]> git.proxmox.com Git - mirror_edk2.git/blob - BaseTools/Source/C/GenFw/Elf64Convert.c
BaseTools/GenFw: Avoid possible NULL pointer dereference
[mirror_edk2.git] / BaseTools / Source / C / GenFw / Elf64Convert.c
1 /** @file
2 Elf64 convert solution
3
4 Copyright (c) 2010 - 2016, Intel Corporation. All rights reserved.<BR>
5 Portions copyright (c) 2013-2014, ARM Ltd. All rights reserved.<BR>
6
7 This program and the accompanying materials are licensed and made available
8 under the terms and conditions of the BSD License which accompanies this
9 distribution. The full text of the license may be found at
10 http://opensource.org/licenses/bsd-license.php
11
12 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
13 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
14
15 **/
16
17 #include "WinNtInclude.h"
18
19 #ifndef __GNUC__
20 #include <windows.h>
21 #include <io.h>
22 #endif
23 #include <assert.h>
24 #include <stdbool.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <time.h>
29 #include <ctype.h>
30
31 #include <Common/UefiBaseTypes.h>
32 #include <IndustryStandard/PeImage.h>
33
34 #include "PeCoffLib.h"
35 #include "EfiUtilityMsgs.h"
36
37 #include "GenFw.h"
38 #include "ElfConvert.h"
39 #include "Elf64Convert.h"
40
41 STATIC
42 VOID
43 ScanSections64 (
44 VOID
45 );
46
47 STATIC
48 BOOLEAN
49 WriteSections64 (
50 SECTION_FILTER_TYPES FilterType
51 );
52
53 STATIC
54 VOID
55 WriteRelocations64 (
56 VOID
57 );
58
59 STATIC
60 VOID
61 WriteDebug64 (
62 VOID
63 );
64
65 STATIC
66 VOID
67 SetImageSize64 (
68 VOID
69 );
70
71 STATIC
72 VOID
73 CleanUp64 (
74 VOID
75 );
76
77 //
78 // Rename ELF32 strucutres to common names to help when porting to ELF64.
79 //
80 typedef Elf64_Shdr Elf_Shdr;
81 typedef Elf64_Ehdr Elf_Ehdr;
82 typedef Elf64_Rel Elf_Rel;
83 typedef Elf64_Rela Elf_Rela;
84 typedef Elf64_Sym Elf_Sym;
85 typedef Elf64_Phdr Elf_Phdr;
86 typedef Elf64_Dyn Elf_Dyn;
87 #define ELFCLASS ELFCLASS64
88 #define ELF_R_TYPE(r) ELF64_R_TYPE(r)
89 #define ELF_R_SYM(r) ELF64_R_SYM(r)
90
91 //
92 // Well known ELF structures.
93 //
94 STATIC Elf_Ehdr *mEhdr;
95 STATIC Elf_Shdr *mShdrBase;
96 STATIC Elf_Phdr *mPhdrBase;
97
98 //
99 // Coff information
100 //
101 STATIC UINT32 mCoffAlignment = 0x20;
102
103 //
104 // PE section alignment.
105 //
106 STATIC const UINT16 mCoffNbrSections = 4;
107
108 //
109 // ELF sections to offset in Coff file.
110 //
111 STATIC UINT32 *mCoffSectionsOffset = NULL;
112
113 //
114 // Offsets in COFF file
115 //
116 STATIC UINT32 mNtHdrOffset;
117 STATIC UINT32 mTextOffset;
118 STATIC UINT32 mDataOffset;
119 STATIC UINT32 mHiiRsrcOffset;
120 STATIC UINT32 mRelocOffset;
121 STATIC UINT32 mDebugOffset;
122
123 //
124 // Initialization Function
125 //
126 BOOLEAN
127 InitializeElf64 (
128 UINT8 *FileBuffer,
129 ELF_FUNCTION_TABLE *ElfFunctions
130 )
131 {
132 //
133 // Initialize data pointer and structures.
134 //
135 VerboseMsg ("Set EHDR");
136 mEhdr = (Elf_Ehdr*) FileBuffer;
137
138 //
139 // Check the ELF64 specific header information.
140 //
141 VerboseMsg ("Check ELF64 Header Information");
142 if (mEhdr->e_ident[EI_CLASS] != ELFCLASS64) {
143 Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFCLASS64");
144 return FALSE;
145 }
146 if (mEhdr->e_ident[EI_DATA] != ELFDATA2LSB) {
147 Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFDATA2LSB");
148 return FALSE;
149 }
150 if ((mEhdr->e_type != ET_EXEC) && (mEhdr->e_type != ET_DYN)) {
151 Error (NULL, 0, 3000, "Unsupported", "ELF e_type not ET_EXEC or ET_DYN");
152 return FALSE;
153 }
154 if (!((mEhdr->e_machine == EM_X86_64) || (mEhdr->e_machine == EM_AARCH64))) {
155 Error (NULL, 0, 3000, "Unsupported", "ELF e_machine not EM_X86_64 or EM_AARCH64");
156 return FALSE;
157 }
158 if (mEhdr->e_version != EV_CURRENT) {
159 Error (NULL, 0, 3000, "Unsupported", "ELF e_version (%u) not EV_CURRENT (%d)", (unsigned) mEhdr->e_version, EV_CURRENT);
160 return FALSE;
161 }
162
163 //
164 // Update section header pointers
165 //
166 VerboseMsg ("Update Header Pointers");
167 mShdrBase = (Elf_Shdr *)((UINT8 *)mEhdr + mEhdr->e_shoff);
168 mPhdrBase = (Elf_Phdr *)((UINT8 *)mEhdr + mEhdr->e_phoff);
169
170 //
171 // Create COFF Section offset buffer and zero.
