operation.\r
4556 @param StartBit The ordinal of the least significant bit in the bit field.\r
4557 Range 0..63.\r
4558 @param EndBit The ordinal of the most significant bit in the bit field.\r
4559 Range 0..63.\r
4560 @param AndData The value to AND with the read value from the value\r
4561\r
4562 @return The new 64-bit value.\r
4563\r
4564**/\r
4565UINT64\r
4566EFIAPI\r
4567BitFieldAnd64 (\r
4568 IN UINT64 Operand,\r
4569 IN UINTN StartBit,\r
4570 IN UINTN EndBit,\r
4571 IN UINT64 AndData\r
4572 );\r
4573\r
4574\r
4575/**\r
4576 Reads a bit field from a 64-bit value, performs a bitwise AND followed by a\r
4577 bitwise OR, and returns the result.\r
4578\r
4579 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
4580 in Operand and the value specified by AndData, followed by a bitwise\r
4581 OR with value specified by OrData. All other bits in Operand are\r
4582 preserved. The new 64-bit value is returned.\r
4583\r
4584 If 64-bit operations are not supported, then ASSERT().\r
4585 If StartBit is greater than 63, then ASSERT().\r
4586 If EndBit is greater than 63, then ASSERT().\r
4587 If EndBit is less than StartBit, then ASSERT().\r
4588 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4589 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
4590\r
4591 @param Operand Operand on which to perform the bitfield operation.\r
4592 @param StartBit The ordinal of the least significant bit in the bit field.\r
4593 Range 0..63.\r
4594 @param EndBit The ordinal of the most significant bit in the bit field.\r
4595 Range 0..63.\r
4596 @param AndData The value to AND with the read value from the value.\r
4597 @param OrData The value to OR with the result of the AND operation.\r
4598\r
4599 @return The new 64-bit value.\r
4600\r
4601**/\r
4602UINT64\r
4603EFIAPI\r
4604BitFieldAndThenOr64 (\r
4605 IN UINT64 Operand,\r
4606 IN UINTN StartBit,\r
4607 IN UINTN EndBit,\r
4608 IN UINT64 AndData,\r
4609 IN UINT64 OrData\r
4610 );\r
4611\r
4612/**\r
4613 Reads a bit field from a 32-bit value, counts and returns\r
4614 the number of set bits.\r
4615\r
4616 Counts the number of set bits in the bit field specified by\r
4617 StartBit and EndBit in Operand. The count is returned.\r
4618\r
4619 If StartBit is greater than 31, then ASSERT().\r
4620 If EndBit is greater than 31, then ASSERT().\r
4621 If EndBit is less than StartBit, then ASSERT().\r
4622\r
4623 @param Operand Operand on which to perform the bitfield operation.\r
4624 @param StartBit The ordinal of the least significant bit in the bit field.\r
4625 Range 0..31.\r
4626 @param EndBit The ordinal of the most significant bit in the bit field.\r
4627 Range 0..31.\r
4628\r
4629 @return The number of bits set between StartBit and EndBit.\r
4630\r
4631**/\r
4632UINT8\r
4633EFIAPI\r
4634BitFieldCountOnes32 (\r
4635 IN UINT32 Operand,\r
4636 IN UINTN StartBit,\r
4637 IN UINTN EndBit\r
4638 );\r
4639\r
4640/**\r
4641 Reads a bit field from a 64-bit value, counts and returns\r
4642 the number of set bits.\r
4643\r
4644 Counts the number of set bits in the bit field specified by\r
4645 StartBit and EndBit in Operand. The count is returned.\r
4646\r
4647 If StartBit is greater than 63, then ASSERT().\r
4648 If EndBit is greater than 63, then ASSERT().\r
4649 If EndBit is less than StartBit, then ASSERT().\r
4650\r
4651 @param Operand Operand on which to perform the bitfield operation.\r
4652 @param StartBit The ordinal of the least significant bit in the bit field.\r
4653 Range 0..63.\r
4654 @param EndBit The ordinal of the most significant bit in the bit field.\r
4655 Range 0..63.\r
4656\r
4657 @return The number of bits set between StartBit and EndBit.\r
4658\r
4659**/\r
4660UINT8\r
4661EFIAPI\r
4662BitFieldCountOnes64 (\r
4663 IN UINT64 Operand,\r
4664 IN UINTN StartBit,\r
4665 IN UINTN EndBit\r
4666 );\r
4667\r
4668//\r
4669// Base Library Checksum Functions\r
4670//\r
4671\r
4672/**\r
4673 Returns the sum of all elements in a buffer in unit of UINT8.\r
4674 During calculation, the carry bits are dropped.\r
4675\r
4676 This function calculates the sum of all elements in a buffer\r
4677 in unit of UINT8. The carry bits in result of addition are dropped.\r
4678 The result is returned as UINT8. If Length is Zero, then Zero is\r
4679 returned.\r
4680\r
4681 If Buffer is NULL, then ASSERT().\r
4682 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4683\r
4684 @param Buffer The pointer to the buffer to carry out the sum operation.\r
4685 @param Length The size, in bytes, of Buffer.\r
4686\r
4687 @return Sum The sum of Buffer with carry bits dropped during additions.\r
4688\r
4689**/\r
4690UINT8\r
4691EFIAPI\r
4692CalculateSum8 (\r
4693 IN CONST UINT8 *Buffer,\r
4694 IN UINTN Length\r
4695 );\r
4696\r
4697\r
4698/**\r
4699 Returns the two's complement checksum of all elements in a buffer\r
4700 of 8-bit values.\r
4701\r
4702 This function first calculates the sum of the 8-bit values in the\r
4703 buffer specified by Buffer and Length. The carry bits in the result\r
4704 of addition are dropped. Then, the two's complement of the sum is\r
4705 returned. If Length is 0, then 0 is returned.\r
4706\r
4707 If Buffer is NULL, then ASSERT().\r
4708 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4709\r
4710 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
4711 @param Length The size, in bytes, of Buffer.\r
4712\r
4713 @return Checksum The two's complement checksum of Buffer.\r
4714\r
4715**/\r
4716UINT8\r
4717EFIAPI\r
4718CalculateCheckSum8 (\r
4719 IN CONST UINT8 *Buffer,\r
4720 IN UINTN Length\r
4721 );\r
4722\r
4723\r
4724/**\r
4725 Returns the sum of all elements in a buffer of 16-bit values. During\r
4726 calculation, the carry bits are dropped.\r
4727\r
4728 This function calculates the sum of the 16-bit values in the buffer\r
4729 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
4730 The 16-bit result is returned. If Length is 0, then 0 is returned.\r
4731\r
4732 If Buffer is NULL, then ASSERT().\r
4733 If Buffer is not aligned on a 16-bit boundary, then ASSERT().\r
4734 If Length is not aligned on a 16-bit boundary, then ASSERT().\r
4735 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4736\r
4737 @param Buffer The pointer to the buffer to carry out the sum operation.\r
4738 @param Length The size, in bytes, of Buffer.\r
4739\r
4740 @return Sum The sum of Buffer with carry bits dropped during additions.\r
4741\r
4742**/\r
4743UINT16\r
4744EFIAPI\r
4745CalculateSum16 (\r
4746 IN CONST UINT16 *Buffer,\r
4747 IN UINTN Length\r
4748 );\r
4749\r
4750\r
4751/**\r
4752 Returns the two's complement checksum of all elements in a buffer of\r
4753 16-bit values.\r
4754\r
4755 This function first calculates the sum of the 16-bit values in the buffer\r
4756 specified by Buffer and Length. The carry bits in the result of addition\r
4757 are dropped. Then, the two's complement of the sum is returned. If Length\r
4758 is 0, then 0 is returned.\r
4759\r
4760 If Buffer is NULL, then ASSERT().\r
4761 If Buffer is not aligned on a 16-bit boundary, then ASSERT().\r
4762 If Length is not aligned on a 16-bit boundary, then ASSERT().\r
4763 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4764\r
4765 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
4766 @param Length The size, in bytes, of Buffer.\r
4767\r
4768 @return Checksum The two's complement checksum of Buffer.\r
4769\r
4770**/\r
4771UINT16\r
4772EFIAPI\r
4773CalculateCheckSum16 (\r
4774 IN CONST UINT16 *Buffer,\r
4775 IN UINTN Length\r
4776 );\r
4777\r
4778\r
4779/**\r
4780 Returns the sum of all elements in a buffer of 32-bit values. During\r
4781 calculation, the carry bits are dropped.\r
4782\r
4783 This function calculates the sum of the 32-bit values in the buffer\r
4784 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
4785 The 32-bit result is returned. If Length is 0, then 0 is returned.\r
4786\r
4787 If Buffer is NULL, then ASSERT().\r
4788 If Buffer is not aligned on a 32-bit boundary, then ASSERT().\r
4789 If Length is not aligned on a 32-bit boundary, then ASSERT().\r
4790 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4791\r
4792 @param Buffer The pointer to the buffer to carry out the sum operation.\r
4793 @param Length The size, in bytes, of Buffer.\r
4794\r
4795 @return Sum The sum of Buffer with carry bits dropped during additions.\r
4796\r
4797**/\r
4798UINT32\r
4799EFIAPI\r
4800CalculateSum32 (\r
4801 IN CONST UINT32 *Buffer,\r
4802 IN UINTN Length\r
4803 );\r
4804\r
4805\r
4806/**\r
4807 Returns the two's complement checksum of all elements in a buffer of\r
4808 32-bit values.\r
4809\r
4810 This function first calculates the sum of the 32-bit values in the buffer\r
4811 specified by Buffer and Length. The carry bits in the result of addition\r
4812 are dropped. Then, the two's complement of the sum is returned. If Length\r
4813 is 0, then 0 is returned.\r
4814\r
4815 If Buffer is NULL, then ASSERT().\r
4816 If Buffer is not aligned on a 32-bit boundary, then ASSERT().\r
4817 If Length is not aligned on a 32-bit boundary, then ASSERT().\r
4818 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4819\r
4820 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
4821 @param Length The size, in bytes, of Buffer.\r
4822\r
4823 @return Checksum The two's complement checksum of Buffer.\r
4824\r
4825**/\r
4826UINT32\r
4827EFIAPI\r
4828CalculateCheckSum32 (\r
4829 IN CONST UINT32 *Buffer,\r
4830 IN UINTN Length\r
4831 );\r
4832\r
4833\r
4834/**\r
4835 Returns the sum of all elements in a buffer of 64-bit values. During\r
4836 calculation, the carry bits are dropped.\r
4837\r
4838 This function calculates the sum of the 64-bit values in the buffer\r
4839 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
4840 The 64-bit result is returned. If Length is 0, then 0 is returned.\r
4841\r
4842 If Buffer is NULL, then ASSERT().\r
4843 If Buffer is not aligned on a 64-bit boundary, then ASSERT().\r
4844 If Length is not aligned on a 64-bit boundary, then ASSERT().\r
4845 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4846\r
4847 @param Buffer The pointer to the buffer to carry out the sum operation.\r
4848 @param Length The size, in bytes, of Buffer.\r
4849\r
4850 @return Sum The sum of Buffer with carry bits dropped during additions.\r
4851\r
4852**/\r
4853UINT64\r
4854EFIAPI\r
4855CalculateSum64 (\r
4856 IN CONST UINT64 *Buffer,\r
4857 IN UINTN Length\r
4858 );\r
4859\r
4860\r
4861/**\r
4862 Returns the two's complement checksum of all elements in a buffer of\r
4863 64-bit values.\r
4864\r
4865 This function first calculates the sum of the 64-bit values in the buffer\r
4866 specified by Buffer and Length. The carry bits in the result of addition\r
4867 are dropped. Then, the two's complement of the sum is returned. If Length\r
4868 is 0, then 0 is returned.\r
4869\r
4870 If Buffer is NULL, then ASSERT().\r
4871 If Buffer is not aligned on a 64-bit boundary, then ASSERT().\r
4872 If Length is not aligned on a 64-bit boundary, then ASSERT().\r
4873 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4874\r
4875 @param Buffer The pointer to the buffer to carry out the checksum operation.\r
4876 @param Length The size, in bytes, of Buffer.\r
4877\r
4878 @return Checksum The two's complement checksum of Buffer.\r
4879\r
4880**/\r
4881UINT64\r
4882EFIAPI\r
4883CalculateCheckSum64 (\r
4884 IN CONST UINT64 *Buffer,\r
4885 IN UINTN Length\r
4886 );\r
4887\r
4888/**\r
4889 Computes and returns a 32-bit CRC for a data buffer.\r
4890 CRC32 value bases on ITU-T V.42.\r
4891\r
4892 If Buffer is NULL, then ASSERT().\r
4893 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
4894\r
4895 @param[in] Buffer A pointer to the buffer on which the 32-bit CRC is to be computed.\r
4896 @param[in] Length The number of bytes in the buffer Data.\r
4897\r
4898 @retval Crc32 The 32-bit CRC was computed for the data buffer.\r
4899\r
4900**/\r
4901UINT32\r
4902EFIAPI\r
4903CalculateCrc32(\r
4904 IN VOID *Buffer,\r
4905 IN UINTN Length\r
4906 );\r
4907\r
4908//\r
4909// Base Library CPU Functions\r
4910//\r
4911\r
4912/**\r
4913 Function entry point used when a stack switch is requested with SwitchStack()\r
4914\r
4915 @param Context1 Context1 parameter passed into SwitchStack().\r
4916 @param Context2 Context2 parameter passed into SwitchStack().\r
4917\r
4918**/\r
4919typedef\r
4920VOID\r
4921(EFIAPI *SWITCH_STACK_ENTRY_POINT)(\r
4922 IN VOID *Context1, OPTIONAL\r
4923 IN VOID *Context2 OPTIONAL\r
4924 );\r
4925\r
4926\r
4927/**\r
4928 Used to serialize load and store operations.\r
4929\r
4930 All loads and stores that proceed calls to this function are guaranteed to be\r
4931 globally visible when this function returns.\r
4932\r
4933**/\r
4934VOID\r
4935EFIAPI\r
4936MemoryFence (\r
4937 VOID\r
4938 );\r
4939\r
4940\r
4941/**\r
4942 Saves the current CPU context that can be restored with a call to LongJump()\r
4943 and returns 0.\r
4944\r
4945 Saves the current CPU context in the buffer specified by JumpBuffer and\r
4946 returns 0. The initial call to SetJump() must always return 0. Subsequent\r
4947 calls to LongJump() cause a non-zero value to be returned by SetJump().\r
4948\r
4949 If JumpBuffer is NULL, then ASSERT().\r
4950 For Itanium processors, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
4951\r
4952 NOTE: The structure BASE_LIBRARY_JUMP_BUFFER is CPU architecture specific.\r
4953 The same structure must never be used for more than one CPU architecture context.\r
4954 For example, a BASE_LIBRARY_JUMP_BUFFER allocated by an IA-32 module must never be used from an x64 module.\r
4955 SetJump()/LongJump() is not currently supported for the EBC processor type.\r
4956\r
4957 @param JumpBuffer A pointer to CPU context buffer.\r
4958\r
4959 @retval 0 Indicates a return from SetJump().\r
4960\r
4961**/\r
4962RETURNS_TWICE\r
4963UINTN\r
4964EFIAPI\r
4965SetJump (\r
4966 OUT BASE_LIBRARY_JUMP_BUFFER *JumpBuffer\r
4967 );\r
4968\r
4969\r
4970/**\r
4971 Restores the CPU context that was saved with SetJump().\r
4972\r
4973 Restores the CPU context from the buffer specified by JumpBuffer. This\r
4974 function never returns to the caller. Instead is resumes execution based on\r
4975 the state of JumpBuffer.\r
4976\r
4977 If JumpBuffer is NULL, then ASSERT().\r
4978 For Itanium processors, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
4979 If Value is 0, then ASSERT().\r
4980\r
4981 @param JumpBuffer A pointer to CPU context buffer.\r
4982 @param Value The value to return when the SetJump() context is\r
4983 restored and must be non-zero.\r
4984\r
4985**/\r
4986VOID\r
4987EFIAPI\r
4988LongJump (\r
4989 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer,\r
4990 IN UINTN Value\r
4991 );\r
4992\r
4993\r
4994/**\r
4995 Enables CPU interrupts.\r
4996\r
4997**/\r
4998VOID\r
4999EFIAPI\r
5000EnableInterrupts (\r
5001 VOID\r
5002 );\r
5003\r
5004\r
5005/**\r
5006 Disables CPU interrupts.\r
5007\r
5008**/\r
5009VOID\r
5010EFIAPI\r
5011DisableInterrupts (\r
5012 VOID\r
5013 );\r
5014\r
5015\r
5016/**\r
5017 Disables CPU interrupts and returns the interrupt state prior to the disable\r
5018 operation.\r
5019\r
5020 @retval TRUE CPU interrupts were enabled on entry to this call.\r
5021 @retval FALSE CPU interrupts were disabled on entry to this call.\r
5022\r
5023**/\r
5024BOOLEAN\r
5025EFIAPI\r
5026SaveAndDisableInterrupts (\r
5027 VOID\r
5028 );\r
5029\r
5030\r
5031/**\r
5032 Enables CPU interrupts for the smallest window required to capture any\r
5033 pending interrupts.\r
5034\r
5035**/\r
5036VOID\r
5037EFIAPI\r
5038EnableDisableInterrupts (\r
5039 VOID\r
5040 );\r
5041\r
5042\r
5043/**\r
5044 Retrieves the current CPU interrupt state.\r
5045\r
5046 Returns TRUE if interrupts are currently enabled. Otherwise\r
5047 returns FALSE.\r
5048\r
5049 @retval TRUE CPU interrupts are enabled.\r
5050 @retval FALSE CPU interrupts are disabled.\r
5051\r
5052**/\r
5053BOOLEAN\r
5054EFIAPI\r
5055GetInterruptState (\r
5056 VOID\r
5057 );\r
5058\r
5059\r
5060/**\r
5061 Set the current CPU interrupt state.\r
5062\r
5063 Sets the current CPU interrupt state to the state specified by\r
5064 InterruptState. If InterruptState is TRUE, then interrupts are enabled. If\r
5065 InterruptState is FALSE, then interrupts are disabled. InterruptState is\r
5066 returned.\r
5067\r
5068 @param InterruptState TRUE if interrupts should enabled. FALSE if\r
5069 interrupts should be disabled.\r
5070\r
5071 @return InterruptState\r
5072\r
5073**/\r
5074BOOLEAN\r
5075EFIAPI\r
5076SetInterruptState (\r
5077 IN BOOLEAN InterruptState\r
5078 );\r
5079\r
5080\r
5081/**\r
5082 Requests CPU to pause for a short period of time.\r
5083\r
5084 Requests CPU to pause for a short period of time. Typically used in MP\r
5085 systems to prevent memory starvation while waiting for a spin lock.\r
5086\r
5087**/\r
5088VOID\r
5089EFIAPI\r
5090CpuPause (\r
5091 VOID\r
5092 );\r
5093\r
5094\r
5095/**\r
5096 Transfers control to a function starting with a new stack.\r
5097\r
5098 Transfers control to the function specified by EntryPoint using the\r
5099 new stack specified by NewStack and passing in the parameters specified\r
5100 by Context1 and Context2. Context1 and Context2 are optional and may\r
5101 be NULL. The function EntryPoint must never return. This function\r
5102 supports a variable number of arguments following the NewStack parameter.\r
5103 These additional arguments are ignored on IA-32, x64, and EBC architectures.\r
5104 Itanium processors expect one additional parameter of type VOID * that specifies\r
5105 the new backing store pointer.\r
5106\r
5107 If EntryPoint is NULL, then ASSERT().\r
5108 If NewStack is NULL, then ASSERT().\r
5109\r
5110 @param EntryPoint A pointer to function to call with the new stack.\r
5111 @param Context1 A pointer to the context to pass into the EntryPoint\r
5112 function.\r
5113 @param Context2 A pointer to the context to pass into the EntryPoint\r
5114 function.\r
5115 @param NewStack A pointer to the new stack to use for the EntryPoint\r
5116 function.\r
5117 @param ... This variable argument list is ignored for IA-32, x64, and\r
5118 EBC architectures. For Itanium processors, this variable\r
5119 argument list is expected to contain a single parameter of\r
