
EDK II Standard Libraries - README Page 1

EDK II Standard Libraries
ReadMe

Alpha 3 Release

OVERVIEW

This document describes the EDK II specific aspects of installing, building, and using the
Standard C Library component of the EDK II Application Development Kit, EADK.

The EADK is comprised of three packages: AppPkg, StdLib, and StdLibPrivateInternalFiles.

AppPkg This package contains applications which demonstrate use of the Standard
C Library. These applications reside in AppPkg/Applications.

Enquire This is a program that determines many properties of the C compiler
and the target machine that Enquire is run on. The only changes
required to port this 1990s era Unix program to EDK II were the
addition of 8 pragmas to enquire.c in order to disable some Microsoft
VC++ specific warnings.

Hello This is a very simple EDK II native application that doesn’t use any
features of the Standard C Library.

Main This application is functionally identical to Hello, except that it uses
the Standard C Library to provide a main() entry point.

Python A port of the Python-2.7.1 interpreter for UEFI. This application is
disabled by default. Un-comment the line for PythonCore.inf in the
[Components] section of AppPkg.dsc to enable building Python.

StdLib The StdLib package contains the standard header files as well as
implementations of the standard libraries. Currently, the only standard
library provided is the Standard C Library, the implementation of which is
in the StdLib/LibC directory.

StdLibPrivateInternalFiles The contents of this package are for the exclusive use of the
library implementations in StdLib. Please do not use anything from this
package in your application or unexpected behavior may occur. This
package may be removed from a future release.

EDK II Standard Libraries - README Page 2

RELEASE NOTES

This Alpha release of the EADK has some restrictions, as described below.

1. Only the Microsoft VS2005 and VS2008, Intel C Compiler 10.1 (or later), GCC 4.3
(mingw32), GCC 4.4, and GCC 4.5 C compilers are supported for Ia32 or X64 CPU
architectures.

2. The target machine must be running EDK II based firmware with the EDK II HII present
and enabled.

3. The EADK has not been through Intel’s Quality Assurance process. This means that
specified standards compliance has not been validated, nor has it undergone formal
functionality testing.

4. Applications must be launched from within the EFI Shell.
5. All file paths must use the forward slash, ‘/’, as the separator character.
6. Absolute file paths may optionally be prefixed by a volume specifier such as “FS0:”. The

volume specifier is separated from the remainder of the path by a single colon ‘:’. The
volume specifier must be one of the Shell’s mapped volume names as shown by the
“map” command.

7. Absolute file paths that don’t begin with a volume specifier; e.g. paths that begin with
“/”, are relative to the currently selected volume.

8. The tmpfile(), and related, functions require that the current volume have a temporary
directory as specified in <paths.h>. Currently, this is “/Efi/Temp”.

9. There is a known issue with Console input hanging. Regular file I/O works fine.

The Standard C Library provided by this package is a “hosted” implementation conforming to
the ISO/IEC 9899-1990 C Language Standard with Addendum 1. This is commonly referred to
as the “C 95” specification.

The following instructions assume that you have an existing EDK II or UDK 2010 source tree
that has been configured to build with your tool chain. For convenience, it is assumed that your
EDK II source tree is located at C:\Source\Edk2.

INSTALLATION

The EADK is integrated within the EDK II source tree and is included with current EDK II
check-outs. If they are missing from your tree, they may be installed by extracting, downloading
or copying them to the root of your EDK II source tree. The three package directories should be
peers to the Conf, MdePkg, Nt32Pkg, etc. directories.

The Python 2.7.1 distribution must be downloaded from python.org before the Python
application can be built. Extracting Python-2.7.1.tgz into the AppPkg\Applications\Python
directory will produce a Python-2.7.1 directory containing the Python distribution. Python files
that had to be modified for EDK II are in the AppPkg\Applications\Python\PyMod-2.7.1
directory. These files need to be copied into the corresponding directories within Python-2.7.1.

There are some boiler-plate declarations and definitions that need to be copied into your
application’s INF and DSC build files. These are described in the CONFIGURATION section,
below.

http://www.python.org/�

EDK II Standard Libraries - README Page 3

BUILDING

It is not necessary to build the libraries separately from the target application(s). If the
application references the libraries, as described in USAGE, below; the required libraries will be
built as needed.

To build the applications included in AppPkg, one would execute the following commands
within the “Visual Studio Command Prompt” window:

> cd C:\Source\Edk2
> .\edksetup.bat
> build –a X64 –p AppPkg\AppPkg.dsc

This will produce the application executables: Enquire.efi, Hello.efi, and Main.efi in the
C:\Source\Edk2\Build\AppPkg\DEBUG_VS2008\X64 directory; with the
DEBUG_VS2008 component being replaced with the actual tool chain and build type you have
selected in Conf\Tools_def.txt. These executables can now be loaded onto the target platform
and executed.