172 //
173 VerboseMsg ("Create COFF Section Offset Buffer");
174 mCoffSectionsOffset = (UINT32 *)malloc(mEhdr->e_shnum * sizeof (UINT32));
175 if (mCoffSectionsOffset == NULL) {
176 Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
177 return FALSE;
178 }
179 memset(mCoffSectionsOffset, 0, mEhdr->e_shnum * sizeof(UINT32));
180
181 //
182 // Fill in function pointers.
183 //
184 VerboseMsg ("Fill in Function Pointers");
185 ElfFunctions->ScanSections = ScanSections64;
186 ElfFunctions->WriteSections = WriteSections64;
187 ElfFunctions->WriteRelocations = WriteRelocations64;
188 ElfFunctions->WriteDebug = WriteDebug64;
189 ElfFunctions->SetImageSize = SetImageSize64;
190 ElfFunctions->CleanUp = CleanUp64;
191
192 return TRUE;
193 }
194
195
196 //
197 // Header by Index functions
198 //
199 STATIC
200 Elf_Shdr*
201 GetShdrByIndex (
202 UINT32 Num
203 )
204 {
205 if (Num >= mEhdr->e_shnum) {
206 Error (NULL, 0, 3000, "Invalid", "GetShdrByIndex: Index %u is too high.", Num);
207 exit(EXIT_FAILURE);
208 }
209
210 return (Elf_Shdr*)((UINT8*)mShdrBase + Num * mEhdr->e_shentsize);
211 }
212
213 STATIC
214 UINT32
215 CoffAlign (
216 UINT32 Offset
217 )
218 {
219 return (Offset + mCoffAlignment - 1) & ~(mCoffAlignment - 1);
220 }
221
222 STATIC
223 UINT32
224 DebugRvaAlign (
225 UINT32 Offset
226 )
227 {
228 return (Offset + 3) & ~3;
229 }
230
231 //
232 // filter functions
233 //
234 STATIC
235 BOOLEAN
236 IsTextShdr (
237 Elf_Shdr *Shdr
238 )
239 {
240 return (BOOLEAN) ((Shdr->sh_flags & (SHF_WRITE | SHF_ALLOC)) == SHF_ALLOC);
241 }
242
243 STATIC
244 BOOLEAN
245 IsHiiRsrcShdr (
246 Elf_Shdr *Shdr
247 )
248 {
249 Elf_Shdr *Namedr = GetShdrByIndex(mEhdr->e_shstrndx);
250
251 return (BOOLEAN) (strcmp((CHAR8*)mEhdr + Namedr->sh_offset + Shdr->sh_name, ELF_HII_SECTION_NAME) == 0);
252 }
253
254 STATIC
255 BOOLEAN
256 IsDataShdr (
257 Elf_Shdr *Shdr
258 )
259 {
260 if (IsHiiRsrcShdr(Shdr)) {
261 return FALSE;
262 }
263 return (BOOLEAN) (Shdr->sh_flags & (SHF_WRITE | SHF_ALLOC)) == (SHF_ALLOC | SHF_WRITE);
264 }
265
266 STATIC
267 BOOLEAN
268 IsStrtabShdr (
269 Elf_Shdr *Shdr
270 )
271 {
272 Elf_Shdr *Namedr = GetShdrByIndex(mEhdr->e_shstrndx);
273
274 return (BOOLEAN) (strcmp((CHAR8*)mEhdr + Namedr->sh_offset + Shdr->sh_name, ELF_STRTAB_SECTION_NAME) == 0);
275 }
276
277 STATIC
278 Elf_Shdr *
279 FindStrtabShdr (
280 VOID
281 )
282 {
283 UINT32 i;
284 for (i = 0; i < mEhdr->e_shnum; i++) {
285 Elf_Shdr *shdr = GetShdrByIndex(i);
286 if (IsStrtabShdr(shdr)) {
287 return shdr;
288 }
289 }
290 return NULL;
291 }
292
293 STATIC
294 const UINT8 *
295 GetSymName (
296 Elf_Sym *Sym
297 )
298 {
299 if (Sym->st_name == 0) {
300 return NULL;
301 }
302
303 Elf_Shdr *StrtabShdr = FindStrtabShdr();
304 if (StrtabShdr == NULL) {
305 return NULL;
306 }
307
308 assert(Sym->st_name < StrtabShdr->sh_size);
309
310 UINT8* StrtabContents = (UINT8*)mEhdr + StrtabShdr->sh_offset;
311
312 bool foundEnd = false;
313 UINT32 i;
314 for (i= Sym->st_name; (i < StrtabShdr->sh_size) && !foundEnd; i++) {
315 foundEnd = StrtabContents[i] == 0;
316 }
317 assert(foundEnd);
318
319 return StrtabContents + Sym->st_name;
320 }
321
322 //
323 // Elf functions interface implementation
324 //
325
326 STATIC
327 VOID
328 ScanSections64 (
329 VOID
330 )
331 {
332 UINT32 i;
333 EFI_IMAGE_DOS_HEADER *DosHdr;
334 EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
335 UINT32 CoffEntry;
336 UINT32 SectionCount;
337 BOOLEAN FoundSection;
338
339 CoffEntry = 0;
340 mCoffOffset = 0;
341
342 //
343 // Coff file start with a DOS header.
