]> git.proxmox.com Git - mirror_edk2.git/blob - BaseTools/Source/C/GenFv/GenFvInternalLib.c
d86909b4df63e15df65eeabec1a4de3a35a0c9ba
[mirror_edk2.git] / BaseTools / Source / C / GenFv / GenFvInternalLib.c
1 /** @file
2
3 Copyright (c) 2004 - 2010, Intel Corporation. All rights reserved.<BR>
4 This program and the accompanying materials
5 are licensed and made available under the terms and conditions of the BSD License
6 which accompanies this distribution. The full text of the license may be found at
7 http://opensource.org/licenses/bsd-license.php
8
9 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
10 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
11
12 Module Name:
13
14 GenFvInternalLib.c
15
16 Abstract:
17
18 This file contains the internal functions required to generate a Firmware Volume.
19
20 **/
21
22 //
23 // Include files
24 //
25 #ifdef __GNUC__
26 #include <uuid/uuid.h>
27 #include <sys/stat.h>
28 #endif
29 #include <string.h>
30 #ifndef __GNUC__
31 #include <io.h>
32 #endif
33 #include <assert.h>
34
35 #include "GenFvInternalLib.h"
36 #include "FvLib.h"
37 #include "PeCoffLib.h"
38 #include "WinNtInclude.h"
39
40 BOOLEAN mArm = FALSE;
41 STATIC UINT32 MaxFfsAlignment = 0;
42
43 EFI_GUID mEfiFirmwareVolumeTopFileGuid = EFI_FFS_VOLUME_TOP_FILE_GUID;
44 EFI_GUID mFileGuidArray [MAX_NUMBER_OF_FILES_IN_FV];
45 EFI_GUID mZeroGuid = {0x0, 0x0, 0x0, {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}};
46 EFI_GUID mDefaultCapsuleGuid = {0x3B6686BD, 0x0D76, 0x4030, { 0xB7, 0x0E, 0xB5, 0x51, 0x9E, 0x2F, 0xC5, 0xA0 }};
47
48 CHAR8 *mFvbAttributeName[] = {
49 EFI_FVB2_READ_DISABLED_CAP_STRING,
50 EFI_FVB2_READ_ENABLED_CAP_STRING,
51 EFI_FVB2_READ_STATUS_STRING,
52 EFI_FVB2_WRITE_DISABLED_CAP_STRING,
53 EFI_FVB2_WRITE_ENABLED_CAP_STRING,
54 EFI_FVB2_WRITE_STATUS_STRING,
55 EFI_FVB2_LOCK_CAP_STRING,
56 EFI_FVB2_LOCK_STATUS_STRING,
57 NULL,
58 EFI_FVB2_STICKY_WRITE_STRING,
59 EFI_FVB2_MEMORY_MAPPED_STRING,
60 EFI_FVB2_ERASE_POLARITY_STRING,
61 EFI_FVB2_READ_LOCK_CAP_STRING,
62 EFI_FVB2_READ_LOCK_STATUS_STRING,
63 EFI_FVB2_WRITE_LOCK_CAP_STRING,
64 EFI_FVB2_WRITE_LOCK_STATUS_STRING
65 };
66
67 CHAR8 *mFvbAlignmentName[] = {
68 EFI_FVB2_ALIGNMENT_1_STRING,
69 EFI_FVB2_ALIGNMENT_2_STRING,
70 EFI_FVB2_ALIGNMENT_4_STRING,
71 EFI_FVB2_ALIGNMENT_8_STRING,
72 EFI_FVB2_ALIGNMENT_16_STRING,
73 EFI_FVB2_ALIGNMENT_32_STRING,
74 EFI_FVB2_ALIGNMENT_64_STRING,
75 EFI_FVB2_ALIGNMENT_128_STRING,
76 EFI_FVB2_ALIGNMENT_256_STRING,
77 EFI_FVB2_ALIGNMENT_512_STRING,
78 EFI_FVB2_ALIGNMENT_1K_STRING,
79 EFI_FVB2_ALIGNMENT_2K_STRING,
80 EFI_FVB2_ALIGNMENT_4K_STRING,
81 EFI_FVB2_ALIGNMENT_8K_STRING,
82 EFI_FVB2_ALIGNMENT_16K_STRING,
83 EFI_FVB2_ALIGNMENT_32K_STRING,
84 EFI_FVB2_ALIGNMENT_64K_STRING,
85 EFI_FVB2_ALIGNMENT_128K_STRING,
86 EFI_FVB2_ALIGNMENT_256K_STRING,
87 EFI_FVB2_ALIGNMNET_512K_STRING,
88 EFI_FVB2_ALIGNMENT_1M_STRING,
89 EFI_FVB2_ALIGNMENT_2M_STRING,
90 EFI_FVB2_ALIGNMENT_4M_STRING,
91 EFI_FVB2_ALIGNMENT_8M_STRING,
92 EFI_FVB2_ALIGNMENT_16M_STRING,
93 EFI_FVB2_ALIGNMENT_32M_STRING,
94 EFI_FVB2_ALIGNMENT_64M_STRING,
95 EFI_FVB2_ALIGNMENT_128M_STRING,
96 EFI_FVB2_ALIGNMENT_256M_STRING,
97 EFI_FVB2_ALIGNMENT_512M_STRING,
98 EFI_FVB2_ALIGNMENT_1G_STRING,
99 EFI_FVB2_ALIGNMENT_2G_STRING
100 };
101
102 //
103 // This data array will be located at the base of the Firmware Volume Header (FVH)
104 // in the boot block. It must not exceed 14 bytes of code. The last 2 bytes
105 // will be used to keep the FVH checksum consistent.
106 // This code will be run in response to a starutp IPI for HT-enabled systems.
107 //
108 #define SIZEOF_STARTUP_DATA_ARRAY 0x10
109
110 UINT8 m128kRecoveryStartupApDataArray[SIZEOF_STARTUP_DATA_ARRAY] = {
111 //
112 // EA D0 FF 00 F0 ; far jmp F000:FFD0
113 // 0, 0, 0, 0, 0, 0, 0, 0, 0, ; Reserved bytes
114 // 0, 0 ; Checksum Padding
115 //
116 0xEA,
117 0xD0,
118 0xFF,
119 0x0,
120 0xF0,
121 0x00,
122 0x00,
123 0x00,
124 0x00,
125 0x00,
126 0x00,
127 0x00,
128 0x00,
129 0x00,
130 0x00,
131 0x00
132 };
133
134 UINT8 m64kRecoveryStartupApDataArray[SIZEOF_STARTUP_DATA_ARRAY] = {
135 //
136 // EB CE ; jmp short ($-0x30)
137 // ; (from offset 0x0 to offset 0xFFD0)
138 // 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ; Reserved bytes
139 // 0, 0 ; Checksum Padding
140 //
141 0xEB,
142 0xCE,
143 0x00,
144 0x00,
145 0x00,
146 0x00,
147 0x00,
148 0x00,
149 0x00,
150 0x00,
151 0x00,
152 0x00,
153 0x00,
154 0x00,
155 0x00,
156 0x00
157 };
158
159 FV_INFO mFvDataInfo;
160 CAP_INFO mCapDataInfo;
161
162 EFI_PHYSICAL_ADDRESS mFvBaseAddress[0x10];
163 UINT32 mFvBaseAddressNumber = 0;
164
165 EFI_STATUS
166 ParseFvInf (
167 IN MEMORY_FILE *InfFile,
168 OUT FV_INFO *FvInfo
169 )
170 /*++
171
172 Routine Description:
173
174 This function parses a FV.INF file and copies info into a FV_INFO structure.
175
176 Arguments:
177
178 InfFile Memory file image.
179 FvInfo Information read from INF file.
180
181 Returns:
182
183 EFI_SUCCESS INF file information successfully retrieved.
184 EFI_ABORTED INF file has an invalid format.
185 EFI_NOT_FOUND A required string was not found in the INF file.
186 --*/
187 {
188 CHAR8 Value[_MAX_PATH];
189 UINT64 Value64;
190 UINTN Index;
191 UINTN Number;
192 EFI_STATUS Status;
193 EFI_GUID GuidValue;
194
195 //
196 // Read the FV base address
197 //
198 if (!mFvDataInfo.BaseAddressSet) {
199 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_FV_BASE_ADDRESS_STRING, 0, Value);
200 if (Status == EFI_SUCCESS) {
201 //
202 // Get the base address
203 //
204 Status = AsciiStringToUint64 (Value, FALSE, &Value64);
205 if (EFI_ERROR (Status)) {
206 Error (NULL, 0, 2000, "Invalid parameter", "%s = %s", EFI_FV_BASE_ADDRESS_STRING, Value);
207 return EFI_ABORTED;
208 }
209 DebugMsg (NULL, 0, 9, "rebase address", "%s = %s", EFI_FV_BASE_ADDRESS_STRING, Value);
210
211 FvInfo->BaseAddress = Value64;
212 }
213 }
214
215 //
216 // Read the FV File System Guid
217 //
218 if (!FvInfo->FvFileSystemGuidSet) {
219 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_FV_FILESYSTEMGUID_STRING, 0, Value);
220 if (Status == EFI_SUCCESS) {
221 //
222 // Get the guid value
223 //
224 Status = StringToGuid (Value, &GuidValue);
225 if (EFI_ERROR (Status)) {
226 Error (NULL, 0, 2000, "Invalid parameter", "%s = %s", EFI_FV_FILESYSTEMGUID_STRING, Value);
227 return EFI_ABORTED;
228 }
229 memcpy (&FvInfo->FvFileSystemGuid, &GuidValue, sizeof (EFI_GUID));
230 FvInfo->FvFileSystemGuidSet = TRUE;
231 }
232 }
233
234 //
235 // Read the FV Extension Header File Name
236 //
237 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FV_EXT_HEADER_FILE_NAME, 0, Value);
238 if (Status == EFI_SUCCESS) {
239 strcpy (FvInfo->FvExtHeaderFile, Value);
240 }
241
242 //
243 // Read the FV file name
244 //
245 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_FV_FILE_NAME_STRING, 0, Value);
246 if (Status == EFI_SUCCESS) {
247 //
248 // copy the file name
249 //
250 strcpy (FvInfo->FvName, Value);
251 }
252
253 //
254 // Read Fv Attribute
255 //
256 for (Index = 0; Index < sizeof (mFvbAttributeName)/sizeof (CHAR8 *); Index ++) {
257 if ((mFvbAttributeName [Index] != NULL) && \
258 (FindToken (InfFile, ATTRIBUTES_SECTION_STRING, mFvbAttributeName [Index], 0, Value) == EFI_SUCCESS)) {
259 if ((strcmp (Value, TRUE_STRING) == 0) || (strcmp (Value, ONE_STRING) == 0)) {
260 FvInfo->FvAttributes |= 1 << Index;
261 } else if ((strcmp (Value, FALSE_STRING) != 0) && (strcmp (Value, ZERO_STRING) != 0)) {
262 Error (NULL, 0, 2000, "Invalid parameter", "%s expected %s | %s", mFvbAttributeName [Index], TRUE_STRING, FALSE_STRING);
263 return EFI_ABORTED;
264 }
265 }
266 }
267
268 //
269 // Read Fv Alignment
270 //
271 for (Index = 0; Index < sizeof (mFvbAlignmentName)/sizeof (CHAR8 *); Index ++) {
272 if (FindToken (InfFile, ATTRIBUTES_SECTION_STRING, mFvbAlignmentName [Index], 0, Value) == EFI_SUCCESS) {
273 if (strcmp (Value, TRUE_STRING) == 0) {
274 FvInfo->FvAttributes |= Index << 16;
275 DebugMsg (NULL, 0, 9, "FV file alignment", "Align = %s", mFvbAlignmentName [Index]);
276 break;
277 }
278 }
279 }
280
281 //
282 // Read block maps
283 //
284 for (Index = 0; Index < MAX_NUMBER_OF_FV_BLOCKS; Index++) {
285 if (FvInfo->FvBlocks[Index].Length == 0) {
286 //
287 // Read block size
288 //
289 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_BLOCK_SIZE_STRING, Index, Value);
290
291 if (Status == EFI_SUCCESS) {
292 //
293 // Update the size of block
294 //
295 Status = AsciiStringToUint64 (Value, FALSE, &Value64);
296 if (EFI_ERROR (Status)) {
297 Error (NULL, 0, 2000, "Invalid parameter", "%s = %s", EFI_BLOCK_SIZE_STRING, Value);
298 return EFI_ABORTED;
299 }
300
301 FvInfo->FvBlocks[Index].Length = (UINT32) Value64;
302 DebugMsg (NULL, 0, 9, "FV Block Size", "%s = %s", EFI_BLOCK_SIZE_STRING, Value);
303 } else {
304 //
305 // If there is no blocks size, but there is the number of block, then we have a mismatched pair
306 // and should return an error.
307 //
308 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_NUM_BLOCKS_STRING, Index, Value);
309 if (!EFI_ERROR (Status)) {
310 Error (NULL, 0, 2000, "Invalid parameter", "both %s and %s must be specified.", EFI_NUM_BLOCKS_STRING, EFI_BLOCK_SIZE_STRING);
311 return EFI_ABORTED;
312 } else {
313 //
314 // We are done
315 //
316 break;
317 }
318 }
319
320 //
321 // Read blocks number
322 //
323 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_NUM_BLOCKS_STRING, Index, Value);
324
325 if (Status == EFI_SUCCESS) {
326 //
327 // Update the number of blocks
328 //
329 Status = AsciiStringToUint64 (Value, FALSE, &Value64);
330 if (EFI_ERROR (Status)) {
331 Error (NULL, 0, 2000, "Invalid parameter", "%s = %s", EFI_NUM_BLOCKS_STRING, Value);
332 return EFI_ABORTED;
333 }
334
335 FvInfo->FvBlocks[Index].NumBlocks = (UINT32) Value64;
336 DebugMsg (NULL, 0, 9, "FV Block Number", "%s = %s", EFI_NUM_BLOCKS_STRING, Value);
337 }
338 }
339 }
340
341 if (Index == 0) {
342 Error (NULL, 0, 2001, "Missing required argument", "block size.");
343 return EFI_ABORTED;
344 }
345
346 //
347 // Read files
348 //
349 Number = 0;
350 for (Number = 0; Number < MAX_NUMBER_OF_FILES_IN_FV; Number ++) {
351 if (FvInfo->FvFiles[Number][0] == '\0') {
352 break;
353 }
354 }
355
356 for (Index = 0; Index < MAX_NUMBER_OF_FILES_IN_FV; Index++) {
357 //
358 // Read the FFS file list
359 //
360 Status = FindToken (InfFile, FILES_SECTION_STRING, EFI_FILE_NAME_STRING, Index, Value);
361
362 if (Status == EFI_SUCCESS) {
363 //
364 // Add the file
365 //
366 strcpy (FvInfo->FvFiles[Number + Index], Value);
367 DebugMsg (NULL, 0, 9, "FV component file", "the %uth name is %s", (unsigned) Index, Value);
368 } else {
369 break;
370 }
371 }
372
373 if ((Index + Number) == 0) {
374 Warning (NULL, 0, 0, "FV components are not specified.", NULL);
375 }
376
377 return EFI_SUCCESS;
378 }
379
380 VOID
381 UpdateFfsFileState (
382 IN EFI_FFS_FILE_HEADER *FfsFile,
383 IN EFI_FIRMWARE_VOLUME_HEADER *FvHeader
384 )
385 /*++
386
387 Routine Description:
388
389 This function changes the FFS file attributes based on the erase polarity
390 of the FV. Update the reserved bits of State to EFI_FVB2_ERASE_POLARITY.
391
392 Arguments:
393
394 FfsFile File header.
395 FvHeader FV header.
396
397 Returns:
398
399 None
400
401 --*/
402 {
403 if (FvHeader->Attributes & EFI_FVB2_ERASE_POLARITY) {
404 FfsFile->State = (UINT8)~(FfsFile->State);
405 // FfsFile->State |= ~(UINT8) EFI_FILE_ALL_STATE_BITS;
406 }
407 }
408
409 EFI_STATUS
410 ReadFfsAlignment (
411 IN EFI_FFS_FILE_HEADER *FfsFile,
412 IN OUT UINT32 *Alignment
413 )
414 /*++
415
416 Routine Description:
417
418 This function determines the alignment of the FFS input file from the file
419 attributes.
420
421 Arguments:
422
423 FfsFile FFS file to parse
424 Alignment The minimum required alignment offset of the FFS file
425
426 Returns:
427
428 EFI_SUCCESS The function completed successfully.
429 EFI_INVALID_PARAMETER One of the input parameters was invalid.
430 EFI_ABORTED An error occurred.
431
432 --*/
433 {
434 //
435 // Verify input parameters.
436 //
437 if (FfsFile == NULL || Alignment == NULL) {
438 return EFI_INVALID_PARAMETER;
439 }
440
441 switch ((FfsFile->Attributes >> 3) & 0x07) {
442
443 case 0:
444 //
445 // 8 byte alignment, mini alignment requirement for FFS file.
446 //
447 *Alignment = 3;
448 break;
449
450 case 1:
451 //
452 // 16 byte alignment
453 //
454 *Alignment = 4;
455 break;
456
457 case 2:
458 //
459 // 128 byte alignment
460 //
461 *Alignment = 7;
462 break;
463
464 case 3:
465 //
466 // 512 byte alignment
467 //
468 *Alignment = 9;
469 break;
470
471 case 4:
472 //
473 // 1K byte alignment
474 //
475 *Alignment = 10;
476 break;
477
478 case 5:
479 //
480 // 4K byte alignment
481 //
482 *Alignment = 12;
483 break;
484
485 case 6:
486 //
487 // 32K byte alignment
488 //
489 *Alignment = 15;
490 break;
491
492 case 7:
493 //
494 // 64K byte alignment
495 //
496 *Alignment = 16;
497 break;
498
499 default:
500 break;
501 }
502
503 return EFI_SUCCESS;
504 }
505
506 EFI_STATUS
507 AddPadFile (
508 IN OUT MEMORY_FILE *FvImage,
509 IN UINT32 DataAlignment,
510 IN VOID *FvEnd,
511 IN EFI_FIRMWARE_VOLUME_EXT_HEADER *ExtHeader
512 )
513 /*++
514
515 Routine Description:
516
517 This function adds a pad file to the FV image if it required to align the
518 data of the next file.
519
520 Arguments:
521
522 FvImage The memory image of the FV to add it to.
523 The current offset must be valid.
524 DataAlignment The data alignment of the next FFS file.
525 FvEnd End of the empty data in FvImage.
526 ExtHeader PI FvExtHeader Optional
527
528 Returns:
529
530 EFI_SUCCESS The function completed successfully.
531 EFI_INVALID_PARAMETER One of the input parameters was invalid.
532 EFI_OUT_OF_RESOURCES Insufficient resources exist in the FV to complete
533 the pad file add.