5120 type VOID * that specifies the new backing store pointer.\r
5121\r
5122\r
5123**/\r
5124VOID\r
5125EFIAPI\r
5126SwitchStack (\r
5127 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
5128 IN VOID *Context1, OPTIONAL\r
5129 IN VOID *Context2, OPTIONAL\r
5130 IN VOID *NewStack,\r
5131 ...\r
5132 );\r
5133\r
5134\r
5135/**\r
5136 Generates a breakpoint on the CPU.\r
5137\r
5138 Generates a breakpoint on the CPU. The breakpoint must be implemented such\r
5139 that code can resume normal execution after the breakpoint.\r
5140\r
5141**/\r
5142VOID\r
5143EFIAPI\r
5144CpuBreakpoint (\r
5145 VOID\r
5146 );\r
5147\r
5148\r
5149/**\r
5150 Executes an infinite loop.\r
5151\r
5152 Forces the CPU to execute an infinite loop. A debugger may be used to skip\r
5153 past the loop and the code that follows the loop must execute properly. This\r
5154 implies that the infinite loop must not cause the code that follow it to be\r
5155 optimized away.\r
5156\r
5157**/\r
5158VOID\r
5159EFIAPI\r
5160CpuDeadLoop (\r
5161 VOID\r
5162 );\r
5163\r
5164#if defined (MDE_CPU_IPF)\r
5165\r
5166/**\r
5167 Flush a range of cache lines in the cache coherency domain of the calling\r
5168 CPU.\r
5169\r
5170 Flushes the cache lines specified by Address and Length. If Address is not aligned\r
5171 on a cache line boundary, then entire cache line containing Address is flushed.\r
5172 If Address + Length is not aligned on a cache line boundary, then the entire cache\r
5173 line containing Address + Length - 1 is flushed. This function may choose to flush\r
5174 the entire cache if that is more efficient than flushing the specified range. If\r
5175 Length is 0, the no cache lines are flushed. Address is returned.\r
5176 This function is only available on Itanium processors.\r
5177\r
5178 If Length is greater than (MAX_ADDRESS - Address + 1), then ASSERT().\r
5179\r
5180 @param Address The base address of the instruction lines to invalidate. If\r
5181 the CPU is in a physical addressing mode, then Address is a\r
5182 physical address. If the CPU is in a virtual addressing mode,\r
5183 then Address is a virtual address.\r
5184\r
5185 @param Length The number of bytes to invalidate from the instruction cache.\r
5186\r
5187 @return Address.\r
5188\r
5189**/\r
5190VOID *\r
5191EFIAPI\r
5192AsmFlushCacheRange (\r
5193 IN VOID *Address,\r
5194 IN UINTN Length\r
5195 );\r
5196\r
5197\r
5198/**\r
5199 Executes an FC instruction.\r
5200 Executes an FC instruction on the cache line specified by Address.\r
5201 The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).\r
5202 An implementation may flush a larger region. This function is only available on Itanium processors.\r
5203\r
5204 @param Address The Address of cache line to be flushed.\r
5205\r
5206 @return The address of FC instruction executed.\r
5207\r
5208**/\r
5209UINT64\r
5210EFIAPI\r
5211AsmFc (\r
5212 IN UINT64 Address\r
5213 );\r
5214\r
5215\r
5216/**\r
5217 Executes an FC.I instruction.\r
5218 Executes an FC.I instruction on the cache line specified by Address.\r
5219 The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).\r
5220 An implementation may flush a larger region. This function is only available on Itanium processors.\r
5221\r
5222 @param Address The Address of cache line to be flushed.\r
5223\r
5224 @return The address of the FC.I instruction executed.\r
5225\r
5226**/\r
5227UINT64\r
5228EFIAPI\r
5229AsmFci (\r
5230 IN UINT64 Address\r
5231 );\r
5232\r
5233\r
5234/**\r
5235 Reads the current value of a Processor Identifier Register (CPUID).\r
5236\r
5237 Reads and returns the current value of Processor Identifier Register specified by Index.\r
5238 The Index of largest implemented CPUID (One less than the number of implemented CPUID\r
5239 registers) is determined by CPUID [3] bits {7:0}.\r
5240 No parameter checking is performed on Index. If the Index value is beyond the\r
5241 implemented CPUID register range, a Reserved Register/Field fault may occur. The caller\r
5242 must either guarantee that Index is valid, or the caller must set up fault handlers to\r
5243 catch the faults. This function is only available on Itanium processors.\r
5244\r
5245 @param Index The 8-bit Processor Identifier Register index to read.\r
5246\r
5247 @return The current value of Processor Identifier Register specified by Index.\r
5248\r
5249**/\r
5250UINT64\r
5251EFIAPI\r
5252AsmReadCpuid (\r
5253 IN UINT8 Index\r
5254 );\r
5255\r
5256\r
5257/**\r
5258 Reads the current value of 64-bit Processor Status Register (PSR).\r
5259 This function is only available on Itanium processors.\r
5260\r
5261 @return The current value of PSR.\r
5262\r
5263**/\r
5264UINT64\r
5265EFIAPI\r
5266AsmReadPsr (\r
5267 VOID\r
5268 );\r
5269\r
5270\r
5271/**\r
5272 Writes the current value of 64-bit Processor Status Register (PSR).\r
5273\r
5274 No parameter checking is performed on Value. All bits of Value corresponding to\r
5275 reserved fields of PSR must be 0 or a Reserved Register/Field fault may occur.\r
5276 The caller must either guarantee that Value is valid, or the caller must set up\r
5277 fault handlers to catch the faults. This function is only available on Itanium processors.\r
5278\r
5279 @param Value The 64-bit value to write to PSR.\r
5280\r
5281 @return The 64-bit value written to the PSR.\r
5282\r
5283**/\r
5284UINT64\r
5285EFIAPI\r
5286AsmWritePsr (\r
5287 IN UINT64 Value\r
5288 );\r
5289\r
5290\r
5291/**\r
5292 Reads the current value of 64-bit Kernel Register #0 (KR0).\r
5293\r
5294 Reads and returns the current value of KR0.\r
5295 This function is only available on Itanium processors.\r
5296\r
5297 @return The current value of KR0.\r
5298\r
5299**/\r
5300UINT64\r
5301EFIAPI\r
5302AsmReadKr0 (\r
5303 VOID\r
5304 );\r
5305\r
5306\r
5307/**\r
5308 Reads the current value of 64-bit Kernel Register #1 (KR1).\r
5309\r
5310 Reads and returns the current value of KR1.\r
5311 This function is only available on Itanium processors.\r
5312\r
5313 @return The current value of KR1.\r
5314\r
5315**/\r
5316UINT64\r
5317EFIAPI\r
5318AsmReadKr1 (\r
5319 VOID\r
5320 );\r
5321\r
5322\r
5323/**\r
5324 Reads the current value of 64-bit Kernel Register #2 (KR2).\r
5325\r
5326 Reads and returns the current value of KR2.\r
5327 This function is only available on Itanium processors.\r
5328\r
5329 @return The current value of KR2.\r
5330\r
5331**/\r
5332UINT64\r
5333EFIAPI\r
5334AsmReadKr2 (\r
5335 VOID\r
5336 );\r
5337\r
5338\r
5339/**\r
5340 Reads the current value of 64-bit Kernel Register #3 (KR3).\r
5341\r
5342 Reads and returns the current value of KR3.\r
5343 This function is only available on Itanium processors.\r
5344\r
5345 @return The current value of KR3.\r
5346\r
5347**/\r
5348UINT64\r
5349EFIAPI\r
5350AsmReadKr3 (\r
5351 VOID\r
5352 );\r
5353\r
5354\r
5355/**\r
5356 Reads the current value of 64-bit Kernel Register #4 (KR4).\r
5357\r
5358 Reads and returns the current value of KR4.\r
5359 This function is only available on Itanium processors.\r
5360\r
5361 @return The current value of KR4.\r
5362\r
5363**/\r
5364UINT64\r
5365EFIAPI\r
5366AsmReadKr4 (\r
5367 VOID\r
5368 );\r
5369\r
5370\r
5371/**\r
5372 Reads the current value of 64-bit Kernel Register #5 (KR5).\r
5373\r
5374 Reads and returns the current value of KR5.\r
5375 This function is only available on Itanium processors.\r
5376\r
5377 @return The current value of KR5.\r
5378\r
5379**/\r
5380UINT64\r
5381EFIAPI\r
5382AsmReadKr5 (\r
5383 VOID\r
5384 );\r
5385\r
5386\r
5387/**\r
5388 Reads the current value of 64-bit Kernel Register #6 (KR6).\r
5389\r
5390 Reads and returns the current value of KR6.\r
5391 This function is only available on Itanium processors.\r
5392\r
5393 @return The current value of KR6.\r
5394\r
5395**/\r
5396UINT64\r
5397EFIAPI\r
5398AsmReadKr6 (\r
5399 VOID\r
5400 );\r
5401\r
5402\r
5403/**\r
5404 Reads the current value of 64-bit Kernel Register #7 (KR7).\r
5405\r
5406 Reads and returns the current value of KR7.\r
5407 This function is only available on Itanium processors.\r
5408\r
5409 @return The current value of KR7.\r
5410\r
5411**/\r
5412UINT64\r
5413EFIAPI\r
5414AsmReadKr7 (\r
5415 VOID\r
5416 );\r
5417\r
5418\r
5419/**\r
5420 Write the current value of 64-bit Kernel Register #0 (KR0).\r
5421\r
5422 Writes the current value of KR0. The 64-bit value written to\r
5423 the KR0 is returned. This function is only available on Itanium processors.\r
5424\r
5425 @param Value The 64-bit value to write to KR0.\r
5426\r
5427 @return The 64-bit value written to the KR0.\r
5428\r
5429**/\r
5430UINT64\r
5431EFIAPI\r
5432AsmWriteKr0 (\r
5433 IN UINT64 Value\r
5434 );\r
5435\r
5436\r
5437/**\r
5438 Write the current value of 64-bit Kernel Register #1 (KR1).\r
5439\r
5440 Writes the current value of KR1. The 64-bit value written to\r
5441 the KR1 is returned. This function is only available on Itanium processors.\r
5442\r
5443 @param Value The 64-bit value to write to KR1.\r
5444\r
5445 @return The 64-bit value written to the KR1.\r
5446\r
5447**/\r
5448UINT64\r
5449EFIAPI\r
5450AsmWriteKr1 (\r
5451 IN UINT64 Value\r
5452 );\r
5453\r
5454\r
5455/**\r
5456 Write the current value of 64-bit Kernel Register #2 (KR2).\r
5457\r
5458 Writes the current value of KR2. The 64-bit value written to\r
5459 the KR2 is returned. This function is only available on Itanium processors.\r
5460\r
5461 @param Value The 64-bit value to write to KR2.\r
5462\r
5463 @return The 64-bit value written to the KR2.\r
5464\r
5465**/\r
5466UINT64\r
5467EFIAPI\r
5468AsmWriteKr2 (\r
5469 IN UINT64 Value\r
5470 );\r
5471\r
5472\r
5473/**\r
5474 Write the current value of 64-bit Kernel Register #3 (KR3).\r
5475\r
5476 Writes the current value of KR3. The 64-bit value written to\r
5477 the KR3 is returned. This function is only available on Itanium processors.\r
5478\r
5479 @param Value The 64-bit value to write to KR3.\r
5480\r
5481 @return The 64-bit value written to the KR3.\r
5482\r
5483**/\r
5484UINT64\r
5485EFIAPI\r
5486AsmWriteKr3 (\r
5487 IN UINT64 Value\r
5488 );\r
5489\r
5490\r
5491/**\r
5492 Write the current value of 64-bit Kernel Register #4 (KR4).\r
5493\r
5494 Writes the current value of KR4. The 64-bit value written to\r
5495 the KR4 is returned. This function is only available on Itanium processors.\r
5496\r
5497 @param Value The 64-bit value to write to KR4.\r
5498\r
5499 @return The 64-bit value written to the KR4.\r
5500\r
5501**/\r
5502UINT64\r
5503EFIAPI\r
5504AsmWriteKr4 (\r
5505 IN UINT64 Value\r
5506 );\r
5507\r
5508\r
5509/**\r
5510 Write the current value of 64-bit Kernel Register #5 (KR5).\r
5511\r
5512 Writes the current value of KR5. The 64-bit value written to\r
5513 the KR5 is returned. This function is only available on Itanium processors.\r
5514\r
5515 @param Value The 64-bit value to write to KR5.\r
5516\r
5517 @return The 64-bit value written to the KR5.\r
5518\r
5519**/\r
5520UINT64\r
5521EFIAPI\r
5522AsmWriteKr5 (\r
5523 IN UINT64 Value\r
5524 );\r
5525\r
5526\r
5527/**\r
5528 Write the current value of 64-bit Kernel Register #6 (KR6).\r
5529\r
5530 Writes the current value of KR6. The 64-bit value written to\r
5531 the KR6 is returned. This function is only available on Itanium processors.\r
5532\r
5533 @param Value The 64-bit value to write to KR6.\r
5534\r
5535 @return The 64-bit value written to the KR6.\r
5536\r
5537**/\r
5538UINT64\r
5539EFIAPI\r
5540AsmWriteKr6 (\r
5541 IN UINT64 Value\r
5542 );\r
5543\r
5544\r
5545/**\r
5546 Write the current value of 64-bit Kernel Register #7 (KR7).\r
5547\r
5548 Writes the current value of KR7. The 64-bit value written to\r
5549 the KR7 is returned. This function is only available on Itanium processors.\r
5550\r
5551 @param Value The 64-bit value to write to KR7.\r
5552\r
5553 @return The 64-bit value written to the KR7.\r
5554\r
5555**/\r
5556UINT64\r
5557EFIAPI\r
5558AsmWriteKr7 (\r
5559 IN UINT64 Value\r
5560 );\r
5561\r
5562\r
5563/**\r
5564 Reads the current value of Interval Timer Counter Register (ITC).\r
5565\r
5566 Reads and returns the current value of ITC.\r
5567 This function is only available on Itanium processors.\r
5568\r
5569 @return The current value of ITC.\r
5570\r
5571**/\r
5572UINT64\r
5573EFIAPI\r
5574AsmReadItc (\r
5575 VOID\r
5576 );\r
5577\r
5578\r
5579/**\r
5580 Reads the current value of Interval Timer Vector Register (ITV).\r
5581\r
5582 Reads and returns the current value of ITV.\r
5583 This function is only available on Itanium processors.\r
5584\r
5585 @return The current value of ITV.\r
5586\r
5587**/\r
5588UINT64\r
5589EFIAPI\r
5590AsmReadItv (\r
5591 VOID\r
5592 );\r
5593\r
5594\r
5595/**\r
5596 Reads the current value of Interval Timer Match Register (ITM).\r
5597\r
5598 Reads and returns the current value of ITM.\r
5599 This function is only available on Itanium processors.\r
5600\r
5601 @return The current value of ITM.\r
5602**/\r
5603UINT64\r
5604EFIAPI\r
5605AsmReadItm (\r
5606 VOID\r
5607 );\r
5608\r
5609\r
5610/**\r
5611 Writes the current value of 64-bit Interval Timer Counter Register (ITC).\r
5612\r
5613 Writes the current value of ITC. The 64-bit value written to the ITC is returned.\r
5614 This function is only available on Itanium processors.\r
5615\r
5616 @param Value The 64-bit value to write to ITC.\r
5617\r
5618 @return The 64-bit value written to the ITC.\r
5619\r
5620**/\r
5621UINT64\r
5622EFIAPI\r
5623AsmWriteItc (\r
5624 IN UINT64 Value\r
5625 );\r
5626\r
5627\r
5628/**\r
5629 Writes the current value of 64-bit Interval Timer Match Register (ITM).\r
5630\r
5631 Writes the current value of ITM. The 64-bit value written to the ITM is returned.\r
5632 This function is only available on Itanium processors.\r
5633\r
5634 @param Value The 64-bit value to write to ITM.\r
5635\r
5636 @return The 64-bit value written to the ITM.\r
5637\r
5638**/\r
5639UINT64\r
5640EFIAPI\r
5641AsmWriteItm (\r
5642 IN UINT64 Value\r
5643 );\r
5644\r
5645\r
5646/**\r
5647 Writes the current value of 64-bit Interval Timer Vector Register (ITV).\r
5648\r
5649 Writes the current value of ITV. The 64-bit value written to the ITV is returned.\r
5650 No parameter checking is performed on Value. All bits of Value corresponding to\r
5651 reserved fields of ITV must be 0 or a Reserved Register/Field fault may occur.\r
5652 The caller must either guarantee that Value is valid, or the caller must set up\r
5653 fault handlers to catch the faults.\r
5654 This function is only available on Itanium processors.\r
5655\r
5656 @param Value The 64-bit value to write to ITV.\r
5657\r
5658 @return The 64-bit value written to the ITV.\r
5659\r
5660**/\r
5661UINT64\r
5662EFIAPI\r
5663AsmWriteItv (\r
5664 IN UINT64 Value\r
5665 );\r
5666\r
5667\r
5668/**\r
5669 Reads the current value of Default Control Register (DCR).\r
5670\r
5671 Reads and returns the current value of DCR. This function is only available on Itanium processors.\r
5672\r
5673 @return The current value of DCR.\r
5674\r
5675**/\r
5676UINT64\r
5677EFIAPI\r
5678AsmReadDcr (\r
5679 VOID\r
5680 );\r
5681\r
5682\r
5683/**\r
5684 Reads the current value of Interruption Vector Address Register (IVA).\r
5685\r
5686 Reads and returns the current value of IVA. This function is only available on Itanium processors.\r
5687\r
5688 @return The current value of IVA.\r
5689**/\r
5690UINT64\r
5691EFIAPI\r
5692AsmReadIva (\r
5693 VOID\r
5694 );\r
5695\r
5696\r
5697/**\r
5698 Reads the current value of Page Table Address Register (PTA).\r
5699\r
5700 Reads and returns the current value of PTA. This function is only available on Itanium processors.\r
5701\r
5702 @return The current value of PTA.\r
5703\r
5704**/\r
5705UINT64\r
5706EFIAPI\r
5707AsmReadPta (\r
5708 VOID\r
5709 );\r
5710\r
5711\r
5712/**\r
5713 Writes the current value of 64-bit Default Control Register (DCR).\r
5714\r
5715 Writes the current value of DCR. The 64-bit value written to the DCR is returned.\r
5716 No parameter checking is performed on Value. All bits of Value corresponding to\r
5717 reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.\r
5718 The caller must either guarantee that Value is valid, or the caller must set up\r
5719 fault handlers to catch the faults.\r
5720 This function is only available on Itanium processors.\r
5721\r
5722 @param Value The 64-bit value to write to DCR.\r
5723\r
5724 @return The 64-bit value written to the DCR.\r
5725\r
5726**/\r
5727UINT64\r
5728EFIAPI\r
5729AsmWriteDcr (\r
5730 IN UINT64 Value\r
5731 );\r
5732\r
5733\r
5734/**\r
5735 Writes the current value of 64-bit Interruption Vector Address Register (IVA).\r
5736\r
5737 Writes the current value of IVA. The 64-bit value written to the IVA is returned.\r
5738 The size of vector table is 32 K bytes and is 32 K bytes aligned\r
5739 the low 15 bits of Value is ignored when written.\r
5740 This function is only available on Itanium processors.\r
5741\r
5742 @param Value The 64-bit value to write to IVA.\r
5743\r
5744 @return The 64-bit value written to the IVA.\r
5745\r
5746**/\r
5747UINT64\r
5748EFIAPI\r
5749AsmWriteIva (\r
5750 IN UINT64 Value\r
5751 );\r
5752\r
5753\r
5754/**\r
5755 Writes the current value of 64-bit Page Table Address Register (PTA).\r
5756\r
5757 Writes the current value of PTA. The 64-bit value written to the PTA is returned.\r
5758 No parameter checking is performed on Value. All bits of Value corresponding to\r
5759 reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.\r
5760 The caller must either guarantee that Value is valid, or the caller must set up\r
5761 fault handlers to catch the faults.\r
5762 This function is only available on Itanium processors.\r
5763\r
5764 @param Value The 64-bit value to write to PTA.\r
5765\r
5766 @return The 64-bit value written to the PTA.\r
5767**/\r
5768UINT64\r
5769EFIAPI\r
5770AsmWritePta (\r
5771 IN UINT64 Value\r
5772 );\r
5773\r
5774\r
5775/**\r
5776 Reads the current value of Local Interrupt ID Register (LID).\r
5777\r
5778 Reads and returns the current value of LID. This function is only available on Itanium processors.\r
5779\r
5780 @return The current value of LID.\r
5781\r
5782**/\r
5783UINT64\r
5784EFIAPI\r
5785AsmReadLid (\r
5786 VOID\r
5787 );\r
5788\r
5789\r
5790/**\r
5791 Reads the current value of External Interrupt Vector Register (IVR).\r
5792\r