344 //
345 mCoffOffset = sizeof(EFI_IMAGE_DOS_HEADER) + 0x40;
346 mNtHdrOffset = mCoffOffset;
347 switch (mEhdr->e_machine) {
348 case EM_X86_64:
349 case EM_IA_64:
350 case EM_AARCH64:
351 mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS64);
352 break;
353 default:
354 VerboseMsg ("%s unknown e_machine type %hu. Assume X64", mInImageName, mEhdr->e_machine);
355 mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS64);
356 break;
357 }
358
359 mTableOffset = mCoffOffset;
360 mCoffOffset += mCoffNbrSections * sizeof(EFI_IMAGE_SECTION_HEADER);
361
362 //
363 // Set mCoffAlignment to the maximum alignment of the input sections
364 // we care about
365 //
366 for (i = 0; i < mEhdr->e_shnum; i++) {
367 Elf_Shdr *shdr = GetShdrByIndex(i);
368 if (shdr->sh_addralign <= mCoffAlignment) {
369 continue;
370 }
371 if (IsTextShdr(shdr) || IsDataShdr(shdr) || IsHiiRsrcShdr(shdr)) {
372 mCoffAlignment = (UINT32)shdr->sh_addralign;
373 }
374 }
375
376 //
377 // Move the PE/COFF header right before the first section. This will help us
378 // save space when converting to TE.
379 //
380 if (mCoffAlignment > mCoffOffset) {
381 mNtHdrOffset += mCoffAlignment - mCoffOffset;
382 mTableOffset += mCoffAlignment - mCoffOffset;
383 mCoffOffset = mCoffAlignment;
384 }
385
386 //
387 // First text sections.
388 //
389 mCoffOffset = CoffAlign(mCoffOffset);
390 mTextOffset = mCoffOffset;
391 FoundSection = FALSE;
392 SectionCount = 0;
393 for (i = 0; i < mEhdr->e_shnum; i++) {
394 Elf_Shdr *shdr = GetShdrByIndex(i);
395 if (IsTextShdr(shdr)) {
396 if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
397 // the alignment field is valid
398 if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
399 // if the section address is aligned we must align PE/COFF
400 mCoffOffset = (UINT32) ((mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1));
401 } else {
402 Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
403 }
404 }
405
406 /* Relocate entry. */
407 if ((mEhdr->e_entry >= shdr->sh_addr) &&
408 (mEhdr->e_entry < shdr->sh_addr + shdr->sh_size)) {
409 CoffEntry = (UINT32) (mCoffOffset + mEhdr->e_entry - shdr->sh_addr);
410 }
411
412 //
413 // Set mTextOffset with the offset of the first '.text' section
414 //
415 if (!FoundSection) {
416 mTextOffset = mCoffOffset;
417 FoundSection = TRUE;
418 }
419
420 mCoffSectionsOffset[i] = mCoffOffset;
421 mCoffOffset += (UINT32) shdr->sh_size;
422 SectionCount ++;
423 }
424 }
425
426 if (!FoundSection) {
427 Error (NULL, 0, 3000, "Invalid", "Did not find any '.text' section.");
428 assert (FALSE);
429 }
430
431 mDebugOffset = DebugRvaAlign(mCoffOffset);
432 mCoffOffset = CoffAlign(mCoffOffset);
433
434 if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) {
435 Warning (NULL, 0, 0, NULL, "Mulitple sections in %s are merged into 1 text section. Source level debug might not work correctly.", mInImageName);
436 }
437
438 //
439 // Then data sections.
440 //
441 mDataOffset = mCoffOffset;
442 FoundSection = FALSE;
443 SectionCount = 0;
444 for (i = 0; i < mEhdr->e_shnum; i++) {
445 Elf_Shdr *shdr = GetShdrByIndex(i);
446 if (IsDataShdr(shdr)) {
447 if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
448 // the alignment field is valid
449 if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
450 // if the section address is aligned we must align PE/COFF
451 mCoffOffset = (UINT32) ((mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1));
452 } else {
453 Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
454 }
455 }
456
457 //
458 // Set mDataOffset with the offset of the first '.data' section
459 //
460 if (!FoundSection) {
461 mDataOffset = mCoffOffset;
462 FoundSection = TRUE;
463 }
464 mCoffSectionsOffset[i] = mCoffOffset;
465 mCoffOffset += (UINT32) shdr->sh_size;
466 SectionCount ++;
467 }
468 }
469
470 //
471 // Make room for .debug data in .data (or .text if .data is empty) instead of
472 // putting it in a section of its own. This is explicitly allowed by the
473 // PE/COFF spec, and prevents bloat in the binary when using large values for
474 // section alignment.