534
535 --*/
536 {
537 EFI_FFS_FILE_HEADER *PadFile;
538 UINTN PadFileSize;
539
540 //
541 // Verify input parameters.
542 //
543 if (FvImage == NULL) {
544 return EFI_INVALID_PARAMETER;
545 }
546
547 //
548 // Check if a pad file is necessary
549 //
550 if ((ExtHeader == NULL) && (((UINTN) FvImage->CurrentFilePointer - (UINTN) FvImage->FileImage + sizeof (EFI_FFS_FILE_HEADER)) % DataAlignment == 0)) {
551 return EFI_SUCCESS;
552 }
553
554 //
555 // Calculate the pad file size
556 //
557 //
558 // This is the earliest possible valid offset (current plus pad file header
559 // plus the next file header)
560 //
561 PadFileSize = (UINTN) FvImage->CurrentFilePointer - (UINTN) FvImage->FileImage + (sizeof (EFI_FFS_FILE_HEADER) * 2);
562
563 //
564 // Add whatever it takes to get to the next aligned address
565 //
566 while ((PadFileSize % DataAlignment) != 0) {
567 PadFileSize++;
568 }
569 //
570 // Subtract the next file header size
571 //
572 PadFileSize -= sizeof (EFI_FFS_FILE_HEADER);
573
574 //
575 // Subtract the starting offset to get size
576 //
577 PadFileSize -= (UINTN) FvImage->CurrentFilePointer - (UINTN) FvImage->FileImage;
578
579 //
580 // Append extension header size
581 //
582 if (ExtHeader != NULL) {
583 PadFileSize = PadFileSize + ExtHeader->ExtHeaderSize;
584 }
585
586 //
587 // Verify that we have enough space for the file header
588 //
589 if (((UINTN) FvImage->CurrentFilePointer + PadFileSize) > (UINTN) FvEnd) {
590 return EFI_OUT_OF_RESOURCES;
591 }
592
593 //
594 // Write pad file header
595 //
596 PadFile = (EFI_FFS_FILE_HEADER *) FvImage->CurrentFilePointer;
597
598 //
599 // Write PadFile FFS header with PadType, don't need to set PAD file guid in its header.
600 //
601 PadFile->Type = EFI_FV_FILETYPE_FFS_PAD;
602 PadFile->Attributes = 0;
603
604 //
605 // Write pad file size (calculated size minus next file header size)
606 //
607 PadFile->Size[0] = (UINT8) (PadFileSize & 0xFF);
608 PadFile->Size[1] = (UINT8) ((PadFileSize >> 8) & 0xFF);
609 PadFile->Size[2] = (UINT8) ((PadFileSize >> 16) & 0xFF);
610
611 //
612 // Fill in checksums and state, they must be 0 for checksumming.
613 //
614 PadFile->IntegrityCheck.Checksum.Header = 0;
615 PadFile->IntegrityCheck.Checksum.File = 0;
616 PadFile->State = 0;
617 PadFile->IntegrityCheck.Checksum.Header = CalculateChecksum8 ((UINT8 *) PadFile, sizeof (EFI_FFS_FILE_HEADER));
618 PadFile->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
619
620 PadFile->State = EFI_FILE_HEADER_CONSTRUCTION | EFI_FILE_HEADER_VALID | EFI_FILE_DATA_VALID;
621 UpdateFfsFileState (
622 (EFI_FFS_FILE_HEADER *) PadFile,
623 (EFI_FIRMWARE_VOLUME_HEADER *) FvImage->FileImage
624 );
625
626 //
627 // Update the current FV pointer
628 //
629 FvImage->CurrentFilePointer += PadFileSize;
630
631 if (ExtHeader != NULL) {
632 //
633 // Copy Fv Extension Header and Set Fv Extension header offset
634 //
635 memcpy (PadFile + 1, ExtHeader, ExtHeader->ExtHeaderSize);
636 ((EFI_FIRMWARE_VOLUME_HEADER *) FvImage->FileImage)->ExtHeaderOffset = (UINT16) ((UINTN) (PadFile + 1) - (UINTN) FvImage->FileImage);
637 //
638 // Make next file start at QWord Boundry
639 //
640 while (((UINTN) FvImage->CurrentFilePointer & (EFI_FFS_FILE_HEADER_ALIGNMENT - 1)) != 0) {
641 FvImage->CurrentFilePointer++;
642 }
643 }
644
645 return EFI_SUCCESS;
646 }
647
648 BOOLEAN
649 IsVtfFile (
650 IN EFI_FFS_FILE_HEADER *FileBuffer
651 )
652 /*++
653
654 Routine Description:
655
656 This function checks the header to validate if it is a VTF file
657
658 Arguments:
659
660 FileBuffer Buffer in which content of a file has been read.
661
662 Returns:
663
664 TRUE If this is a VTF file
665 FALSE If this is not a VTF file
666
667 --*/
668 {
669 if (!memcmp (&FileBuffer->Name, &mEfiFirmwareVolumeTopFileGuid, sizeof (EFI_GUID))) {
670 return TRUE;
671 } else {
672 return FALSE;
673 }
674 }
675
676 EFI_STATUS
677 WriteMapFile (
678 IN OUT FILE *FvMapFile,
679 IN CHAR8 *FileName,
680 IN EFI_FFS_FILE_HEADER *FfsFile,
681 IN EFI_PHYSICAL_ADDRESS ImageBaseAddress,
682 IN PE_COFF_LOADER_IMAGE_CONTEXT *pImageContext
683 )
684 /*++
685
686 Routine Description:
687
688 This function gets the basic debug information (entrypoint, baseaddress, .text, .data section base address)
689 from PE/COFF image and abstracts Pe Map file information and add them into FvMap file for Debug.
690
691 Arguments:
692
693 FvMapFile A pointer to FvMap File
694 FileName Ffs File PathName
695 FfsFile A pointer to Ffs file image.
696 ImageBaseAddress PeImage Base Address.
697 pImageContext Image Context Information.
698
699 Returns:
700
701 EFI_SUCCESS Added required map information.
702
703 --*/
704 {
705 CHAR8 PeMapFileName [_MAX_PATH];
706 CHAR8 *Cptr, *Cptr2;
707 CHAR8 FileGuidName [MAX_LINE_LEN];
708 FILE *PeMapFile;
709 CHAR8 Line [MAX_LINE_LEN];
710 CHAR8 KeyWord [MAX_LINE_LEN];
711 CHAR8 FunctionName [MAX_LINE_LEN];
712 EFI_PHYSICAL_ADDRESS FunctionAddress;
713 UINT32 FunctionType;
714 CHAR8 FunctionTypeName [MAX_LINE_LEN];
715 UINT32 Index;
716 UINT32 AddressOfEntryPoint;
717 UINT32 Offset;
718 EFI_IMAGE_OPTIONAL_HEADER_UNION *ImgHdr;
719 EFI_TE_IMAGE_HEADER *TEImageHeader;
720 EFI_IMAGE_SECTION_HEADER *SectionHeader;
721 unsigned long long TempLongAddress;
722 UINT32 TextVirtualAddress;
723 UINT32 DataVirtualAddress;
724 EFI_PHYSICAL_ADDRESS LinkTimeBaseAddress;
725
726 //
727 // Init local variable
728 //
729 FunctionType = 0;
730 //
731 // Print FileGuid to string buffer.
732 //
733 PrintGuidToBuffer (&FfsFile->Name, (UINT8 *)FileGuidName, MAX_LINE_LEN, TRUE);
734
735 //
736 // Construct Map file Name
737 //
738 strcpy (PeMapFileName, FileName);
739
740 //
741 // Change '\\' to '/', unified path format.
742 //
743 Cptr = PeMapFileName;
744 while (*Cptr != '\0') {
745 if (*Cptr == '\\') {
746 *Cptr = FILE_SEP_CHAR;
747 }
748 Cptr ++;
749 }
750
751 //
752 // Get Map file
753 //
754 Cptr = PeMapFileName + strlen (PeMapFileName);
755 while ((*Cptr != '.') && (Cptr >= PeMapFileName)) {
756 Cptr --;
757 }
758 if (Cptr < PeMapFileName) {
759 return EFI_NOT_FOUND;
760 } else {
761 *(Cptr + 1) = 'm';
762 *(Cptr + 2) = 'a';
763 *(Cptr + 3) = 'p';
764 *(Cptr + 4) = '\0';
765 }
766
767 //
768 // Get module Name
769 //
770 Cptr2 = Cptr;
771 while ((*Cptr != FILE_SEP_CHAR) && (Cptr >= PeMapFileName)) {
772 Cptr --;
773 }
774 *Cptr2 = '\0';
775 strcpy (KeyWord, Cptr + 1);
776 *Cptr2 = '.';
777
778 //
779 // AddressOfEntryPoint and Offset in Image
780 //
781 if (!pImageContext->IsTeImage) {
782 ImgHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *) ((UINT8 *) pImageContext->Handle + pImageContext->PeCoffHeaderOffset);
783 AddressOfEntryPoint = ImgHdr->Pe32.OptionalHeader.AddressOfEntryPoint;
784 Offset = 0;
785 SectionHeader = (EFI_IMAGE_SECTION_HEADER *) (
786 (UINT8 *) ImgHdr +
787 sizeof (UINT32) +
788 sizeof (EFI_IMAGE_FILE_HEADER) +
789 ImgHdr->Pe32.FileHeader.SizeOfOptionalHeader
790 );
791 Index = ImgHdr->Pe32.FileHeader.NumberOfSections;
792 } else {
793 TEImageHeader = (EFI_TE_IMAGE_HEADER *) pImageContext->Handle;
794 AddressOfEntryPoint = TEImageHeader->AddressOfEntryPoint;
795 Offset = TEImageHeader->StrippedSize - sizeof (EFI_TE_IMAGE_HEADER);
796 SectionHeader = (EFI_IMAGE_SECTION_HEADER *) (TEImageHeader + 1);
797 Index = TEImageHeader->NumberOfSections;
798 }
799
800 //
801 // module information output
802 //
803 if (ImageBaseAddress == 0) {
804 fprintf (FvMapFile, "%s (dummy) (", KeyWord);
805 fprintf (FvMapFile, "BaseAddress=%010llx, ", (unsigned long long) ImageBaseAddress);
806 } else {
807 fprintf (FvMapFile, "%s (Fixed Flash Address, ", KeyWord);
808 fprintf (FvMapFile, "BaseAddress=0x%010llx, ", (unsigned long long) (ImageBaseAddress + Offset));
809 }
810
811 if (FfsFile->Type != EFI_FV_FILETYPE_SECURITY_CORE && pImageContext->Machine == EFI_IMAGE_MACHINE_IA64) {
812 //
813 // Process IPF PLABEL to get the real address after the image has been rebased.
814 // PLABEL structure is got by AddressOfEntryPoint offset to ImageBuffer stored in pImageContext->Handle.
815 //
816 fprintf (FvMapFile, "EntryPoint=0x%010llx", (unsigned long long) (*(UINT64 *)((UINTN) pImageContext->Handle + (UINTN) AddressOfEntryPoint)));
817 } else {
818 fprintf (FvMapFile, "EntryPoint=0x%010llx", (unsigned long long) (ImageBaseAddress + AddressOfEntryPoint));
819 }
820 fprintf (FvMapFile, ")\n");
821
822 fprintf (FvMapFile, "(GUID=%s", FileGuidName);
823 TextVirtualAddress = 0;
824 DataVirtualAddress = 0;
825 for (; Index > 0; Index --, SectionHeader ++) {
826 if (stricmp ((CHAR8 *)SectionHeader->Name, ".text") == 0) {
827 TextVirtualAddress = SectionHeader->VirtualAddress;
828 } else if (stricmp ((CHAR8 *)SectionHeader->Name, ".data") == 0) {
829 DataVirtualAddress = SectionHeader->VirtualAddress;
830 } else if (stricmp ((CHAR8 *)SectionHeader->Name, ".sdata") == 0) {
831 DataVirtualAddress = SectionHeader->VirtualAddress;
832 }
833 }
834 fprintf (FvMapFile, " .textbaseaddress=0x%010llx", (unsigned long long) (ImageBaseAddress + TextVirtualAddress));
835 fprintf (FvMapFile, " .databaseaddress=0x%010llx", (unsigned long long) (ImageBaseAddress + DataVirtualAddress));
836 fprintf (FvMapFile, ")\n\n");
837
838 //
839 // Open PeMapFile
840 //
841 PeMapFile = fopen (PeMapFileName, "r");
842 if (PeMapFile == NULL) {
843 // fprintf (stdout, "can't open %s file to reading\n", PeMapFileName);
844 return EFI_ABORTED;
845 }
846 VerboseMsg ("The map file is %s", PeMapFileName);
847
848 //
849 // Output Functions information into Fv Map file
850 //
851 LinkTimeBaseAddress = 0;
852 while (fgets (Line, MAX_LINE_LEN, PeMapFile) != NULL) {
853 //
854 // Skip blank line
855 //
856 if (Line[0] == 0x0a) {
857 FunctionType = 0;
858 continue;
859 }
860 //
861 // By Address and Static keyword
862 //
863 if (FunctionType == 0) {
864 sscanf (Line, "%s", KeyWord);
865 if (stricmp (KeyWord, "Address") == 0) {
866 //
867 // function list
868 //
869 FunctionType = 1;
870 fgets (Line, MAX_LINE_LEN, PeMapFile);
871 } else if (stricmp (KeyWord, "Static") == 0) {
872 //
873 // static function list
874 //
875 FunctionType = 2;
876 fgets (Line, MAX_LINE_LEN, PeMapFile);
877 } else if (stricmp (KeyWord, "Preferred") ==0) {
878 sscanf (Line + strlen (" Preferred load address is"), "%llx", &TempLongAddress);
879 LinkTimeBaseAddress = (UINT64) TempLongAddress;
880 }
881 continue;
882 }
883 //
884 // Printf Function Information
885 //
886 if (FunctionType == 1) {
887 sscanf (Line, "%s %s %llx %s", KeyWord, FunctionName, &TempLongAddress, FunctionTypeName);
888 FunctionAddress = (UINT64) TempLongAddress;
889 if (FunctionTypeName [1] == '\0' && (FunctionTypeName [0] == 'f' || FunctionTypeName [0] == 'F')) {
890 fprintf (FvMapFile, " 0x%010llx ", (unsigned long long) (ImageBaseAddress + FunctionAddress - LinkTimeBaseAddress));
891 fprintf (FvMapFile, "%s\n", FunctionName);
892 }
893 } else if (FunctionType == 2) {
894 sscanf (Line, "%s %s %llx %s", KeyWord, FunctionName, &TempLongAddress, FunctionTypeName);
895 FunctionAddress = (UINT64) TempLongAddress;
896 if (FunctionTypeName [1] == '\0' && (FunctionTypeName [0] == 'f' || FunctionTypeName [0] == 'F')) {
897 fprintf (FvMapFile, " 0x%010llx ", (unsigned long long) (ImageBaseAddress + FunctionAddress - LinkTimeBaseAddress));
898 fprintf (FvMapFile, "%s\n", FunctionName);
899 }
900 }
901 }
902 //
903 // Close PeMap file
904 //
905 fprintf (FvMapFile, "\n\n");
906 fclose (PeMapFile);
907
908 return EFI_SUCCESS;
909 }
910
911 EFI_STATUS
912 AddFile (
913 IN OUT MEMORY_FILE *FvImage,
914 IN FV_INFO *FvInfo,
915 IN UINTN Index,
916 IN OUT EFI_FFS_FILE_HEADER **VtfFileImage,
917 IN FILE *FvMapFile,
918 IN FILE *FvReportFile
919 )
920 /*++
921
922 Routine Description:
923
924 This function adds a file to the FV image. The file will pad to the
925 appropriate alignment if required.
926
927 Arguments:
928
929 FvImage The memory image of the FV to add it to. The current offset
930 must be valid.
931 FvInfo Pointer to information about the FV.
932 Index The file in the FvInfo file list to add.
933 VtfFileImage A pointer to the VTF file within the FvImage. If this is equal
934 to the end of the FvImage then no VTF previously found.
935 FvMapFile Pointer to FvMap File
936 FvReportFile Pointer to FvReport File
937
938 Returns:
939
940 EFI_SUCCESS The function completed successfully.
941 EFI_INVALID_PARAMETER One of the input parameters was invalid.
942 EFI_ABORTED An error occurred.
943 EFI_OUT_OF_RESOURCES Insufficient resources exist to complete the add.
944
945 --*/
946 {
947 FILE *NewFile;
948 UINTN FileSize;
949 UINT8 *FileBuffer;
950 UINTN NumBytesRead;
951 UINT32 CurrentFileAlignment;
952 EFI_STATUS Status;
953 UINTN Index1;
954 UINT8 FileGuidString[PRINTED_GUID_BUFFER_SIZE];
955
956 Index1 = 0;
957 //
958 // Verify input parameters.
959 //
960 if (FvImage == NULL || FvInfo == NULL || FvInfo->FvFiles[Index][0] == 0 || VtfFileImage == NULL) {
961 return EFI_INVALID_PARAMETER;
962 }
963
964 //
965 // Read the file to add
966 //
967 NewFile = fopen (FvInfo->FvFiles[Index], "rb");
968
969 if (NewFile == NULL) {
970 Error (NULL, 0, 0001, "Error opening file", FvInfo->FvFiles[Index]);
971 return EFI_ABORTED;
972 }
973
974 //
975 // Get the file size
976 //
977 FileSize = _filelength (fileno (NewFile));
978
979 //
980 // Read the file into a buffer
981 //
982 FileBuffer = malloc (FileSize);
983 if (FileBuffer == NULL) {
984 Error (NULL, 0, 4001, "Resouce", "memory cannot be allocated!");
985 return EFI_OUT_OF_RESOURCES;
986 }
987
988 NumBytesRead = fread (FileBuffer, sizeof (UINT8), FileSize, NewFile);
989
990 //
991 // Done with the file, from this point on we will just use the buffer read.
992 //
993 fclose (NewFile);
994
995 //
996 // Verify read successful
997 //
998 if (NumBytesRead != sizeof (UINT8) * FileSize) {
999 free (FileBuffer);
1000 Error (NULL, 0, 0004, "Error reading file", FvInfo->FvFiles[Index]);
1001 return EFI_ABORTED;
1002 }
1003
1004 //
1005 // For None PI Ffs file, directly add them into FvImage.