5793 Reads and returns the current value of IVR. This function is only available on Itanium processors.\r
5794\r
5795 @return The current value of IVR.\r
5796\r
5797**/\r
5798UINT64\r
5799EFIAPI\r
5800AsmReadIvr (\r
5801 VOID\r
5802 );\r
5803\r
5804\r
5805/**\r
5806 Reads the current value of Task Priority Register (TPR).\r
5807\r
5808 Reads and returns the current value of TPR. This function is only available on Itanium processors.\r
5809\r
5810 @return The current value of TPR.\r
5811\r
5812**/\r
5813UINT64\r
5814EFIAPI\r
5815AsmReadTpr (\r
5816 VOID\r
5817 );\r
5818\r
5819\r
5820/**\r
5821 Reads the current value of External Interrupt Request Register #0 (IRR0).\r
5822\r
5823 Reads and returns the current value of IRR0. This function is only available on Itanium processors.\r
5824\r
5825 @return The current value of IRR0.\r
5826\r
5827**/\r
5828UINT64\r
5829EFIAPI\r
5830AsmReadIrr0 (\r
5831 VOID\r
5832 );\r
5833\r
5834\r
5835/**\r
5836 Reads the current value of External Interrupt Request Register #1 (IRR1).\r
5837\r
5838 Reads and returns the current value of IRR1. This function is only available on Itanium processors.\r
5839\r
5840 @return The current value of IRR1.\r
5841\r
5842**/\r
5843UINT64\r
5844EFIAPI\r
5845AsmReadIrr1 (\r
5846 VOID\r
5847 );\r
5848\r
5849\r
5850/**\r
5851 Reads the current value of External Interrupt Request Register #2 (IRR2).\r
5852\r
5853 Reads and returns the current value of IRR2. This function is only available on Itanium processors.\r
5854\r
5855 @return The current value of IRR2.\r
5856\r
5857**/\r
5858UINT64\r
5859EFIAPI\r
5860AsmReadIrr2 (\r
5861 VOID\r
5862 );\r
5863\r
5864\r
5865/**\r
5866 Reads the current value of External Interrupt Request Register #3 (IRR3).\r
5867\r
5868 Reads and returns the current value of IRR3. This function is only available on Itanium processors.\r
5869\r
5870 @return The current value of IRR3.\r
5871\r
5872**/\r
5873UINT64\r
5874EFIAPI\r
5875AsmReadIrr3 (\r
5876 VOID\r
5877 );\r
5878\r
5879\r
5880/**\r
5881 Reads the current value of Performance Monitor Vector Register (PMV).\r
5882\r
5883 Reads and returns the current value of PMV. This function is only available on Itanium processors.\r
5884\r
5885 @return The current value of PMV.\r
5886\r
5887**/\r
5888UINT64\r
5889EFIAPI\r
5890AsmReadPmv (\r
5891 VOID\r
5892 );\r
5893\r
5894\r
5895/**\r
5896 Reads the current value of Corrected Machine Check Vector Register (CMCV).\r
5897\r
5898 Reads and returns the current value of CMCV. This function is only available on Itanium processors.\r
5899\r
5900 @return The current value of CMCV.\r
5901\r
5902**/\r
5903UINT64\r
5904EFIAPI\r
5905AsmReadCmcv (\r
5906 VOID\r
5907 );\r
5908\r
5909\r
5910/**\r
5911 Reads the current value of Local Redirection Register #0 (LRR0).\r
5912\r
5913 Reads and returns the current value of LRR0. This function is only available on Itanium processors.\r
5914\r
5915 @return The current value of LRR0.\r
5916\r
5917**/\r
5918UINT64\r
5919EFIAPI\r
5920AsmReadLrr0 (\r
5921 VOID\r
5922 );\r
5923\r
5924\r
5925/**\r
5926 Reads the current value of Local Redirection Register #1 (LRR1).\r
5927\r
5928 Reads and returns the current value of LRR1. This function is only available on Itanium processors.\r
5929\r
5930 @return The current value of LRR1.\r
5931\r
5932**/\r
5933UINT64\r
5934EFIAPI\r
5935AsmReadLrr1 (\r
5936 VOID\r
5937 );\r
5938\r
5939\r
5940/**\r
5941 Writes the current value of 64-bit Page Local Interrupt ID Register (LID).\r
5942\r
5943 Writes the current value of LID. The 64-bit value written to the LID is returned.\r
5944 No parameter checking is performed on Value. All bits of Value corresponding to\r
5945 reserved fields of LID must be 0 or a Reserved Register/Field fault may occur.\r
5946 The caller must either guarantee that Value is valid, or the caller must set up\r
5947 fault handlers to catch the faults.\r
5948 This function is only available on Itanium processors.\r
5949\r
5950 @param Value The 64-bit value to write to LID.\r
5951\r
5952 @return The 64-bit value written to the LID.\r
5953\r
5954**/\r
5955UINT64\r
5956EFIAPI\r
5957AsmWriteLid (\r
5958 IN UINT64 Value\r
5959 );\r
5960\r
5961\r
5962/**\r
5963 Writes the current value of 64-bit Task Priority Register (TPR).\r
5964\r
5965 Writes the current value of TPR. The 64-bit value written to the TPR is returned.\r
5966 No parameter checking is performed on Value. All bits of Value corresponding to\r
5967 reserved fields of TPR must be 0 or a Reserved Register/Field fault may occur.\r
5968 The caller must either guarantee that Value is valid, or the caller must set up\r
5969 fault handlers to catch the faults.\r
5970 This function is only available on Itanium processors.\r
5971\r
5972 @param Value The 64-bit value to write to TPR.\r
5973\r
5974 @return The 64-bit value written to the TPR.\r
5975\r
5976**/\r
5977UINT64\r
5978EFIAPI\r
5979AsmWriteTpr (\r
5980 IN UINT64 Value\r
5981 );\r
5982\r
5983\r
5984/**\r
5985 Performs a write operation on End OF External Interrupt Register (EOI).\r
5986\r
5987 Writes a value of 0 to the EOI Register. This function is only available on Itanium processors.\r
5988\r
5989**/\r
5990VOID\r
5991EFIAPI\r
5992AsmWriteEoi (\r
5993 VOID\r
5994 );\r
5995\r
5996\r
5997/**\r
5998 Writes the current value of 64-bit Performance Monitor Vector Register (PMV).\r
5999\r
6000 Writes the current value of PMV. The 64-bit value written to the PMV is returned.\r
6001 No parameter checking is performed on Value. All bits of Value corresponding\r
6002 to reserved fields of PMV must be 0 or a Reserved Register/Field fault may occur.\r
6003 The caller must either guarantee that Value is valid, or the caller must set up\r
6004 fault handlers to catch the faults.\r
6005 This function is only available on Itanium processors.\r
6006\r
6007 @param Value The 64-bit value to write to PMV.\r
6008\r
6009 @return The 64-bit value written to the PMV.\r
6010\r
6011**/\r
6012UINT64\r
6013EFIAPI\r
6014AsmWritePmv (\r
6015 IN UINT64 Value\r
6016 );\r
6017\r
6018\r
6019/**\r
6020 Writes the current value of 64-bit Corrected Machine Check Vector Register (CMCV).\r
6021\r
6022 Writes the current value of CMCV. The 64-bit value written to the CMCV is returned.\r
6023 No parameter checking is performed on Value. All bits of Value corresponding\r
6024 to reserved fields of CMCV must be 0 or a Reserved Register/Field fault may occur.\r
6025 The caller must either guarantee that Value is valid, or the caller must set up\r
6026 fault handlers to catch the faults.\r
6027 This function is only available on Itanium processors.\r
6028\r
6029 @param Value The 64-bit value to write to CMCV.\r
6030\r
6031 @return The 64-bit value written to the CMCV.\r
6032\r
6033**/\r
6034UINT64\r
6035EFIAPI\r
6036AsmWriteCmcv (\r
6037 IN UINT64 Value\r
6038 );\r
6039\r
6040\r
6041/**\r
6042 Writes the current value of 64-bit Local Redirection Register #0 (LRR0).\r
6043\r
6044 Writes the current value of LRR0. The 64-bit value written to the LRR0 is returned.\r
6045 No parameter checking is performed on Value. All bits of Value corresponding\r
6046 to reserved fields of LRR0 must be 0 or a Reserved Register/Field fault may occur.\r
6047 The caller must either guarantee that Value is valid, or the caller must set up\r
6048 fault handlers to catch the faults.\r
6049 This function is only available on Itanium processors.\r
6050\r
6051 @param Value The 64-bit value to write to LRR0.\r
6052\r
6053 @return The 64-bit value written to the LRR0.\r
6054\r
6055**/\r
6056UINT64\r
6057EFIAPI\r
6058AsmWriteLrr0 (\r
6059 IN UINT64 Value\r
6060 );\r
6061\r
6062\r
6063/**\r
6064 Writes the current value of 64-bit Local Redirection Register #1 (LRR1).\r
6065\r
6066 Writes the current value of LRR1. The 64-bit value written to the LRR1 is returned.\r
6067 No parameter checking is performed on Value. All bits of Value corresponding\r
6068 to reserved fields of LRR1 must be 0 or a Reserved Register/Field fault may occur.\r
6069 The caller must either guarantee that Value is valid, or the caller must\r
6070 set up fault handlers to catch the faults.\r
6071 This function is only available on Itanium processors.\r
6072\r
6073 @param Value The 64-bit value to write to LRR1.\r
6074\r
6075 @return The 64-bit value written to the LRR1.\r
6076\r
6077**/\r
6078UINT64\r
6079EFIAPI\r
6080AsmWriteLrr1 (\r
6081 IN UINT64 Value\r
6082 );\r
6083\r
6084\r
6085/**\r
6086 Reads the current value of Instruction Breakpoint Register (IBR).\r
6087\r
6088 The Instruction Breakpoint Registers are used in pairs. The even numbered\r
6089 registers contain breakpoint addresses, and the odd numbered registers contain\r
6090 breakpoint mask conditions. At least four instruction registers pairs are implemented\r
6091 on all processor models. Implemented registers are contiguous starting with\r
6092 register 0. No parameter checking is performed on Index, and if the Index value\r
6093 is beyond the implemented IBR register range, a Reserved Register/Field fault may\r
6094 occur. The caller must either guarantee that Index is valid, or the caller must\r
6095 set up fault handlers to catch the faults.\r
6096 This function is only available on Itanium processors.\r
6097\r
6098 @param Index The 8-bit Instruction Breakpoint Register index to read.\r
6099\r
6100 @return The current value of Instruction Breakpoint Register specified by Index.\r
6101\r
6102**/\r
6103UINT64\r
6104EFIAPI\r
6105AsmReadIbr (\r
6106 IN UINT8 Index\r
6107 );\r
6108\r
6109\r
6110/**\r
6111 Reads the current value of Data Breakpoint Register (DBR).\r
6112\r
6113 The Data Breakpoint Registers are used in pairs. The even numbered registers\r
6114 contain breakpoint addresses, and odd numbered registers contain breakpoint\r
6115 mask conditions. At least four data registers pairs are implemented on all processor\r
6116 models. Implemented registers are contiguous starting with register 0.\r
6117 No parameter checking is performed on Index. If the Index value is beyond\r
6118 the implemented DBR register range, a Reserved Register/Field fault may occur.\r
6119 The caller must either guarantee that Index is valid, or the caller must set up\r
6120 fault handlers to catch the faults.\r
6121 This function is only available on Itanium processors.\r
6122\r
6123 @param Index The 8-bit Data Breakpoint Register index to read.\r
6124\r
6125 @return The current value of Data Breakpoint Register specified by Index.\r
6126\r
6127**/\r
6128UINT64\r
6129EFIAPI\r
6130AsmReadDbr (\r
6131 IN UINT8 Index\r
6132 );\r
6133\r
6134\r
6135/**\r
6136 Reads the current value of Performance Monitor Configuration Register (PMC).\r
6137\r
6138 All processor implementations provide at least four performance counters\r
6139 (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow\r
6140 status registers (PMC [0]... PMC [3]). Processor implementations may provide\r
6141 additional implementation-dependent PMC and PMD to increase the number of\r
6142 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD\r
6143 register set is implementation dependent. No parameter checking is performed\r
6144 on Index. If the Index value is beyond the implemented PMC register range,\r
6145 zero value will be returned.\r
6146 This function is only available on Itanium processors.\r
6147\r
6148 @param Index The 8-bit Performance Monitor Configuration Register index to read.\r
6149\r
6150 @return The current value of Performance Monitor Configuration Register\r
6151 specified by Index.\r
6152\r
6153**/\r
6154UINT64\r
6155EFIAPI\r
6156AsmReadPmc (\r
6157 IN UINT8 Index\r
6158 );\r
6159\r
6160\r
6161/**\r
6162 Reads the current value of Performance Monitor Data Register (PMD).\r
6163\r
6164 All processor implementations provide at least 4 performance counters\r
6165 (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter\r
6166 overflow status registers (PMC [0]... PMC [3]). Processor implementations may\r
6167 provide additional implementation-dependent PMC and PMD to increase the number\r
6168 of 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD\r
6169 register set is implementation dependent. No parameter checking is performed\r
6170 on Index. If the Index value is beyond the implemented PMD register range,\r
6171 zero value will be returned.\r
6172 This function is only available on Itanium processors.\r
6173\r
6174 @param Index The 8-bit Performance Monitor Data Register index to read.\r
6175\r
6176 @return The current value of Performance Monitor Data Register specified by Index.\r
6177\r
6178**/\r
6179UINT64\r
6180EFIAPI\r
6181AsmReadPmd (\r
6182 IN UINT8 Index\r
6183 );\r
6184\r
6185\r
6186/**\r
6187 Writes the current value of 64-bit Instruction Breakpoint Register (IBR).\r
6188\r
6189 Writes current value of Instruction Breakpoint Register specified by Index.\r
6190 The Instruction Breakpoint Registers are used in pairs. The even numbered\r
6191 registers contain breakpoint addresses, and odd numbered registers contain\r
6192 breakpoint mask conditions. At least four instruction registers pairs are implemented\r
6193 on all processor models. Implemented registers are contiguous starting with\r
6194 register 0. No parameter checking is performed on Index. If the Index value\r
6195 is beyond the implemented IBR register range, a Reserved Register/Field fault may\r
6196 occur. The caller must either guarantee that Index is valid, or the caller must\r
6197 set up fault handlers to catch the faults.\r
6198 This function is only available on Itanium processors.\r
6199\r
6200 @param Index The 8-bit Instruction Breakpoint Register index to write.\r
6201 @param Value The 64-bit value to write to IBR.\r
6202\r
6203 @return The 64-bit value written to the IBR.\r
6204\r
6205**/\r
6206UINT64\r
6207EFIAPI\r
6208AsmWriteIbr (\r
6209 IN UINT8 Index,\r
6210 IN UINT64 Value\r
6211 );\r
6212\r
6213\r
6214/**\r
6215 Writes the current value of 64-bit Data Breakpoint Register (DBR).\r
6216\r
6217 Writes current value of Data Breakpoint Register specified by Index.\r
6218 The Data Breakpoint Registers are used in pairs. The even numbered registers\r
6219 contain breakpoint addresses, and odd numbered registers contain breakpoint\r
6220 mask conditions. At least four data registers pairs are implemented on all processor\r
6221 models. Implemented registers are contiguous starting with register 0. No parameter\r
6222 checking is performed on Index. If the Index value is beyond the implemented\r
6223 DBR register range, a Reserved Register/Field fault may occur. The caller must\r
6224 either guarantee that Index is valid, or the caller must set up fault handlers to\r
6225 catch the faults.\r
6226 This function is only available on Itanium processors.\r
6227\r
6228 @param Index The 8-bit Data Breakpoint Register index to write.\r
6229 @param Value The 64-bit value to write to DBR.\r
6230\r
6231 @return The 64-bit value written to the DBR.\r
6232\r
6233**/\r
6234UINT64\r
6235EFIAPI\r
6236AsmWriteDbr (\r
6237 IN UINT8 Index,\r
6238 IN UINT64 Value\r
6239 );\r
6240\r
6241\r
6242/**\r
6243 Writes the current value of 64-bit Performance Monitor Configuration Register (PMC).\r
6244\r
6245 Writes current value of Performance Monitor Configuration Register specified by Index.\r
6246 All processor implementations provide at least four performance counters\r
6247 (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow status\r
6248 registers (PMC [0]... PMC [3]). Processor implementations may provide additional\r
6249 implementation-dependent PMC and PMD to increase the number of 'generic' performance\r
6250 counters (PMC/PMD pairs). The remainder of PMC and PMD register set is implementation\r
6251 dependent. No parameter checking is performed on Index. If the Index value is\r
6252 beyond the implemented PMC register range, the write is ignored.\r
6253 This function is only available on Itanium processors.\r
6254\r
6255 @param Index The 8-bit Performance Monitor Configuration Register index to write.\r
6256 @param Value The 64-bit value to write to PMC.\r
6257\r
6258 @return The 64-bit value written to the PMC.\r
6259\r
6260**/\r
6261UINT64\r
6262EFIAPI\r
6263AsmWritePmc (\r
6264 IN UINT8 Index,\r
6265 IN UINT64 Value\r
6266 );\r
6267\r
6268\r
6269/**\r
6270 Writes the current value of 64-bit Performance Monitor Data Register (PMD).\r
6271\r
6272 Writes current value of Performance Monitor Data Register specified by Index.\r
6273 All processor implementations provide at least four performance counters\r
6274 (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow\r
6275 status registers (PMC [0]... PMC [3]). Processor implementations may provide\r
6276 additional implementation-dependent PMC and PMD to increase the number of 'generic'\r
6277 performance counters (PMC/PMD pairs). The remainder of PMC and PMD register set\r
6278 is implementation dependent. No parameter checking is performed on Index. If the\r
6279 Index value is beyond the implemented PMD register range, the write is ignored.\r
6280 This function is only available on Itanium processors.\r
6281\r
6282 @param Index The 8-bit Performance Monitor Data Register index to write.\r
6283 @param Value The 64-bit value to write to PMD.\r
6284\r
6285 @return The 64-bit value written to the PMD.\r
6286\r
6287**/\r
6288UINT64\r
6289EFIAPI\r
6290AsmWritePmd (\r
6291 IN UINT8 Index,\r
6292 IN UINT64 Value\r
6293 );\r
6294\r
6295\r
6296/**\r
6297 Reads the current value of 64-bit Global Pointer (GP).\r
6298\r
6299 Reads and returns the current value of GP.\r
6300 This function is only available on Itanium processors.\r
6301\r
6302 @return The current value of GP.\r
6303\r
6304**/\r
6305UINT64\r
6306EFIAPI\r
6307AsmReadGp (\r
6308 VOID\r
6309 );\r
6310\r
6311\r
6312/**\r
6313 Write the current value of 64-bit Global Pointer (GP).\r
6314\r
6315 Writes the current value of GP. The 64-bit value written to the GP is returned.\r
6316 No parameter checking is performed on Value.\r
6317 This function is only available on Itanium processors.\r
6318\r
6319 @param Value The 64-bit value to write to GP.\r
6320\r
6321 @return The 64-bit value written to the GP.\r
6322\r
6323**/\r
6324UINT64\r
6325EFIAPI\r
6326AsmWriteGp (\r
6327 IN UINT64 Value\r
6328 );\r
6329\r
6330\r