475 //
476 if (SectionCount > 0) {
477 mDebugOffset = DebugRvaAlign(mCoffOffset);
478 }
479 mCoffOffset = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY) +
480 sizeof(EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY) +
481 strlen(mInImageName) + 1;
482
483 mCoffOffset = CoffAlign(mCoffOffset);
484 if (SectionCount == 0) {
485 mDataOffset = mCoffOffset;
486 }
487
488 if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) {
489 Warning (NULL, 0, 0, NULL, "Mulitple sections in %s are merged into 1 data section. Source level debug might not work correctly.", mInImageName);
490 }
491
492 //
493 // The HII resource sections.
494 //
495 mHiiRsrcOffset = mCoffOffset;
496 for (i = 0; i < mEhdr->e_shnum; i++) {
497 Elf_Shdr *shdr = GetShdrByIndex(i);
498 if (IsHiiRsrcShdr(shdr)) {
499 if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
500 // the alignment field is valid
501 if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
502 // if the section address is aligned we must align PE/COFF
503 mCoffOffset = (UINT32) ((mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1));
504 } else {
505 Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
506 }
507 }
508 if (shdr->sh_size != 0) {
509 mHiiRsrcOffset = mCoffOffset;
510 mCoffSectionsOffset[i] = mCoffOffset;
511 mCoffOffset += (UINT32) shdr->sh_size;
512 mCoffOffset = CoffAlign(mCoffOffset);
513 SetHiiResourceHeader ((UINT8*) mEhdr + shdr->sh_offset, mHiiRsrcOffset);
514 }
515 break;
516 }
517 }
518
519 mRelocOffset = mCoffOffset;
520
521 //
522 // Allocate base Coff file. Will be expanded later for relocations.
523 //
524 mCoffFile = (UINT8 *)malloc(mCoffOffset);
525 if (mCoffFile == NULL) {
526 Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
527 }
528 assert (mCoffFile != NULL);
529 memset(mCoffFile, 0, mCoffOffset);
530
531 //
532 // Fill headers.
533 //
534 DosHdr = (EFI_IMAGE_DOS_HEADER *)mCoffFile;
535 DosHdr->e_magic = EFI_IMAGE_DOS_SIGNATURE;
536 DosHdr->e_lfanew = mNtHdrOffset;
537
538 NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION*)(mCoffFile + mNtHdrOffset);
539
540 NtHdr->Pe32Plus.Signature = EFI_IMAGE_NT_SIGNATURE;
541
542 switch (mEhdr->e_machine) {
543 case EM_X86_64:
544 NtHdr->Pe32Plus.FileHeader.Machine = EFI_IMAGE_MACHINE_X64;
545 NtHdr->Pe32Plus.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
546 break;
547 case EM_IA_64:
548 NtHdr->Pe32Plus.FileHeader.Machine = EFI_IMAGE_MACHINE_IPF;
549 NtHdr->Pe32Plus.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
550 break;
551 case EM_AARCH64:
552 NtHdr->Pe32Plus.FileHeader.Machine = EFI_IMAGE_MACHINE_AARCH64;
553 NtHdr->Pe32Plus.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
554 break;
555 default:
556 VerboseMsg ("%s unknown e_machine type. Assume X64", (UINTN)mEhdr->e_machine);
557 NtHdr->Pe32Plus.FileHeader.Machine = EFI_IMAGE_MACHINE_X64;
558 NtHdr->Pe32Plus.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
559 }
560
561 NtHdr->Pe32Plus.FileHeader.NumberOfSections = mCoffNbrSections;
562 NtHdr->Pe32Plus.FileHeader.TimeDateStamp = (UINT32) time(NULL);
563 mImageTimeStamp = NtHdr->Pe32Plus.FileHeader.TimeDateStamp;
564 NtHdr->Pe32Plus.FileHeader.PointerToSymbolTable = 0;
565 NtHdr->Pe32Plus.FileHeader.NumberOfSymbols = 0;
566 NtHdr->Pe32Plus.FileHeader.SizeOfOptionalHeader = sizeof(NtHdr->Pe32Plus.OptionalHeader);
567 NtHdr->Pe32Plus.FileHeader.Characteristics = EFI_IMAGE_FILE_EXECUTABLE_IMAGE
568 | EFI_IMAGE_FILE_LINE_NUMS_STRIPPED
569 | EFI_IMAGE_FILE_LOCAL_SYMS_STRIPPED
570 | EFI_IMAGE_FILE_LARGE_ADDRESS_AWARE;
571
572 NtHdr->Pe32Plus.OptionalHeader.SizeOfCode = mDataOffset - mTextOffset;
573 NtHdr->Pe32Plus.OptionalHeader.SizeOfInitializedData = mRelocOffset - mDataOffset;
574 NtHdr->Pe32Plus.OptionalHeader.SizeOfUninitializedData = 0;
575 NtHdr->Pe32Plus.OptionalHeader.AddressOfEntryPoint = CoffEntry;
576
577 NtHdr->Pe32Plus.OptionalHeader.BaseOfCode = mTextOffset;
578
579 NtHdr->Pe32Plus.OptionalHeader.ImageBase = 0;
580 NtHdr->Pe32Plus.OptionalHeader.SectionAlignment = mCoffAlignment;
581 NtHdr->Pe32Plus.OptionalHeader.FileAlignment = mCoffAlignment;
582 NtHdr->Pe32Plus.OptionalHeader.SizeOfImage = 0;
583
584 NtHdr->Pe32Plus.OptionalHeader.SizeOfHeaders = mTextOffset;
585 NtHdr->Pe32Plus.OptionalHeader.NumberOfRvaAndSizes = EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES;
586
587 //
588 // Section headers.