1006 //
1007 if (!FvInfo->IsPiFvImage) {
1008 memcpy (FvImage->CurrentFilePointer, FileBuffer, FileSize);
1009 if (FvInfo->SizeofFvFiles[Index] > FileSize) {
1010 FvImage->CurrentFilePointer += FvInfo->SizeofFvFiles[Index];
1011 } else {
1012 FvImage->CurrentFilePointer += FileSize;
1013 }
1014 goto Done;
1015 }
1016
1017 //
1018 // Verify Ffs file
1019 //
1020 Status = VerifyFfsFile ((EFI_FFS_FILE_HEADER *)FileBuffer);
1021 if (EFI_ERROR (Status)) {
1022 free (FileBuffer);
1023 Error (NULL, 0, 3000, "Invalid", "%s is a FFS file.", FvInfo->FvFiles[Index]);
1024 return EFI_INVALID_PARAMETER;
1025 }
1026
1027 //
1028 // Verify space exists to add the file
1029 //
1030 if (FileSize > (UINTN) ((UINTN) *VtfFileImage - (UINTN) FvImage->CurrentFilePointer)) {
1031 free (FileBuffer);
1032 Error (NULL, 0, 4002, "Resource", "FV space is full, not enough room to add file %s.", FvInfo->FvFiles[Index]);
1033 return EFI_OUT_OF_RESOURCES;
1034 }
1035
1036 //
1037 // Verify the input file is the duplicated file in this Fv image
1038 //
1039 for (Index1 = 0; Index1 < Index; Index1 ++) {
1040 if (CompareGuid ((EFI_GUID *) FileBuffer, &mFileGuidArray [Index1]) == 0) {
1041 Error (NULL, 0, 2000, "Invalid parameter", "the %dth file and %uth file have the same file GUID.", (unsigned) Index1 + 1, (unsigned) Index + 1);
1042 PrintGuid ((EFI_GUID *) FileBuffer);
1043 return EFI_INVALID_PARAMETER;
1044 }
1045 }
1046 CopyMem (&mFileGuidArray [Index], FileBuffer, sizeof (EFI_GUID));
1047
1048 //
1049 // Update the file state based on polarity of the FV.
1050 //
1051 UpdateFfsFileState (
1052 (EFI_FFS_FILE_HEADER *) FileBuffer,
1053 (EFI_FIRMWARE_VOLUME_HEADER *) FvImage->FileImage
1054 );
1055
1056 //
1057 // Check if alignment is required
1058 //
1059 ReadFfsAlignment ((EFI_FFS_FILE_HEADER *) FileBuffer, &CurrentFileAlignment);
1060
1061 //
1062 // Find the largest alignment of all the FFS files in the FV
1063 //
1064 if (CurrentFileAlignment > MaxFfsAlignment) {
1065 MaxFfsAlignment = CurrentFileAlignment;
1066 }
1067 //
1068 // If we have a VTF file, add it at the top.
1069 //
1070 if (IsVtfFile ((EFI_FFS_FILE_HEADER *) FileBuffer)) {
1071 if ((UINTN) *VtfFileImage == (UINTN) FvImage->Eof) {
1072 //
1073 // No previous VTF, add this one.
1074 //
1075 *VtfFileImage = (EFI_FFS_FILE_HEADER *) (UINTN) ((UINTN) FvImage->FileImage + FvInfo->Size - FileSize);
1076 //
1077 // Sanity check. The file MUST align appropriately
1078 //
1079 if (((UINTN) *VtfFileImage + sizeof (EFI_FFS_FILE_HEADER) - (UINTN) FvImage->FileImage) % (1 << CurrentFileAlignment)) {
1080 Error (NULL, 0, 3000, "Invalid", "VTF file cannot be aligned on a %u-byte boundary.", (unsigned) (1 << CurrentFileAlignment));
1081 free (FileBuffer);
1082 return EFI_ABORTED;
1083 }
1084 //
1085 // Rebase the PE or TE image in FileBuffer of FFS file for XIP
1086 // Rebase for the debug genfvmap tool
1087 //
1088 Status = FfsRebase (FvInfo, FvInfo->FvFiles[Index], (EFI_FFS_FILE_HEADER *) FileBuffer, (UINTN) *VtfFileImage - (UINTN) FvImage->FileImage, FvMapFile);
1089 if (EFI_ERROR (Status)) {
1090 Error (NULL, 0, 3000, "Invalid", "Could not rebase %s.", FvInfo->FvFiles[Index]);
1091 return Status;
1092 }
1093 //
1094 // copy VTF File
1095 //
1096 memcpy (*VtfFileImage, FileBuffer, FileSize);
1097
1098 PrintGuidToBuffer ((EFI_GUID *) FileBuffer, FileGuidString, sizeof (FileGuidString), TRUE);
1099 fprintf (FvReportFile, "0x%08X %s\n", (unsigned)(UINTN) (((UINT8 *)*VtfFileImage) - (UINTN)FvImage->FileImage), FileGuidString);
1100
1101 free (FileBuffer);
1102 DebugMsg (NULL, 0, 9, "Add VTF FFS file in FV image", NULL);
1103 return EFI_SUCCESS;
1104 } else {
1105 //
1106 // Already found a VTF file.
1107 //
1108 Error (NULL, 0, 3000, "Invalid", "multiple VTF files are not permitted within a single FV.");
1109 free (FileBuffer);
1110 return EFI_ABORTED;
1111 }
1112 }
1113
1114 //
1115 // Add pad file if necessary
1116 //
1117 Status = AddPadFile (FvImage, 1 << CurrentFileAlignment, *VtfFileImage, NULL);
1118 if (EFI_ERROR (Status)) {
1119 Error (NULL, 0, 4002, "Resource", "FV space is full, could not add pad file for data alignment property.");
1120 free (FileBuffer);
1121 return EFI_ABORTED;
1122 }
1123 //
1124 // Add file
1125 //
1126 if ((UINTN) (FvImage->CurrentFilePointer + FileSize) <= (UINTN) (*VtfFileImage)) {
1127 //
1128 // Rebase the PE or TE image in FileBuffer of FFS file for XIP.
1129 // Rebase Bs and Rt drivers for the debug genfvmap tool.
1130 //
1131 Status = FfsRebase (FvInfo, FvInfo->FvFiles[Index], (EFI_FFS_FILE_HEADER *) FileBuffer, (UINTN) FvImage->CurrentFilePointer - (UINTN) FvImage->FileImage, FvMapFile);
1132 if (EFI_ERROR (Status)) {
1133 Error (NULL, 0, 3000, "Invalid", "Could not rebase %s.", FvInfo->FvFiles[Index]);
1134 return Status;
1135 }
1136 //
1137 // Copy the file
1138 //
1139 memcpy (FvImage->CurrentFilePointer, FileBuffer, FileSize);
1140 PrintGuidToBuffer ((EFI_GUID *) FileBuffer, FileGuidString, sizeof (FileGuidString), TRUE);
1141 fprintf (FvReportFile, "0x%08X %s\n", (unsigned) (FvImage->CurrentFilePointer - FvImage->FileImage), FileGuidString);
1142 FvImage->CurrentFilePointer += FileSize;
1143 } else {
1144 Error (NULL, 0, 4002, "Resource", "FV space is full, cannot add file %s.", FvInfo->FvFiles[Index]);
1145 free (FileBuffer);
1146 return EFI_ABORTED;
1147 }
1148 //
1149 // Make next file start at QWord Boundry
1150 //
1151 while (((UINTN) FvImage->CurrentFilePointer & (EFI_FFS_FILE_HEADER_ALIGNMENT - 1)) != 0) {
1152 FvImage->CurrentFilePointer++;
1153 }
1154
1155 Done:
1156 //
1157 // Free allocated memory.
1158 //
1159 free (FileBuffer);
1160
1161 return EFI_SUCCESS;
1162 }
1163
1164 EFI_STATUS
1165 PadFvImage (
1166 IN MEMORY_FILE *FvImage,
1167 IN EFI_FFS_FILE_HEADER *VtfFileImage
1168 )
1169 /*++
1170
1171 Routine Description:
1172
1173 This function places a pad file between the last file in the FV and the VTF
1174 file if the VTF file exists.
1175
1176 Arguments:
1177
1178 FvImage Memory file for the FV memory image
1179 VtfFileImage The address of the VTF file. If this is the end of the FV
1180 image, no VTF exists and no pad file is needed.
1181
1182 Returns:
1183
1184 EFI_SUCCESS Completed successfully.
1185 EFI_INVALID_PARAMETER One of the input parameters was NULL.
1186
1187 --*/
1188 {
1189 EFI_FFS_FILE_HEADER *PadFile;
1190 UINTN FileSize;
1191
1192 //
1193 // If there is no VTF or the VTF naturally follows the previous file without a
1194 // pad file, then there's nothing to do
1195 //
1196 if ((UINTN) VtfFileImage == (UINTN) FvImage->Eof || \
1197 ((UINTN) VtfFileImage == (UINTN) FvImage->CurrentFilePointer)) {
1198 return EFI_SUCCESS;
1199 }
1200
1201 if ((UINTN) VtfFileImage < (UINTN) FvImage->CurrentFilePointer) {
1202 return EFI_INVALID_PARAMETER;
1203 }
1204
1205 //
1206 // Pad file starts at beginning of free space
1207 //
1208 PadFile = (EFI_FFS_FILE_HEADER *) FvImage->CurrentFilePointer;
1209
1210 //
1211 // write PadFile FFS header with PadType, don't need to set PAD file guid in its header.
1212 //
1213 PadFile->Type = EFI_FV_FILETYPE_FFS_PAD;
1214 PadFile->Attributes = 0;
1215
1216 //
1217 // FileSize includes the EFI_FFS_FILE_HEADER
1218 //
1219 FileSize = (UINTN) VtfFileImage - (UINTN) FvImage->CurrentFilePointer;
1220 PadFile->Size[0] = (UINT8) (FileSize & 0x000000FF);
1221 PadFile->Size[1] = (UINT8) ((FileSize & 0x0000FF00) >> 8);
1222 PadFile->Size[2] = (UINT8) ((FileSize & 0x00FF0000) >> 16);
1223
1224 //
1225 // Fill in checksums and state, must be zero during checksum calculation.
1226 //
1227 PadFile->IntegrityCheck.Checksum.Header = 0;
1228 PadFile->IntegrityCheck.Checksum.File = 0;
1229 PadFile->State = 0;
1230 PadFile->IntegrityCheck.Checksum.Header = CalculateChecksum8 ((UINT8 *) PadFile, sizeof (EFI_FFS_FILE_HEADER));
1231 PadFile->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
1232
1233 PadFile->State = EFI_FILE_HEADER_CONSTRUCTION | EFI_FILE_HEADER_VALID | EFI_FILE_DATA_VALID;
1234
1235 UpdateFfsFileState (
1236 (EFI_FFS_FILE_HEADER *) PadFile,
1237 (EFI_FIRMWARE_VOLUME_HEADER *) FvImage->FileImage
1238 );
1239 //
1240 // Update the current FV pointer
1241 //
1242 FvImage->CurrentFilePointer = FvImage->Eof;
1243
1244 return EFI_SUCCESS;
1245 }
1246
1247 EFI_STATUS
1248 UpdateResetVector (
1249 IN MEMORY_FILE *FvImage,
1250 IN FV_INFO *FvInfo,
1251 IN EFI_FFS_FILE_HEADER *VtfFile
1252 )
1253 /*++
1254
1255 Routine Description:
1256
1257 This parses the FV looking for the PEI core and then plugs the address into
1258 the SALE_ENTRY point of the BSF/VTF for IPF and does BUGBUG TBD action to
1259 complete an IA32 Bootstrap FV.
1260
1261 Arguments:
1262
1263 FvImage Memory file for the FV memory image
1264 FvInfo Information read from INF file.
1265 VtfFile Pointer to the VTF file in the FV image.
1266
1267 Returns:
1268
1269 EFI_SUCCESS Function Completed successfully.
1270 EFI_ABORTED Error encountered.
1271 EFI_INVALID_PARAMETER A required parameter was NULL.
1272 EFI_NOT_FOUND PEI Core file not found.
1273
1274 --*/
1275 {
1276 EFI_FFS_FILE_HEADER *PeiCoreFile;
1277 EFI_FFS_FILE_HEADER *SecCoreFile;
1278 EFI_STATUS Status;
1279 EFI_FILE_SECTION_POINTER Pe32Section;
1280 UINT32 EntryPoint;
1281 UINT32 BaseOfCode;
1282 UINT16 MachineType;
1283 EFI_PHYSICAL_ADDRESS PeiCorePhysicalAddress;
1284 EFI_PHYSICAL_ADDRESS SecCorePhysicalAddress;
1285 EFI_PHYSICAL_ADDRESS *SecCoreEntryAddressPtr;
1286 INT32 Ia32SecEntryOffset;
1287 UINT32 *Ia32ResetAddressPtr;
1288 UINT8 *BytePointer;
1289 UINT8 *BytePointer2;
1290 UINT16 *WordPointer;
1291 UINT16 CheckSum;
1292 UINT32 IpiVector;
1293 UINTN Index;
1294 EFI_FFS_FILE_STATE SavedState;
1295 UINT64 FitAddress;
1296 FIT_TABLE *FitTablePtr;
1297 BOOLEAN Vtf0Detected;
1298
1299 //
1300 // Verify input parameters
1301 //
1302 if (FvImage == NULL || FvInfo == NULL || VtfFile == NULL) {
1303 return EFI_INVALID_PARAMETER;
1304 }
1305 //
1306 // Initialize FV library
1307 //
1308 InitializeFvLib (FvImage->FileImage, FvInfo->Size);
1309
1310 //
1311 // Verify VTF file
1312 //
1313 Status = VerifyFfsFile (VtfFile);
1314 if (EFI_ERROR (Status)) {
1315 return EFI_INVALID_PARAMETER;
1316 }
1317
1318 if (
1319 (((UINTN)FvImage->Eof - (UINTN)FvImage->FileImage) >=
1320 IA32_X64_VTF_SIGNATURE_OFFSET) &&
1321 (*(UINT32 *)(VOID*)((UINTN) FvImage->Eof -
1322 IA32_X64_VTF_SIGNATURE_OFFSET) ==
1323 IA32_X64_VTF0_SIGNATURE)
1324 ) {
1325 Vtf0Detected = TRUE;
1326 } else {
1327 Vtf0Detected = FALSE;
1328 }
1329
1330 //
1331 // Find the Sec Core
1332 //
1333 Status = GetFileByType (EFI_FV_FILETYPE_SECURITY_CORE, 1, &SecCoreFile);
1334 if (EFI_ERROR (Status) || SecCoreFile == NULL) {
1335 if (Vtf0Detected) {
1336 //
1337 // If the SEC core file is not found, but the VTF-0 signature
1338 // is found, we'll treat it as a VTF-0 'Volume Top File'.
1339 // This means no modifications are required to the VTF.
1340 //
1341 return EFI_SUCCESS;
1342 }
1343
1344 Error (NULL, 0, 3000, "Invalid", "could not find the SEC core file in the FV.");
1345 return EFI_ABORTED;
1346 }
1347 //
1348 // Sec Core found, now find PE32 section
1349 //
1350 Status = GetSectionByType (SecCoreFile, EFI_SECTION_PE32, 1, &Pe32Section);
1351 if (Status == EFI_NOT_FOUND) {
1352 Status = GetSectionByType (SecCoreFile, EFI_SECTION_TE, 1, &Pe32Section);
1353 }
1354
1355 if (EFI_ERROR (Status)) {
1356 Error (NULL, 0, 3000, "Invalid", "could not find a PE32 section in the SEC core file.");
1357 return EFI_ABORTED;
1358 }
1359
1360 Status = GetPe32Info (
1361 (VOID *) ((UINTN) Pe32Section.Pe32Section + sizeof (EFI_SECTION_PE32)),
1362 &EntryPoint,
1363 &BaseOfCode,
1364 &MachineType
1365 );
1366
1367 if (EFI_ERROR (Status)) {
1368 Error (NULL, 0, 3000, "Invalid", "could not get the PE32 entry point for the SEC core.");
1369 return EFI_ABORTED;
1370 }
1371
1372 if (
1373 Vtf0Detected &&
1374 (MachineType == EFI_IMAGE_MACHINE_IA32 ||
1375 MachineType == EFI_IMAGE_MACHINE_X64)
1376 ) {
1377 //
1378 // If the SEC core code is IA32 or X64 and the VTF-0 signature
1379 // is found, we'll treat it as a VTF-0 'Volume Top File'.
1380 // This means no modifications are required to the VTF.