If you examine the AppPkg.dsc file, you will notice that the StdLib package is referenced in
order to resolve the library classes comprising the Standard C Library. This, plus referencing
the StdLib package in your application’s .inf file is all that is needed to link your application to
the standard libraries.

USAGE

This implementation of the Standard C Library is comprised of 16 separate libraries in addition
to the standard header files. Nine of the libraries are associated with use of one of the standard
headers; thus, if the header is used in an application, it must be linked with the associated library.
Three libraries are used to provide the Console and File-system device abstractions. The
libraries and associated header files are described in the following table.

Library
Class Header File(s) Notes

LibC -- Use Always -- This library is always required.
LibCtype ctype.h, wctype.h Character classification and mapping
LibLocale locale.h Localization types, macros, and functions
LibMath math.h Mathematical functions, types, and macros
LibStdio stdio.h Standard Input and Output functions, types, and macros
LibStdLib stdlib.h General Utilities for numeric conversion, random num., etc.
LibString string.h String copying, concatenation, comparison, & search
LibSignal signal.h Functions and types for handling run-time conditions
LibTime time.h Time and Date types, macros, and functions
LibUefi sys/EfiSysCall.h Provides the UEFI system interface and “System Calls”
LibWchar wchar.h Extended multibyte and wide character utilities
LibNetUtil Network address and number manipulation utilities

DevConsole Automatically
provided

File I/O abstractions for the UEFI Console device. No need
to list this library class in your INF file(s).

EDK II Standard Libraries - README Page 4

Library
Class Header File(s) Notes

DevShell Add if desired File I/O abstractions using UEFI shell facilities. Add this to
the application’s main INF file if file-system access needed.

DevUtility -- Do Not Use -- Utility functions used by the Device abstractions

LibGdtoa -- Do Not Use --

This library is used internally and should not need to be
explicitly specified by an application. It must be defined as
one of the available library classes in the application’s DSC
file.

Table 1: Standard Libraries

These libraries must be fully described in the [LibraryClasses] section of the application
package’s DSC file. Then, each individual application needs to specify which libraries to link to
by specifying the Library Class, from the above table, in the [LibraryClasses] section of the
application’s INF file. The AppPkg.dsc, StdLib.dsc, and Enquire.inf files provide good examples
of this. More details are in the CONFIGURATION section, below.

Within the source files of the application, use of the Standard headers and library functions
follow standard C programming practices as formalized by ISO/IEC 9899:1990, with Addendum
1, (C 95) C language specification.

CONFIGURATION

DSC Files

All EDK II packages which build applications that use the standard libraries must include some
“boilerplate” text in the package’s .dsc file. The text can be copied from either AppPkg.dsc or
StdLib.dsc. Each affected section of the DSC file is described below.

 [LibraryClasses]
 #
 # Common Libraries
 #
 BaseLib|MdePkg/Library/BaseLib/BaseLib.inf
 BaseMemoryLib|MdePkg/Library/BaseMemoryLib/BaseMemoryLib.inf

 TimerLib|PerformancePkg/Library/DxeTscTimerLib/DxeTscTimerLib.inf
 # To run in an emulation environment, such as NT32, comment out
 # the TimerLib description above and un-comment the line below.
 # TimerLib| MdePkg/Library/BaseTimerLibNullTemplate/BaseTimerLibNullTemplate.inf

 #
 # C Standard Libraries
 #
 LibC|StdLib/LibC/LibC.inf
 LibStdLib|StdLib/LibC/StdLib/StdLib.inf
 LibString|StdLib/LibC/String/String.inf
 LibWchar|StdLib/LibC/Wchar/Wchar.inf
 LibCType|StdLib/LibC/Ctype/Ctype.inf
 LibTime|StdLib/LibC/Time/Time.inf
 LibStdio|StdLib/LibC/Stdio/Stdio.inf
 LibGdtoa|StdLib/LibC/gdtoa/gdtoa.inf
 LibLocale|StdLib/LibC/Locale/Locale.inf
 LibUefi|StdLib/LibC/Uefi/Uefi.inf
 LibMath|StdLib/LibC/Math/Math.inf
 LibSignal|StdLib/LibC/Signal/Signal.inf
 LibNetUtil|StdLib/LibC/LibGcc/LibGcc.inf

EDK II Standard Libraries - README Page 5

 # Libraries for device abstractions within the Standard C Library.
 # Applications should not directly access any functions defined
 # in these libraries.
 DevUtility|StdLib/LibC/Uefi/Devices/daUtility.inf
 DevConsole|StdLib/LibC/Uefi/Devices/daConsole.inf
 DevShell|StdLib/LibC/Uefi/Devices/daShell.inf

Figure 1: Library Class Descriptions

Descriptions of the Library Classes comprising the Standard Libraries must be included in your
application package’s DSC file, as shown in Figure 1, above.