589 //
590 if ((mDataOffset - mTextOffset) > 0) {
591 CreateSectionHeader (".text", mTextOffset, mDataOffset - mTextOffset,
592 EFI_IMAGE_SCN_CNT_CODE
593 | EFI_IMAGE_SCN_MEM_EXECUTE
594 | EFI_IMAGE_SCN_MEM_READ);
595 } else {
596 // Don't make a section of size 0.
597 NtHdr->Pe32Plus.FileHeader.NumberOfSections--;
598 }
599
600 if ((mHiiRsrcOffset - mDataOffset) > 0) {
601 CreateSectionHeader (".data", mDataOffset, mHiiRsrcOffset - mDataOffset,
602 EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
603 | EFI_IMAGE_SCN_MEM_WRITE
604 | EFI_IMAGE_SCN_MEM_READ);
605 } else {
606 // Don't make a section of size 0.
607 NtHdr->Pe32Plus.FileHeader.NumberOfSections--;
608 }
609
610 if ((mRelocOffset - mHiiRsrcOffset) > 0) {
611 CreateSectionHeader (".rsrc", mHiiRsrcOffset, mRelocOffset - mHiiRsrcOffset,
612 EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
613 | EFI_IMAGE_SCN_MEM_READ);
614
615 NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].Size = mRelocOffset - mHiiRsrcOffset;
616 NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].VirtualAddress = mHiiRsrcOffset;
617 } else {
618 // Don't make a section of size 0.
619 NtHdr->Pe32Plus.FileHeader.NumberOfSections--;
620 }
621
622 }
623
624 STATIC
625 BOOLEAN
626 WriteSections64 (
627 SECTION_FILTER_TYPES FilterType
628 )
629 {
630 UINT32 Idx;
631 Elf_Shdr *SecShdr;
632 UINT32 SecOffset;
633 BOOLEAN (*Filter)(Elf_Shdr *);
634
635 //
636 // Initialize filter pointer
637 //
638 switch (FilterType) {
639 case SECTION_TEXT:
640 Filter = IsTextShdr;
641 break;
642 case SECTION_HII:
643 Filter = IsHiiRsrcShdr;
644 break;
645 case SECTION_DATA:
646 Filter = IsDataShdr;
647 break;
648 default:
649 return FALSE;
650 }
651
652 //
653 // First: copy sections.
654 //
655 for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
656 Elf_Shdr *Shdr = GetShdrByIndex(Idx);
657 if ((*Filter)(Shdr)) {
658 switch (Shdr->sh_type) {
659 case SHT_PROGBITS:
660 /* Copy. */
661 memcpy(mCoffFile + mCoffSectionsOffset[Idx],
662 (UINT8*)mEhdr + Shdr->sh_offset,
663 (size_t) Shdr->sh_size);
664 break;
665
666 case SHT_NOBITS:
667 memset(mCoffFile + mCoffSectionsOffset[Idx], 0, (size_t) Shdr->sh_size);
668 break;
669
670 default:
671 //
672 // Ignore for unkown section type.
673 //
674 VerboseMsg ("%s unknown section type %x. We directly copy this section into Coff file", mInImageName, (unsigned)Shdr->sh_type);
675 break;
676 }
677 }
678 }
679
680 //
681 // Second: apply relocations.
682 //
683 VerboseMsg ("Applying Relocations...");
684 for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
685 //
686 // Determine if this is a relocation section.
687 //
688 Elf_Shdr *RelShdr = GetShdrByIndex(Idx);
689 if ((RelShdr->sh_type != SHT_REL) && (RelShdr->sh_type != SHT_RELA)) {
690 continue;
691 }
692
693 //
694 // If this is a ET_DYN (PIE) executable, we will encounter a dynamic SHT_RELA
695 // section that applies to the entire binary, and which will have its section
696 // index set to #0 (which is a NULL section with the SHF_ALLOC bit cleared).
697 //
698 // In the absence of GOT based relocations (which we currently don't support),
699 // this RELA section will contain redundant R_xxx_RELATIVE relocations, one
700 // for every R_xxx_xx64 relocation appearing in the per-section RELA sections.
701 // (i.e., .rela.text and .rela.data)
702 //
703 if (RelShdr->sh_info == 0) {
704 continue;
705 }
706
707 //
708 // Relocation section found. Now extract section information that the relocations
709 // apply to in the ELF data and the new COFF data.
710 //
711 SecShdr = GetShdrByIndex(RelShdr->sh_info);
712 SecOffset = mCoffSectionsOffset[RelShdr->sh_info];
713
714 //
715 // Only process relocations for the current filter type.
716 //
717 if (RelShdr->sh_type == SHT_RELA && (*Filter)(SecShdr)) {
718 UINT64 RelIdx;
719
720 //
721 // Determine the symbol table referenced by the relocation data.
722 //
723 Elf_Shdr *SymtabShdr = GetShdrByIndex(RelShdr->sh_link);
724 UINT8 *Symtab = (UINT8*)mEhdr + SymtabShdr->sh_offset;
725
726 //
727 // Process all relocation entries for this section.