1381 //
1382 return EFI_SUCCESS;
1383 }
1384
1385 //
1386 // Physical address is FV base + offset of PE32 + offset of the entry point
1387 //
1388 SecCorePhysicalAddress = FvInfo->BaseAddress;
1389 SecCorePhysicalAddress += (UINTN) Pe32Section.Pe32Section + sizeof (EFI_SECTION_PE32) - (UINTN) FvImage->FileImage;
1390 SecCorePhysicalAddress += EntryPoint;
1391 DebugMsg (NULL, 0, 9, "SecCore physical entry point address", "Address = 0x%llX", (unsigned long long) SecCorePhysicalAddress);
1392
1393 //
1394 // Find the PEI Core
1395 //
1396 Status = GetFileByType (EFI_FV_FILETYPE_PEI_CORE, 1, &PeiCoreFile);
1397 if (EFI_ERROR (Status) || PeiCoreFile == NULL) {
1398 Error (NULL, 0, 3000, "Invalid", "could not find the PEI core in the FV.");
1399 return EFI_ABORTED;
1400 }
1401 //
1402 // PEI Core found, now find PE32 or TE section
1403 //
1404 Status = GetSectionByType (PeiCoreFile, EFI_SECTION_PE32, 1, &Pe32Section);
1405 if (Status == EFI_NOT_FOUND) {
1406 Status = GetSectionByType (PeiCoreFile, EFI_SECTION_TE, 1, &Pe32Section);
1407 }
1408
1409 if (EFI_ERROR (Status)) {
1410 Error (NULL, 0, 3000, "Invalid", "could not find either a PE32 or a TE section in PEI core file.");
1411 return EFI_ABORTED;
1412 }
1413
1414 Status = GetPe32Info (
1415 (VOID *) ((UINTN) Pe32Section.Pe32Section + sizeof (EFI_SECTION_PE32)),
1416 &EntryPoint,
1417 &BaseOfCode,
1418 &MachineType
1419 );
1420
1421 if (EFI_ERROR (Status)) {
1422 Error (NULL, 0, 3000, "Invalid", "could not get the PE32 entry point for the PEI core.");
1423 return EFI_ABORTED;
1424 }
1425 //
1426 // Physical address is FV base + offset of PE32 + offset of the entry point
1427 //
1428 PeiCorePhysicalAddress = FvInfo->BaseAddress;
1429 PeiCorePhysicalAddress += (UINTN) Pe32Section.Pe32Section + sizeof (EFI_SECTION_PE32) - (UINTN) FvImage->FileImage;
1430 PeiCorePhysicalAddress += EntryPoint;
1431 DebugMsg (NULL, 0, 9, "PeiCore physical entry point address", "Address = 0x%llX", (unsigned long long) PeiCorePhysicalAddress);
1432
1433 if (MachineType == EFI_IMAGE_MACHINE_IA64) {
1434 //
1435 // Update PEI_CORE address
1436 //
1437 //
1438 // Set the uncached attribute bit in the physical address
1439 //
1440 PeiCorePhysicalAddress |= 0x8000000000000000ULL;
1441
1442 //
1443 // Check if address is aligned on a 16 byte boundary
1444 //
1445 if (PeiCorePhysicalAddress & 0xF) {
1446 Error (NULL, 0, 3000, "Invalid",
1447 "PEI_CORE entry point is not aligned on a 16 byte boundary, address specified is %llXh.",
1448 (unsigned long long) PeiCorePhysicalAddress
1449 );
1450 return EFI_ABORTED;
1451 }
1452 //
1453 // First Get the FIT table address
1454 //
1455 FitAddress = (*(UINT64 *) (FvImage->Eof - IPF_FIT_ADDRESS_OFFSET)) & 0xFFFFFFFF;
1456
1457 FitTablePtr = (FIT_TABLE *) (FvImage->FileImage + (FitAddress - FvInfo->BaseAddress));
1458
1459 Status = UpdatePeiCoreEntryInFit (FitTablePtr, PeiCorePhysicalAddress);
1460
1461 if (!EFI_ERROR (Status)) {
1462 UpdateFitCheckSum (FitTablePtr);
1463 }
1464
1465 //
1466 // Update SEC_CORE address
1467 //
1468 //
1469 // Set the uncached attribute bit in the physical address
1470 //
1471 SecCorePhysicalAddress |= 0x8000000000000000ULL;
1472 //
1473 // Check if address is aligned on a 16 byte boundary
1474 //
1475 if (SecCorePhysicalAddress & 0xF) {
1476 Error (NULL, 0, 3000, "Invalid",
1477 "SALE_ENTRY entry point is not aligned on a 16 byte boundary, address specified is %llXh.",
1478 (unsigned long long) SecCorePhysicalAddress
1479 );
1480 return EFI_ABORTED;
1481 }
1482 //
1483 // Update the address
1484 //
1485 SecCoreEntryAddressPtr = (EFI_PHYSICAL_ADDRESS *) ((UINTN) FvImage->Eof - IPF_SALE_ENTRY_ADDRESS_OFFSET);
1486 *SecCoreEntryAddressPtr = SecCorePhysicalAddress;
1487
1488 } else if (MachineType == EFI_IMAGE_MACHINE_IA32 || MachineType == EFI_IMAGE_MACHINE_X64) {
1489 //
1490 // Get the location to update
1491 //
1492 Ia32ResetAddressPtr = (UINT32 *) ((UINTN) FvImage->Eof - IA32_PEI_CORE_ENTRY_OFFSET);
1493
1494 //
1495 // Write lower 32 bits of physical address for Pei Core entry
1496 //
1497 *Ia32ResetAddressPtr = (UINT32) PeiCorePhysicalAddress;
1498
1499 //
1500 // Write SecCore Entry point relative address into the jmp instruction in reset vector.
1501 //
1502 Ia32ResetAddressPtr = (UINT32 *) ((UINTN) FvImage->Eof - IA32_SEC_CORE_ENTRY_OFFSET);
1503
1504 Ia32SecEntryOffset = (INT32) (SecCorePhysicalAddress - (FV_IMAGES_TOP_ADDRESS - IA32_SEC_CORE_ENTRY_OFFSET + 2));
1505 if (Ia32SecEntryOffset <= -65536) {
1506 Error (NULL, 0, 3000, "Invalid", "The SEC EXE file size is too large, it must be less than 64K.");
1507 return STATUS_ERROR;
1508 }
1509
1510 *(UINT16 *) Ia32ResetAddressPtr = (UINT16) Ia32SecEntryOffset;
1511
1512 //
1513 // Update the BFV base address
1514 //
1515 Ia32ResetAddressPtr = (UINT32 *) ((UINTN) FvImage->Eof - 4);
1516 *Ia32ResetAddressPtr = (UINT32) (FvInfo->BaseAddress);
1517 DebugMsg (NULL, 0, 9, "update BFV base address in the top FV image", "BFV base address = 0x%llX.", (unsigned long long) FvInfo->BaseAddress);
1518
1519 //
1520 // Update the Startup AP in the FVH header block ZeroVector region.
1521 //
1522 BytePointer = (UINT8 *) ((UINTN) FvImage->FileImage);
1523 if (FvInfo->Size <= 0x10000) {
1524 BytePointer2 = m64kRecoveryStartupApDataArray;
1525 } else if (FvInfo->Size <= 0x20000) {
1526 BytePointer2 = m128kRecoveryStartupApDataArray;
1527 } else {
1528 BytePointer2 = m128kRecoveryStartupApDataArray;
1529 //
1530 // Find the position to place Ap reset vector, the offset
1531 // between the position and the end of Fvrecovery.fv file
1532 // should not exceed 128kB to prevent Ap reset vector from
1533 // outside legacy E and F segment
1534 //
1535 Status = FindApResetVectorPosition (FvImage, &BytePointer);
1536 if (EFI_ERROR (Status)) {
1537 Error (NULL, 0, 3000, "Invalid", "Cannot find the appropriate location in FvImage to add Ap reset vector!");
1538 return EFI_ABORTED;
1539 }
1540 }
1541
1542 for (Index = 0; Index < SIZEOF_STARTUP_DATA_ARRAY; Index++) {
1543 BytePointer[Index] = BytePointer2[Index];
1544 }
1545 //
1546 // Calculate the checksum
1547 //
1548 CheckSum = 0x0000;
1549 WordPointer = (UINT16 *) (BytePointer);
1550 for (Index = 0; Index < SIZEOF_STARTUP_DATA_ARRAY / 2; Index++) {
1551 CheckSum = (UINT16) (CheckSum + ((UINT16) *WordPointer));
1552 WordPointer++;
1553 }
1554 //
1555 // Update the checksum field
1556 //
1557 WordPointer = (UINT16 *) (BytePointer + SIZEOF_STARTUP_DATA_ARRAY - 2);
1558 *WordPointer = (UINT16) (0x10000 - (UINT32) CheckSum);
1559
1560 //
1561 // IpiVector at the 4k aligned address in the top 2 blocks in the PEI FV.
1562 //
1563 IpiVector = (UINT32) (FV_IMAGES_TOP_ADDRESS - ((UINTN) FvImage->Eof - (UINTN) BytePointer));
1564 DebugMsg (NULL, 0, 9, "Startup AP Vector address", "IpiVector at 0x%X", (unsigned) IpiVector);
1565 if ((IpiVector & 0xFFF) != 0) {
1566 Error (NULL, 0, 3000, "Invalid", "Startup AP Vector address are not 4K aligned, because the FV size is not 4K aligned");
1567 return EFI_ABORTED;
1568 }
1569 IpiVector = IpiVector >> 12;
1570 IpiVector = IpiVector & 0xFF;
1571
1572 //
1573 // Write IPI Vector at Offset FvrecoveryFileSize - 8
1574 //
1575 Ia32ResetAddressPtr = (UINT32 *) ((UINTN) FvImage->Eof - 8);
1576 *Ia32ResetAddressPtr = IpiVector;
1577 } else if (MachineType == EFI_IMAGE_MACHINE_ARMT) {
1578 //
1579 // Since the ARM reset vector is in the FV Header you really don't need a
1580 // Volume Top File, but if you have one for some reason don't crash...
1581 //
1582 } else {
1583 Error (NULL, 0, 3000, "Invalid", "machine type=0x%X in PEI core.", MachineType);
1584 return EFI_ABORTED;
1585 }
1586
1587 //
1588 // Now update file checksum
1589 //
1590 SavedState = VtfFile->State;
1591 VtfFile->IntegrityCheck.Checksum.File = 0;
1592 VtfFile->State = 0;
1593 if (VtfFile->Attributes & FFS_ATTRIB_CHECKSUM) {
1594 VtfFile->IntegrityCheck.Checksum.File = CalculateChecksum8 (
1595 (UINT8 *) (VtfFile + 1),
1596 GetLength (VtfFile->Size) - sizeof (EFI_FFS_FILE_HEADER)
1597 );
1598 } else {
1599 VtfFile->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
1600 }
1601
1602 VtfFile->State = SavedState;
1603
1604 return EFI_SUCCESS;
1605 }
1606
1607
1608 EFI_STATUS
1609 UpdateArmResetVectorIfNeeded (
1610 IN MEMORY_FILE *FvImage,
1611 IN FV_INFO *FvInfo
1612 )
1613 /*++
1614
1615 Routine Description:
1616 This parses the FV looking for SEC and patches that address into the
1617 beginning of the FV header.
1618
1619 For ARM the reset vector is at 0x00000000 or 0xFFFF0000.
1620 This would commonly map to the first entry in the ROM.
1621 ARM Exceptions:
1622 Reset +0
1623 Undefined +4
1624 SWI +8
1625 Prefetch Abort +12
1626 Data Abort +16
1627 IRQ +20
1628 FIQ +24
1629
1630 We support two schemes on ARM.
1631 1) Beginning of the FV is the reset vector
1632 2) Reset vector is data bytes FDF file and that code branches to reset vector
1633 in the beginning of the FV (fixed size offset).
1634
1635
1636 Need to have the jump for the reset vector at location zero.
1637 We also need to store the address or PEI (if it exists).
1638 We stub out a return from interrupt in case the debugger
1639 is using SWI.
1640 The optional entry to the common exception handler is
1641 to support full featured exception handling from ROM and is currently
1642 not support by this tool.
1643
1644 Arguments:
1645 FvImage Memory file for the FV memory image
1646 FvInfo Information read from INF file.
1647
1648 Returns:
1649
1650 EFI_SUCCESS Function Completed successfully.
1651 EFI_ABORTED Error encountered.
1652 EFI_INVALID_PARAMETER A required parameter was NULL.
1653 EFI_NOT_FOUND PEI Core file not found.
1654
1655 --*/
1656 {
1657 EFI_FFS_FILE_HEADER *PeiCoreFile;
1658 EFI_FFS_FILE_HEADER *SecCoreFile;
1659 EFI_STATUS Status;
1660 EFI_FILE_SECTION_POINTER Pe32Section;
1661 UINT32 EntryPoint;
1662 UINT32 BaseOfCode;
1663 UINT16 MachineType;
1664 EFI_PHYSICAL_ADDRESS PeiCorePhysicalAddress;
1665 EFI_PHYSICAL_ADDRESS SecCorePhysicalAddress;
1666 INT32 ResetVector[4]; // 0 - is branch relative to SEC entry point
1667 // 1 - PEI Entry Point
1668 // 2 - movs pc,lr for a SWI handler
1669 // 3 - Place holder for Common Exception Handler
1670
1671 //
1672 // Verify input parameters
1673 //
1674 if (FvImage == NULL || FvInfo == NULL) {
1675 return EFI_INVALID_PARAMETER;
1676 }
1677 //
1678 // Initialize FV library
1679 //
1680 InitializeFvLib (FvImage->FileImage, FvInfo->Size);
1681
1682 //
1683 // Find the Sec Core
1684 //
1685 Status = GetFileByType (EFI_FV_FILETYPE_SECURITY_CORE, 1, &SecCoreFile);
1686 if (EFI_ERROR (Status) || SecCoreFile == NULL) {
1687 //
1688 // Maybe hardware does SEC job and we only have PEI Core?
1689 //
1690
1691 //
1692 // Find the PEI Core. It may not exist if SEC loads DXE core directly
1693 //
1694 PeiCorePhysicalAddress = 0;
1695 Status = GetFileByType (EFI_FV_FILETYPE_PEI_CORE, 1, &PeiCoreFile);
1696 if (!EFI_ERROR (Status) && PeiCoreFile != NULL) {
1697 //
1698 // PEI Core found, now find PE32 or TE section
1699 //
1700 Status = GetSectionByType (PeiCoreFile, EFI_SECTION_PE32, 1, &Pe32Section);
1701 if (Status == EFI_NOT_FOUND) {
1702 Status = GetSectionByType (PeiCoreFile, EFI_SECTION_TE, 1, &Pe32Section);
1703 }
1704
1705 if (EFI_ERROR (Status)) {
1706 Error (NULL, 0, 3000, "Invalid", "could not find either a PE32 or a TE section in PEI core file!");
1707 return EFI_ABORTED;
1708 }
1709
1710 Status = GetPe32Info (
1711 (VOID *) ((UINTN) Pe32Section.Pe32Section + sizeof (EFI_SECTION_PE32)),
1712 &EntryPoint,
1713 &BaseOfCode,
1714 &MachineType
1715 );
1716
1717 if (EFI_ERROR (Status)) {
1718 Error (NULL, 0, 3000, "Invalid", "could not get the PE32 entry point for the PEI core!");
1719 return EFI_ABORTED;
1720 }
1721 //
1722 // Physical address is FV base + offset of PE32 + offset of the entry point
1723 //
1724 PeiCorePhysicalAddress = FvInfo->BaseAddress;
1725 PeiCorePhysicalAddress += (UINTN) Pe32Section.Pe32Section + sizeof (EFI_SECTION_PE32) - (UINTN) FvImage->FileImage;
1726 PeiCorePhysicalAddress += EntryPoint;
1727 DebugMsg (NULL, 0, 9, "PeiCore physical entry point address", "Address = 0x%llX", (unsigned long long) PeiCorePhysicalAddress);
1728
1729 if (MachineType == EFI_IMAGE_MACHINE_ARMT) {
1730 memset (ResetVector, 0, sizeof (ResetVector));
1731 // Address of PEI Core, if we have one
1732 ResetVector[1] = (UINT32)PeiCorePhysicalAddress;
1733 }
1734
1735 //
1736 // Copy to the beginning of the FV
1737 //
1738 memcpy ((UINT8 *) ((UINTN) FvImage->FileImage), ResetVector, sizeof (ResetVector));
1739
1740 }
1741
1742 return EFI_SUCCESS;
1743 }
1744
1745 //
1746 // Sec Core found, now find PE32 section
1747 //
1748 Status = GetSectionByType (SecCoreFile, EFI_SECTION_PE32, 1, &Pe32Section);
1749 if (Status == EFI_NOT_FOUND) {
1750 Status = GetSectionByType (SecCoreFile, EFI_SECTION_TE, 1, &Pe32Section);
1751 }
1752
1753 if (EFI_ERROR (Status)) {
1754 Error (NULL, 0, 3000, "Invalid", "could not find a PE32 section in the SEC core file.");
1755 return EFI_ABORTED;
1756 }
1757
1758 Status = GetPe32Info (
1759 (VOID *) ((UINTN) Pe32Section.Pe32Section + sizeof (EFI_SECTION_PE32)),
1760 &EntryPoint,
1761 &BaseOfCode,
1762 &MachineType
1763 );
1764 if (EFI_ERROR (Status)) {
1765 Error (NULL, 0, 3000, "Invalid", "could not get the PE32 entry point for the SEC core.");
1766 return EFI_ABORTED;
1767 }
1768
1769 if (MachineType != EFI_IMAGE_MACHINE_ARMT) {
1770 //
1771 // If SEC is not ARM we have nothing to do
1772 //
1773 return EFI_SUCCESS;
1774 }
1775
1776 //
1777 // Physical address is FV base + offset of PE32 + offset of the entry point
1778 //
1779 SecCorePhysicalAddress = FvInfo->BaseAddress;
1780 SecCorePhysicalAddress += (UINTN) Pe32Section.Pe32Section + sizeof (EFI_SECTION_PE32) - (UINTN) FvImage->FileImage;
1781 SecCorePhysicalAddress += EntryPoint;
1782 DebugMsg (NULL, 0, 9, "SecCore physical entry point address", "Address = 0x%llX", (unsigned long long) SecCorePhysicalAddress);
1783
1784 //
1785 // Find the PEI Core. It may not exist if SEC loads DXE core directly
1786 //
1787 PeiCorePhysicalAddress = 0;
1788 Status = GetFileByType (EFI_FV_FILETYPE_PEI_CORE, 1, &PeiCoreFile);
1789 if (!EFI_ERROR (Status) && PeiCoreFile != NULL) {
1790 //
1791 // PEI Core found, now find PE32 or TE section
1792 //
1793 Status = GetSectionByType (PeiCoreFile, EFI_SECTION_PE32, 1, &Pe32Section);
1794 if (Status == EFI_NOT_FOUND) {
1795 Status = GetSectionByType (PeiCoreFile, EFI_SECTION_TE, 1, &Pe32Section);
1796 }
1797
1798 if (EFI_ERROR (Status)) {
1799 Error (NULL, 0, 3000, "Invalid", "could not find either a PE32 or a TE section in PEI core file!");
1800 return EFI_ABORTED;
1801 }
1802
1803 Status = GetPe32Info (
1804 (VOID *) ((UINTN) Pe32Section.Pe32Section + sizeof (EFI_SECTION_PE32)),
1805 &EntryPoint,
1806 &BaseOfCode,
1807 &MachineType
1808 );
1809
1810 if (EFI_ERROR (Status)) {
1811 Error (NULL, 0, 3000, "Invalid", "could not get the PE32 entry point for the PEI core!");
1812 return EFI_ABORTED;
1813 }
1814 //
1815 // Physical address is FV base + offset of PE32 + offset of the entry point
1816 //
1817 PeiCorePhysicalAddress = FvInfo->BaseAddress;
1818 PeiCorePhysicalAddress += (UINTN) Pe32Section.Pe32Section + sizeof (EFI_SECTION_PE32) - (UINTN) FvImage->FileImage;
1819 PeiCorePhysicalAddress += EntryPoint;
1820 DebugMsg (NULL, 0, 9, "PeiCore physical entry point address", "Address = 0x%llX", (unsigned long long) PeiCorePhysicalAddress);
1821 }
1822
1823
1824 // B SecEntryPoint - signed_immed_24 part +/-32MB offset
1825 // on ARM, the PC is always 8 ahead, so we're not really jumping from the base address, but from base address + 8
1826 ResetVector[0] = (INT32)(SecCorePhysicalAddress - FvInfo->BaseAddress - 8) >> 2;
1827
1828 if (ResetVector[0] > 0x00FFFFFF) {
1829 Error (NULL, 0, 3000, "Invalid", "SEC Entry point must be within 32MB of the start of the FV");
1830 return EFI_ABORTED;
1831 }
1832
1833 // Add opcode for an uncondional branch with no link. AKA B SecEntryPoint
1834 ResetVector[0] |= 0xEB000000;
1835
1836
1837 // Address of PEI Core, if we have one
1838 ResetVector[1] = (UINT32)PeiCorePhysicalAddress;
1839
1840 // SWI handler movs pc,lr. Just in case a debugger uses SWI
1841 ResetVector[2] = 0xE1B0F07E;
1842
1843 // Place holder to support a common interrupt handler from ROM.
1844 // Currently not suppprted. For this to be used the reset vector would not be in this FV
1845 // and the exception vectors would be hard coded in the ROM and just through this address
1846 // to find a common handler in the a module in the FV.