6331/**\r
6332 Reads the current value of 64-bit Stack Pointer (SP).\r
6333\r
6334 Reads and returns the current value of SP.\r
6335 This function is only available on Itanium processors.\r
6336\r
6337 @return The current value of SP.\r
6338\r
6339**/\r
6340UINT64\r
6341EFIAPI\r
6342AsmReadSp (\r
6343 VOID\r
6344 );\r
6345\r
6346\r
6347///\r
6348/// Valid Index value for AsmReadControlRegister().\r
6349///\r
6350#define IPF_CONTROL_REGISTER_DCR 0\r
6351#define IPF_CONTROL_REGISTER_ITM 1\r
6352#define IPF_CONTROL_REGISTER_IVA 2\r
6353#define IPF_CONTROL_REGISTER_PTA 8\r
6354#define IPF_CONTROL_REGISTER_IPSR 16\r
6355#define IPF_CONTROL_REGISTER_ISR 17\r
6356#define IPF_CONTROL_REGISTER_IIP 19\r
6357#define IPF_CONTROL_REGISTER_IFA 20\r
6358#define IPF_CONTROL_REGISTER_ITIR 21\r
6359#define IPF_CONTROL_REGISTER_IIPA 22\r
6360#define IPF_CONTROL_REGISTER_IFS 23\r
6361#define IPF_CONTROL_REGISTER_IIM 24\r
6362#define IPF_CONTROL_REGISTER_IHA 25\r
6363#define IPF_CONTROL_REGISTER_LID 64\r
6364#define IPF_CONTROL_REGISTER_IVR 65\r
6365#define IPF_CONTROL_REGISTER_TPR 66\r
6366#define IPF_CONTROL_REGISTER_EOI 67\r
6367#define IPF_CONTROL_REGISTER_IRR0 68\r
6368#define IPF_CONTROL_REGISTER_IRR1 69\r
6369#define IPF_CONTROL_REGISTER_IRR2 70\r
6370#define IPF_CONTROL_REGISTER_IRR3 71\r
6371#define IPF_CONTROL_REGISTER_ITV 72\r
6372#define IPF_CONTROL_REGISTER_PMV 73\r
6373#define IPF_CONTROL_REGISTER_CMCV 74\r
6374#define IPF_CONTROL_REGISTER_LRR0 80\r
6375#define IPF_CONTROL_REGISTER_LRR1 81\r
6376\r
6377/**\r
6378 Reads a 64-bit control register.\r
6379\r
6380 Reads and returns the control register specified by Index. The valid Index valued\r
6381 are defined above in "Related Definitions".\r
6382 If Index is invalid then 0xFFFFFFFFFFFFFFFF is returned. This function is only\r
6383 available on Itanium processors.\r
6384\r
6385 @param Index The index of the control register to read.\r
6386\r
6387 @return The control register specified by Index.\r
6388\r
6389**/\r
6390UINT64\r
6391EFIAPI\r
6392AsmReadControlRegister (\r
6393 IN UINT64 Index\r
6394 );\r
6395\r
6396\r
6397///\r
6398/// Valid Index value for AsmReadApplicationRegister().\r
6399///\r
6400#define IPF_APPLICATION_REGISTER_K0 0\r
6401#define IPF_APPLICATION_REGISTER_K1 1\r
6402#define IPF_APPLICATION_REGISTER_K2 2\r
6403#define IPF_APPLICATION_REGISTER_K3 3\r
6404#define IPF_APPLICATION_REGISTER_K4 4\r
6405#define IPF_APPLICATION_REGISTER_K5 5\r
6406#define IPF_APPLICATION_REGISTER_K6 6\r
6407#define IPF_APPLICATION_REGISTER_K7 7\r
6408#define IPF_APPLICATION_REGISTER_RSC 16\r
6409#define IPF_APPLICATION_REGISTER_BSP 17\r
6410#define IPF_APPLICATION_REGISTER_BSPSTORE 18\r
6411#define IPF_APPLICATION_REGISTER_RNAT 19\r
6412#define IPF_APPLICATION_REGISTER_FCR 21\r
6413#define IPF_APPLICATION_REGISTER_EFLAG 24\r
6414#define IPF_APPLICATION_REGISTER_CSD 25\r
6415#define IPF_APPLICATION_REGISTER_SSD 26\r
6416#define IPF_APPLICATION_REGISTER_CFLG 27\r
6417#define IPF_APPLICATION_REGISTER_FSR 28\r
6418#define IPF_APPLICATION_REGISTER_FIR 29\r
6419#define IPF_APPLICATION_REGISTER_FDR 30\r
6420#define IPF_APPLICATION_REGISTER_CCV 32\r
6421#define IPF_APPLICATION_REGISTER_UNAT 36\r
6422#define IPF_APPLICATION_REGISTER_FPSR 40\r
6423#define IPF_APPLICATION_REGISTER_ITC 44\r
6424#define IPF_APPLICATION_REGISTER_PFS 64\r
6425#define IPF_APPLICATION_REGISTER_LC 65\r
6426#define IPF_APPLICATION_REGISTER_EC 66\r
6427\r
6428/**\r
6429 Reads a 64-bit application register.\r
6430\r
6431 Reads and returns the application register specified by Index. The valid Index\r
6432 valued are defined above in "Related Definitions".\r
6433 If Index is invalid then 0xFFFFFFFFFFFFFFFF is returned. This function is only\r
6434 available on Itanium processors.\r
6435\r
6436 @param Index The index of the application register to read.\r
6437\r
6438 @return The application register specified by Index.\r
6439\r
6440**/\r
6441UINT64\r
6442EFIAPI\r
6443AsmReadApplicationRegister (\r
6444 IN UINT64 Index\r
6445 );\r
6446\r
6447\r
6448/**\r
6449 Reads the current value of a Machine Specific Register (MSR).\r
6450\r
6451 Reads and returns the current value of the Machine Specific Register specified by Index. No\r
6452 parameter checking is performed on Index, and if the Index value is beyond the implemented MSR\r
6453 register range, a Reserved Register/Field fault may occur. The caller must either guarantee that\r
6454 Index is valid, or the caller must set up fault handlers to catch the faults. This function is\r
6455 only available on Itanium processors.\r
6456\r
6457 @param Index The 8-bit Machine Specific Register index to read.\r
6458\r
6459 @return The current value of the Machine Specific Register specified by Index.\r
6460\r
6461**/\r
6462UINT64\r
6463EFIAPI\r
6464AsmReadMsr (\r
6465 IN UINT8 Index\r
6466 );\r
6467\r
6468\r
6469/**\r
6470 Writes the current value of a Machine Specific Register (MSR).\r
6471\r
6472 Writes Value to the Machine Specific Register specified by Index. Value is returned. No\r
6473 parameter checking is performed on Index, and if the Index value is beyond the implemented MSR\r
6474 register range, a Reserved Register/Field fault may occur. The caller must either guarantee that\r
6475 Index is valid, or the caller must set up fault handlers to catch the faults. This function is\r
6476 only available on Itanium processors.\r
6477\r
6478 @param Index The 8-bit Machine Specific Register index to write.\r
6479 @param Value The 64-bit value to write to the Machine Specific Register.\r
6480\r
6481 @return The 64-bit value to write to the Machine Specific Register.\r
6482\r
6483**/\r
6484UINT64\r
6485EFIAPI\r
6486AsmWriteMsr (\r
6487 IN UINT8 Index,\r
6488 IN UINT64 Value\r
6489 );\r
6490\r
6491\r
6492/**\r
6493 Determines if the CPU is currently executing in virtual, physical, or mixed mode.\r
6494\r
6495 Determines the current execution mode of the CPU.\r
6496 If the CPU is in virtual mode(PSR.RT=1, PSR.DT=1, PSR.IT=1), then 1 is returned.\r
6497 If the CPU is in physical mode(PSR.RT=0, PSR.DT=0, PSR.IT=0), then 0 is returned.\r
6498 If the CPU is not in physical mode or virtual mode, then it is in mixed mode,\r
6499 and -1 is returned.\r
6500 This function is only available on Itanium processors.\r
6501\r
6502 @retval 1 The CPU is in virtual mode.\r
6503 @retval 0 The CPU is in physical mode.\r
6504 @retval -1 The CPU is in mixed mode.\r
6505\r
6506**/\r
6507INT64\r
6508EFIAPI\r
6509AsmCpuVirtual (\r
6510 VOID\r
6511 );\r
6512\r
6513\r
6514/**\r
6515 Makes a PAL procedure call.\r
6516\r
6517 This is a wrapper function to make a PAL procedure call. Based on the Index\r
6518 value this API will make static or stacked PAL call. The following table\r
6519 describes the usage of PAL Procedure Index Assignment. Architected procedures\r
6520 may be designated as required or optional. If a PAL procedure is specified\r
6521 as optional, a unique return code of 0xFFFFFFFFFFFFFFFF is returned in the\r
6522 Status field of the PAL_CALL_RETURN structure.\r
6523 This indicates that the procedure is not present in this PAL implementation.\r
6524 It is the caller's responsibility to check for this return code after calling\r
6525 any optional PAL procedure.\r
6526 No parameter checking is performed on the 5 input parameters, but there are\r
6527 some common rules that the caller should follow when making a PAL call. Any\r
6528 address passed to PAL as buffers for return parameters must be 8-byte aligned.\r
6529 Unaligned addresses may cause undefined results. For those parameters defined\r
6530 as reserved or some fields defined as reserved must be zero filled or the invalid\r
6531 argument return value may be returned or undefined result may occur during the\r
6532 execution of the procedure. If the PalEntryPoint does not point to a valid\r
6533 PAL entry point then the system behavior is undefined. This function is only\r
6534 available on Itanium processors.\r
6535\r
6536 @param PalEntryPoint The PAL procedure calls entry point.\r
6537 @param Index The PAL procedure Index number.\r
6538 @param Arg2 The 2nd parameter for PAL procedure calls.\r
6539 @param Arg3 The 3rd parameter for PAL procedure calls.\r
6540 @param Arg4 The 4th parameter for PAL procedure calls.\r
6541\r
6542 @return structure returned from the PAL Call procedure, including the status and return value.\r
6543\r
6544**/\r
6545PAL_CALL_RETURN\r
6546EFIAPI\r
6547AsmPalCall (\r
6548 IN UINT64 PalEntryPoint,\r
6549 IN UINT64 Index,\r
6550 IN UINT64 Arg2,\r
6551 IN UINT64 Arg3,\r
6552 IN UINT64 Arg4\r
6553 );\r
6554#endif // defined (MDE_CPU_IPF)\r
6555\r
6556#if defined (MDE_CPU_IA32) || defined (MDE_CPU_X64)\r
6557///\r
6558/// IA32 and x64 Specific Functions.\r
6559/// Byte packed structure for 16-bit Real Mode EFLAGS.\r
6560///\r
6561typedef union {\r
6562 struct {\r
6563 UINT32 CF:1; ///< Carry Flag.\r
6564 UINT32 Reserved_0:1; ///< Reserved.\r
6565 UINT32 PF:1; ///< Parity Flag.\r
6566 UINT32 Reserved_1:1; ///< Reserved.\r
6567 UINT32 AF:1; ///< Auxiliary Carry Flag.\r
6568 UINT32 Reserved_2:1; ///< Reserved.\r
6569 UINT32 ZF:1; ///< Zero Flag.\r
6570 UINT32 SF:1; ///< Sign Flag.\r
6571 UINT32 TF:1; ///< Trap Flag.\r
6572 UINT32 IF:1; ///< Interrupt Enable Flag.\r
6573 UINT32 DF:1; ///< Direction Flag.\r
6574 UINT32 OF:1; ///< Overflow Flag.\r
6575 UINT32 IOPL:2; ///< I/O Privilege Level.\r
6576 UINT32 NT:1; ///< Nested Task.\r
6577 UINT32 Reserved_3:1; ///< Reserved.\r
6578 } Bits;\r
6579 UINT16 Uint16;\r
6580} IA32_FLAGS16;\r
6581\r
6582///\r
6583/// Byte packed structure for EFLAGS/RFLAGS.\r
6584/// 32-bits on IA-32.\r
6585/// 64-bits on x64. The upper 32-bits on x64 are reserved.\r
6586///\r
6587typedef union {\r
6588 struct {\r
6589 UINT32 CF:1; ///< Carry Flag.\r
6590 UINT32 Reserved_0:1; ///< Reserved.\r
6591 UINT32 PF:1; ///< Parity Flag.\r
6592 UINT32 Reserved_1:1; ///< Reserved.\r
6593 UINT32 AF:1; ///< Auxiliary Carry Flag.\r
6594 UINT32 Reserved_2:1; ///< Reserved.\r
6595 UINT32 ZF:1; ///< Zero Flag.\r
6596 UINT32 SF:1; ///< Sign Flag.\r
6597 UINT32 TF:1; ///< Trap Flag.\r
6598 UINT32 IF:1; ///< Interrupt Enable Flag.\r
6599 UINT32 DF:1; ///< Direction Flag.\r
6600 UINT32 OF:1; ///< Overflow Flag.\r
6601 UINT32 IOPL:2; ///< I/O Privilege Level.\r
6602 UINT32 NT:1; ///< Nested Task.\r
6603 UINT32 Reserved_3:1; ///< Reserved.\r
6604 UINT32 RF:1; ///< Resume Flag.\r
6605 UINT32 VM:1; ///< Virtual 8086 Mode.\r
6606 UINT32 AC:1; ///< Alignment Check.\r
6607 UINT32 VIF:1; ///< Virtual Interrupt Flag.\r
6608 UINT32 VIP:1; ///< Virtual Interrupt Pending.\r
6609 UINT32 ID:1; ///< ID Flag.\r
6610 UINT32 Reserved_4:10; ///< Reserved.\r
6611 } Bits;\r
6612 UINTN UintN;\r
6613} IA32_EFLAGS32;\r
6614\r
6615///\r
6616/// Byte packed structure for Control Register 0 (CR0).\r
6617/// 32-bits on IA-32.\r
6618/// 64-bits on x64. The upper 32-bits on x64 are reserved.\r
6619///\r
6620typedef union {\r
6621 struct {\r
6622 UINT32 PE:1; ///< Protection Enable.\r
6623 UINT32 MP:1; ///< Monitor Coprocessor.\r
6624 UINT32 EM:1; ///< Emulation.\r
6625 UINT32 TS:1; ///< Task Switched.\r
6626 UINT32 ET:1; ///< Extension Type.\r
6627 UINT32 NE:1; ///< Numeric Error.\r
6628 UINT32 Reserved_0:10; ///< Reserved.\r
6629 UINT32 WP:1; ///< Write Protect.\r
6630 UINT32 Reserved_1:1; ///< Reserved.\r
6631 UINT32 AM:1; ///< Alignment Mask.\r
6632 UINT32 Reserved_2:10; ///< Reserved.\r
6633 UINT32 NW:1; ///< Mot Write-through.\r
6634 UINT32 CD:1; ///< Cache Disable.\r
6635 UINT32 PG:1; ///< Paging.\r
6636 } Bits;\r
6637 UINTN UintN;\r
6638} IA32_CR0;\r
6639\r
6640///\r
6641/// Byte packed structure for Control Register 4 (CR4).\r
6642/// 32-bits on IA-32.\r
6643/// 64-bits on x64. The upper 32-bits on x64 are reserved.\r
6644///\r
6645typedef union {\r
6646 struct {\r
6647 UINT32 VME:1; ///< Virtual-8086 Mode Extensions.\r
6648 UINT32 PVI:1; ///< Protected-Mode Virtual Interrupts.\r
6649 UINT32 TSD:1; ///< Time Stamp Disable.\r
6650 UINT32 DE:1; ///< Debugging Extensions.\r
6651 UINT32 PSE:1; ///< Page Size Extensions.\r
6652 UINT32 PAE:1; ///< Physical Address Extension.\r
6653 UINT32 MCE:1; ///< Machine Check Enable.\r
6654 UINT32 PGE:1; ///< Page Global Enable.\r
6655 UINT32 PCE:1; ///< Performance Monitoring Counter\r
6656 ///< Enable.\r
6657 UINT32 OSFXSR:1; ///< Operating System Support for\r
6658 ///< FXSAVE and FXRSTOR instructions\r
6659 UINT32 OSXMMEXCPT:1; ///< Operating System Support for\r
6660 ///< Unmasked SIMD Floating Point\r
6661 ///< Exceptions.\r
6662 UINT32 Reserved_0:2; ///< Reserved.\r
6663 UINT32 VMXE:1; ///< VMX Enable\r
6664 UINT32 Reserved_1:18; ///< Reserved.\r
6665 } Bits;\r
6666 UINTN UintN;\r
6667} IA32_CR4;\r
6668\r
6669///\r
6670/// Byte packed structure for a segment descriptor in a GDT/LDT.\r
6671///\r
6672typedef union {\r
6673 struct {\r
6674 UINT32 LimitLow:16;\r
6675 UINT32 BaseLow:16;\r
6676 UINT32 BaseMid:8;\r
6677 UINT32 Type:4;\r
6678 UINT32 S:1;\r
6679 UINT32 DPL:2;\r
6680 UINT32 P:1;\r
6681 UINT32 LimitHigh:4;\r
6682 UINT32 AVL:1;\r
6683 UINT32 L:1;\r
6684 UINT32 DB:1;\r
6685 UINT32 G:1;\r
6686 UINT32 BaseHigh:8;\r
6687 } Bits;\r
6688 UINT64 Uint64;\r
6689} IA32_SEGMENT_DESCRIPTOR;\r
6690\r
6691///\r
6692/// Byte packed structure for an IDTR, GDTR, LDTR descriptor.\r
6693///\r
6694#pragma pack (1)\r
6695typedef struct {\r
6696 UINT16 Limit;\r
6697 UINTN Base;\r
6698} IA32_DESCRIPTOR;\r
6699#pragma pack ()\r
6700\r
6701#define IA32_IDT_GATE_TYPE_TASK 0x85\r
6702#define IA32_IDT_GATE_TYPE_INTERRUPT_16 0x86\r
6703#define IA32_IDT_GATE_TYPE_TRAP_16 0x87\r
6704#define IA32_IDT_GATE_TYPE_INTERRUPT_32 0x8E\r
6705#define IA32_IDT_GATE_TYPE_TRAP_32 0x8F\r
6706\r
6707#define IA32_GDT_TYPE_TSS 0x9\r
6708#define IA32_GDT_ALIGNMENT 8\r
6709\r
6710#if defined (MDE_CPU_IA32)\r
6711///\r
6712/// Byte packed structure for an IA-32 Interrupt Gate Descriptor.\r
6713///\r
6714typedef union {\r
6715 struct {\r
6716 UINT32 OffsetLow:16; ///< Offset bits 15..0.\r
6717 UINT32 Selector:16; ///< Selector.\r
6718 UINT32 Reserved_0:8; ///< Reserved.\r
6719 UINT32 GateType:8; ///< Gate Type. See #defines above.\r
6720 UINT32 OffsetHigh:16; ///< Offset bits 31..16.\r
6721 } Bits;\r
6722 UINT64 Uint64;\r
6723} IA32_IDT_GATE_DESCRIPTOR;\r
6724\r
6725#pragma pack (1)\r
6726//\r
6727// IA32 Task-State Segment Definition\r
6728//\r
6729typedef struct {\r
6730 UINT16 PreviousTaskLink;\r
6731 UINT16 Reserved_2;\r
6732 UINT32 ESP0;\r
6733 UINT16 SS0;\r
6734 UINT16 Reserved_10;\r
6735 UINT32 ESP1;\r
6736 UINT16 SS1;\r
6737 UINT16 Reserved_18;\r
6738 UINT32 ESP2;\r
6739 UINT16 SS2;\r
6740 UINT16 Reserved_26;\r
6741 UINT32 CR3;\r
6742 UINT32 EIP;\r
6743 UINT32 EFLAGS;\r
6744 UINT32 EAX;\r
6745 UINT32 ECX;\r
6746 UINT32 EDX;\r
6747 UINT32 EBX;\r
6748 UINT32 ESP;\r
6749 UINT32 EBP;\r
6750 UINT32 ESI;\r
6751 UINT32 EDI;\r
6752 UINT16 ES;\r
6753 UINT16 Reserved_74;\r
6754 UINT16 CS;\r
6755 UINT16 Reserved_78;\r
6756 UINT16 SS;\r
6757 UINT16 Reserved_82;\r
6758 UINT16 DS;\r
6759 UINT16 Reserved_86;\r
6760 UINT16 FS;\r
6761 UINT16 Reserved_90;\r
6762 UINT16 GS;\r
6763 UINT16 Reserved_94;\r
6764 UINT16 LDTSegmentSelector;\r
6765 UINT16 Reserved_98;\r
6766 UINT16 T;\r
6767 UINT16 IOMapBaseAddress;\r
6768} IA32_TASK_STATE_SEGMENT;\r
6769\r
6770typedef union {\r
6771 struct {\r
6772 UINT32 LimitLow:16; ///< Segment Limit 15..00\r
6773 UINT32 BaseLow:16; ///< Base Address 15..00\r
6774 UINT32 BaseMid:8; ///< Base Address 23..16\r
6775 UINT32 Type:4; ///< Type (1 0 B 1)\r
6776 UINT32 Reserved_43:1; ///< 0\r
6777 UINT32 DPL:2; ///< Descriptor Privilege Level\r
6778 UINT32 P:1; ///< Segment Present\r
6779 UINT32 LimitHigh:4; ///< Segment Limit 19..16\r
6780 UINT32 AVL:1; ///< Available for use by system software\r
6781 UINT32 Reserved_52:2; ///< 0 0\r
6782 UINT32 G:1; ///< Granularity\r
6783 UINT32 BaseHigh:8; ///< Base Address 31..24\r
6784 } Bits;\r
6785 UINT64 Uint64;\r
6786} IA32_TSS_DESCRIPTOR;\r
6787#pragma pack ()\r
6788\r
6789#endif // defined (MDE_CPU_IA32)\r
6790\r
6791#if defined (MDE_CPU_X64)\r
6792///\r
6793/// Byte packed structure for an x64 Interrupt Gate Descriptor.\r
6794///\r
6795typedef union {\r
6796 struct {\r
6797 UINT32 OffsetLow:16; ///< Offset bits 15..0.\r
6798 UINT32 Selector:16; ///< Selector.\r
6799 UINT32 Reserved_0:8; ///< Reserved.\r
6800 UINT32 GateType:8; ///< Gate Type. See #defines above.\r
6801 UINT32 OffsetHigh:16; ///< Offset bits 31..16.\r
6802 UINT32 OffsetUpper:32; ///< Offset bits 63..32.\r
6803 UINT32 Reserved_1:32; ///< Reserved.\r
6804 } Bits;\r
6805 struct {\r
6806 UINT64 Uint64;\r
6807 UINT64 Uint64_1;\r
6808 } Uint128;\r
6809} IA32_IDT_GATE_DESCRIPTOR;\r
6810\r
6811#pragma pack (1)\r
6812//\r
6813// IA32 Task-State Segment Definition\r
6814//\r
6815typedef struct {\r
6816 UINT32 Reserved_0;\r
6817 UINT64 RSP0;\r
6818 UINT64 RSP1;\r
6819 UINT64 RSP2;\r
6820 UINT64 Reserved_28;\r
6821 UINT64 IST[7];\r
6822 UINT64 Reserved_92;\r
6823 UINT16 Reserved_100;\r
6824 UINT16 IOMapBaseAddress;\r
6825} IA32_TASK_STATE_SEGMENT;\r
6826\r
6827typedef union {\r
6828 struct {\r
6829 UINT32 LimitLow:16; ///< Segment Limit 15..00\r
6830 UINT32 BaseLow:16; ///< Base Address 15..00\r
6831 UINT32 BaseMidl:8; ///< Base Address 23..16\r
6832 UINT32 Type:4; ///< Type (1 0 B 1)\r
6833 UINT32 Reserved_43:1; ///< 0\r
6834 UINT32 DPL:2; ///< Descriptor Privilege Level\r
6835 UINT32 P:1; ///< Segment Present\r
6836 UINT32 LimitHigh:4; ///< Segment Limit 19..16\r
6837 UINT32 AVL:1; ///< Available for use by system software\r
6838 UINT32 Reserved_52:2; ///< 0 0\r
6839 UINT32 G:1; ///< Granularity\r
6840 UINT32 BaseMidh:8; ///< Base Address 31..24\r
6841 UINT32 BaseHigh:32; ///< Base Address 63..32\r
6842 UINT32 Reserved_96:32; ///< Reserved\r
6843 } Bits;\r
6844 struct {\r
6845 UINT64 Uint64;\r
6846 UINT64 Uint64_1;\r
6847 } Uint128;\r
6848} IA32_TSS_DESCRIPTOR;\r
6849#pragma pack ()\r
6850\r
6851#endif // defined (MDE_CPU_X64)\r
6852\r
6853///\r
6854/// Byte packed structure for an FP/SSE/SSE2 context.\r
6855///\r
6856typedef struct {\r
6857 UINT8 Buffer[512];\r
6858} IA32_FX_BUFFER;\r
6859\r
6860///\r
6861/// Structures for the 16-bit real mode thunks.\r
6862///\r
6863typedef struct {\r
6864 UINT32 Reserved1;\r
6865 UINT32 Reserved2;\r
6866 UINT32 Reserved3;\r
6867 UINT32 Reserved4;\r