728 //
729 for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += (UINT32) RelShdr->sh_entsize) {
730
731 //
732 // Set pointer to relocation entry
733 //
734 Elf_Rela *Rel = (Elf_Rela *)((UINT8*)mEhdr + RelShdr->sh_offset + RelIdx);
735
736 //
737 // Set pointer to symbol table entry associated with the relocation entry.
738 //
739 Elf_Sym *Sym = (Elf_Sym *)(Symtab + ELF_R_SYM(Rel->r_info) * SymtabShdr->sh_entsize);
740
741 Elf_Shdr *SymShdr;
742 UINT8 *Targ;
743
744 //
745 // Check section header index found in symbol table and get the section
746 // header location.
747 //
748 if (Sym->st_shndx == SHN_UNDEF
749 || Sym->st_shndx >= mEhdr->e_shnum) {
750 const UINT8 *SymName = GetSymName(Sym);
751 if (SymName == NULL) {
752 SymName = (const UINT8 *)"<unknown>";
753 }
754
755 Error (NULL, 0, 3000, "Invalid",
756 "%s: Bad definition for symbol '%s'@%#llx or unsupported symbol type. "
757 "For example, absolute and undefined symbols are not supported.",
758 mInImageName, SymName, Sym->st_value);
759
760 exit(EXIT_FAILURE);
761 }
762 SymShdr = GetShdrByIndex(Sym->st_shndx);
763
764 //
765 // Convert the relocation data to a pointer into the coff file.
766 //
767 // Note:
768 // r_offset is the virtual address of the storage unit to be relocated.
769 // sh_addr is the virtual address for the base of the section.
770 //
771 // r_offset in a memory address.
772 // Convert it to a pointer in the coff file.
773 //
774 Targ = mCoffFile + SecOffset + (Rel->r_offset - SecShdr->sh_addr);
775
776 //
777 // Determine how to handle each relocation type based on the machine type.
778 //
779 if (mEhdr->e_machine == EM_X86_64) {
780 switch (ELF_R_TYPE(Rel->r_info)) {
781 case R_X86_64_NONE:
782 break;
783 case R_X86_64_64:
784 //
785 // Absolute relocation.
786 //
787 VerboseMsg ("R_X86_64_64");
788 VerboseMsg ("Offset: 0x%08X, Addend: 0x%016LX",
789 (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
790 *(UINT64 *)Targ);
791 *(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
792 VerboseMsg ("Relocation: 0x%016LX", *(UINT64*)Targ);
793 break;
794 case R_X86_64_32:
795 VerboseMsg ("R_X86_64_32");
796 VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X",
797 (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
798 *(UINT32 *)Targ);
799 *(UINT32 *)Targ = (UINT32)((UINT64)(*(UINT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]);
800 VerboseMsg ("Relocation: 0x%08X", *(UINT32*)Targ);
801 break;
802 case R_X86_64_32S:
803 VerboseMsg ("R_X86_64_32S");
804 VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X",
805 (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
806 *(UINT32 *)Targ);
807 *(INT32 *)Targ = (INT32)((INT64)(*(INT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]);
808 VerboseMsg ("Relocation: 0x%08X", *(UINT32*)Targ);
809 break;
810
811 case R_X86_64_PLT32:
812 //
813 // Treat R_X86_64_PLT32 relocations as R_X86_64_PC32: this is
814 // possible since we know all code symbol references resolve to
815 // definitions in the same module (UEFI has no shared libraries),
816 // and so there is never a reason to jump via a PLT entry,
817 // allowing us to resolve the reference using the symbol directly.
818 //
819 VerboseMsg ("Treating R_X86_64_PLT32 as R_X86_64_PC32 ...");
820 /* fall through */
821 case R_X86_64_PC32:
822 //
823 // Relative relocation: Symbol - Ip + Addend
824 //
825 VerboseMsg ("R_X86_64_PC32");
826 VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X",
827 (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
828 *(UINT32 *)Targ);
829 *(UINT32 *)Targ = (UINT32) (*(UINT32 *)Targ
830 + (mCoffSectionsOffset[Sym->st_shndx] - SymShdr->sh_addr)
831 - (SecOffset - SecShdr->sh_addr));
832 VerboseMsg ("Relocation: 0x%08X", *(UINT32 *)Targ);
833 break;
834 default:
835 Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_X86_64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
836 }
837 } else if (mEhdr->e_machine == EM_AARCH64) {
838
839 switch (ELF_R_TYPE(Rel->r_info)) {
840
841 case R_AARCH64_ADR_PREL_PG_HI21:
842 //
843 // AArch64 PG_H21 relocations are typically paired with ABS_LO12
844 // relocations, where a PC-relative reference with +/- 4 GB range is
845 // split into a relative high part and an absolute low part. Since
846 // the absolute low part represents the offset into a 4 KB page, we
847 // either have to convert the ADRP into an ADR instruction, or we
848 // need to use a section alignment of at least 4 KB, so that the
849 // binary appears at a correct offset at runtime. In any case, we
850 // have to make sure that the 4 KB relative offsets of both the
851 // section containing the reference as well as the section to which
852 // it refers have not been changed during PE/COFF conversion (i.e.,
853 // in ScanSections64() above).
854 //
855 if (mCoffAlignment < 0x1000) {
856 //
857 // Attempt to convert the ADRP into an ADR instruction.
858 // This is only possible if the symbol is within +/- 1 MB.