1847 ResetVector[3] = 0;
1848
1849 //
1850 // Copy to the beginning of the FV
1851 //
1852 memcpy ((UINT8 *) ((UINTN) FvImage->FileImage), ResetVector, sizeof (ResetVector));
1853
1854 DebugMsg (NULL, 0, 9, "Update Reset vector in FV Header", NULL);
1855
1856 return EFI_SUCCESS;
1857 }
1858
1859 EFI_STATUS
1860 GetPe32Info (
1861 IN UINT8 *Pe32,
1862 OUT UINT32 *EntryPoint,
1863 OUT UINT32 *BaseOfCode,
1864 OUT UINT16 *MachineType
1865 )
1866 /*++
1867
1868 Routine Description:
1869
1870 Retrieves the PE32 entry point offset and machine type from PE image or TeImage.
1871 See EfiImage.h for machine types. The entry point offset is from the beginning
1872 of the PE32 buffer passed in.
1873
1874 Arguments:
1875
1876 Pe32 Beginning of the PE32.
1877 EntryPoint Offset from the beginning of the PE32 to the image entry point.
1878 BaseOfCode Base address of code.
1879 MachineType Magic number for the machine type.
1880
1881 Returns:
1882
1883 EFI_SUCCESS Function completed successfully.
1884 EFI_ABORTED Error encountered.
1885 EFI_INVALID_PARAMETER A required parameter was NULL.
1886 EFI_UNSUPPORTED The operation is unsupported.
1887
1888 --*/
1889 {
1890 EFI_IMAGE_DOS_HEADER *DosHeader;
1891 EFI_IMAGE_OPTIONAL_HEADER_UNION *ImgHdr;
1892 EFI_TE_IMAGE_HEADER *TeHeader;
1893
1894 //
1895 // Verify input parameters
1896 //
1897 if (Pe32 == NULL) {
1898 return EFI_INVALID_PARAMETER;
1899 }
1900
1901 //
1902 // First check whether it is one TE Image.
1903 //
1904 TeHeader = (EFI_TE_IMAGE_HEADER *) Pe32;
1905 if (TeHeader->Signature == EFI_TE_IMAGE_HEADER_SIGNATURE) {
1906 //
1907 // By TeImage Header to get output
1908 //
1909 *EntryPoint = TeHeader->AddressOfEntryPoint + sizeof (EFI_TE_IMAGE_HEADER) - TeHeader->StrippedSize;
1910 *BaseOfCode = TeHeader->BaseOfCode + sizeof (EFI_TE_IMAGE_HEADER) - TeHeader->StrippedSize;
1911 *MachineType = TeHeader->Machine;
1912 } else {
1913
1914 //
1915 // Then check whether
1916 // First is the DOS header
1917 //
1918 DosHeader = (EFI_IMAGE_DOS_HEADER *) Pe32;
1919
1920 //
1921 // Verify DOS header is expected
1922 //
1923 if (DosHeader->e_magic != EFI_IMAGE_DOS_SIGNATURE) {
1924 Error (NULL, 0, 3000, "Invalid", "Unknown magic number in the DOS header, 0x%04X.", DosHeader->e_magic);
1925 return EFI_UNSUPPORTED;
1926 }
1927 //
1928 // Immediately following is the NT header.
1929 //
1930 ImgHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *) ((UINTN) Pe32 + DosHeader->e_lfanew);
1931
1932 //
1933 // Verify NT header is expected
1934 //
1935 if (ImgHdr->Pe32.Signature != EFI_IMAGE_NT_SIGNATURE) {
1936 Error (NULL, 0, 3000, "Invalid", "Unrecognized image signature 0x%08X.", (unsigned) ImgHdr->Pe32.Signature);
1937 return EFI_UNSUPPORTED;
1938 }
1939 //
1940 // Get output
1941 //
1942 *EntryPoint = ImgHdr->Pe32.OptionalHeader.AddressOfEntryPoint;
1943 *BaseOfCode = ImgHdr->Pe32.OptionalHeader.BaseOfCode;
1944 *MachineType = ImgHdr->Pe32.FileHeader.Machine;
1945 }
1946
1947 //
1948 // Verify machine type is supported
1949 //
1950 if (*MachineType != EFI_IMAGE_MACHINE_IA32 && *MachineType != EFI_IMAGE_MACHINE_IA64 && *MachineType != EFI_IMAGE_MACHINE_X64 && *MachineType != EFI_IMAGE_MACHINE_EBC &&
1951 *MachineType != EFI_IMAGE_MACHINE_ARMT) {
1952 Error (NULL, 0, 3000, "Invalid", "Unrecognized machine type in the PE32 file.");
1953 return EFI_UNSUPPORTED;
1954 }
1955
1956 return EFI_SUCCESS;
1957 }
1958
1959 EFI_STATUS
1960 GenerateFvImage (
1961 IN CHAR8 *InfFileImage,
1962 IN UINTN InfFileSize,
1963 IN CHAR8 *FvFileName,
1964 IN CHAR8 *MapFileName
1965 )
1966 /*++
1967
1968 Routine Description:
1969
1970 This is the main function which will be called from application.
1971
1972 Arguments:
1973
1974 InfFileImage Buffer containing the INF file contents.
1975 InfFileSize Size of the contents of the InfFileImage buffer.
1976 FvFileName Requested name for the FV file.
1977 MapFileName Fv map file to log fv driver information.
1978
1979 Returns:
1980
1981 EFI_SUCCESS Function completed successfully.
1982 EFI_OUT_OF_RESOURCES Could not allocate required resources.
1983 EFI_ABORTED Error encountered.
1984 EFI_INVALID_PARAMETER A required parameter was NULL.
1985
1986 --*/
1987 {
1988 EFI_STATUS Status;
1989 MEMORY_FILE InfMemoryFile;
1990 MEMORY_FILE FvImageMemoryFile;
1991 UINTN Index;
1992 EFI_FIRMWARE_VOLUME_HEADER *FvHeader;
1993 EFI_FFS_FILE_HEADER *VtfFileImage;
1994 UINT8 *FvBufferHeader; // to make sure fvimage header 8 type alignment.
1995 UINT8 *FvImage;
1996 UINTN FvImageSize;
1997 FILE *FvFile;
1998 CHAR8 FvMapName [_MAX_PATH];
1999 FILE *FvMapFile;
2000 EFI_FIRMWARE_VOLUME_EXT_HEADER *FvExtHeader;
2001 FILE *FvExtHeaderFile;
2002 UINTN FileSize;
2003 CHAR8 FvReportName[_MAX_PATH];
2004 FILE *FvReportFile;
2005
2006 FvBufferHeader = NULL;
2007 FvFile = NULL;
2008 FvMapFile = NULL;
2009 FvReportFile = NULL;
2010
2011 if (InfFileImage != NULL) {
2012 //
2013 // Initialize file structures
2014 //
2015 InfMemoryFile.FileImage = InfFileImage;
2016 InfMemoryFile.CurrentFilePointer = InfFileImage;
2017 InfMemoryFile.Eof = InfFileImage + InfFileSize;
2018
2019 //
2020 // Parse the FV inf file for header information
2021 //
2022 Status = ParseFvInf (&InfMemoryFile, &mFvDataInfo);
2023 if (EFI_ERROR (Status)) {
2024 Error (NULL, 0, 0003, "Error parsing file", "the input FV INF file.");
2025 return Status;
2026 }
2027 }
2028
2029 //
2030 // Update the file name return values
2031 //
2032 if (FvFileName == NULL && mFvDataInfo.FvName[0] != '\0') {
2033 FvFileName = mFvDataInfo.FvName;
2034 }
2035
2036 if (FvFileName == NULL) {
2037 Error (NULL, 0, 1001, "Missing option", "Output file name");
2038 return EFI_ABORTED;
2039 }
2040
2041 if (mFvDataInfo.FvBlocks[0].Length == 0) {
2042 Error (NULL, 0, 1001, "Missing required argument", "Block Size");
2043 return EFI_ABORTED;
2044 }
2045
2046 //
2047 // Debug message Fv File System Guid
2048 //
2049 if (mFvDataInfo.FvFileSystemGuidSet) {
2050 DebugMsg (NULL, 0, 9, "FV File System Guid", "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X",
2051 (unsigned) mFvDataInfo.FvFileSystemGuid.Data1,
2052 mFvDataInfo.FvFileSystemGuid.Data2,
2053 mFvDataInfo.FvFileSystemGuid.Data3,
2054 mFvDataInfo.FvFileSystemGuid.Data4[0],
2055 mFvDataInfo.FvFileSystemGuid.Data4[1],
2056 mFvDataInfo.FvFileSystemGuid.Data4[2],
2057 mFvDataInfo.FvFileSystemGuid.Data4[3],
2058 mFvDataInfo.FvFileSystemGuid.Data4[4],
2059 mFvDataInfo.FvFileSystemGuid.Data4[5],
2060 mFvDataInfo.FvFileSystemGuid.Data4[6],
2061 mFvDataInfo.FvFileSystemGuid.Data4[7]);
2062 }
2063
2064 //
2065 // Add PI FV extension header
2066 //
2067 FvExtHeader = NULL;
2068 FvExtHeaderFile = NULL;
2069 if (mFvDataInfo.FvExtHeaderFile[0] != 0) {
2070 //
2071 // Open the FV Extension Header file
2072 //
2073 FvExtHeaderFile = fopen (mFvDataInfo.FvExtHeaderFile, "rb");
2074
2075 //
2076 // Get the file size
2077 //
2078 FileSize = _filelength (fileno (FvExtHeaderFile));
2079
2080 //
2081 // Allocate a buffer for the FV Extension Header
2082 //
2083 FvExtHeader = malloc(FileSize);
2084 if (FvExtHeader == NULL) {
2085 fclose (FvExtHeaderFile);
2086 return EFI_OUT_OF_RESOURCES;
2087 }
2088
2089 //
2090 // Read the FV Extension Header
2091 //
2092 fread (FvExtHeader, sizeof (UINT8), FileSize, FvExtHeaderFile);
2093 fclose (FvExtHeaderFile);
2094
2095 //
2096 // See if there is an override for the FV Name GUID
2097 //
2098 if (mFvDataInfo.FvNameGuidSet) {
2099 memcpy (&FvExtHeader->FvName, &mFvDataInfo.FvNameGuid, sizeof (EFI_GUID));
2100 }
2101 memcpy (&mFvDataInfo.FvNameGuid, &FvExtHeader->FvName, sizeof (EFI_GUID));
2102 mFvDataInfo.FvNameGuidSet = TRUE;
2103 } else if (mFvDataInfo.FvNameGuidSet) {
2104 //
2105 // Allocate a buffer for the FV Extension Header
2106 //
2107 FvExtHeader = malloc(sizeof (EFI_FIRMWARE_VOLUME_EXT_HEADER));
2108 if (FvExtHeader == NULL) {
2109 return EFI_OUT_OF_RESOURCES;
2110 }
2111 memcpy (&FvExtHeader->FvName, &mFvDataInfo.FvNameGuid, sizeof (EFI_GUID));
2112 FvExtHeader->ExtHeaderSize = sizeof (EFI_FIRMWARE_VOLUME_EXT_HEADER);
2113 }
2114
2115 //
2116 // Debug message Fv Name Guid
2117 //
2118 if (mFvDataInfo.FvNameGuidSet) {
2119 DebugMsg (NULL, 0, 9, "FV Name Guid", "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X",
2120 (unsigned) mFvDataInfo.FvNameGuid.Data1,
2121 mFvDataInfo.FvNameGuid.Data2,
2122 mFvDataInfo.FvNameGuid.Data3,
2123 mFvDataInfo.FvNameGuid.Data4[0],
2124 mFvDataInfo.FvNameGuid.Data4[1],
2125 mFvDataInfo.FvNameGuid.Data4[2],
2126 mFvDataInfo.FvNameGuid.Data4[3],
2127 mFvDataInfo.FvNameGuid.Data4[4],
2128 mFvDataInfo.FvNameGuid.Data4[5],
2129 mFvDataInfo.FvNameGuid.Data4[6],
2130 mFvDataInfo.FvNameGuid.Data4[7]);
2131 }
2132
2133 if (CompareGuid (&mFvDataInfo.FvFileSystemGuid, &mEfiFirmwareFileSystem2Guid) == 0) {
2134 mFvDataInfo.IsPiFvImage = TRUE;
2135 }
2136
2137 //
2138 // FvMap file to log the function address of all modules in one Fvimage
2139 //
2140 if (MapFileName != NULL) {
2141 strcpy (FvMapName, MapFileName);
2142 } else {
2143 strcpy (FvMapName, FvFileName);
2144 strcat (FvMapName, ".map");
2145 }
2146 VerboseMsg ("FV Map file name is %s", FvMapName);
2147
2148 //
2149 // FvReport file to log the FV information in one Fvimage
2150 //
2151 strcpy (FvReportName, FvFileName);
2152 strcat (FvReportName, ".txt");
2153
2154 //
2155 // Calculate the FV size and Update Fv Size based on the actual FFS files.
2156 // And Update mFvDataInfo data.
2157 //
2158 Status = CalculateFvSize (&mFvDataInfo);
2159 if (EFI_ERROR (Status)) {
2160 return Status;
2161 }
2162 VerboseMsg ("the generated FV image size is %u bytes", (unsigned) mFvDataInfo.Size);
2163
2164 //
2165 // support fv image and empty fv image
2166 //
2167 FvImageSize = mFvDataInfo.Size;
2168
2169 //
2170 // Allocate the FV, assure FvImage Header 8 byte alignment
2171 //
2172 FvBufferHeader = malloc (FvImageSize + sizeof (UINT64));
2173 if (FvBufferHeader == NULL) {
2174 return EFI_OUT_OF_RESOURCES;
2175 }
2176 FvImage = (UINT8 *) (((UINTN) FvBufferHeader + 7) & ~7);
2177
2178 //
2179 // Initialize the FV to the erase polarity
2180 //
2181 if (mFvDataInfo.FvAttributes == 0) {
2182 //
2183 // Set Default Fv Attribute
2184 //
2185 mFvDataInfo.FvAttributes = FV_DEFAULT_ATTRIBUTE;
2186 }
2187 if (mFvDataInfo.FvAttributes & EFI_FVB2_ERASE_POLARITY) {
2188 memset (FvImage, -1, FvImageSize);
2189 } else {
2190 memset (FvImage, 0, FvImageSize);
2191 }
2192
2193 //
2194 // Initialize FV header
2195 //
2196 FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) FvImage;
2197
2198 //
2199 // Initialize the zero vector to all zeros.
2200 //
2201 memset (FvHeader->ZeroVector, 0, 16);
2202
2203 //
2204 // Copy the Fv file system GUID
2205 //
2206 memcpy (&FvHeader->FileSystemGuid, &mFvDataInfo.FvFileSystemGuid, sizeof (EFI_GUID));
2207
2208 FvHeader->FvLength = FvImageSize;
2209 FvHeader->Signature = EFI_FVH_SIGNATURE;
2210 FvHeader->Attributes = mFvDataInfo.FvAttributes;
2211 FvHeader->Revision = EFI_FVH_REVISION;
2212 FvHeader->ExtHeaderOffset = 0;
2213 FvHeader->Reserved[0] = 0;
2214
2215 //
2216 // Copy firmware block map
2217 //
2218 for (Index = 0; mFvDataInfo.FvBlocks[Index].Length != 0; Index++) {
2219 FvHeader->BlockMap[Index].NumBlocks = mFvDataInfo.FvBlocks[Index].NumBlocks;
2220 FvHeader->BlockMap[Index].Length = mFvDataInfo.FvBlocks[Index].Length;
2221 }
2222
2223 //
2224 // Add block map terminator
2225 //
2226 FvHeader->BlockMap[Index].NumBlocks = 0;
2227 FvHeader->BlockMap[Index].Length = 0;
2228
2229 //
2230 // Complete the header
2231 //
2232 FvHeader->HeaderLength = (UINT16) (((UINTN) &(FvHeader->BlockMap[Index + 1])) - (UINTN) FvImage);
2233 FvHeader->Checksum = 0;
2234 FvHeader->Checksum = CalculateChecksum16 ((UINT16 *) FvHeader, FvHeader->HeaderLength / sizeof (UINT16));
2235
2236 //
2237 // If there is no FFS file, generate one empty FV
2238 //
2239 if (mFvDataInfo.FvFiles[0][0] == 0 && !mFvDataInfo.FvNameGuidSet) {
2240 goto WriteFile;
2241 }
2242
2243 //
2244 // Initialize our "file" view of the buffer
2245 //
2246 FvImageMemoryFile.FileImage = (CHAR8 *)FvImage;
2247 FvImageMemoryFile.CurrentFilePointer = (CHAR8 *)FvImage + FvHeader->HeaderLength;
2248 FvImageMemoryFile.Eof = (CHAR8 *)FvImage + FvImageSize;
2249
2250 //
2251 // Initialize the FV library.
2252 //
2253 InitializeFvLib (FvImageMemoryFile.FileImage, FvImageSize);
2254
2255 //
2256 // Initialize the VTF file address.
2257 //
2258 VtfFileImage = (EFI_FFS_FILE_HEADER *) FvImageMemoryFile.Eof;
2259
2260 //
2261 // Open FvMap file
2262 //
2263 FvMapFile = fopen (FvMapName, "w");
2264 if (FvMapFile == NULL) {
2265 Error (NULL, 0, 0001, "Error opening file", FvMapName);
2266 return EFI_ABORTED;
2267 }
2268
2269 //
2270 // Open FvReport file
2271 //
2272 FvReportFile = fopen(FvReportName, "w");
2273 if (FvReportFile == NULL) {
2274 Error (NULL, 0, 0001, "Error opening file", FvReportName);
2275 return EFI_ABORTED;
2276 }
2277 //
2278 // record FV size information into FvMap file.
2279 //
2280 if (mFvTotalSize != 0) {
2281 fprintf (FvMapFile, EFI_FV_TOTAL_SIZE_STRING);
2282 fprintf (FvMapFile, " = 0x%x\n", (unsigned) mFvTotalSize);
2283 }
2284 if (mFvTakenSize != 0) {
2285 fprintf (FvMapFile, EFI_FV_TAKEN_SIZE_STRING);
2286 fprintf (FvMapFile, " = 0x%x\n", (unsigned) mFvTakenSize);
2287 }
2288 if (mFvTotalSize != 0 && mFvTakenSize != 0) {
2289 fprintf (FvMapFile, EFI_FV_SPACE_SIZE_STRING);
2290 fprintf (FvMapFile, " = 0x%x\n\n", (unsigned) (mFvTotalSize - mFvTakenSize));
2291 }
2292
2293 //
2294 // record FV size information to FvReportFile.