6868 UINT8 BL;\r
6869 UINT8 BH;\r
6870 UINT16 Reserved5;\r
6871 UINT8 DL;\r
6872 UINT8 DH;\r
6873 UINT16 Reserved6;\r
6874 UINT8 CL;\r
6875 UINT8 CH;\r
6876 UINT16 Reserved7;\r
6877 UINT8 AL;\r
6878 UINT8 AH;\r
6879 UINT16 Reserved8;\r
6880} IA32_BYTE_REGS;\r
6881\r
6882typedef struct {\r
6883 UINT16 DI;\r
6884 UINT16 Reserved1;\r
6885 UINT16 SI;\r
6886 UINT16 Reserved2;\r
6887 UINT16 BP;\r
6888 UINT16 Reserved3;\r
6889 UINT16 SP;\r
6890 UINT16 Reserved4;\r
6891 UINT16 BX;\r
6892 UINT16 Reserved5;\r
6893 UINT16 DX;\r
6894 UINT16 Reserved6;\r
6895 UINT16 CX;\r
6896 UINT16 Reserved7;\r
6897 UINT16 AX;\r
6898 UINT16 Reserved8;\r
6899} IA32_WORD_REGS;\r
6900\r
6901typedef struct {\r
6902 UINT32 EDI;\r
6903 UINT32 ESI;\r
6904 UINT32 EBP;\r
6905 UINT32 ESP;\r
6906 UINT32 EBX;\r
6907 UINT32 EDX;\r
6908 UINT32 ECX;\r
6909 UINT32 EAX;\r
6910 UINT16 DS;\r
6911 UINT16 ES;\r
6912 UINT16 FS;\r
6913 UINT16 GS;\r
6914 IA32_EFLAGS32 EFLAGS;\r
6915 UINT32 Eip;\r
6916 UINT16 CS;\r
6917 UINT16 SS;\r
6918} IA32_DWORD_REGS;\r
6919\r
6920typedef union {\r
6921 IA32_DWORD_REGS E;\r
6922 IA32_WORD_REGS X;\r
6923 IA32_BYTE_REGS H;\r
6924} IA32_REGISTER_SET;\r
6925\r
6926///\r
6927/// Byte packed structure for an 16-bit real mode thunks.\r
6928///\r
6929typedef struct {\r
6930 IA32_REGISTER_SET *RealModeState;\r
6931 VOID *RealModeBuffer;\r
6932 UINT32 RealModeBufferSize;\r
6933 UINT32 ThunkAttributes;\r
6934} THUNK_CONTEXT;\r
6935\r
6936#define THUNK_ATTRIBUTE_BIG_REAL_MODE 0x00000001\r
6937#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 0x00000002\r
6938#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL 0x00000004\r
6939\r
6940///\r
6941/// Type definition for representing labels in NASM source code that allow for\r
6942/// the patching of immediate operands of IA32 and X64 instructions.\r
6943///\r
6944/// While the type is technically defined as a function type (note: not a\r
6945/// pointer-to-function type), such labels in NASM source code never stand for\r
6946/// actual functions, and identifiers declared with this function type should\r
6947/// never be called. This is also why the EFIAPI calling convention specifier\r
6948/// is missing from the typedef, and why the typedef does not follow the usual\r
6949/// edk2 coding style for function (or pointer-to-function) typedefs. The VOID\r
6950/// return type and the VOID argument list are merely artifacts.\r
6951///\r
6952typedef VOID (X86_ASSEMBLY_PATCH_LABEL) (VOID);\r
6953\r
6954/**\r
6955 Retrieves CPUID information.\r
6956\r
6957 Executes the CPUID instruction with EAX set to the value specified by Index.\r
6958 This function always returns Index.\r
6959 If Eax is not NULL, then the value of EAX after CPUID is returned in Eax.\r
6960 If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx.\r
6961 If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx.\r
6962 If Edx is not NULL, then the value of EDX after CPUID is returned in Edx.\r
6963 This function is only available on IA-32 and x64.\r
6964\r
6965 @param Index The 32-bit value to load into EAX prior to invoking the CPUID\r
6966 instruction.\r
6967 @param Eax The pointer to the 32-bit EAX value returned by the CPUID\r
6968 instruction. This is an optional parameter that may be NULL.\r
6969 @param Ebx The pointer to the 32-bit EBX value returned by the CPUID\r
6970 instruction. This is an optional parameter that may be NULL.\r
6971 @param Ecx The pointer to the 32-bit ECX value returned by the CPUID\r
6972 instruction. This is an optional parameter that may be NULL.\r
6973 @param Edx The pointer to the 32-bit EDX value returned by the CPUID\r
6974 instruction. This is an optional parameter that may be NULL.\r
6975\r
6976 @return Index.\r
6977\r
6978**/\r
6979UINT32\r
6980EFIAPI\r
6981AsmCpuid (\r
6982 IN UINT32 Index,\r
6983 OUT UINT32 *Eax, OPTIONAL\r
6984 OUT UINT32 *Ebx, OPTIONAL\r
6985 OUT UINT32 *Ecx, OPTIONAL\r
6986 OUT UINT32 *Edx OPTIONAL\r
6987 );\r
6988\r
6989\r
6990/**\r
6991 Retrieves CPUID information using an extended leaf identifier.\r
6992\r
6993 Executes the CPUID instruction with EAX set to the value specified by Index\r
6994 and ECX set to the value specified by SubIndex. This function always returns\r
6995 Index. This function is only available on IA-32 and x64.\r
6996\r
6997 If Eax is not NULL, then the value of EAX after CPUID is returned in Eax.\r
6998 If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx.\r
6999 If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx.\r
7000 If Edx is not NULL, then the value of EDX after CPUID is returned in Edx.\r
7001\r
7002 @param Index The 32-bit value to load into EAX prior to invoking the\r
7003 CPUID instruction.\r
7004 @param SubIndex The 32-bit value to load into ECX prior to invoking the\r
7005 CPUID instruction.\r
7006 @param Eax The pointer to the 32-bit EAX value returned by the CPUID\r
7007 instruction. This is an optional parameter that may be\r
7008 NULL.\r
7009 @param Ebx The pointer to the 32-bit EBX value returned by the CPUID\r
7010 instruction. This is an optional parameter that may be\r
7011 NULL.\r
7012 @param Ecx The pointer to the 32-bit ECX value returned by the CPUID\r
7013 instruction. This is an optional parameter that may be\r
7014 NULL.\r
7015 @param Edx The pointer to the 32-bit EDX value returned by the CPUID\r
7016 instruction. This is an optional parameter that may be\r
7017 NULL.\r
7018\r
7019 @return Index.\r
7020\r
7021**/\r
7022UINT32\r
7023EFIAPI\r
7024AsmCpuidEx (\r
7025 IN UINT32 Index,\r
7026 IN UINT32 SubIndex,\r
7027 OUT UINT32 *Eax, OPTIONAL\r
7028 OUT UINT32 *Ebx, OPTIONAL\r
7029 OUT UINT32 *Ecx, OPTIONAL\r
7030 OUT UINT32 *Edx OPTIONAL\r
7031 );\r
7032\r
7033\r
7034/**\r
7035 Set CD bit and clear NW bit of CR0 followed by a WBINVD.\r
7036\r
7037 Disables the caches by setting the CD bit of CR0 to 1, clearing the NW bit of CR0 to 0,\r
7038 and executing a WBINVD instruction. This function is only available on IA-32 and x64.\r
7039\r
7040**/\r
7041VOID\r
7042EFIAPI\r
7043AsmDisableCache (\r
7044 VOID\r
7045 );\r
7046\r
7047\r
7048/**\r
7049 Perform a WBINVD and clear both the CD and NW bits of CR0.\r
7050\r
7051 Enables the caches by executing a WBINVD instruction and then clear both the CD and NW\r
7052 bits of CR0 to 0. This function is only available on IA-32 and x64.\r
7053\r
7054**/\r
7055VOID\r
7056EFIAPI\r
7057AsmEnableCache (\r
7058 VOID\r
7059 );\r
7060\r
7061\r
7062/**\r
7063 Returns the lower 32-bits of a Machine Specific Register(MSR).\r
7064\r
7065 Reads and returns the lower 32-bits of the MSR specified by Index.\r
7066 No parameter checking is performed on Index, and some Index values may cause\r
7067 CPU exceptions. The caller must either guarantee that Index is valid, or the\r
7068 caller must set up exception handlers to catch the exceptions. This function\r
7069 is only available on IA-32 and x64.\r
7070\r
7071 @param Index The 32-bit MSR index to read.\r
7072\r
7073 @return The lower 32 bits of the MSR identified by Index.\r
7074\r
7075**/\r
7076UINT32\r
7077EFIAPI\r
7078AsmReadMsr32 (\r
7079 IN UINT32 Index\r
7080 );\r
7081\r
7082\r
7083/**\r
7084 Writes a 32-bit value to a Machine Specific Register(MSR), and returns the value.\r
7085 The upper 32-bits of the MSR are set to zero.\r
7086\r
7087 Writes the 32-bit value specified by Value to the MSR specified by Index. The\r
7088 upper 32-bits of the MSR write are set to zero. The 32-bit value written to\r
7089 the MSR is returned. No parameter checking is performed on Index or Value,\r
7090 and some of these may cause CPU exceptions. The caller must either guarantee\r
7091 that Index and Value are valid, or the caller must establish proper exception\r
7092 handlers. This function is only available on IA-32 and x64.\r
7093\r
7094 @param Index The 32-bit MSR index to write.\r
7095 @param Value The 32-bit value to write to the MSR.\r
7096\r
7097 @return Value\r
7098\r
7099**/\r
7100UINT32\r
7101EFIAPI\r
7102AsmWriteMsr32 (\r
7103 IN UINT32 Index,\r
7104 IN UINT32 Value\r
7105 );\r
7106\r
7107\r
7108/**\r
7109 Reads a 64-bit MSR, performs a bitwise OR on the lower 32-bits, and\r
7110 writes the result back to the 64-bit MSR.\r
7111\r
7112 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
7113 between the lower 32-bits of the read result and the value specified by\r
7114 OrData, and writes the result to the 64-bit MSR specified by Index. The lower\r
7115 32-bits of the value written to the MSR is returned. No parameter checking is\r
7116 performed on Index or OrData, and some of these may cause CPU exceptions. The\r
7117 caller must either guarantee that Index and OrData are valid, or the caller\r
7118 must establish proper exception handlers. This function is only available on\r
7119 IA-32 and x64.\r
7120\r
7121 @param Index The 32-bit MSR index to write.\r
7122 @param OrData The value to OR with the read value from the MSR.\r
7123\r
7124 @return The lower 32-bit value written to the MSR.\r
7125\r
7126**/\r
7127UINT32\r
7128EFIAPI\r
7129AsmMsrOr32 (\r
7130 IN UINT32 Index,\r
7131 IN UINT32 OrData\r
7132 );\r
7133\r
7134\r
7135/**\r
7136 Reads a 64-bit MSR, performs a bitwise AND on the lower 32-bits, and writes\r
7137 the result back to the 64-bit MSR.\r
7138\r
7139 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
7140 lower 32-bits of the read result and the value specified by AndData, and\r
7141 writes the result to the 64-bit MSR specified by Index. The lower 32-bits of\r
7142 the value written to the MSR is returned. No parameter checking is performed\r
7143 on Index or AndData, and some of these may cause CPU exceptions. The caller\r
7144 must either guarantee that Index and AndData are valid, or the caller must\r
7145 establish proper exception handlers. This function is only available on IA-32\r
7146 and x64.\r
7147\r
7148 @param Index The 32-bit MSR index to write.\r
7149 @param AndData The value to AND with the read value from the MSR.\r
7150\r
7151 @return The lower 32-bit value written to the MSR.\r
7152\r
7153**/\r
7154UINT32\r
7155EFIAPI\r
7156AsmMsrAnd32 (\r
7157 IN UINT32 Index,\r
7158 IN UINT32 AndData\r
7159 );\r
7160\r
7161\r
7162/**\r
7163 Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise OR\r
7164 on the lower 32-bits, and writes the result back to the 64-bit MSR.\r
7165\r
7166 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
7167 lower 32-bits of the read result and the value specified by AndData\r
7168 preserving the upper 32-bits, performs a bitwise OR between the\r
7169 result of the AND operation and the value specified by OrData, and writes the\r
7170 result to the 64-bit MSR specified by Address. The lower 32-bits of the value\r
7171 written to the MSR is returned. No parameter checking is performed on Index,\r
7172 AndData, or OrData, and some of these may cause CPU exceptions. The caller\r
7173 must either guarantee that Index, AndData, and OrData are valid, or the\r
7174 caller must establish proper exception handlers. This function is only\r
7175 available on IA-32 and x64.\r
7176\r
7177 @param Index The 32-bit MSR index to write.\r
7178 @param AndData The value to AND with the read value from the MSR.\r
7179 @param OrData The value to OR with the result of the AND operation.\r
7180\r
7181 @return The lower 32-bit value written to the MSR.\r
7182\r
7183**/\r
7184UINT32\r
7185EFIAPI\r
7186AsmMsrAndThenOr32 (\r
7187 IN UINT32 Index,\r
7188 IN UINT32 AndData,\r
7189 IN UINT32 OrData\r
7190 );\r
7191\r
7192\r
7193/**\r
7194 Reads a bit field of an MSR.\r
7195\r
7196 Reads the bit field in the lower 32-bits of a 64-bit MSR. The bit field is\r
7197 specified by the StartBit and the EndBit. The value of the bit field is\r
7198 returned. The caller must either guarantee that Index is valid, or the caller\r
7199 must set up exception handlers to catch the exceptions. This function is only\r
7200 available on IA-32 and x64.\r
7201\r
7202 If StartBit is greater than 31, then ASSERT().\r
7203 If EndBit is greater than 31, then ASSERT().\r
7204 If EndBit is less than StartBit, then ASSERT().\r
7205\r
7206 @param Index The 32-bit MSR index to read.\r
7207 @param StartBit The ordinal of the least significant bit in the bit field.\r
7208 Range 0..31.\r
7209 @param EndBit The ordinal of the most significant bit in the bit field.\r
7210 Range 0..31.\r
7211\r
7212 @return The bit field read from the MSR.\r
7213\r
7214**/\r
7215UINT32\r
7216EFIAPI\r
7217AsmMsrBitFieldRead32 (\r
7218 IN UINT32 Index,\r
7219 IN UINTN StartBit,\r
7220 IN UINTN EndBit\r
7221 );\r
7222\r
7223\r
7224/**\r
7225 Writes a bit field to an MSR.\r
7226\r
7227 Writes Value to a bit field in the lower 32-bits of a 64-bit MSR. The bit\r
7228 field is specified by the StartBit and the EndBit. All other bits in the\r
7229 destination MSR are preserved. The lower 32-bits of the MSR written is\r
7230 returned. The caller must either guarantee that Index and the data written\r
7231 is valid, or the caller must set up exception handlers to catch the exceptions.\r
7232 This function is only available on IA-32 and x64.\r
7233\r
7234 If StartBit is greater than 31, then ASSERT().\r
7235 If EndBit is greater than 31, then ASSERT().\r
7236 If EndBit is less than StartBit, then ASSERT().\r
7237 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
7238\r
7239 @param Index The 32-bit MSR index to write.\r
7240 @param StartBit The ordinal of the least significant bit in the bit field.\r
7241 Range 0..31.\r
7242 @param EndBit The ordinal of the most significant bit in the bit field.\r
7243 Range 0..31.\r
7244 @param Value New value of the bit field.\r
7245\r
7246 @return The lower 32-bit of the value written to the MSR.\r
7247\r
7248**/\r
7249UINT32\r
7250EFIAPI\r
7251AsmMsrBitFieldWrite32 (\r
7252 IN UINT32 Index,\r
7253 IN UINTN StartBit,\r
7254 IN UINTN EndBit,\r
7255 IN UINT32 Value\r
7256 );\r
7257\r
7258\r
7259/**\r
7260 Reads a bit field in a 64-bit MSR, performs a bitwise OR, and writes the\r
7261 result back to the bit field in the 64-bit MSR.\r
7262\r
7263 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
7264 between the read result and the value specified by OrData, and writes the\r
7265 result to the 64-bit MSR specified by Index. The lower 32-bits of the value\r
7266 written to the MSR are returned. Extra left bits in OrData are stripped. The\r
7267 caller must either guarantee that Index and the data written is valid, or\r
7268 the caller must set up exception handlers to catch the exceptions. This\r
7269 function is only available on IA-32 and x64.\r
7270\r
7271 If StartBit is greater than 31, then ASSERT().\r
7272 If EndBit is greater than 31, then ASSERT().\r
7273 If EndBit is less than StartBit, then ASSERT().\r
7274 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
7275\r
7276 @param Index The 32-bit MSR index to write.\r
7277 @param StartBit The ordinal of the least significant bit in the bit field.\r
7278 Range 0..31.\r
7279 @param EndBit The ordinal of the most significant bit in the bit field.\r
7280 Range 0..31.\r
7281 @param OrData The value to OR with the read value from the MSR.\r
7282\r
7283 @return The lower 32-bit of the value written to the MSR.\r
7284\r
7285**/\r
7286UINT32\r
7287EFIAPI\r
7288AsmMsrBitFieldOr32 (\r
7289 IN UINT32 Index,\r
7290 IN UINTN StartBit,\r
7291 IN UINTN EndBit,\r
7292 IN UINT32 OrData\r
7293 );\r
7294\r
7295\r
7296/**\r
7297 Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the\r
7298 result back to the bit field in the 64-bit MSR.\r
7299\r
7300 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
7301 read result and the value specified by AndData, and writes the result to the\r
7302 64-bit MSR specified by Index. The lower 32-bits of the value written to the\r
7303 MSR are returned. Extra left bits in AndData are stripped. The caller must\r
7304 either guarantee that Index and the data written is valid, or the caller must\r
7305 set up exception handlers to catch the exceptions. This function is only\r
7306 available on IA-32 and x64.\r
7307\r
7308 If StartBit is greater than 31, then ASSERT().\r
7309 If EndBit is greater than 31, then ASSERT().\r
7310 If EndBit is less than StartBit, then ASSERT().\r
7311 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
7312\r
7313 @param Index The 32-bit MSR index to write.\r
7314 @param StartBit The ordinal of the least significant bit in the bit field.\r
7315 Range 0..31.\r
7316 @param EndBit The ordinal of the most significant bit in the bit field.\r
7317 Range 0..31.\r
7318 @param AndData The value to AND with the read value from the MSR.\r
7319\r
7320 @return The lower 32-bit of the value written to the MSR.\r
7321\r
7322**/\r
7323UINT32\r
7324EFIAPI\r
7325AsmMsrBitFieldAnd32 (\r
7326 IN UINT32 Index,\r
7327 IN UINTN StartBit,\r
7328 IN UINTN EndBit,\r
7329 IN UINT32 AndData\r
7330 );\r
7331\r
7332\r
7333/**\r
7334 Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a\r
7335 bitwise OR, and writes the result back to the bit field in the\r
7336 64-bit MSR.\r
7337\r
7338 Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by a\r
7339 bitwise OR between the read result and the value specified by\r
7340 AndData, and writes the result to the 64-bit MSR specified by Index. The\r
7341 lower 32-bits of the value written to the MSR are returned. Extra left bits\r
7342 in both AndData and OrData are stripped. The caller must either guarantee\r
7343 that Index and the data written is valid, or the caller must set up exception\r
7344 handlers to catch the exceptions. This function is only available on IA-32\r
7345 and x64.\r
7346\r
7347 If StartBit is greater than 31, then ASSERT().\r
7348 If EndBit is greater than 31, then ASSERT().\r
7349 If EndBit is less than StartBit, then ASSERT().\r
7350 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
7351 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
7352\r
7353 @param Index The 32-bit MSR index to write.\r
7354 @param StartBit The ordinal of the least significant bit in the bit field.\r
7355 Range 0..31.\r
7356 @param EndBit The ordinal of the most significant bit in the bit field.\r
7357 Range 0..31.\r
7358 @param AndData The value to AND with the read value from the MSR.\r
7359 @param OrData The value to OR with the result of the AND operation.\r