859 //
860 INT64 Offset;
861
862 // Decode the ADRP instruction
863 Offset = (INT32)((*(UINT32 *)Targ & 0xffffe0) << 8);
864 Offset = (Offset << (6 - 5)) | ((*(UINT32 *)Targ & 0x60000000) >> (29 - 12));
865
866 //
867 // ADRP offset is relative to the previous page boundary,
868 // whereas ADR offset is relative to the instruction itself.
869 // So fix up the offset so it points to the page containing
870 // the symbol.
871 //
872 Offset -= (UINTN)(Targ - mCoffFile) & 0xfff;
873
874 if (Offset < -0x100000 || Offset > 0xfffff) {
875 Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s due to its size (> 1 MB), this module requires 4 KB section alignment.",
876 mInImageName);
877 break;
878 }
879
880 // Re-encode the offset as an ADR instruction
881 *(UINT32 *)Targ &= 0x1000001f;
882 *(UINT32 *)Targ |= ((Offset & 0x1ffffc) << (5 - 2)) | ((Offset & 0x3) << 29);
883 }
884 /* fall through */
885
886 case R_AARCH64_ADD_ABS_LO12_NC:
887 case R_AARCH64_LDST8_ABS_LO12_NC:
888 case R_AARCH64_LDST16_ABS_LO12_NC:
889 case R_AARCH64_LDST32_ABS_LO12_NC:
890 case R_AARCH64_LDST64_ABS_LO12_NC:
891 case R_AARCH64_LDST128_ABS_LO12_NC:
892 if (((SecShdr->sh_addr ^ SecOffset) & 0xfff) != 0 ||
893 ((SymShdr->sh_addr ^ mCoffSectionsOffset[Sym->st_shndx]) & 0xfff) != 0) {
894 Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s AARCH64 small code model requires identical ELF and PE/COFF section offsets modulo 4 KB.",
895 mInImageName);
896 break;
897 }
898 /* fall through */
899
900 case R_AARCH64_ADR_PREL_LO21:
901 case R_AARCH64_CONDBR19:
902 case R_AARCH64_LD_PREL_LO19:
903 case R_AARCH64_CALL26:
904 case R_AARCH64_JUMP26:
905 case R_AARCH64_PREL64:
906 case R_AARCH64_PREL32:
907 case R_AARCH64_PREL16:
908 //
909 // The GCC toolchains (i.e., binutils) may corrupt section relative
910 // relocations when emitting relocation sections into fully linked
911 // binaries. More specifically, they tend to fail to take into
912 // account the fact that a '.rodata + XXX' relocation needs to have
913 // its addend recalculated once .rodata is merged into the .text
914 // section, and the relocation emitted into the .rela.text section.
915 //
916 // We cannot really recover from this loss of information, so the
917 // only workaround is to prevent having to recalculate any relative
918 // relocations at all, by using a linker script that ensures that
919 // the offset between the Place and the Symbol is the same in both
920 // the ELF and the PE/COFF versions of the binary.
921 //
922 if ((SymShdr->sh_addr - SecShdr->sh_addr) !=
923 (mCoffSectionsOffset[Sym->st_shndx] - SecOffset)) {
924 Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s AARCH64 relative relocations require identical ELF and PE/COFF section offsets",
925 mInImageName);
926 }
927 break;
928
929 // Absolute relocations.
930 case R_AARCH64_ABS64:
931 *(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
932 break;
933
934 default:
935 Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s unsupported ELF EM_AARCH64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
936 }
937 } else {
938 Error (NULL, 0, 3000, "Invalid", "Not a supported machine type");
939 }
940 }
941 }
942 }
943
944 return TRUE;
945 }
946
947 STATIC
948 VOID
949 WriteRelocations64 (
950 VOID
951 )
952 {
953 UINT32 Index;
954 EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
955 EFI_IMAGE_DATA_DIRECTORY *Dir;
956
957 for (Index = 0; Index < mEhdr->e_shnum; Index++) {
958 Elf_Shdr *RelShdr = GetShdrByIndex(Index);
959 if ((RelShdr->sh_type == SHT_REL) || (RelShdr->sh_type == SHT_RELA)) {
960 Elf_Shdr *SecShdr = GetShdrByIndex (RelShdr->sh_info);
961 if (IsTextShdr(SecShdr) || IsDataShdr(SecShdr)) {
962 UINT64 RelIdx;
963
964 for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += RelShdr->sh_entsize) {
965 Elf_Rela *Rel = (Elf_Rela *)((UINT8*)mEhdr + RelShdr->sh_offset + RelIdx);
966
967 if (mEhdr->e_machine == EM_X86_64) {
968 switch (ELF_R_TYPE(Rel->r_info)) {
969 case R_X86_64_NONE:
970 case R_X86_64_PC32:
971 case R_X86_64_PLT32:
972 break;
973 case R_X86_64_64:
974 VerboseMsg ("EFI_IMAGE_REL_BASED_DIR64 Offset: 0x%08X",
975 mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr));
976 CoffAddFixup(
977 (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
978 + (Rel->r_offset - SecShdr->sh_addr)),
979 EFI_IMAGE_REL_BASED_DIR64);
980 break;
981 case R_X86_64_32S:
982 case R_X86_64_32:
983 VerboseMsg ("EFI_IMAGE_REL_BASED_HIGHLOW Offset: 0x%08X",
984 mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr));
985 CoffAddFixup(
986 (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
987 + (Rel->r_offset - SecShdr->sh_addr)),
988 EFI_IMAGE_REL_BASED_HIGHLOW);
989 break;
990 default:
991 Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_X86_64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
992 }
993 } else if (mEhdr->e_machine == EM_AARCH64) {
994
995 switch (ELF_R_TYPE(Rel->r_info)) {
996 case R_AARCH64_ADR_PREL_LO21:
997 case R_AARCH64_CONDBR19:
998 case R_AARCH64_LD_PREL_LO19:
999 case R_AARCH64_CALL26:
1000 case R_AARCH64_JUMP26:
1001 case R_AARCH64_PREL64:
1002 case R_AARCH64_PREL32:
1003 case R_AARCH64_PREL16:
1004 case R_AARCH64_ADR_PREL_PG_HI21:
1005 case R_AARCH64_ADD_ABS_LO12_NC:
1006 case R_AARCH64_LDST8_ABS_LO12_NC:
1007 case R_AARCH64_LDST16_ABS_LO12_NC:
1008 case R_AARCH64_LDST32_ABS_LO12_NC:
1009 case R_AARCH64_LDST64_ABS_LO12_NC:
1010 case R_AARCH64_LDST128_ABS_LO12_NC:
1011 //
1012 // No fixups are required for relative relocations, provided that
1013 // the relative offsets between sections have been preserved in
1014 // the ELF to PE/COFF conversion. We have already asserted that
1015 // this is the case in WriteSections64 ().