2295 //
2296 fprintf (FvReportFile, "%s = 0x%x\n", EFI_FV_TOTAL_SIZE_STRING, (unsigned) mFvTotalSize);
2297 fprintf (FvReportFile, "%s = 0x%x\n", EFI_FV_TAKEN_SIZE_STRING, (unsigned) mFvTakenSize);
2298
2299 //
2300 // Add PI FV extension header
2301 //
2302 if (FvExtHeader != NULL) {
2303 //
2304 // Add FV Extended Header contents to the FV as a PAD file
2305 //
2306 AddPadFile (&FvImageMemoryFile, 4, VtfFileImage, FvExtHeader);
2307
2308 //
2309 // Fv Extension header change update Fv Header Check sum
2310 //
2311 FvHeader->Checksum = 0;
2312 FvHeader->Checksum = CalculateChecksum16 ((UINT16 *) FvHeader, FvHeader->HeaderLength / sizeof (UINT16));
2313 }
2314
2315 //
2316 // Add files to FV
2317 //
2318 for (Index = 0; mFvDataInfo.FvFiles[Index][0] != 0; Index++) {
2319 //
2320 // Add the file
2321 //
2322 Status = AddFile (&FvImageMemoryFile, &mFvDataInfo, Index, &VtfFileImage, FvMapFile, FvReportFile);
2323
2324 //
2325 // Exit if error detected while adding the file
2326 //
2327 if (EFI_ERROR (Status)) {
2328 goto Finish;
2329 }
2330 }
2331
2332 //
2333 // If there is a VTF file, some special actions need to occur.
2334 //
2335 if ((UINTN) VtfFileImage != (UINTN) FvImageMemoryFile.Eof) {
2336 //
2337 // Pad from the end of the last file to the beginning of the VTF file.
2338 // If the left space is less than sizeof (EFI_FFS_FILE_HEADER)?
2339 //
2340 Status = PadFvImage (&FvImageMemoryFile, VtfFileImage);
2341 if (EFI_ERROR (Status)) {
2342 Error (NULL, 0, 4002, "Resource", "FV space is full, cannot add pad file between the last file and the VTF file.");
2343 goto Finish;
2344 }
2345 if (!mArm) {
2346 //
2347 // Update reset vector (SALE_ENTRY for IPF)
2348 // Now for IA32 and IA64 platform, the fv which has bsf file must have the
2349 // EndAddress of 0xFFFFFFFF. Thus, only this type fv needs to update the
2350 // reset vector. If the PEI Core is found, the VTF file will probably get
2351 // corrupted by updating the entry point.
2352 //
2353 if ((mFvDataInfo.BaseAddress + mFvDataInfo.Size) == FV_IMAGES_TOP_ADDRESS) {
2354 Status = UpdateResetVector (&FvImageMemoryFile, &mFvDataInfo, VtfFileImage);
2355 if (EFI_ERROR(Status)) {
2356 Error (NULL, 0, 3000, "Invalid", "Could not update the reset vector.");
2357 goto Finish;
2358 }
2359 DebugMsg (NULL, 0, 9, "Update Reset vector in VTF file", NULL);
2360 }
2361 }
2362 }
2363
2364 if (mArm) {
2365 Status = UpdateArmResetVectorIfNeeded (&FvImageMemoryFile, &mFvDataInfo);
2366 if (EFI_ERROR (Status)) {
2367 Error (NULL, 0, 3000, "Invalid", "Could not update the reset vector.");
2368 goto Finish;
2369 }
2370
2371 //
2372 // Update Checksum for FvHeader
2373 //
2374 FvHeader->Checksum = 0;
2375 FvHeader->Checksum = CalculateChecksum16 ((UINT16 *) FvHeader, FvHeader->HeaderLength / sizeof (UINT16));
2376 }
2377
2378 //
2379 // Update FV Alignment attribute to the largest alignment of all the FFS files in the FV
2380 //
2381 if ((((FvHeader->Attributes & EFI_FVB2_ALIGNMENT) >> 16)) < MaxFfsAlignment) {
2382 FvHeader->Attributes = ((MaxFfsAlignment << 16) | (FvHeader->Attributes & 0xFFFF));
2383 //
2384 // Update Checksum for FvHeader
2385 //
2386 FvHeader->Checksum = 0;
2387 FvHeader->Checksum = CalculateChecksum16 ((UINT16 *) FvHeader, FvHeader->HeaderLength / sizeof (UINT16));
2388 }
2389
2390 WriteFile:
2391 //
2392 // Write fv file
2393 //
2394 FvFile = fopen (FvFileName, "wb");
2395 if (FvFile == NULL) {
2396 Error (NULL, 0, 0001, "Error opening file", FvFileName);
2397 Status = EFI_ABORTED;
2398 goto Finish;
2399 }
2400
2401 if (fwrite (FvImage, 1, FvImageSize, FvFile) != FvImageSize) {
2402 Error (NULL, 0, 0002, "Error writing file", FvFileName);
2403 Status = EFI_ABORTED;
2404 goto Finish;
2405 }
2406
2407 Finish:
2408 if (FvBufferHeader != NULL) {
2409 free (FvBufferHeader);
2410 }
2411
2412 if (FvExtHeader != NULL) {
2413 free (FvExtHeader);
2414 }
2415
2416 if (FvFile != NULL) {
2417 fflush (FvFile);
2418 fclose (FvFile);
2419 }
2420
2421 if (FvMapFile != NULL) {
2422 fflush (FvMapFile);
2423 fclose (FvMapFile);
2424 }
2425
2426 if (FvReportFile != NULL) {
2427 fflush (FvReportFile);
2428 fclose (FvReportFile);
2429 }
2430 return Status;
2431 }
2432
2433 EFI_STATUS
2434 UpdatePeiCoreEntryInFit (
2435 IN FIT_TABLE *FitTablePtr,
2436 IN UINT64 PeiCorePhysicalAddress
2437 )
2438 /*++
2439
2440 Routine Description:
2441
2442 This function is used to update the Pei Core address in FIT, this can be used by Sec core to pass control from
2443 Sec to Pei Core
2444
2445 Arguments:
2446
2447 FitTablePtr - The pointer of FIT_TABLE.
2448 PeiCorePhysicalAddress - The address of Pei Core entry.
2449
2450 Returns:
2451
2452 EFI_SUCCESS - The PEI_CORE FIT entry was updated successfully.
2453 EFI_NOT_FOUND - Not found the PEI_CORE FIT entry.
2454
2455 --*/
2456 {
2457 FIT_TABLE *TmpFitPtr;
2458 UINTN Index;
2459 UINTN NumFitComponents;
2460
2461 TmpFitPtr = FitTablePtr;
2462 NumFitComponents = TmpFitPtr->CompSize;
2463
2464 for (Index = 0; Index < NumFitComponents; Index++) {
2465 if ((TmpFitPtr->CvAndType & FIT_TYPE_MASK) == COMP_TYPE_FIT_PEICORE) {
2466 TmpFitPtr->CompAddress = PeiCorePhysicalAddress;
2467 return EFI_SUCCESS;
2468 }
2469
2470 TmpFitPtr++;
2471 }
2472
2473 return EFI_NOT_FOUND;
2474 }
2475
2476 VOID
2477 UpdateFitCheckSum (
2478 IN FIT_TABLE *FitTablePtr
2479 )
2480 /*++
2481
2482 Routine Description:
2483
2484 This function is used to update the checksum for FIT.
2485
2486
2487 Arguments:
2488
2489 FitTablePtr - The pointer of FIT_TABLE.
2490
2491 Returns:
2492
2493 None.
2494
2495 --*/
2496 {
2497 if ((FitTablePtr->CvAndType & CHECKSUM_BIT_MASK) >> 7) {
2498 FitTablePtr->CheckSum = 0;
2499 FitTablePtr->CheckSum = CalculateChecksum8 ((UINT8 *) FitTablePtr, FitTablePtr->CompSize * 16);
2500 }
2501 }
2502
2503 EFI_STATUS
2504 CalculateFvSize (
2505 FV_INFO *FvInfoPtr
2506 )
2507 /*++
2508 Routine Description:
2509 Calculate the FV size and Update Fv Size based on the actual FFS files.
2510 And Update FvInfo data.
2511
2512 Arguments:
2513 FvInfoPtr - The pointer to FV_INFO structure.
2514
2515 Returns:
2516 EFI_ABORTED - Ffs Image Error
2517 EFI_SUCCESS - Successfully update FvSize
2518 --*/
2519 {
2520 UINTN CurrentOffset;
2521 UINTN Index;
2522 FILE *fpin;
2523 UINTN FfsFileSize;
2524 UINTN FvExtendHeaderSize;
2525 UINT32 FfsAlignment;
2526 EFI_FFS_FILE_HEADER FfsHeader;
2527 BOOLEAN VtfFileFlag;
2528 UINTN VtfFileSize;
2529
2530 FvExtendHeaderSize = 0;
2531 VtfFileSize = 0;
2532 VtfFileFlag = FALSE;
2533 fpin = NULL;
2534 Index = 0;
2535
2536 //
2537 // Compute size for easy access later
2538 //
2539 FvInfoPtr->Size = 0;
2540 for (Index = 0; FvInfoPtr->FvBlocks[Index].NumBlocks > 0 && FvInfoPtr->FvBlocks[Index].Length > 0; Index++) {
2541 FvInfoPtr->Size += FvInfoPtr->FvBlocks[Index].NumBlocks * FvInfoPtr->FvBlocks[Index].Length;
2542 }
2543
2544 //
2545 // Caculate the required sizes for all FFS files.
2546 //
2547 CurrentOffset = sizeof (EFI_FIRMWARE_VOLUME_HEADER);
2548
2549 for (Index = 1;; Index ++) {
2550 CurrentOffset += sizeof (EFI_FV_BLOCK_MAP_ENTRY);
2551 if (FvInfoPtr->FvBlocks[Index].NumBlocks == 0 || FvInfoPtr->FvBlocks[Index].Length == 0) {
2552 break;
2553 }
2554 }
2555
2556 //
2557 // Calculate PI extension header
2558 //
2559 if (mFvDataInfo.FvExtHeaderFile[0] != '\0') {
2560 fpin = fopen (mFvDataInfo.FvExtHeaderFile, "rb");
2561 if (fpin == NULL) {
2562 Error (NULL, 0, 0001, "Error opening file", mFvDataInfo.FvExtHeaderFile);
2563 return EFI_ABORTED;
2564 }
2565 FvExtendHeaderSize = _filelength (fileno (fpin));
2566 fclose (fpin);
2567 CurrentOffset += sizeof (EFI_FFS_FILE_HEADER) + FvExtendHeaderSize;
2568 CurrentOffset = (CurrentOffset + 7) & (~7);
2569 } else if (mFvDataInfo.FvNameGuidSet) {
2570 CurrentOffset += sizeof (EFI_FFS_FILE_HEADER) + sizeof (EFI_FIRMWARE_VOLUME_EXT_HEADER);
2571 CurrentOffset = (CurrentOffset + 7) & (~7);
2572 }
2573
2574 //
2575 // Accumlate every FFS file size.
2576 //
2577 for (Index = 0; FvInfoPtr->FvFiles[Index][0] != 0; Index++) {
2578 //
2579 // Open FFS file
2580 //
2581 fpin = NULL;
2582 fpin = fopen (FvInfoPtr->FvFiles[Index], "rb");
2583 if (fpin == NULL) {
2584 Error (NULL, 0, 0001, "Error opening file", FvInfoPtr->FvFiles[Index]);
2585 return EFI_ABORTED;
2586 }
2587 //
2588 // Get the file size
2589 //
2590 FfsFileSize = _filelength (fileno (fpin));
2591 //
2592 // Read Ffs File header
2593 //
2594 fread (&FfsHeader, sizeof (UINT8), sizeof (EFI_FFS_FILE_HEADER), fpin);
2595 //
2596 // close file
2597 //
2598 fclose (fpin);
2599
2600 if (FvInfoPtr->IsPiFvImage) {
2601 //
2602 // Check whether this ffs file is vtf file
2603 //
2604 if (IsVtfFile (&FfsHeader)) {
2605 if (VtfFileFlag) {
2606 //
2607 // One Fv image can't have two vtf files.
2608 //
2609 return EFI_ABORTED;
2610 }
2611 VtfFileFlag = TRUE;
2612 VtfFileSize = FfsFileSize;
2613 continue;
2614 }
2615
2616 //
2617 // Get the alignment of FFS file
2618 //
2619 ReadFfsAlignment (&FfsHeader, &FfsAlignment);
2620 FfsAlignment = 1 << FfsAlignment;
2621 //
2622 // Add Pad file
2623 //
2624 if (((CurrentOffset + sizeof (EFI_FFS_FILE_HEADER)) % FfsAlignment) != 0) {
2625 CurrentOffset = (CurrentOffset + sizeof (EFI_FFS_FILE_HEADER) * 2 + FfsAlignment - 1) & ~(FfsAlignment - 1);
2626 CurrentOffset -= sizeof (EFI_FFS_FILE_HEADER);
2627 }
2628 }
2629
2630 //
2631 // Add ffs file size
2632 //
2633 if (FvInfoPtr->SizeofFvFiles[Index] > FfsFileSize) {
2634 CurrentOffset += FvInfoPtr->SizeofFvFiles[Index];
2635 } else {
2636 CurrentOffset += FfsFileSize;
2637 }
2638
2639 //
2640 // Make next ffs file start at QWord Boundry
2641 //
2642 if (FvInfoPtr->IsPiFvImage) {
2643 CurrentOffset = (CurrentOffset + EFI_FFS_FILE_HEADER_ALIGNMENT - 1) & ~(EFI_FFS_FILE_HEADER_ALIGNMENT - 1);
2644 }
2645 }
2646 CurrentOffset += VtfFileSize;
2647 DebugMsg (NULL, 0, 9, "FvImage size", "The caculated fv image size is 0x%x and the current set fv image size is 0x%x", (unsigned) CurrentOffset, (unsigned) FvInfoPtr->Size);
2648
2649 if (FvInfoPtr->Size == 0) {
2650 //
2651 // Update FvInfo data
2652 //
2653 FvInfoPtr->FvBlocks[0].NumBlocks = CurrentOffset / FvInfoPtr->FvBlocks[0].Length + ((CurrentOffset % FvInfoPtr->FvBlocks[0].Length)?1:0);
2654 FvInfoPtr->Size = FvInfoPtr->FvBlocks[0].NumBlocks * FvInfoPtr->FvBlocks[0].Length;
2655 FvInfoPtr->FvBlocks[1].NumBlocks = 0;
2656 FvInfoPtr->FvBlocks[1].Length = 0;
2657 } else if (FvInfoPtr->Size < CurrentOffset) {
2658 //
2659 // Not invalid
2660 //
2661 Error (NULL, 0, 3000, "Invalid", "the required fv image size 0x%x exceeds the set fv image size 0x%x", (unsigned) CurrentOffset, (unsigned) FvInfoPtr->Size);
2662 return EFI_INVALID_PARAMETER;
2663 }
2664
2665 //
2666 // Set Fv Size Information
2667 //
2668 mFvTotalSize = FvInfoPtr->Size;
2669 mFvTakenSize = CurrentOffset;
2670
2671 return EFI_SUCCESS;
2672 }
2673
2674 EFI_STATUS
2675 FfsRebaseImageRead (
2676 IN VOID *FileHandle,
2677 IN UINTN FileOffset,
2678 IN OUT UINT32 *ReadSize,
2679 OUT VOID *Buffer
2680 )
2681 /*++
2682
2683 Routine Description:
2684
2685 Support routine for the PE/COFF Loader that reads a buffer from a PE/COFF file
2686
2687 Arguments:
2688
2689 FileHandle - The handle to the PE/COFF file
2690
2691 FileOffset - The offset, in bytes, into the file to read
2692
2693 ReadSize - The number of bytes to read from the file starting at FileOffset
2694
2695 Buffer - A pointer to the buffer to read the data into.
2696
2697 Returns:
2698
2699 EFI_SUCCESS - ReadSize bytes of data were read into Buffer from the PE/COFF file starting at FileOffset
2700
2701 --*/
2702 {
2703 CHAR8 *Destination8;
2704 CHAR8 *Source8;
2705 UINT32 Length;
2706
2707 Destination8 = Buffer;
2708 Source8 = (CHAR8 *) ((UINTN) FileHandle + FileOffset);
2709 Length = *ReadSize;
2710 while (Length--) {
2711 *(Destination8++) = *(Source8++);
2712 }
2713
2714 return EFI_SUCCESS;
2715 }
2716
2717 EFI_STATUS
2718 GetChildFvFromFfs (
2719 IN FV_INFO *FvInfo,
2720 IN EFI_FFS_FILE_HEADER *FfsFile,
2721 IN UINTN XipOffset
2722 )
2723 /*++
2724
2725 Routine Description:
2726
2727 This function gets all child FvImages in the input FfsFile, and records
2728 their base address to the parent image.
2729
2730 Arguments:
2731 FvInfo A pointer to FV_INFO struture.
2732 FfsFile A pointer to Ffs file image that may contain FvImage.
2733 XipOffset The offset address to the parent FvImage base.
2734
2735 Returns:
2736
2737 EFI_SUCCESS Base address of child Fv image is recorded.
2738 --*/
2739 {
2740 EFI_STATUS Status;
2741 UINTN Index;
2742 EFI_FILE_SECTION_POINTER SubFvSection;
2743 EFI_FIRMWARE_VOLUME_HEADER *SubFvImageHeader;
2744 EFI_PHYSICAL_ADDRESS SubFvBaseAddress;
2745
2746 for (Index = 1;; Index++) {
2747 //
2748 // Find FV section
2749 //
2750 Status = GetSectionByType (FfsFile, EFI_SECTION_FIRMWARE_VOLUME_IMAGE, Index, &SubFvSection);
2751 if (EFI_ERROR (Status)) {
2752 break;
2753 }
2754 SubFvImageHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINT8 *) SubFvSection.FVImageSection + sizeof (EFI_FIRMWARE_VOLUME_IMAGE_SECTION));
2755 //
2756 // Rebase on Flash
2757 //
2758 SubFvBaseAddress = FvInfo->BaseAddress + (UINTN) SubFvImageHeader - (UINTN) FfsFile + XipOffset;
2759 mFvBaseAddress[mFvBaseAddressNumber ++ ] = SubFvBaseAddress;
2760 }
2761
2762 return EFI_SUCCESS;
2763 }
2764
2765 EFI_STATUS
2766 FfsRebase (
2767 IN OUT FV_INFO *FvInfo,
2768 IN CHAR8 *FileName,
2769 IN OUT EFI_FFS_FILE_HEADER *FfsFile,
2770 IN UINTN XipOffset,
2771 IN FILE *FvMapFile
2772 )
2773 /*++
2774
2775 Routine Description:
2776
2777 This function determines if a file is XIP and should be rebased. It will
2778 rebase any PE32 sections found in the file using the base address.