7360\r
7361 @return The lower 32-bit of the value written to the MSR.\r
7362\r
7363**/\r
7364UINT32\r
7365EFIAPI\r
7366AsmMsrBitFieldAndThenOr32 (\r
7367 IN UINT32 Index,\r
7368 IN UINTN StartBit,\r
7369 IN UINTN EndBit,\r
7370 IN UINT32 AndData,\r
7371 IN UINT32 OrData\r
7372 );\r
7373\r
7374\r
7375/**\r
7376 Returns a 64-bit Machine Specific Register(MSR).\r
7377\r
7378 Reads and returns the 64-bit MSR specified by Index. No parameter checking is\r
7379 performed on Index, and some Index values may cause CPU exceptions. The\r
7380 caller must either guarantee that Index is valid, or the caller must set up\r
7381 exception handlers to catch the exceptions. This function is only available\r
7382 on IA-32 and x64.\r
7383\r
7384 @param Index The 32-bit MSR index to read.\r
7385\r
7386 @return The value of the MSR identified by Index.\r
7387\r
7388**/\r
7389UINT64\r
7390EFIAPI\r
7391AsmReadMsr64 (\r
7392 IN UINT32 Index\r
7393 );\r
7394\r
7395\r
7396/**\r
7397 Writes a 64-bit value to a Machine Specific Register(MSR), and returns the\r
7398 value.\r
7399\r
7400 Writes the 64-bit value specified by Value to the MSR specified by Index. The\r
7401 64-bit value written to the MSR is returned. No parameter checking is\r
7402 performed on Index or Value, and some of these may cause CPU exceptions. The\r
7403 caller must either guarantee that Index and Value are valid, or the caller\r
7404 must establish proper exception handlers. This function is only available on\r
7405 IA-32 and x64.\r
7406\r
7407 @param Index The 32-bit MSR index to write.\r
7408 @param Value The 64-bit value to write to the MSR.\r
7409\r
7410 @return Value\r
7411\r
7412**/\r
7413UINT64\r
7414EFIAPI\r
7415AsmWriteMsr64 (\r
7416 IN UINT32 Index,\r
7417 IN UINT64 Value\r
7418 );\r
7419\r
7420\r
7421/**\r
7422 Reads a 64-bit MSR, performs a bitwise OR, and writes the result\r
7423 back to the 64-bit MSR.\r
7424\r
7425 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
7426 between the read result and the value specified by OrData, and writes the\r
7427 result to the 64-bit MSR specified by Index. The value written to the MSR is\r
7428 returned. No parameter checking is performed on Index or OrData, and some of\r
7429 these may cause CPU exceptions. The caller must either guarantee that Index\r
7430 and OrData are valid, or the caller must establish proper exception handlers.\r
7431 This function is only available on IA-32 and x64.\r
7432\r
7433 @param Index The 32-bit MSR index to write.\r
7434 @param OrData The value to OR with the read value from the MSR.\r
7435\r
7436 @return The value written back to the MSR.\r
7437\r
7438**/\r
7439UINT64\r
7440EFIAPI\r
7441AsmMsrOr64 (\r
7442 IN UINT32 Index,\r
7443 IN UINT64 OrData\r
7444 );\r
7445\r
7446\r
7447/**\r
7448 Reads a 64-bit MSR, performs a bitwise AND, and writes the result back to the\r
7449 64-bit MSR.\r
7450\r
7451 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
7452 read result and the value specified by OrData, and writes the result to the\r
7453 64-bit MSR specified by Index. The value written to the MSR is returned. No\r
7454 parameter checking is performed on Index or OrData, and some of these may\r
7455 cause CPU exceptions. The caller must either guarantee that Index and OrData\r
7456 are valid, or the caller must establish proper exception handlers. This\r
7457 function is only available on IA-32 and x64.\r
7458\r
7459 @param Index The 32-bit MSR index to write.\r
7460 @param AndData The value to AND with the read value from the MSR.\r
7461\r
7462 @return The value written back to the MSR.\r
7463\r
7464**/\r
7465UINT64\r
7466EFIAPI\r
7467AsmMsrAnd64 (\r
7468 IN UINT32 Index,\r
7469 IN UINT64 AndData\r
7470 );\r
7471\r
7472\r
7473/**\r
7474 Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise\r
7475 OR, and writes the result back to the 64-bit MSR.\r
7476\r
7477 Reads the 64-bit MSR specified by Index, performs a bitwise AND between read\r
7478 result and the value specified by AndData, performs a bitwise OR\r
7479 between the result of the AND operation and the value specified by OrData,\r
7480 and writes the result to the 64-bit MSR specified by Index. The value written\r
7481 to the MSR is returned. No parameter checking is performed on Index, AndData,\r
7482 or OrData, and some of these may cause CPU exceptions. The caller must either\r
7483 guarantee that Index, AndData, and OrData are valid, or the caller must\r
7484 establish proper exception handlers. This function is only available on IA-32\r
7485 and x64.\r
7486\r
7487 @param Index The 32-bit MSR index to write.\r
7488 @param AndData The value to AND with the read value from the MSR.\r
7489 @param OrData The value to OR with the result of the AND operation.\r
7490\r
7491 @return The value written back to the MSR.\r
7492\r
7493**/\r
7494UINT64\r
7495EFIAPI\r
7496AsmMsrAndThenOr64 (\r
7497 IN UINT32 Index,\r
7498 IN UINT64 AndData,\r
7499 IN UINT64 OrData\r
7500 );\r
7501\r
7502\r
7503/**\r
7504 Reads a bit field of an MSR.\r
7505\r
7506 Reads the bit field in the 64-bit MSR. The bit field is specified by the\r
7507 StartBit and the EndBit. The value of the bit field is returned. The caller\r
7508 must either guarantee that Index is valid, or the caller must set up\r
7509 exception handlers to catch the exceptions. This function is only available\r
7510 on IA-32 and x64.\r
7511\r
7512 If StartBit is greater than 63, then ASSERT().\r
7513 If EndBit is greater than 63, then ASSERT().\r
7514 If EndBit is less than StartBit, then ASSERT().\r
7515\r
7516 @param Index The 32-bit MSR index to read.\r
7517 @param StartBit The ordinal of the least significant bit in the bit field.\r
7518 Range 0..63.\r
7519 @param EndBit The ordinal of the most significant bit in the bit field.\r
7520 Range 0..63.\r
7521\r
7522 @return The value read from the MSR.\r
7523\r
7524**/\r
7525UINT64\r
7526EFIAPI\r
7527AsmMsrBitFieldRead64 (\r
7528 IN UINT32 Index,\r
7529 IN UINTN StartBit,\r
7530 IN UINTN EndBit\r
7531 );\r
7532\r
7533\r
7534/**\r
7535 Writes a bit field to an MSR.\r
7536\r
7537 Writes Value to a bit field in a 64-bit MSR. The bit field is specified by\r
7538 the StartBit and the EndBit. All other bits in the destination MSR are\r
7539 preserved. The MSR written is returned. The caller must either guarantee\r
7540 that Index and the data written is valid, or the caller must set up exception\r
7541 handlers to catch the exceptions. This function is only available on IA-32 and x64.\r
7542\r
7543 If StartBit is greater than 63, then ASSERT().\r
7544 If EndBit is greater than 63, then ASSERT().\r
7545 If EndBit is less than StartBit, then ASSERT().\r
7546 If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
7547\r
7548 @param Index The 32-bit MSR index to write.\r
7549 @param StartBit The ordinal of the least significant bit in the bit field.\r
7550 Range 0..63.\r
7551 @param EndBit The ordinal of the most significant bit in the bit field.\r
7552 Range 0..63.\r
7553 @param Value New value of the bit field.\r
7554\r
7555 @return The value written back to the MSR.\r
7556\r
7557**/\r
7558UINT64\r
7559EFIAPI\r
7560AsmMsrBitFieldWrite64 (\r
7561 IN UINT32 Index,\r
7562 IN UINTN StartBit,\r
7563 IN UINTN EndBit,\r
7564 IN UINT64 Value\r
7565 );\r
7566\r
7567\r
7568/**\r
7569 Reads a bit field in a 64-bit MSR, performs a bitwise OR, and\r
7570 writes the result back to the bit field in the 64-bit MSR.\r
7571\r
7572 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
7573 between the read result and the value specified by OrData, and writes the\r
7574 result to the 64-bit MSR specified by Index. The value written to the MSR is\r
7575 returned. Extra left bits in OrData are stripped. The caller must either\r
7576 guarantee that Index and the data written is valid, or the caller must set up\r
7577 exception handlers to catch the exceptions. This function is only available\r
7578 on IA-32 and x64.\r
7579\r
7580 If StartBit is greater than 63, then ASSERT().\r
7581 If EndBit is greater than 63, then ASSERT().\r
7582 If EndBit is less than StartBit, then ASSERT().\r
7583 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
7584\r
7585 @param Index The 32-bit MSR index to write.\r
7586 @param StartBit The ordinal of the least significant bit in the bit field.\r
7587 Range 0..63.\r
7588 @param EndBit The ordinal of the most significant bit in the bit field.\r
7589 Range 0..63.\r
7590 @param OrData The value to OR with the read value from the bit field.\r
7591\r
7592 @return The value written back to the MSR.\r
7593\r
7594**/\r
7595UINT64\r
7596EFIAPI\r
7597AsmMsrBitFieldOr64 (\r
7598 IN UINT32 Index,\r
7599 IN UINTN StartBit,\r
7600 IN UINTN EndBit,\r
7601 IN UINT64 OrData\r
7602 );\r
7603\r
7604\r
7605/**\r
7606 Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the\r
7607 result back to the bit field in the 64-bit MSR.\r
7608\r
7609 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
7610 read result and the value specified by AndData, and writes the result to the\r
7611 64-bit MSR specified by Index. The value written to the MSR is returned.\r
7612 Extra left bits in AndData are stripped. The caller must either guarantee\r
7613 that Index and the data written is valid, or the caller must set up exception\r
7614 handlers to catch the exceptions. This function is only available on IA-32\r
7615 and x64.\r
7616\r
7617 If StartBit is greater than 63, then ASSERT().\r
7618 If EndBit is greater than 63, then ASSERT().\r
7619 If EndBit is less than StartBit, then ASSERT().\r
7620 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
7621\r
7622 @param Index The 32-bit MSR index to write.\r
7623 @param StartBit The ordinal of the least significant bit in the bit field.\r
7624 Range 0..63.\r
7625 @param EndBit The ordinal of the most significant bit in the bit field.\r
7626 Range 0..63.\r
7627 @param AndData The value to AND with the read value from the bit field.\r
7628\r
7629 @return The value written back to the MSR.\r
7630\r
7631**/\r
7632UINT64\r
7633EFIAPI\r
7634AsmMsrBitFieldAnd64 (\r
7635 IN UINT32 Index,\r
7636 IN UINTN StartBit,\r
7637 IN UINTN EndBit,\r
7638 IN UINT64 AndData\r
7639 );\r
7640\r
7641\r
7642/**\r
7643 Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a\r
7644 bitwise OR, and writes the result back to the bit field in the\r
7645 64-bit MSR.\r
7646\r
7647 Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by\r
7648 a bitwise OR between the read result and the value specified by\r
7649 AndData, and writes the result to the 64-bit MSR specified by Index. The\r
7650 value written to the MSR is returned. Extra left bits in both AndData and\r
7651 OrData are stripped. The caller must either guarantee that Index and the data\r
7652 written is valid, or the caller must set up exception handlers to catch the\r
7653 exceptions. This function is only available on IA-32 and x64.\r
7654\r
7655 If StartBit is greater than 63, then ASSERT().\r
7656 If EndBit is greater than 63, then ASSERT().\r
7657 If EndBit is less than StartBit, then ASSERT().\r
7658 If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
7659 If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().\r
7660\r
7661 @param Index The 32-bit MSR index to write.\r
7662 @param StartBit The ordinal of the least significant bit in the bit field.\r
7663 Range 0..63.\r
7664 @param EndBit The ordinal of the most significant bit in the bit field.\r
7665 Range 0..63.\r
7666 @param AndData The value to AND with the read value from the bit field.\r
7667 @param OrData The value to OR with the result of the AND operation.\r
7668\r
7669 @return The value written back to the MSR.\r
7670\r
7671**/\r
7672UINT64\r
7673EFIAPI\r
7674AsmMsrBitFieldAndThenOr64 (\r
7675 IN UINT32 Index,\r
7676 IN UINTN StartBit,\r
7677 IN UINTN EndBit,\r
7678 IN UINT64 AndData,\r
7679 IN UINT64 OrData\r
7680 );\r
7681\r
7682\r
7683/**\r
7684 Reads the current value of the EFLAGS register.\r
7685\r
7686 Reads and returns the current value of the EFLAGS register. This function is\r
7687 only available on IA-32 and x64. This returns a 32-bit value on IA-32 and a\r
7688 64-bit value on x64.\r
7689\r
7690 @return EFLAGS on IA-32 or RFLAGS on x64.\r
7691\r
7692**/\r
7693UINTN\r
7694EFIAPI\r
7695AsmReadEflags (\r
7696 VOID\r
7697 );\r
7698\r
7699\r
7700/**\r
7701 Reads the current value of the Control Register 0 (CR0).\r
7702\r
7703 Reads and returns the current value of CR0. This function is only available\r
7704 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7705 x64.\r
7706\r
7707 @return The value of the Control Register 0 (CR0).\r
7708\r
7709**/\r
7710UINTN\r
7711EFIAPI\r
7712AsmReadCr0 (\r
7713 VOID\r
7714 );\r
7715\r
7716\r
7717/**\r
7718 Reads the current value of the Control Register 2 (CR2).\r
7719\r
7720 Reads and returns the current value of CR2. This function is only available\r
7721 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7722 x64.\r
7723\r
7724 @return The value of the Control Register 2 (CR2).\r
7725\r
7726**/\r
7727UINTN\r
7728EFIAPI\r
7729AsmReadCr2 (\r
7730 VOID\r
7731 );\r
7732\r
7733\r
7734/**\r
7735 Reads the current value of the Control Register 3 (CR3).\r
7736\r
7737 Reads and returns the current value of CR3. This function is only available\r
7738 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7739 x64.\r
7740\r
7741 @return The value of the Control Register 3 (CR3).\r
7742\r
7743**/\r
7744UINTN\r
7745EFIAPI\r
7746AsmReadCr3 (\r
7747 VOID\r
7748 );\r
7749\r
7750\r
7751/**\r
7752 Reads the current value of the Control Register 4 (CR4).\r
7753\r
7754 Reads and returns the current value of CR4. This function is only available\r
7755 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7756 x64.\r
7757\r
7758 @return The value of the Control Register 4 (CR4).\r
7759\r
7760**/\r
7761UINTN\r
7762EFIAPI\r
7763AsmReadCr4 (\r
7764 VOID\r
7765 );\r
7766\r
7767\r
7768/**\r
7769 Writes a value to Control Register 0 (CR0).\r
7770\r
7771 Writes and returns a new value to CR0. This function is only available on\r
7772 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
7773\r
7774 @param Cr0 The value to write to CR0.\r
7775\r
7776 @return The value written to CR0.\r
7777\r
7778**/\r
7779UINTN\r
7780EFIAPI\r
7781AsmWriteCr0 (\r
7782 UINTN Cr0\r
7783 );\r
7784\r
7785\r
7786/**\r
7787 Writes a value to Control Register 2 (CR2).\r
7788\r
7789 Writes and returns a new value to CR2. This function is only available on\r
7790 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
7791\r
7792 @param Cr2 The value to write to CR2.\r
7793\r
7794 @return The value written to CR2.\r
7795\r
7796**/\r
7797UINTN\r
7798EFIAPI\r
7799AsmWriteCr2 (\r
7800 UINTN Cr2\r
7801 );\r
7802\r
7803\r
7804/**\r
7805 Writes a value to Control Register 3 (CR3).\r
7806\r
7807 Writes and returns a new value to CR3. This function is only available on\r
7808 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
7809\r
7810 @param Cr3 The value to write to CR3.\r
7811\r
7812 @return The value written to CR3.\r
7813\r
7814**/\r
7815UINTN\r
7816EFIAPI\r
7817AsmWriteCr3 (\r
7818 UINTN Cr3\r
7819 );\r
7820\r
7821\r
7822/**\r
7823 Writes a value to Control Register 4 (CR4).\r
7824\r
7825 Writes and returns a new value to CR4. This function is only available on\r
7826 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
7827\r
7828 @param Cr4 The value to write to CR4.\r
7829\r
7830 @return The value written to CR4.\r
7831\r
7832**/\r
7833UINTN\r
7834EFIAPI\r
7835AsmWriteCr4 (\r
7836 UINTN Cr4\r
7837 );\r
7838\r
7839\r
7840/**\r
7841 Reads the current value of Debug Register 0 (DR0).\r
7842\r
7843 Reads and returns the current value of DR0. This function is only available\r
7844 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7845 x64.\r
7846\r
7847 @return The value of Debug Register 0 (DR0).\r
7848\r
7849**/\r
7850UINTN\r
7851EFIAPI\r
7852AsmReadDr0 (\r
7853 VOID\r
7854 );\r
7855\r
7856\r
7857/**\r
7858 Reads the current value of Debug Register 1 (DR1).\r
7859\r
7860 Reads and returns the current value of DR1. This function is only available\r
7861 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7862 x64.\r
7863\r
7864 @return The value of Debug Register 1 (DR1).\r
7865\r
7866**/\r
7867UINTN\r
7868EFIAPI\r
7869AsmReadDr1 (\r
7870 VOID\r
7871 );\r
7872\r
7873\r
7874/**\r
7875 Reads the current value of Debug Register 2 (DR2).\r
7876\r
7877 Reads and returns the current value of DR2. This function is only available\r
7878 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7879 x64.\r
7880\r
7881 @return The value of Debug Register 2 (DR2).\r
7882\r
7883**/\r
7884UINTN\r
7885EFIAPI\r
7886AsmReadDr2 (\r
7887 VOID\r
7888 );\r
7889\r
7890\r
7891/**\r
7892 Reads the current value of Debug Register 3 (DR3).\r
7893\r
7894 Reads and returns the current value of DR3. This function is only available\r
7895 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7896 x64.\r
7897\r
7898 @return The value of Debug Register 3 (DR3).\r
7899\r
7900**/\r
7901UINTN\r
7902EFIAPI\r
7903AsmReadDr3 (\r
7904 VOID\r
7905 );\r
7906\r
7907\r
7908/**\r
7909 Reads the current value of Debug Register 4 (DR4).\r
7910\r
7911 Reads and returns the current value of DR4. This function is only available\r
7912 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7913 x64.\r
7914\r
7915 @return The value of Debug Register 4 (DR4).\r
7916\r
7917**/\r
7918UINTN\r
7919EFIAPI\r
7920AsmReadDr4 (\r
7921 VOID\r
7922 );\r
7923\r
7924\r
7925/**\r
7926 Reads the current value of Debug Register 5 (DR5).\r
7927\r
7928 Reads and returns the current value of DR5. This function is only available\r
7929 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7930 x64.\r
7931\r
7932 @return The value of Debug Register 5 (DR5).\r
7933\r
7934**/\r
7935UINTN\r
7936EFIAPI\r
7937AsmReadDr5 (\r
7938 VOID\r
7939 );\r
7940\r
7941\r
7942/**\r
7943 Reads the current value of Debug Register 6 (DR6).\r
7944\r
7945 Reads and returns the current value of DR6. This function is only available\r
7946 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7947 x64.\r
7948\r
7949 @return The value of Debug Register 6 (DR6).\r
7950\r
7951**/\r
7952UINTN\r
7953EFIAPI\r
7954AsmReadDr6 (\r
7955 VOID\r