1016 //
1017 break;
1018
1019 case R_AARCH64_ABS64:
1020 CoffAddFixup(
1021 (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
1022 + (Rel->r_offset - SecShdr->sh_addr)),
1023 EFI_IMAGE_REL_BASED_DIR64);
1024 break;
1025
1026 case R_AARCH64_ABS32:
1027 CoffAddFixup(
1028 (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
1029 + (Rel->r_offset - SecShdr->sh_addr)),
1030 EFI_IMAGE_REL_BASED_HIGHLOW);
1031 break;
1032
1033 default:
1034 Error (NULL, 0, 3000, "Invalid", "WriteRelocations64(): %s unsupported ELF EM_AARCH64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
1035 }
1036 } else {
1037 Error (NULL, 0, 3000, "Not Supported", "This tool does not support relocations for ELF with e_machine %u (processor type).", (unsigned) mEhdr->e_machine);
1038 }
1039 }
1040 }
1041 }
1042 }
1043
1044 //
1045 // Pad by adding empty entries.
1046 //
1047 while (mCoffOffset & (mCoffAlignment - 1)) {
1048 CoffAddFixupEntry(0);
1049 }
1050
1051 NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
1052 Dir = &NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC];
1053 Dir->Size = mCoffOffset - mRelocOffset;
1054 if (Dir->Size == 0) {
1055 // If no relocations, null out the directory entry and don't add the .reloc section
1056 Dir->VirtualAddress = 0;
1057 NtHdr->Pe32Plus.FileHeader.NumberOfSections--;
1058 } else {
1059 Dir->VirtualAddress = mRelocOffset;
1060 CreateSectionHeader (".reloc", mRelocOffset, mCoffOffset - mRelocOffset,
1061 EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
1062 | EFI_IMAGE_SCN_MEM_DISCARDABLE
1063 | EFI_IMAGE_SCN_MEM_READ);
1064 }
1065 }
1066
1067 STATIC
1068 VOID
1069 WriteDebug64 (
1070 VOID
1071 )
1072 {
1073 UINT32 Len;
1074 EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
1075 EFI_IMAGE_DATA_DIRECTORY *DataDir;
1076 EFI_IMAGE_DEBUG_DIRECTORY_ENTRY *Dir;
1077 EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY *Nb10;
1078
1079 Len = strlen(mInImageName) + 1;
1080
1081 Dir = (EFI_IMAGE_DEBUG_DIRECTORY_ENTRY*)(mCoffFile + mDebugOffset);
1082 Dir->Type = EFI_IMAGE_DEBUG_TYPE_CODEVIEW;
1083 Dir->SizeOfData = sizeof(EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY) + Len;
1084 Dir->RVA = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
1085 Dir->FileOffset = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
1086
1087 Nb10 = (EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY*)(Dir + 1);
1088 Nb10->Signature = CODEVIEW_SIGNATURE_NB10;
1089 strcpy ((char *)(Nb10 + 1), mInImageName);
1090
1091
1092 NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
1093 DataDir = &NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG];
1094 DataDir->VirtualAddress = mDebugOffset;
1095 DataDir->Size = Dir->SizeOfData + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
1096 }
1097
1098 STATIC
1099 VOID
1100 SetImageSize64 (
1101 VOID
1102 )
1103 {
1104 EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
1105
1106 //
1107 // Set image size
1108 //
1109 NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
1110 NtHdr->Pe32Plus.OptionalHeader.SizeOfImage = mCoffOffset;
1111 }
1112
1113 STATIC
1114 VOID
1115 CleanUp64 (
1116 VOID
1117 )
1118 {
1119 if (mCoffSectionsOffset != NULL) {
1120 free (mCoffSectionsOffset);
1121 }
1122 }
1123
1124