2779
2780 Arguments:
2781
2782 FvInfo A pointer to FV_INFO struture.
2783 FileName Ffs File PathName
2784 FfsFile A pointer to Ffs file image.
2785 XipOffset The offset address to use for rebasing the XIP file image.
2786 FvMapFile FvMapFile to record the function address in one Fvimage
2787
2788 Returns:
2789
2790 EFI_SUCCESS The image was properly rebased.
2791 EFI_INVALID_PARAMETER An input parameter is invalid.
2792 EFI_ABORTED An error occurred while rebasing the input file image.
2793 EFI_OUT_OF_RESOURCES Could not allocate a required resource.
2794 EFI_NOT_FOUND No compressed sections could be found.
2795
2796 --*/
2797 {
2798 EFI_STATUS Status;
2799 PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
2800 PE_COFF_LOADER_IMAGE_CONTEXT OrigImageContext;
2801 EFI_PHYSICAL_ADDRESS XipBase;
2802 EFI_PHYSICAL_ADDRESS NewPe32BaseAddress;
2803 EFI_PHYSICAL_ADDRESS *BaseToUpdate;
2804 UINTN Index;
2805 EFI_FILE_SECTION_POINTER CurrentPe32Section;
2806 EFI_FFS_FILE_STATE SavedState;
2807 EFI_IMAGE_OPTIONAL_HEADER_UNION *ImgHdr;
2808 EFI_TE_IMAGE_HEADER *TEImageHeader;
2809 UINT8 *MemoryImagePointer;
2810 EFI_IMAGE_SECTION_HEADER *SectionHeader;
2811 CHAR8 PeFileName [_MAX_PATH];
2812 CHAR8 *Cptr;
2813 FILE *PeFile;
2814 UINT8 *PeFileBuffer;
2815 UINT32 PeFileSize;
2816 CHAR8 *PdbPointer;
2817
2818 Index = 0;
2819 MemoryImagePointer = NULL;
2820 BaseToUpdate = NULL;
2821 TEImageHeader = NULL;
2822 ImgHdr = NULL;
2823 SectionHeader = NULL;
2824 Cptr = NULL;
2825 PeFile = NULL;
2826 PeFileBuffer = NULL;
2827
2828 //
2829 // Don't need to relocate image when BaseAddress is not set.
2830 //
2831 if (FvInfo->BaseAddress == 0) {
2832 return EFI_SUCCESS;
2833 }
2834 XipBase = FvInfo->BaseAddress + XipOffset;
2835
2836 //
2837 // We only process files potentially containing PE32 sections.
2838 //
2839 switch (FfsFile->Type) {
2840 case EFI_FV_FILETYPE_SECURITY_CORE:
2841 case EFI_FV_FILETYPE_PEI_CORE:
2842 case EFI_FV_FILETYPE_PEIM:
2843 case EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER:
2844 case EFI_FV_FILETYPE_DRIVER:
2845 case EFI_FV_FILETYPE_DXE_CORE:
2846 break;
2847 case EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE:
2848 //
2849 // Rebase the inside FvImage.
2850 //
2851 GetChildFvFromFfs (FvInfo, FfsFile, XipOffset);
2852
2853 //
2854 // Search PE/TE section in FV sectin.
2855 //
2856 break;
2857 default:
2858 return EFI_SUCCESS;
2859 }
2860 //
2861 // Rebase each PE32 section
2862 //
2863 Status = EFI_SUCCESS;
2864 for (Index = 1;; Index++) {
2865 //
2866 // Init Value
2867 //
2868 NewPe32BaseAddress = 0;
2869
2870 //
2871 // Find Pe Image
2872 //
2873 Status = GetSectionByType (FfsFile, EFI_SECTION_PE32, Index, &CurrentPe32Section);
2874 if (EFI_ERROR (Status)) {
2875 break;
2876 }
2877
2878 //
2879 // Initialize context
2880 //
2881 memset (&ImageContext, 0, sizeof (ImageContext));
2882 ImageContext.Handle = (VOID *) ((UINTN) CurrentPe32Section.Pe32Section + sizeof (EFI_PE32_SECTION));
2883 ImageContext.ImageRead = (PE_COFF_LOADER_READ_FILE) FfsRebaseImageRead;
2884 Status = PeCoffLoaderGetImageInfo (&ImageContext);
2885 if (EFI_ERROR (Status)) {
2886 Error (NULL, 0, 3000, "Invalid PeImage", "The input file is %s and the return status is %x", FileName, (int) Status);
2887 return Status;
2888 }
2889
2890 if (ImageContext.Machine == EFI_IMAGE_MACHINE_ARMT) {
2891 mArm = TRUE;
2892 }
2893
2894 //
2895 // Keep Image Context for PE image in FV
2896 //
2897 memcpy (&OrigImageContext, &ImageContext, sizeof (ImageContext));
2898
2899 //
2900 // Get File PdbPointer
2901 //
2902 PdbPointer = PeCoffLoaderGetPdbPointer (ImageContext.Handle);
2903
2904 //
2905 // Get PeHeader pointer
2906 //
2907 ImgHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)((UINTN) CurrentPe32Section.Pe32Section + sizeof (EFI_PE32_SECTION) + ImageContext.PeCoffHeaderOffset);
2908
2909 //
2910 // Calculate the PE32 base address, based on file type
2911 //
2912 switch (FfsFile->Type) {
2913 case EFI_FV_FILETYPE_SECURITY_CORE:
2914 case EFI_FV_FILETYPE_PEI_CORE:
2915 case EFI_FV_FILETYPE_PEIM:
2916 case EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER:
2917 //
2918 // Check if section-alignment and file-alignment match or not
2919 //
2920 if ((ImgHdr->Pe32.OptionalHeader.SectionAlignment != ImgHdr->Pe32.OptionalHeader.FileAlignment)) {
2921 //
2922 // Xip module has the same section alignment and file alignment.
2923 //
2924 Error (NULL, 0, 3000, "Invalid", "Section-Alignment and File-Alignment do not match : %s.", FileName);
2925 return EFI_ABORTED;
2926 }
2927 //
2928 // PeImage has no reloc section. It will try to get reloc data from the original EFI image.
2929 //
2930 if (ImageContext.RelocationsStripped) {
2931 //
2932 // Construct the original efi file Name
2933 //
2934 strcpy (PeFileName, FileName);
2935 Cptr = PeFileName + strlen (PeFileName);
2936 while (*Cptr != '.') {
2937 Cptr --;
2938 }
2939 if (*Cptr != '.') {
2940 Error (NULL, 0, 3000, "Invalid", "The file %s has no .reloc section.", FileName);
2941 return EFI_ABORTED;
2942 } else {
2943 *(Cptr + 1) = 'e';
2944 *(Cptr + 2) = 'f';
2945 *(Cptr + 3) = 'i';
2946 *(Cptr + 4) = '\0';
2947 }
2948 PeFile = fopen (PeFileName, "rb");
2949 if (PeFile == NULL) {
2950 Warning (NULL, 0, 0, "Invalid", "The file %s has no .reloc section.", FileName);
2951 //Error (NULL, 0, 3000, "Invalid", "The file %s has no .reloc section.", FileName);
2952 //return EFI_ABORTED;
2953 break;
2954 }
2955 //
2956 // Get the file size
2957 //
2958 PeFileSize = _filelength (fileno (PeFile));
2959 PeFileBuffer = (UINT8 *) malloc (PeFileSize);
2960 if (PeFileBuffer == NULL) {
2961 Error (NULL, 0, 4001, "Resource", "memory cannot be allocated on rebase of %s", FileName);
2962 return EFI_OUT_OF_RESOURCES;
2963 }
2964 //
2965 // Read Pe File
2966 //
2967 fread (PeFileBuffer, sizeof (UINT8), PeFileSize, PeFile);
2968 //
2969 // close file
2970 //
2971 fclose (PeFile);
2972 //
2973 // Handle pointer to the original efi image.
2974 //
2975 ImageContext.Handle = PeFileBuffer;
2976 Status = PeCoffLoaderGetImageInfo (&ImageContext);
2977 if (EFI_ERROR (Status)) {
2978 Error (NULL, 0, 3000, "Invalid PeImage", "The input file is %s and the return status is %x", FileName, (int) Status);
2979 return Status;
2980 }
2981 ImageContext.RelocationsStripped = FALSE;
2982 }
2983
2984 NewPe32BaseAddress = XipBase + (UINTN) CurrentPe32Section.Pe32Section + sizeof (EFI_PE32_SECTION) - (UINTN)FfsFile;
2985 BaseToUpdate = &XipBase;
2986 break;
2987
2988 case EFI_FV_FILETYPE_DRIVER:
2989 case EFI_FV_FILETYPE_DXE_CORE:
2990 //
2991 // Check if section-alignment and file-alignment match or not
2992 //
2993 if ((ImgHdr->Pe32.OptionalHeader.SectionAlignment != ImgHdr->Pe32.OptionalHeader.FileAlignment)) {
2994 //
2995 // Xip module has the same section alignment and file alignment.
2996 //
2997 Error (NULL, 0, 3000, "Invalid", "Section-Alignment and File-Alignment do not match : %s.", FileName);
2998 return EFI_ABORTED;
2999 }
3000 NewPe32BaseAddress = XipBase + (UINTN) CurrentPe32Section.Pe32Section + sizeof (EFI_PE32_SECTION) - (UINTN)FfsFile;
3001 BaseToUpdate = &XipBase;
3002 break;
3003
3004 default:
3005 //
3006 // Not supported file type
3007 //
3008 return EFI_SUCCESS;
3009 }
3010
3011 //
3012 // Relocation doesn't exist
3013 //
3014 if (ImageContext.RelocationsStripped) {
3015 Warning (NULL, 0, 0, "Invalid", "The file %s has no .reloc section.", FileName);
3016 continue;
3017 }
3018
3019 //
3020 // Relocation exist and rebase
3021 //
3022 //
3023 // Load and Relocate Image Data
3024 //
3025 MemoryImagePointer = (UINT8 *) malloc ((UINTN) ImageContext.ImageSize + ImageContext.SectionAlignment);
3026 if (MemoryImagePointer == NULL) {
3027 Error (NULL, 0, 4001, "Resource", "memory cannot be allocated on rebase of %s", FileName);
3028 return EFI_OUT_OF_RESOURCES;
3029 }
3030 memset ((VOID *) MemoryImagePointer, 0, (UINTN) ImageContext.ImageSize + ImageContext.SectionAlignment);
3031 ImageContext.ImageAddress = ((UINTN) MemoryImagePointer + ImageContext.SectionAlignment - 1) & (~((UINTN) ImageContext.SectionAlignment - 1));
3032
3033 Status = PeCoffLoaderLoadImage (&ImageContext);
3034 if (EFI_ERROR (Status)) {
3035 Error (NULL, 0, 3000, "Invalid", "LocateImage() call failed on rebase of %s", FileName);
3036 free ((VOID *) MemoryImagePointer);
3037 return Status;
3038 }
3039
3040 ImageContext.DestinationAddress = NewPe32BaseAddress;
3041 Status = PeCoffLoaderRelocateImage (&ImageContext);
3042 if (EFI_ERROR (Status)) {
3043 Error (NULL, 0, 3000, "Invalid", "RelocateImage() call failed on rebase of %s", FileName);
3044 free ((VOID *) MemoryImagePointer);
3045 return Status;
3046 }
3047
3048 //
3049 // Copy Relocated data to raw image file.
3050 //
3051 SectionHeader = (EFI_IMAGE_SECTION_HEADER *) (
3052 (UINTN) ImgHdr +
3053 sizeof (UINT32) +
3054 sizeof (EFI_IMAGE_FILE_HEADER) +
3055 ImgHdr->Pe32.FileHeader.SizeOfOptionalHeader
3056 );
3057
3058 for (Index = 0; Index < ImgHdr->Pe32.FileHeader.NumberOfSections; Index ++, SectionHeader ++) {
3059 CopyMem (
3060 (UINT8 *) CurrentPe32Section.Pe32Section + sizeof (EFI_COMMON_SECTION_HEADER) + SectionHeader->PointerToRawData,
3061 (VOID*) (UINTN) (ImageContext.ImageAddress + SectionHeader->VirtualAddress),
3062 SectionHeader->SizeOfRawData
3063 );
3064 }
3065
3066 free ((VOID *) MemoryImagePointer);
3067 MemoryImagePointer = NULL;
3068 if (PeFileBuffer != NULL) {
3069 free (PeFileBuffer);
3070 PeFileBuffer = NULL;
3071 }
3072
3073 //
3074 // Update Image Base Address
3075 //
3076 if (ImgHdr->Pe32.OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
3077 ImgHdr->Pe32.OptionalHeader.ImageBase = (UINT32) NewPe32BaseAddress;
3078 } else if (ImgHdr->Pe32Plus.OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC) {
3079 ImgHdr->Pe32Plus.OptionalHeader.ImageBase = NewPe32BaseAddress;
3080 } else {
3081 Error (NULL, 0, 3000, "Invalid", "unknown PE magic signature %X in PE32 image %s",
3082 ImgHdr->Pe32.OptionalHeader.Magic,
3083 FileName
3084 );
3085 return EFI_ABORTED;
3086 }
3087
3088 //
3089 // Now update file checksum
3090 //
3091 if (FfsFile->Attributes & FFS_ATTRIB_CHECKSUM) {
3092 SavedState = FfsFile->State;
3093 FfsFile->IntegrityCheck.Checksum.File = 0;
3094 FfsFile->State = 0;
3095 FfsFile->IntegrityCheck.Checksum.File = CalculateChecksum8 (
3096 (UINT8 *) (FfsFile + 1),
3097 GetLength (FfsFile->Size) - sizeof (EFI_FFS_FILE_HEADER)
3098 );
3099 FfsFile->State = SavedState;
3100 }
3101
3102 //
3103 // Get this module function address from ModulePeMapFile and add them into FvMap file
3104 //
3105
3106 //
3107 // Default use FileName as map file path
3108 //
3109 if (PdbPointer == NULL) {
3110 PdbPointer = FileName;
3111 }
3112
3113 WriteMapFile (FvMapFile, PdbPointer, FfsFile, NewPe32BaseAddress, &OrigImageContext);
3114 }
3115
3116 if (FfsFile->Type != EFI_FV_FILETYPE_SECURITY_CORE &&
3117 FfsFile->Type != EFI_FV_FILETYPE_PEI_CORE &&
3118 FfsFile->Type != EFI_FV_FILETYPE_PEIM &&
3119 FfsFile->Type != EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER &&
3120 FfsFile->Type != EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE
3121 ) {
3122 //
3123 // Only Peim code may have a TE section
3124 //
3125 return EFI_SUCCESS;
3126 }
3127
3128 //
3129 // Now process TE sections
3130 //
3131 for (Index = 1;; Index++) {
3132 NewPe32BaseAddress = 0;
3133
3134 //
3135 // Find Te Image
3136 //
3137 Status = GetSectionByType (FfsFile, EFI_SECTION_TE, Index, &CurrentPe32Section);
3138 if (EFI_ERROR (Status)) {
3139 break;
3140 }
3141
3142 //
3143 // Calculate the TE base address, the FFS file base plus the offset of the TE section less the size stripped off
3144 // by GenTEImage
3145 //
3146 TEImageHeader = (EFI_TE_IMAGE_HEADER *) ((UINT8 *) CurrentPe32Section.Pe32Section + sizeof (EFI_COMMON_SECTION_HEADER));
3147
3148 //
3149 // Initialize context, load image info.
3150 //
3151 memset (&ImageContext, 0, sizeof (ImageContext));
3152 ImageContext.Handle = (VOID *) TEImageHeader;
3153 ImageContext.ImageRead = (PE_COFF_LOADER_READ_FILE) FfsRebaseImageRead;
3154 Status = PeCoffLoaderGetImageInfo (&ImageContext);
3155 if (EFI_ERROR (Status)) {
3156 Error (NULL, 0, 3000, "Invalid TeImage", "The input file is %s and the return status is %x", FileName, (int) Status);
3157 return Status;
3158 }
3159
3160 if (ImageContext.Machine == EFI_IMAGE_MACHINE_ARMT) {
3161 mArm = TRUE;
3162 }
3163
3164 //
3165 // Keep Image Context for TE image in FV
3166 //
3167 memcpy (&OrigImageContext, &ImageContext, sizeof (ImageContext));
3168
3169 //
3170 // Get File PdbPointer
3171 //
3172 PdbPointer = PeCoffLoaderGetPdbPointer (ImageContext.Handle);
3173
3174 //
3175 // Set new rebased address.
3176 //
3177 NewPe32BaseAddress = XipBase + (UINTN) TEImageHeader + sizeof (EFI_TE_IMAGE_HEADER) \
3178 - TEImageHeader->StrippedSize - (UINTN) FfsFile;
3179
3180 //
3181 // if reloc is stripped, try to get the original efi image to get reloc info.
3182 //
3183 if (ImageContext.RelocationsStripped) {
3184 //
3185 // Construct the original efi file name
3186 //
3187 strcpy (PeFileName, FileName);
3188 Cptr = PeFileName + strlen (PeFileName);
3189 while (*Cptr != '.') {
3190 Cptr --;
3191 }
3192
3193 if (*Cptr != '.') {
3194 Error (NULL, 0, 3000, "Invalid", "The file %s has no .reloc section.", FileName);
3195 return EFI_ABORTED;
3196 } else {
3197 *(Cptr + 1) = 'e';
3198 *(Cptr + 2) = 'f';
3199 *(Cptr + 3) = 'i';
3200 *(Cptr + 4) = '\0';
3201 }
3202
3203 PeFile = fopen (PeFileName, "rb");
3204 if (PeFile == NULL) {
3205 Warning (NULL, 0, 0, "Invalid", "The file %s has no .reloc section.", FileName);
3206 //Error (NULL, 0, 3000, "Invalid", "The file %s has no .reloc section.", FileName);
3207 //return EFI_ABORTED;
3208 } else {
3209 //
3210 // Get the file size
3211 //
3212 PeFileSize = _filelength (fileno (PeFile));
3213 PeFileBuffer = (UINT8 *) malloc (PeFileSize);
3214 if (PeFileBuffer == NULL) {
3215 Error (NULL, 0, 4001, "Resource", "memory cannot be allocated on rebase of %s", FileName);
3216 return EFI_OUT_OF_RESOURCES;
3217 }
3218 //
3219 // Read Pe File
3220 //
3221 fread (PeFileBuffer, sizeof (UINT8), PeFileSize, PeFile);
3222 //
3223 // close file
3224 //
3225 fclose (PeFile);
3226 //
3227 // Append reloc section into TeImage
3228 //
3229 ImageContext.Handle = PeFileBuffer;
3230 Status = PeCoffLoaderGetImageInfo (&ImageContext);
3231 if (EFI_ERROR (Status)) {
3232 Error (NULL, 0, 3000, "Invalid TeImage", "The input file is %s and the return status is %x", FileName, (int) Status);
3233 return Status;
3234 }
3235 ImageContext.RelocationsStripped = FALSE;
3236 }
3237 }
3238 //
3239 // Relocation doesn't exist
3240 //
3241 if (ImageContext.RelocationsStripped) {
3242 Warning (NULL, 0, 0, "Invalid", "The file %s has no .reloc section.", FileName);
3243 continue;
3244 }
3245
3246 //
3247 // Relocation exist and rebase
3248 //
3249 //
3250 // Load and Relocate Image Data
3251 //
3252 MemoryImagePointer = (UINT8 *) malloc ((UINTN) ImageContext.ImageSize + ImageContext.SectionAlignment);
3253 if (MemoryImagePointer == NULL) {
3254 Error (NULL, 0, 4001, "Resource", "memory cannot be allocated on rebase of %s", FileName);
3255 return EFI_OUT_OF_RESOURCES;
3256 }
3257 memset ((VOID *) MemoryImagePointer, 0, (UINTN) ImageContext.ImageSize + ImageContext.SectionAlignment);
3258 ImageContext.ImageAddress = ((UINTN) MemoryImagePointer + ImageContext.SectionAlignment - 1) & (~((UINTN) ImageContext.SectionAlignment - 1));
3259
3260 Status = PeCoffLoaderLoadImage (&ImageContext);
3261 if (EFI_ERROR (Status)) {
3262 Error (NULL, 0, 3000, "Invalid", "LocateImage() call failed on rebase of %s", FileName);
3263 free ((VOID *) MemoryImagePointer);
3264 return Status;
3265 }
3266 //
3267 // Reloacate TeImage
3268 //
3269 ImageContext.DestinationAddress = NewPe32BaseAddress;
3270 Status = PeCoffLoaderRelocateImage (&ImageContext);
3271 if (EFI_ERROR (Status)) {
3272 Error (NULL, 0, 3000, "Invalid", "RelocateImage() call failed on rebase of TE image %s", FileName);
3273 free ((VOID *) MemoryImagePointer);
3274 return Status;
3275 }
3276
3277 //
3278 // Copy the relocated image into raw image file.