7956 );\r
7957\r
7958\r
7959/**\r
7960 Reads the current value of Debug Register 7 (DR7).\r
7961\r
7962 Reads and returns the current value of DR7. This function is only available\r
7963 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
7964 x64.\r
7965\r
7966 @return The value of Debug Register 7 (DR7).\r
7967\r
7968**/\r
7969UINTN\r
7970EFIAPI\r
7971AsmReadDr7 (\r
7972 VOID\r
7973 );\r
7974\r
7975\r
7976/**\r
7977 Writes a value to Debug Register 0 (DR0).\r
7978\r
7979 Writes and returns a new value to DR0. This function is only available on\r
7980 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
7981\r
7982 @param Dr0 The value to write to Dr0.\r
7983\r
7984 @return The value written to Debug Register 0 (DR0).\r
7985\r
7986**/\r
7987UINTN\r
7988EFIAPI\r
7989AsmWriteDr0 (\r
7990 UINTN Dr0\r
7991 );\r
7992\r
7993\r
7994/**\r
7995 Writes a value to Debug Register 1 (DR1).\r
7996\r
7997 Writes and returns a new value to DR1. This function is only available on\r
7998 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
7999\r
8000 @param Dr1 The value to write to Dr1.\r
8001\r
8002 @return The value written to Debug Register 1 (DR1).\r
8003\r
8004**/\r
8005UINTN\r
8006EFIAPI\r
8007AsmWriteDr1 (\r
8008 UINTN Dr1\r
8009 );\r
8010\r
8011\r
8012/**\r
8013 Writes a value to Debug Register 2 (DR2).\r
8014\r
8015 Writes and returns a new value to DR2. This function is only available on\r
8016 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
8017\r
8018 @param Dr2 The value to write to Dr2.\r
8019\r
8020 @return The value written to Debug Register 2 (DR2).\r
8021\r
8022**/\r
8023UINTN\r
8024EFIAPI\r
8025AsmWriteDr2 (\r
8026 UINTN Dr2\r
8027 );\r
8028\r
8029\r
8030/**\r
8031 Writes a value to Debug Register 3 (DR3).\r
8032\r
8033 Writes and returns a new value to DR3. This function is only available on\r
8034 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
8035\r
8036 @param Dr3 The value to write to Dr3.\r
8037\r
8038 @return The value written to Debug Register 3 (DR3).\r
8039\r
8040**/\r
8041UINTN\r
8042EFIAPI\r
8043AsmWriteDr3 (\r
8044 UINTN Dr3\r
8045 );\r
8046\r
8047\r
8048/**\r
8049 Writes a value to Debug Register 4 (DR4).\r
8050\r
8051 Writes and returns a new value to DR4. This function is only available on\r
8052 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
8053\r
8054 @param Dr4 The value to write to Dr4.\r
8055\r
8056 @return The value written to Debug Register 4 (DR4).\r
8057\r
8058**/\r
8059UINTN\r
8060EFIAPI\r
8061AsmWriteDr4 (\r
8062 UINTN Dr4\r
8063 );\r
8064\r
8065\r
8066/**\r
8067 Writes a value to Debug Register 5 (DR5).\r
8068\r
8069 Writes and returns a new value to DR5. This function is only available on\r
8070 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
8071\r
8072 @param Dr5 The value to write to Dr5.\r
8073\r
8074 @return The value written to Debug Register 5 (DR5).\r
8075\r
8076**/\r
8077UINTN\r
8078EFIAPI\r
8079AsmWriteDr5 (\r
8080 UINTN Dr5\r
8081 );\r
8082\r
8083\r
8084/**\r
8085 Writes a value to Debug Register 6 (DR6).\r
8086\r
8087 Writes and returns a new value to DR6. This function is only available on\r
8088 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
8089\r
8090 @param Dr6 The value to write to Dr6.\r
8091\r
8092 @return The value written to Debug Register 6 (DR6).\r
8093\r
8094**/\r
8095UINTN\r
8096EFIAPI\r
8097AsmWriteDr6 (\r
8098 UINTN Dr6\r
8099 );\r
8100\r
8101\r
8102/**\r
8103 Writes a value to Debug Register 7 (DR7).\r
8104\r
8105 Writes and returns a new value to DR7. This function is only available on\r
8106 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
8107\r
8108 @param Dr7 The value to write to Dr7.\r
8109\r
8110 @return The value written to Debug Register 7 (DR7).\r
8111\r
8112**/\r
8113UINTN\r
8114EFIAPI\r
8115AsmWriteDr7 (\r
8116 UINTN Dr7\r
8117 );\r
8118\r
8119\r
8120/**\r
8121 Reads the current value of Code Segment Register (CS).\r
8122\r
8123 Reads and returns the current value of CS. This function is only available on\r
8124 IA-32 and x64.\r
8125\r
8126 @return The current value of CS.\r
8127\r
8128**/\r
8129UINT16\r
8130EFIAPI\r
8131AsmReadCs (\r
8132 VOID\r
8133 );\r
8134\r
8135\r
8136/**\r
8137 Reads the current value of Data Segment Register (DS).\r
8138\r
8139 Reads and returns the current value of DS. This function is only available on\r
8140 IA-32 and x64.\r
8141\r
8142 @return The current value of DS.\r
8143\r
8144**/\r
8145UINT16\r
8146EFIAPI\r
8147AsmReadDs (\r
8148 VOID\r
8149 );\r
8150\r
8151\r
8152/**\r
8153 Reads the current value of Extra Segment Register (ES).\r
8154\r
8155 Reads and returns the current value of ES. This function is only available on\r
8156 IA-32 and x64.\r
8157\r
8158 @return The current value of ES.\r
8159\r
8160**/\r
8161UINT16\r
8162EFIAPI\r
8163AsmReadEs (\r
8164 VOID\r
8165 );\r
8166\r
8167\r
8168/**\r
8169 Reads the current value of FS Data Segment Register (FS).\r
8170\r
8171 Reads and returns the current value of FS. This function is only available on\r
8172 IA-32 and x64.\r
8173\r
8174 @return The current value of FS.\r
8175\r
8176**/\r
8177UINT16\r
8178EFIAPI\r
8179AsmReadFs (\r
8180 VOID\r
8181 );\r
8182\r
8183\r
8184/**\r
8185 Reads the current value of GS Data Segment Register (GS).\r
8186\r
8187 Reads and returns the current value of GS. This function is only available on\r
8188 IA-32 and x64.\r
8189\r
8190 @return The current value of GS.\r
8191\r
8192**/\r
8193UINT16\r
8194EFIAPI\r
8195AsmReadGs (\r
8196 VOID\r
8197 );\r
8198\r
8199\r
8200/**\r
8201 Reads the current value of Stack Segment Register (SS).\r
8202\r
8203 Reads and returns the current value of SS. This function is only available on\r
8204 IA-32 and x64.\r
8205\r
8206 @return The current value of SS.\r
8207\r
8208**/\r
8209UINT16\r
8210EFIAPI\r
8211AsmReadSs (\r
8212 VOID\r
8213 );\r
8214\r
8215\r
8216/**\r
8217 Reads the current value of Task Register (TR).\r
8218\r
8219 Reads and returns the current value of TR. This function is only available on\r
8220 IA-32 and x64.\r
8221\r
8222 @return The current value of TR.\r
8223\r
8224**/\r
8225UINT16\r
8226EFIAPI\r
8227AsmReadTr (\r
8228 VOID\r
8229 );\r
8230\r
8231\r
8232/**\r
8233 Reads the current Global Descriptor Table Register(GDTR) descriptor.\r
8234\r
8235 Reads and returns the current GDTR descriptor and returns it in Gdtr. This\r
8236 function is only available on IA-32 and x64.\r
8237\r
8238 If Gdtr is NULL, then ASSERT().\r
8239\r
8240 @param Gdtr The pointer to a GDTR descriptor.\r
8241\r
8242**/\r
8243VOID\r
8244EFIAPI\r
8245AsmReadGdtr (\r
8246 OUT IA32_DESCRIPTOR *Gdtr\r
8247 );\r
8248\r
8249\r
8250/**\r
8251 Writes the current Global Descriptor Table Register (GDTR) descriptor.\r
8252\r
8253 Writes and the current GDTR descriptor specified by Gdtr. This function is\r
8254 only available on IA-32 and x64.\r
8255\r
8256 If Gdtr is NULL, then ASSERT().\r
8257\r
8258 @param Gdtr The pointer to a GDTR descriptor.\r
8259\r
8260**/\r
8261VOID\r
8262EFIAPI\r
8263AsmWriteGdtr (\r
8264 IN CONST IA32_DESCRIPTOR *Gdtr\r
8265 );\r
8266\r
8267\r
8268/**\r
8269 Reads the current Interrupt Descriptor Table Register(IDTR) descriptor.\r
8270\r
8271 Reads and returns the current IDTR descriptor and returns it in Idtr. This\r
8272 function is only available on IA-32 and x64.\r
8273\r
8274 If Idtr is NULL, then ASSERT().\r
8275\r
8276 @param Idtr The pointer to a IDTR descriptor.\r
8277\r
8278**/\r
8279VOID\r
8280EFIAPI\r
8281AsmReadIdtr (\r
8282 OUT IA32_DESCRIPTOR *Idtr\r
8283 );\r
8284\r
8285\r
8286/**\r
8287 Writes the current Interrupt Descriptor Table Register(IDTR) descriptor.\r
8288\r
8289 Writes the current IDTR descriptor and returns it in Idtr. This function is\r
8290 only available on IA-32 and x64.\r
8291\r
8292 If Idtr is NULL, then ASSERT().\r
8293\r
8294 @param Idtr The pointer to a IDTR descriptor.\r
8295\r
8296**/\r
8297VOID\r
8298EFIAPI\r
8299AsmWriteIdtr (\r
8300 IN CONST IA32_DESCRIPTOR *Idtr\r
8301 );\r
8302\r
8303\r
8304/**\r
8305 Reads the current Local Descriptor Table Register(LDTR) selector.\r
8306\r
8307 Reads and returns the current 16-bit LDTR descriptor value. This function is\r
8308 only available on IA-32 and x64.\r
8309\r
8310 @return The current selector of LDT.\r
8311\r
8312**/\r
8313UINT16\r
8314EFIAPI\r
8315AsmReadLdtr (\r
8316 VOID\r
8317 );\r
8318\r
8319\r
8320/**\r
8321 Writes the current Local Descriptor Table Register (LDTR) selector.\r
8322\r
8323 Writes and the current LDTR descriptor specified by Ldtr. This function is\r
8324 only available on IA-32 and x64.\r
8325\r
8326 @param Ldtr 16-bit LDTR selector value.\r
8327\r
8328**/\r
8329VOID\r
8330EFIAPI\r
8331AsmWriteLdtr (\r
8332 IN UINT16 Ldtr\r
8333 );\r
8334\r
8335\r
8336/**\r
8337 Save the current floating point/SSE/SSE2 context to a buffer.\r
8338\r
8339 Saves the current floating point/SSE/SSE2 state to the buffer specified by\r
8340 Buffer. Buffer must be aligned on a 16-byte boundary. This function is only\r
8341 available on IA-32 and x64.\r
8342\r
8343 If Buffer is NULL, then ASSERT().\r
8344 If Buffer is not aligned on a 16-byte boundary, then ASSERT().\r
8345\r
8346 @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context.\r
8347\r
8348**/\r
8349VOID\r
8350EFIAPI\r
8351AsmFxSave (\r
8352 OUT IA32_FX_BUFFER *Buffer\r
8353 );\r
8354\r
8355\r
8356/**\r
8357 Restores the current floating point/SSE/SSE2 context from a buffer.\r
8358\r
8359 Restores the current floating point/SSE/SSE2 state from the buffer specified\r
8360 by Buffer. Buffer must be aligned on a 16-byte boundary. This function is\r
8361 only available on IA-32 and x64.\r
8362\r
8363 If Buffer is NULL, then ASSERT().\r
8364 If Buffer is not aligned on a 16-byte boundary, then ASSERT().\r
8365 If Buffer was not saved with AsmFxSave(), then ASSERT().\r
8366\r
8367 @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context.\r
8368\r
8369**/\r
8370VOID\r
8371EFIAPI\r
8372AsmFxRestore (\r
8373 IN CONST IA32_FX_BUFFER *Buffer\r
8374 );\r
8375\r
8376\r
8377/**\r
8378 Reads the current value of 64-bit MMX Register #0 (MM0).\r
8379\r
8380 Reads and returns the current value of MM0. This function is only available\r
8381 on IA-32 and x64.\r
8382\r
8383 @return The current value of MM0.\r
8384\r
8385**/\r
8386UINT64\r
8387EFIAPI\r
8388AsmReadMm0 (\r
8389 VOID\r
8390 );\r
8391\r
8392\r
8393/**\r
8394 Reads the current value of 64-bit MMX Register #1 (MM1).\r
8395\r
8396 Reads and returns the current value of MM1. This function is only available\r
8397 on IA-32 and x64.\r
8398\r
8399 @return The current value of MM1.\r
8400\r
8401**/\r
8402UINT64\r
8403EFIAPI\r
8404AsmReadMm1 (\r
8405 VOID\r
8406 );\r
8407\r
8408\r
8409/**\r
8410 Reads the current value of 64-bit MMX Register #2 (MM2).\r
8411\r
8412 Reads and returns the current value of MM2. This function is only available\r
8413 on IA-32 and x64.\r
8414\r
8415 @return The current value of MM2.\r
8416\r
8417**/\r
8418UINT64\r
8419EFIAPI\r
8420AsmReadMm2 (\r
8421 VOID\r
8422 );\r
8423\r
8424\r
8425/**\r
8426 Reads the current value of 64-bit MMX Register #3 (MM3).\r
8427\r
8428 Reads and returns the current value of MM3. This function is only available\r
8429 on IA-32 and x64.\r
8430\r
8431 @return The current value of MM3.\r
8432\r
8433**/\r
8434UINT64\r
8435EFIAPI\r
8436AsmReadMm3 (\r
8437 VOID\r
8438 );\r
8439\r
8440\r
8441/**\r
8442 Reads the current value of 64-bit MMX Register #4 (MM4).\r
8443\r
8444 Reads and returns the current value of MM4. This function is only available\r
8445 on IA-32 and x64.\r
8446\r
8447 @return The current value of MM4.\r
8448\r
8449**/\r
8450UINT64\r
8451EFIAPI\r
8452AsmReadMm4 (\r
8453 VOID\r
8454 );\r
8455\r
8456\r
8457/**\r
8458 Reads the current value of 64-bit MMX Register #5 (MM5).\r
8459\r
8460 Reads and returns the current value of MM5. This function is only available\r
8461 on IA-32 and x64.\r
8462\r
8463 @return The current value of MM5.\r
8464\r
8465**/\r
8466UINT64\r
8467EFIAPI\r
8468AsmReadMm5 (\r
8469 VOID\r
8470 );\r
8471\r
8472\r
8473/**\r
8474 Reads the current value of 64-bit MMX Register #6 (MM6).\r
8475\r
8476 Reads and returns the current value of MM6. This function is only available\r
8477 on IA-32 and x64.\r
8478\r
8479 @return The current value of MM6.\r
8480\r
8481**/\r
8482UINT64\r
8483EFIAPI\r
8484AsmReadMm6 (\r
8485 VOID\r
8486 );\r
8487\r
8488\r
8489/**\r
8490 Reads the current value of 64-bit MMX Register #7 (MM7).\r
8491\r
8492 Reads and returns the current value of MM7. This function is only available\r
8493 on IA-32 and x64.\r
8494\r
8495 @return The current value of MM7.\r
8496\r
8497**/\r
8498UINT64\r
8499EFIAPI\r
8500AsmReadMm7 (\r
8501 VOID\r
8502 );\r
8503\r
8504\r
8505/**\r
8506 Writes the current value of 64-bit MMX Register #0 (MM0).\r
8507\r
8508 Writes the current value of MM0. This function is only available on IA32 and\r
8509 x64.\r
8510\r
8511 @param Value The 64-bit value to write to MM0.\r
8512\r
8513**/\r
8514VOID\r
8515EFIAPI\r
8516AsmWriteMm0 (\r
8517 IN UINT64 Value\r
8518 );\r
8519\r
8520\r
8521/**\r
8522 Writes the current value of 64-bit MMX Register #1 (MM1).\r
8523\r
8524 Writes the current value of MM1. This function is only available on IA32 and\r
8525 x64.\r
8526\r
8527 @param Value The 64-bit value to write to MM1.\r
8528\r
8529**/\r
8530VOID\r
8531EFIAPI\r
8532AsmWriteMm1 (\r
8533 IN UINT64 Value\r
8534 );\r
8535\r
8536\r
8537/**\r
8538 Writes the current value of 64-bit MMX Register #2 (MM2).\r
8539\r
8540 Writes the current value of MM2. This function is only available on IA32 and\r
8541 x64.\r
8542\r
8543 @param Value The 64-bit value to write to MM2.\r
8544\r
8545**/\r
8546VOID\r
8547EFIAPI\r
8548AsmWriteMm2 (\r
8549 IN UINT64 Value\r
8550 );\r
8551\r
8552\r
8553/**\r
8554 Writes the current value of 64-bit MMX Register #3 (MM3).\r
8555\r
8556 Writes the current value of MM3. This function is only available on IA32 and\r
8557 x64.\r
8558\r
8559 @param Value The 64-bit value to write to MM3.\r
8560\r
8561**/\r
8562VOID\r
8563EFIAPI\r
8564AsmWriteMm3 (\r
8565 IN UINT64 Value\r
8566 );\r
8567\r
8568\r
8569/**\r
8570 Writes the current value of 64-bit MMX Register #4 (MM4).\r
8571\r
8572 Writes the current value of MM4. This function is only available on IA32 and\r
8573 x64.\r
8574\r
8575 @param Value The 64-bit value to write to MM4.\r
8576\r
8577**/\r
8578VOID\r
8579EFIAPI\r
8580AsmWriteMm4 (\r
8581 IN UINT64 Value\r
8582 );\r
8583\r
8584\r
8585/**\r
8586 Writes the current value of 64-bit MMX Register #5 (MM5).\r
8587\r
8588 Writes the current value of MM5. This function is only available on IA32 and\r
8589 x64.\r
8590\r
8591 @param Value The 64-bit value to write to MM5.\r
8592\r
8593**/\r
8594VOID\r
8595EFIAPI\r
8596AsmWriteMm5 (\r
8597 IN UINT64 Value\r
8598 );\r
8599\r
8600\r
8601/**\r
8602 Writes the current value of 64-bit MMX Register #6 (MM6).\r
8603\r
8604 Writes the current value of MM6. This function is only available on IA32 and\r
8605 x64.\r
8606\r
8607 @param Value The 64-bit value to write to MM6.\r
8608\r
8609**/\r
8610VOID\r
8611EFIAPI\r
8612AsmWriteMm6 (\r
8613 IN UINT64 Value\r
8614 );\r
8615\r
8616\r
8617/**\r
8618 Writes the current value of 64-bit MMX Register #7 (MM7).\r
8619\r
8620 Writes the current value of MM7. This function is only available on IA32 and\r
8621 x64.\r
8622\r
8623 @param Value The 64-bit value to write to MM7.\r
8624\r
8625**/\r
8626VOID\r
8627EFIAPI\r
8628AsmWriteMm7 (\r
8629 IN UINT64 Value\r
8630 );\r
8631\r
8632\r
8633/**\r
8634 Reads the current value of Time Stamp Counter (TSC).\r
8635\r
8636 Reads and returns the current value of TSC. This function is only available\r
8637 on IA-32 and x64.\r
8638\r
8639 @return The current value of TSC\r
8640\r
8641**/\r
8642UINT64\r
8643EFIAPI\r
8644AsmReadTsc (\r
8645 VOID\r
8646 );\r
8647\r
8648\r
8649/**\r
8650 Reads the current value of a Performance Counter (PMC).\r
8651\r
8652 Reads and returns the current value of performance counter specified by\r
8653 Index. This function is only available on IA-32 and x64.\r
8654\r
8655 @param Index The 32-bit Performance Counter index to read.\r
8656\r
8657 @return The value of the PMC specified by Index.\r
8658\r
8659**/\r
8660UINT64\r
8661EFIAPI\r
8662AsmReadPmc (\r
8663 IN UINT32 Index\r
8664 );\r
8665\r
8666\r
8667/**\r
8668 Sets up a monitor buffer that is used by AsmMwait().\r
8669\r
8670 Executes a MONITOR instruction with the register state specified by Eax, Ecx\r
8671 and Edx. Returns Eax. This function is only available on IA-32 and x64.\r
8672\r
8673 @param Eax The value to load into EAX or RAX before executing the MONITOR\r
8674 instruction.\r
8675 @param Ecx The value to load into ECX or RCX before executing the MONITOR\r
8676 instruction.\r
8677 @param Edx The value to load into EDX or RDX before executing the MONITOR\r
8678 instruction.\r
8679\r
8680 @return Eax\r
8681\r
8682**/\r
8683UINTN\r
8684EFIAPI\r
8685AsmMonitor (\r
8686 IN UINTN Eax,\r
8687 IN UINTN Ecx,\r
8688 IN UINTN Edx\r
8689 );\r
8690\r
8691\r
8692/**\r
8693 Executes an MWAIT instruction.\r
8694\r
8695 Executes an MWAIT instruction with the register state specified by Eax and\r
8696 Ecx. Returns Eax. This function is only available on IA-32 and x64.\r
8697\r
8698 @param Eax The value to load into EAX or RAX before executing the MONITOR\r
8699 instruction.\r
8700 @param Ecx The value to load into ECX or RCX before executing the MONITOR\r
8701 instruction.\r
8702\r
8703 @return Eax\r
8704\r
8705**/\r
8706UINTN\r
8707EFIAPI\r
8708AsmMwait (\r
8709 IN UINTN Eax,\r
8710 IN UINTN Ecx\r
8711 );\r
8712\r
8713\r
8714/**\r
8715 Executes a WBINVD instruction.\r
8716\r
8717 Executes a WBINVD instruction. This function is only available on IA-32 and\r
8718 x64.\r
8719\r
8720**/\r
8721VOID\r
8722EFIAPI\r
8723AsmWbinvd (\r
8724 VOID\r
8725 );\r
8726\r
8727\r
8728/**\r
8729 Executes a INVD instruction.\r
8730\r
8731 Executes a INVD instruction. This function is only available on IA-32 and\r
8732 x64.\r
8733\r
8734**/\r
8735VOID\r
8736EFIAPI\r
8737AsmInvd (\r
8738 VOID\r
8739 );\r
8740\r
8741\r
8742/**\r
8743 Flushes a cache line from all the instruction and data caches within the\r
8744 coherency domain of the CPU.\r
8745\r
8746 Flushed the cache line specified by LinearAddress, and returns LinearAddress.\r