The NULL TimerLib instance must be selected if you desire to run your application under an
emulation environment – unless there is a supported TimerLib for that environment. For
example, the InOsEmuPkg provides a DxeTimerLib which can be used for the TimerLib
instance. If that is the case, the changes described for emulation environments, in Figure 3:
Package Build Options, can be skipped.
 [Components]
 # BaseLib and BaseMemoryLib need to be built with the /GL- switch
 # when using the Microsoft tool chains. This is required so that
 # the library functions can be resolved during the second pass of
 # the linker during link-time-code-generation.
 #
 MdePkg/Library/BaseLib/BaseLib.inf {
 <BuildOptions>
 MSFT:*_*_*_CC_FLAGS = /X /Zc:wchar_t /GL-
 }
 MdePkg/Library/BaseMemoryLib/BaseMemoryLib.inf {
 <BuildOptions>
 MSFT:*_*_*_CC_FLAGS = /X /Zc:wchar_t /GL-
 }

Figure 2: Package Component Descriptions

The directives in Figure 2 will create instances of the BaseLib and BaseMemoryLib library
classes that are built with Link-time-Code-Generation disabled. This is necessary when using
the Microsoft tool chains in order to allow the library’s functions to be resolved during the
second pass of the linker during Link-Time-Code-Generation of the application.

 [BuildOptions]
 INTEL:*_*_IA32_CC_FLAGS = /Qfreestanding
 MSFT:*_*_IA32_CC_FLAGS = /X /Zc:wchar_t
 GCC:*_*_IA32_CC_FLAGS = /ffreestanding –nostdinc –nostdlib

 # The Build Options, below, are only used when building the C library
 # to be run under an emulation environment. The clock() system call
 # is modified to return -1 indicating that it is unsupported.
 # Just un-comment the lines below and select the correct
 # TimerLib instance, above.

 # INTEL:*_*_IA32_CC_FLAGS = /D NT32dvm
 # MSFT:*_*_IA32_CC_FLAGS = /D NT32dvm
 # GCC:*_*_IA32_CC_FLAGS = -DNT32dvm

Figure 3: Package Build Options

Each compiler assumes, by default, that it will be used with standard libraries and headers
provided by the compiler vendor. Many of these assumptions are incorrect for the UEFI
environment. By including a BuildOptions section, as shown in Figure 3, these assumptions can
be tailored for compatibility with UEFI and the EDK II Standard Libraries.

EDK II Standard Libraries - README Page 6

INF Files
The INF files for most modules will not require special directives in order to support the
Standard Libraries. The two cases which could occur are described below.

[LibraryClasses]
 UefiLib
 LibC
 LibString
 LibStdio
 DevShell

Figure 4: Module Library Classes

Modules of type UEFI_APPLICATION that perform file I/O should include library class
DevShell. Including this library class will allow file operations to be handled by the UEFI Shell.
Without this class, only Console I/O is permitted.

 [BuildOptions]
 INTEL:*_*_*_CC_FLAGS = /Qdiag-disable:181,186
 MSFT:*_*_*_CC_FLAGS = /Oi- /wd4018 /wd4131
 GCC:*_*_IPF_SYMRENAME_FLAGS = --redefine-syms=Rename.txt

Figure 5: Module Build Options

An application’s INF file may need to include a [BuildOptions] section specifying additional
compiler and linker flags necessary to allow the application to be built. Usually, this section is
not needed. When building code from external sources, though, it may be necessary to disable
some warnings or enable/disable some compiler features.

IMPLEMENTATION-Specific Features

It is very strongly recommended that applications not use the long or unsigned long types. The
size of this type varies between compilers and is one of the less portable aspects of C. Instead,
one should use the UEFI defined types whenever possible. Use of these types, listed below for
reference, ensures that the declared objects have unambiguous, explicitly declared, sizes and
characteristics.

UINT64 INT64 UINT32 INT32 UINT16 CHAR16
INT16 BOOLEAN UINT8 CHAR8 INT8
UINTN INTN PHYSICALADDRESS

There are similar types declared in sys/types.h and related files.

The types UINTN and INTN have the native width of the target processor architecture. Thus,
INTN on IA32 has a width of 32 bits while INTN on X64 and IPF has a width of 64 bits.

For maximum portability, data objects intended to hold addresses should be declared with type
intptr_t or uintptr_t. These types, declared in sys/stdint.h, can be used to create objects capable of
holding pointers. Note that these types will generate different sized objects on different processor
architectures. If a constant size across all processors and compilers is needed, use type
PHYSICAL_ADDRESS.

EDK II Standard Libraries - README Page 7

Though not specifically required by the ISO/IEC 9899 standard, this implementation of the
Standard C Library provides the following system calls which are declared in
sys/EfiSysCall.h.

close dup dup2 fcntl
fstat getcwd ioctl isatty
lseek lstat mkdir open
poll read rename rmdir
stat unlink write

The open function will accept file names of “stdin:”, “stdout:”, and “stderr:” which cause the
respective streams specified in the UEFI System Table to be opened. Normally, these are
associated with the console device. When the application is first started, these streams are
automatically opened on File Descriptors 0, 1, and 2 respectively.