3279 //
3280 SectionHeader = (EFI_IMAGE_SECTION_HEADER *) (TEImageHeader + 1);
3281 for (Index = 0; Index < TEImageHeader->NumberOfSections; Index ++, SectionHeader ++) {
3282 if (!ImageContext.IsTeImage) {
3283 CopyMem (
3284 (UINT8 *) TEImageHeader + sizeof (EFI_TE_IMAGE_HEADER) - TEImageHeader->StrippedSize + SectionHeader->PointerToRawData,
3285 (VOID*) (UINTN) (ImageContext.ImageAddress + SectionHeader->VirtualAddress),
3286 SectionHeader->SizeOfRawData
3287 );
3288 } else {
3289 CopyMem (
3290 (UINT8 *) TEImageHeader + sizeof (EFI_TE_IMAGE_HEADER) - TEImageHeader->StrippedSize + SectionHeader->PointerToRawData,
3291 (VOID*) (UINTN) (ImageContext.ImageAddress + sizeof (EFI_TE_IMAGE_HEADER) - TEImageHeader->StrippedSize + SectionHeader->VirtualAddress),
3292 SectionHeader->SizeOfRawData
3293 );
3294 }
3295 }
3296
3297 //
3298 // Free the allocated memory resource
3299 //
3300 free ((VOID *) MemoryImagePointer);
3301 MemoryImagePointer = NULL;
3302 if (PeFileBuffer != NULL) {
3303 free (PeFileBuffer);
3304 PeFileBuffer = NULL;
3305 }
3306
3307 //
3308 // Update Image Base Address
3309 //
3310 TEImageHeader->ImageBase = NewPe32BaseAddress;
3311
3312 //
3313 // Now update file checksum
3314 //
3315 if (FfsFile->Attributes & FFS_ATTRIB_CHECKSUM) {
3316 SavedState = FfsFile->State;
3317 FfsFile->IntegrityCheck.Checksum.File = 0;
3318 FfsFile->State = 0;
3319 FfsFile->IntegrityCheck.Checksum.File = CalculateChecksum8 (
3320 (UINT8 *)(FfsFile + 1),
3321 GetLength (FfsFile->Size) - sizeof (EFI_FFS_FILE_HEADER)
3322 );
3323 FfsFile->State = SavedState;
3324 }
3325 //
3326 // Get this module function address from ModulePeMapFile and add them into FvMap file
3327 //
3328
3329 //
3330 // Default use FileName as map file path
3331 //
3332 if (PdbPointer == NULL) {
3333 PdbPointer = FileName;
3334 }
3335
3336 WriteMapFile (
3337 FvMapFile,
3338 PdbPointer,
3339 FfsFile,
3340 NewPe32BaseAddress,
3341 &OrigImageContext
3342 );
3343 }
3344
3345 return EFI_SUCCESS;
3346 }
3347
3348 EFI_STATUS
3349 FindApResetVectorPosition (
3350 IN MEMORY_FILE *FvImage,
3351 OUT UINT8 **Pointer
3352 )
3353 /*++
3354
3355 Routine Description:
3356
3357 Find the position in this FvImage to place Ap reset vector.
3358
3359 Arguments:
3360
3361 FvImage Memory file for the FV memory image.
3362 Pointer Pointer to pointer to position.
3363
3364 Returns:
3365
3366 EFI_NOT_FOUND - No satisfied position is found.
3367 EFI_SUCCESS - The suitable position is return.
3368
3369 --*/
3370 {
3371 EFI_FFS_FILE_HEADER *PadFile;
3372 UINT32 Index;
3373 EFI_STATUS Status;
3374 UINT8 *FixPoint;
3375 UINT32 FileLength;
3376
3377 for (Index = 1; ;Index ++) {
3378 //
3379 // Find Pad File to add ApResetVector info
3380 //
3381 Status = GetFileByType (EFI_FV_FILETYPE_FFS_PAD, Index, &PadFile);
3382 if (EFI_ERROR (Status) || (PadFile == NULL)) {
3383 //
3384 // No Pad file to be found.
3385 //
3386 break;
3387 }
3388 //
3389 // Get Pad file size.
3390 //
3391 FileLength = (*(UINT32 *)(PadFile->Size)) & 0x00FFFFFF;
3392 FileLength = (FileLength + EFI_FFS_FILE_HEADER_ALIGNMENT - 1) & ~(EFI_FFS_FILE_HEADER_ALIGNMENT - 1);
3393 //
3394 // FixPoint must be align on 0x1000 relative to FvImage Header
3395 //
3396 FixPoint = (UINT8*) PadFile + sizeof (EFI_FFS_FILE_HEADER);
3397 FixPoint = FixPoint + 0x1000 - (((UINTN) FixPoint - (UINTN) FvImage->FileImage) & 0xFFF);
3398 //
3399 // FixPoint be larger at the last place of one fv image.
3400 //
3401 while (((UINTN) FixPoint + SIZEOF_STARTUP_DATA_ARRAY - (UINTN) PadFile) <= FileLength) {
3402 FixPoint += 0x1000;
3403 }
3404 FixPoint -= 0x1000;
3405
3406 if ((UINTN) FixPoint < ((UINTN) PadFile + sizeof (EFI_FFS_FILE_HEADER))) {
3407 //
3408 // No alignment FixPoint in this Pad File.
3409 //
3410 continue;
3411 }
3412
3413 if ((UINTN) FvImage->Eof - (UINTN)FixPoint <= 0x20000) {
3414 //
3415 // Find the position to place ApResetVector
3416 //
3417 *Pointer = FixPoint;
3418 return EFI_SUCCESS;
3419 }
3420 }
3421
3422 return EFI_NOT_FOUND;
3423 }
3424
3425 EFI_STATUS
3426 ParseCapInf (
3427 IN MEMORY_FILE *InfFile,
3428 OUT CAP_INFO *CapInfo
3429 )
3430 /*++
3431
3432 Routine Description:
3433
3434 This function parses a Cap.INF file and copies info into a CAP_INFO structure.
3435
3436 Arguments:
3437
3438 InfFile Memory file image.
3439 CapInfo Information read from INF file.
3440
3441 Returns:
3442
3443 EFI_SUCCESS INF file information successfully retrieved.
3444 EFI_ABORTED INF file has an invalid format.
3445 EFI_NOT_FOUND A required string was not found in the INF file.
3446 --*/
3447 {
3448 CHAR8 Value[_MAX_PATH];
3449 UINT64 Value64;
3450 UINTN Index, Number;
3451 EFI_STATUS Status;
3452
3453 //
3454 // Initialize Cap info
3455 //
3456 // memset (CapInfo, 0, sizeof (CAP_INFO));
3457 //
3458
3459 //
3460 // Read the Capsule Guid
3461 //
3462 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_CAPSULE_GUID_STRING, 0, Value);
3463 if (Status == EFI_SUCCESS) {
3464 //
3465 // Get the Capsule Guid
3466 //
3467 Status = StringToGuid (Value, &CapInfo->CapGuid);
3468 if (EFI_ERROR (Status)) {
3469 Error (NULL, 0, 2000, "Invalid parameter", "%s = %s", EFI_CAPSULE_GUID_STRING, Value);
3470 return EFI_ABORTED;
3471 }
3472 DebugMsg (NULL, 0, 9, "Capsule Guid", "%s = %s", EFI_CAPSULE_GUID_STRING, Value);
3473 }
3474
3475 //
3476 // Read the Capsule Header Size
3477 //
3478 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_CAPSULE_HEADER_SIZE_STRING, 0, Value);
3479 if (Status == EFI_SUCCESS) {
3480 Status = AsciiStringToUint64 (Value, FALSE, &Value64);
3481 if (EFI_ERROR (Status)) {
3482 Error (NULL, 0, 2000, "Invalid parameter", "%s = %s", EFI_CAPSULE_HEADER_SIZE_STRING, Value);
3483 return EFI_ABORTED;
3484 }
3485 CapInfo->HeaderSize = (UINT32) Value64;
3486 DebugMsg (NULL, 0, 9, "Capsule Header size", "%s = %s", EFI_CAPSULE_HEADER_SIZE_STRING, Value);
3487 }
3488
3489 //
3490 // Read the Capsule Flag
3491 //
3492 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_CAPSULE_FLAGS_STRING, 0, Value);
3493 if (Status == EFI_SUCCESS) {
3494 if (strstr (Value, "PopulateSystemTable") != NULL) {
3495 CapInfo->Flags |= CAPSULE_FLAGS_PERSIST_ACROSS_RESET | CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE;
3496 if (strstr (Value, "InitiateReset") != NULL) {
3497 CapInfo->Flags |= CAPSULE_FLAGS_INITIATE_RESET;
3498 }
3499 } else if (strstr (Value, "PersistAcrossReset") != NULL) {
3500 CapInfo->Flags |= CAPSULE_FLAGS_PERSIST_ACROSS_RESET;
3501 if (strstr (Value, "InitiateReset") != NULL) {
3502 CapInfo->Flags |= CAPSULE_FLAGS_INITIATE_RESET;
3503 }
3504 } else {
3505 Error (NULL, 0, 2000, "Invalid parameter", "invalid Flag setting for %s.", EFI_CAPSULE_FLAGS_STRING);
3506 return EFI_ABORTED;
3507 }
3508 DebugMsg (NULL, 0, 9, "Capsule Flag", Value);
3509 }
3510
3511 //
3512 // Read Capsule File name
3513 //
3514 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_FILE_NAME_STRING, 0, Value);
3515 if (Status == EFI_SUCCESS) {
3516 //
3517 // Get output file name
3518 //
3519 strcpy (CapInfo->CapName, Value);
3520 }
3521
3522 //
3523 // Read the Capsule FileImage
3524 //
3525 Number = 0;
3526 for (Index = 0; Index < MAX_NUMBER_OF_FILES_IN_CAP; Index++) {
3527 if (CapInfo->CapFiles[Index][0] != '\0') {
3528 continue;
3529 }
3530 //
3531 // Read the capsule file name
3532 //
3533 Status = FindToken (InfFile, FILES_SECTION_STRING, EFI_FILE_NAME_STRING, Number++, Value);
3534
3535 if (Status == EFI_SUCCESS) {
3536 //
3537 // Add the file
3538 //
3539 strcpy (CapInfo->CapFiles[Index], Value);
3540 DebugMsg (NULL, 0, 9, "Capsule component file", "the %uth file name is %s", (unsigned) Index, CapInfo->CapFiles[Index]);
3541 } else {
3542 break;
3543 }
3544 }
3545
3546 if (Index == 0) {
3547 Warning (NULL, 0, 0, "Capsule components are not specified.", NULL);
3548 }
3549
3550 return EFI_SUCCESS;
3551 }
3552
3553 EFI_STATUS
3554 GenerateCapImage (
3555 IN CHAR8 *InfFileImage,
3556 IN UINTN InfFileSize,
3557 IN CHAR8 *CapFileName
3558 )
3559 /*++
3560
3561 Routine Description:
3562
3563 This is the main function which will be called from application to create UEFI Capsule image.
3564
3565 Arguments:
3566
3567 InfFileImage Buffer containing the INF file contents.
3568 InfFileSize Size of the contents of the InfFileImage buffer.
3569 CapFileName Requested name for the Cap file.
3570
3571 Returns:
3572
3573 EFI_SUCCESS Function completed successfully.
3574 EFI_OUT_OF_RESOURCES Could not allocate required resources.
3575 EFI_ABORTED Error encountered.
3576 EFI_INVALID_PARAMETER A required parameter was NULL.
3577
3578 --*/
3579 {
3580 UINT32 CapSize;
3581 UINT8 *CapBuffer;
3582 EFI_CAPSULE_HEADER *CapsuleHeader;
3583 MEMORY_FILE InfMemoryFile;
3584 UINT32 FileSize;
3585 UINT32 Index;
3586 FILE *fpin, *fpout;
3587 EFI_STATUS Status;
3588
3589 if (InfFileImage != NULL) {
3590 //
3591 // Initialize file structures
3592 //
3593 InfMemoryFile.FileImage = InfFileImage;
3594 InfMemoryFile.CurrentFilePointer = InfFileImage;
3595 InfMemoryFile.Eof = InfFileImage + InfFileSize;
3596
3597 //
3598 // Parse the Cap inf file for header information
3599 //
3600 Status = ParseCapInf (&InfMemoryFile, &mCapDataInfo);
3601 if (Status != EFI_SUCCESS) {
3602 return Status;
3603 }
3604 }
3605
3606 if (mCapDataInfo.HeaderSize == 0) {
3607 //
3608 // make header size align 16 bytes.
3609 //
3610 mCapDataInfo.HeaderSize = sizeof (EFI_CAPSULE_HEADER);
3611 mCapDataInfo.HeaderSize = (mCapDataInfo.HeaderSize + 0xF) & ~0xF;
3612 }
3613
3614 if (mCapDataInfo.HeaderSize < sizeof (EFI_CAPSULE_HEADER)) {
3615 Error (NULL, 0, 2000, "Invalid parameter", "The specified HeaderSize cannot be less than the size of EFI_CAPSULE_HEADER.");
3616 return EFI_INVALID_PARAMETER;
3617 }
3618
3619 if (CapFileName == NULL && mCapDataInfo.CapName[0] != '\0') {
3620 CapFileName = mCapDataInfo.CapName;
3621 }
3622
3623 if (CapFileName == NULL) {
3624 Error (NULL, 0, 2001, "Missing required argument", "Output Capsule file name");
3625 return EFI_INVALID_PARAMETER;
3626 }
3627
3628 //
3629 // Set Default Capsule Guid value
3630 //
3631 if (CompareGuid (&mCapDataInfo.CapGuid, &mZeroGuid) == 0) {
3632 memcpy (&mCapDataInfo.CapGuid, &mDefaultCapsuleGuid, sizeof (EFI_GUID));
3633 }
3634 //
3635 // Calculate the size of capsule image.
3636 //
3637 Index = 0;
3638 FileSize = 0;
3639 CapSize = mCapDataInfo.HeaderSize;
3640 while (mCapDataInfo.CapFiles [Index][0] != '\0') {
3641 fpin = fopen (mCapDataInfo.CapFiles[Index], "rb");
3642 if (fpin == NULL) {
3643 Error (NULL, 0, 0001, "Error opening file", mCapDataInfo.CapFiles[Index]);
3644 return EFI_ABORTED;
3645 }
3646 FileSize = _filelength (fileno (fpin));
3647 CapSize += FileSize;
3648 fclose (fpin);
3649 Index ++;
3650 }
3651
3652 //
3653 // Allocate buffer for capsule image.
3654 //
3655 CapBuffer = (UINT8 *) malloc (CapSize);
3656 if (CapBuffer == NULL) {
3657 Error (NULL, 0, 4001, "Resource", "memory cannot be allocated for creating the capsule.");
3658 return EFI_OUT_OF_RESOURCES;
3659 }
3660
3661 //
3662 // Initialize the capsule header to zero
3663 //
3664 memset (CapBuffer, 0, mCapDataInfo.HeaderSize);
3665
3666 //
3667 // create capsule header and get capsule body
3668 //
3669 CapsuleHeader = (EFI_CAPSULE_HEADER *) CapBuffer;
3670 memcpy (&CapsuleHeader->CapsuleGuid, &mCapDataInfo.CapGuid, sizeof (EFI_GUID));
3671 CapsuleHeader->HeaderSize = mCapDataInfo.HeaderSize;
3672 CapsuleHeader->Flags = mCapDataInfo.Flags;
3673 CapsuleHeader->CapsuleImageSize = CapSize;
3674
3675 Index = 0;
3676 FileSize = 0;
3677 CapSize = CapsuleHeader->HeaderSize;
3678 while (mCapDataInfo.CapFiles [Index][0] != '\0') {
3679 fpin = fopen (mCapDataInfo.CapFiles[Index], "rb");
3680 if (fpin == NULL) {
3681 Error (NULL, 0, 0001, "Error opening file", mCapDataInfo.CapFiles[Index]);
3682 free (CapBuffer);
3683 return EFI_ABORTED;
3684 }
3685 FileSize = _filelength (fileno (fpin));
3686 fread (CapBuffer + CapSize, 1, FileSize, fpin);
3687 fclose (fpin);
3688 Index ++;
3689 CapSize += FileSize;
3690 }
3691
3692 //
3693 // write capsule data into the output file
3694 //
3695 fpout = fopen (CapFileName, "wb");
3696 if (fpout == NULL) {
3697 Error (NULL, 0, 0001, "Error opening file", CapFileName);
3698 free (CapBuffer);
3699 return EFI_ABORTED;
3700 }
3701
3702 fwrite (CapBuffer, 1, CapSize, fpout);
3703 fclose (fpout);
3704
3705 VerboseMsg ("The size of the generated capsule image is %u bytes", (unsigned) CapSize);
3706
3707 return EFI_SUCCESS;
3708 }