8747 This function is only available on IA-32 and x64.\r
8748\r
8749 @param LinearAddress The address of the cache line to flush. If the CPU is\r
8750 in a physical addressing mode, then LinearAddress is a\r
8751 physical address. If the CPU is in a virtual\r
8752 addressing mode, then LinearAddress is a virtual\r
8753 address.\r
8754\r
8755 @return LinearAddress.\r
8756**/\r
8757VOID *\r
8758EFIAPI\r
8759AsmFlushCacheLine (\r
8760 IN VOID *LinearAddress\r
8761 );\r
8762\r
8763\r
8764/**\r
8765 Enables the 32-bit paging mode on the CPU.\r
8766\r
8767 Enables the 32-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
8768 must be properly initialized prior to calling this service. This function\r
8769 assumes the current execution mode is 32-bit protected mode. This function is\r
8770 only available on IA-32. After the 32-bit paging mode is enabled, control is\r
8771 transferred to the function specified by EntryPoint using the new stack\r
8772 specified by NewStack and passing in the parameters specified by Context1 and\r
8773 Context2. Context1 and Context2 are optional and may be NULL. The function\r
8774 EntryPoint must never return.\r
8775\r
8776 If the current execution mode is not 32-bit protected mode, then ASSERT().\r
8777 If EntryPoint is NULL, then ASSERT().\r
8778 If NewStack is NULL, then ASSERT().\r
8779\r
8780 There are a number of constraints that must be followed before calling this\r
8781 function:\r
8782 1) Interrupts must be disabled.\r
8783 2) The caller must be in 32-bit protected mode with flat descriptors. This\r
8784 means all descriptors must have a base of 0 and a limit of 4GB.\r
8785 3) CR0 and CR4 must be compatible with 32-bit protected mode with flat\r
8786 descriptors.\r
8787 4) CR3 must point to valid page tables that will be used once the transition\r
8788 is complete, and those page tables must guarantee that the pages for this\r
8789 function and the stack are identity mapped.\r
8790\r
8791 @param EntryPoint A pointer to function to call with the new stack after\r
8792 paging is enabled.\r
8793 @param Context1 A pointer to the context to pass into the EntryPoint\r
8794 function as the first parameter after paging is enabled.\r
8795 @param Context2 A pointer to the context to pass into the EntryPoint\r
8796 function as the second parameter after paging is enabled.\r
8797 @param NewStack A pointer to the new stack to use for the EntryPoint\r
8798 function after paging is enabled.\r
8799\r
8800**/\r
8801VOID\r
8802EFIAPI\r
8803AsmEnablePaging32 (\r
8804 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
8805 IN VOID *Context1, OPTIONAL\r
8806 IN VOID *Context2, OPTIONAL\r
8807 IN VOID *NewStack\r
8808 );\r
8809\r
8810\r
8811/**\r
8812 Disables the 32-bit paging mode on the CPU.\r
8813\r
8814 Disables the 32-bit paging mode on the CPU and returns to 32-bit protected\r
8815 mode. This function assumes the current execution mode is 32-paged protected\r
8816 mode. This function is only available on IA-32. After the 32-bit paging mode\r
8817 is disabled, control is transferred to the function specified by EntryPoint\r
8818 using the new stack specified by NewStack and passing in the parameters\r
8819 specified by Context1 and Context2. Context1 and Context2 are optional and\r
8820 may be NULL. The function EntryPoint must never return.\r
8821\r
8822 If the current execution mode is not 32-bit paged mode, then ASSERT().\r
8823 If EntryPoint is NULL, then ASSERT().\r
8824 If NewStack is NULL, then ASSERT().\r
8825\r
8826 There are a number of constraints that must be followed before calling this\r
8827 function:\r
8828 1) Interrupts must be disabled.\r
8829 2) The caller must be in 32-bit paged mode.\r
8830 3) CR0, CR3, and CR4 must be compatible with 32-bit paged mode.\r
8831 4) CR3 must point to valid page tables that guarantee that the pages for\r
8832 this function and the stack are identity mapped.\r
8833\r
8834 @param EntryPoint A pointer to function to call with the new stack after\r
8835 paging is disabled.\r
8836 @param Context1 A pointer to the context to pass into the EntryPoint\r
8837 function as the first parameter after paging is disabled.\r
8838 @param Context2 A pointer to the context to pass into the EntryPoint\r
8839 function as the second parameter after paging is\r
8840 disabled.\r
8841 @param NewStack A pointer to the new stack to use for the EntryPoint\r
8842 function after paging is disabled.\r
8843\r
8844**/\r
8845VOID\r
8846EFIAPI\r
8847AsmDisablePaging32 (\r
8848 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
8849 IN VOID *Context1, OPTIONAL\r
8850 IN VOID *Context2, OPTIONAL\r
8851 IN VOID *NewStack\r
8852 );\r
8853\r
8854\r
8855/**\r
8856 Enables the 64-bit paging mode on the CPU.\r
8857\r
8858 Enables the 64-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
8859 must be properly initialized prior to calling this service. This function\r
8860 assumes the current execution mode is 32-bit protected mode with flat\r
8861 descriptors. This function is only available on IA-32. After the 64-bit\r
8862 paging mode is enabled, control is transferred to the function specified by\r
8863 EntryPoint using the new stack specified by NewStack and passing in the\r
8864 parameters specified by Context1 and Context2. Context1 and Context2 are\r
8865 optional and may be 0. The function EntryPoint must never return.\r
8866\r
8867 If the current execution mode is not 32-bit protected mode with flat\r
8868 descriptors, then ASSERT().\r
8869 If EntryPoint is 0, then ASSERT().\r
8870 If NewStack is 0, then ASSERT().\r
8871\r
8872 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
8873 is called. The descriptor in the GDT that this selector\r
8874 references must be setup for long mode.\r
8875 @param EntryPoint The 64-bit virtual address of the function to call with\r
8876 the new stack after paging is enabled.\r
8877 @param Context1 The 64-bit virtual address of the context to pass into\r
8878 the EntryPoint function as the first parameter after\r
8879 paging is enabled.\r
8880 @param Context2 The 64-bit virtual address of the context to pass into\r
8881 the EntryPoint function as the second parameter after\r
8882 paging is enabled.\r
8883 @param NewStack The 64-bit virtual address of the new stack to use for\r
8884 the EntryPoint function after paging is enabled.\r
8885\r
8886**/\r
8887VOID\r
8888EFIAPI\r
8889AsmEnablePaging64 (\r
8890 IN UINT16 Cs,\r
8891 IN UINT64 EntryPoint,\r
8892 IN UINT64 Context1, OPTIONAL\r
8893 IN UINT64 Context2, OPTIONAL\r
8894 IN UINT64 NewStack\r
8895 );\r
8896\r
8897\r
8898/**\r
8899 Disables the 64-bit paging mode on the CPU.\r
8900\r
8901 Disables the 64-bit paging mode on the CPU and returns to 32-bit protected\r
8902 mode. This function assumes the current execution mode is 64-paging mode.\r
8903 This function is only available on x64. After the 64-bit paging mode is\r
8904 disabled, control is transferred to the function specified by EntryPoint\r
8905 using the new stack specified by NewStack and passing in the parameters\r
8906 specified by Context1 and Context2. Context1 and Context2 are optional and\r
8907 may be 0. The function EntryPoint must never return.\r
8908\r
8909 If the current execution mode is not 64-bit paged mode, then ASSERT().\r
8910 If EntryPoint is 0, then ASSERT().\r
8911 If NewStack is 0, then ASSERT().\r
8912\r
8913 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
8914 is called. The descriptor in the GDT that this selector\r
8915 references must be setup for 32-bit protected mode.\r
8916 @param EntryPoint The 64-bit virtual address of the function to call with\r
8917 the new stack after paging is disabled.\r
8918 @param Context1 The 64-bit virtual address of the context to pass into\r
8919 the EntryPoint function as the first parameter after\r
8920 paging is disabled.\r
8921 @param Context2 The 64-bit virtual address of the context to pass into\r
8922 the EntryPoint function as the second parameter after\r
8923 paging is disabled.\r
8924 @param NewStack The 64-bit virtual address of the new stack to use for\r
8925 the EntryPoint function after paging is disabled.\r
8926\r
8927**/\r
8928VOID\r
8929EFIAPI\r
8930AsmDisablePaging64 (\r
8931 IN UINT16 Cs,\r
8932 IN UINT32 EntryPoint,\r
8933 IN UINT32 Context1, OPTIONAL\r
8934 IN UINT32 Context2, OPTIONAL\r
8935 IN UINT32 NewStack\r
8936 );\r
8937\r
8938\r
8939//\r
8940// 16-bit thunking services\r
8941//\r
8942\r
8943/**\r
8944 Retrieves the properties for 16-bit thunk functions.\r
8945\r
8946 Computes the size of the buffer and stack below 1MB required to use the\r
8947 AsmPrepareThunk16(), AsmThunk16() and AsmPrepareAndThunk16() functions. This\r
8948 buffer size is returned in RealModeBufferSize, and the stack size is returned\r
8949 in ExtraStackSize. If parameters are passed to the 16-bit real mode code,\r
8950 then the actual minimum stack size is ExtraStackSize plus the maximum number\r
8951 of bytes that need to be passed to the 16-bit real mode code.\r
8952\r
8953 If RealModeBufferSize is NULL, then ASSERT().\r
8954 If ExtraStackSize is NULL, then ASSERT().\r
8955\r
8956 @param RealModeBufferSize A pointer to the size of the buffer below 1MB\r
8957 required to use the 16-bit thunk functions.\r
8958 @param ExtraStackSize A pointer to the extra size of stack below 1MB\r
8959 that the 16-bit thunk functions require for\r
8960 temporary storage in the transition to and from\r
8961 16-bit real mode.\r
8962\r
8963**/\r
8964VOID\r
8965EFIAPI\r
8966AsmGetThunk16Properties (\r
8967 OUT UINT32 *RealModeBufferSize,\r
8968 OUT UINT32 *ExtraStackSize\r
8969 );\r
8970\r
8971\r
8972/**\r
8973 Prepares all structures a code required to use AsmThunk16().\r
8974\r
8975 Prepares all structures and code required to use AsmThunk16().\r
8976\r
8977 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
8978 virtual to physical mappings for ThunkContext.RealModeBuffer is mapped 1:1.\r
8979\r
8980 If ThunkContext is NULL, then ASSERT().\r
8981\r
8982 @param ThunkContext A pointer to the context structure that describes the\r
8983 16-bit real mode code to call.\r
8984\r
8985**/\r
8986VOID\r
8987EFIAPI\r
8988AsmPrepareThunk16 (\r
8989 IN OUT THUNK_CONTEXT *ThunkContext\r
8990 );\r
8991\r
8992\r
8993/**\r
8994 Transfers control to a 16-bit real mode entry point and returns the results.\r
8995\r
8996 Transfers control to a 16-bit real mode entry point and returns the results.\r
8997 AsmPrepareThunk16() must be called with ThunkContext before this function is used.\r
8998 This function must be called with interrupts disabled.\r
8999\r
9000 The register state from the RealModeState field of ThunkContext is restored just prior\r
9001 to calling the 16-bit real mode entry point. This includes the EFLAGS field of RealModeState,\r
9002 which is used to set the interrupt state when a 16-bit real mode entry point is called.\r
9003 Control is transferred to the 16-bit real mode entry point specified by the CS and Eip fields of RealModeState.\r
9004 The stack is initialized to the SS and ESP fields of RealModeState. Any parameters passed to\r
9005 the 16-bit real mode code must be populated by the caller at SS:ESP prior to calling this function.\r
9006 The 16-bit real mode entry point is invoked with a 16-bit CALL FAR instruction,\r
9007 so when accessing stack contents, the 16-bit real mode code must account for the 16-bit segment\r
9008 and 16-bit offset of the return address that were pushed onto the stack. The 16-bit real mode entry\r
9009 point must exit with a RETF instruction. The register state is captured into RealModeState immediately\r
9010 after the RETF instruction is executed.\r
9011\r
9012 If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts,\r
9013 or any of the 16-bit real mode code makes a SW interrupt, then the caller is responsible for making sure\r
9014 the IDT at address 0 is initialized to handle any HW or SW interrupts that may occur while in 16-bit real mode.\r
9015\r
9016 If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts,\r
9017 then the caller is responsible for making sure the 8259 PIC is in a state compatible with 16-bit real mode.\r
9018 This includes the base vectors, the interrupt masks, and the edge/level trigger mode.\r
9019\r
9020 If THUNK_ATTRIBUTE_BIG_REAL_MODE is set in the ThunkAttributes field of ThunkContext, then the user code\r
9021 is invoked in big real mode. Otherwise, the user code is invoked in 16-bit real mode with 64KB segment limits.\r
9022\r
9023 If neither THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 nor THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in\r
9024 ThunkAttributes, then it is assumed that the user code did not enable the A20 mask, and no attempt is made to\r
9025 disable the A20 mask.\r
9026\r
9027 If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is set and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is clear in\r
9028 ThunkAttributes, then attempt to use the INT 15 service to disable the A20 mask. If this INT 15 call fails,\r
9029 then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports.\r
9030\r
9031 If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is clear and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is set in\r
9032 ThunkAttributes, then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports.\r
9033\r
9034 If ThunkContext is NULL, then ASSERT().\r
9035 If AsmPrepareThunk16() was not previously called with ThunkContext, then ASSERT().\r
9036 If both THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in\r
9037 ThunkAttributes, then ASSERT().\r
9038\r
9039 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
9040 virtual to physical mappings for ThunkContext.RealModeBuffer are mapped 1:1.\r
9041\r
9042 @param ThunkContext A pointer to the context structure that describes the\r
9043 16-bit real mode code to call.\r
9044\r
9045**/\r
9046VOID\r
9047EFIAPI\r
9048AsmThunk16 (\r
9049 IN OUT THUNK_CONTEXT *ThunkContext\r
9050 );\r
9051\r
9052\r
9053/**\r
9054 Prepares all structures and code for a 16-bit real mode thunk, transfers\r
9055 control to a 16-bit real mode entry point, and returns the results.\r
9056\r
9057 Prepares all structures and code for a 16-bit real mode thunk, transfers\r
9058 control to a 16-bit real mode entry point, and returns the results. If the\r
9059 caller only need to perform a single 16-bit real mode thunk, then this\r
9060 service should be used. If the caller intends to make more than one 16-bit\r
9061 real mode thunk, then it is more efficient if AsmPrepareThunk16() is called\r
9062 once and AsmThunk16() can be called for each 16-bit real mode thunk.\r
9063\r
9064 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
9065 virtual to physical mappings for ThunkContext.RealModeBuffer is mapped 1:1.\r
9066\r
9067 See AsmPrepareThunk16() and AsmThunk16() for the detailed description and ASSERT() conditions.\r
9068\r
9069 @param ThunkContext A pointer to the context structure that describes the\r
9070 16-bit real mode code to call.\r
9071\r
9072**/\r
9073VOID\r
9074EFIAPI\r
9075AsmPrepareAndThunk16 (\r
9076 IN OUT THUNK_CONTEXT *ThunkContext\r
9077 );\r
9078\r
9079/**\r
9080 Generates a 16-bit random number through RDRAND instruction.\r
9081\r
9082 if Rand is NULL, then ASSERT().\r
9083\r
9084 @param[out] Rand Buffer pointer to store the random result.\r
9085\r
9086 @retval TRUE RDRAND call was successful.\r
9087 @retval FALSE Failed attempts to call RDRAND.\r
9088\r
9089 **/\r
9090BOOLEAN\r
9091EFIAPI\r
9092AsmRdRand16 (\r
9093 OUT UINT16 *Rand\r
9094 );\r
9095\r
9096/**\r
9097 Generates a 32-bit random number through RDRAND instruction.\r
9098\r
9099 if Rand is NULL, then ASSERT().\r
9100\r
9101 @param[out] Rand Buffer pointer to store the random result.\r
9102\r
9103 @retval TRUE RDRAND call was successful.\r
9104 @retval FALSE Failed attempts to call RDRAND.\r
9105\r
9106**/\r
9107BOOLEAN\r
9108EFIAPI\r
9109AsmRdRand32 (\r
9110 OUT UINT32 *Rand\r
9111 );\r
9112\r
9113/**\r
9114 Generates a 64-bit random number through RDRAND instruction.\r
9115\r
9116 if Rand is NULL, then ASSERT().\r
9117\r
9118 @param[out] Rand Buffer pointer to store the random result.\r
9119\r
9120 @retval TRUE RDRAND call was successful.\r
9121 @retval FALSE Failed attempts to call RDRAND.\r
9122\r
9123**/\r
9124BOOLEAN\r
9125EFIAPI\r
9126AsmRdRand64 (\r
9127 OUT UINT64 *Rand\r
9128 );\r
9129\r
9130/**\r
9131 Load given selector into TR register.\r
9132\r
9133 @param[in] Selector Task segment selector\r
9134**/\r
9135VOID\r
9136EFIAPI\r
9137AsmWriteTr (\r
9138 IN UINT16 Selector\r
9139 );\r
9140\r
9141/**\r
9142 Patch the immediate operand of an IA32 or X64 instruction such that the byte,\r
9143 word, dword or qword operand is encoded at the end of the instruction's\r
9144 binary representation.\r
9145\r
9146 This function should be used to update object code that was compiled with\r
9147 NASM from assembly source code. Example:\r
9148\r
9149 NASM source code:\r
9150\r
9151 mov eax, strict dword 0 ; the imm32 zero operand will be patched\r
9152 ASM_PFX(gPatchCr3):\r
9153 mov cr3, eax\r
9154\r
9155 C source code:\r
9156\r
9157 X86_ASSEMBLY_PATCH_LABEL gPatchCr3;\r
9158 PatchInstructionX86 (gPatchCr3, AsmReadCr3 (), 4);\r
9159\r
9160 @param[out] InstructionEnd Pointer right past the instruction to patch. The\r
9161 immediate operand to patch is expected to\r
9162 comprise the trailing bytes of the instruction.\r
9163 If InstructionEnd is closer to address 0 than\r
9164 ValueSize permits, then ASSERT().\r
9165\r
9166 @param[in] PatchValue The constant to write to the immediate operand.\r
9167 The caller is responsible for ensuring that\r
9168 PatchValue can be represented in the byte, word,\r
9169 dword or qword operand (as indicated through\r
9170 ValueSize); otherwise ASSERT().\r
9171\r
9172 @param[in] ValueSize The size of the operand in bytes; must be 1, 2,\r
9173 4, or 8. ASSERT() otherwise.\r
9174**/\r
9175VOID\r
9176EFIAPI\r
9177PatchInstructionX86 (\r
9178 OUT X86_ASSEMBLY_PATCH_LABEL *InstructionEnd,\r
9179 IN UINT64 PatchValue,\r
9180 IN UINTN ValueSize\r
9181 );\r
9182\r
9183#endif // defined (MDE_CPU_IA32) || defined (MDE_CPU_X64)\r
9184#endif // !defined (__BASE_LIB__)\r