]> git.proxmox.com Git - mirror_edk2.git/blob - BaseTools/Source/C/LzmaCompress/Sdk/C/LzmaEnc.c
UefiCpuPkg: Move AsmRelocateApLoopStart from Mpfuncs.nasm to AmdSev.nasm
[mirror_edk2.git] / BaseTools / Source / C / LzmaCompress / Sdk / C / LzmaEnc.c
1 /* LzmaEnc.c -- LZMA Encoder
2 2019-01-10: Igor Pavlov : Public domain */
3
4 #include "Precomp.h"
5
6 #include <string.h>
7
8 /* #define SHOW_STAT */
9 /* #define SHOW_STAT2 */
10
11 #if defined(SHOW_STAT) || defined(SHOW_STAT2)
12 #include <stdio.h>
13 #endif
14
15 #include "LzmaEnc.h"
16
17 #include "LzFind.h"
18 #ifndef _7ZIP_ST
19 #include "LzFindMt.h"
20 #endif
21
22 #ifdef SHOW_STAT
23 static unsigned g_STAT_OFFSET = 0;
24 #endif
25
26 #define kLzmaMaxHistorySize ((UInt32)3 << 29)
27 /* #define kLzmaMaxHistorySize ((UInt32)7 << 29) */
28
29 #define kNumTopBits 24
30 #define kTopValue ((UInt32)1 << kNumTopBits)
31
32 #define kNumBitModelTotalBits 11
33 #define kBitModelTotal (1 << kNumBitModelTotalBits)
34 #define kNumMoveBits 5
35 #define kProbInitValue (kBitModelTotal >> 1)
36
37 #define kNumMoveReducingBits 4
38 #define kNumBitPriceShiftBits 4
39 #define kBitPrice (1 << kNumBitPriceShiftBits)
40
41 #define REP_LEN_COUNT 64
42
43 void LzmaEncProps_Init(CLzmaEncProps *p)
44 {
45 p->level = 5;
46 p->dictSize = p->mc = 0;
47 p->reduceSize = (UInt64)(Int64)-1;
48 p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
49 p->writeEndMark = 0;
50 }
51
52 void LzmaEncProps_Normalize(CLzmaEncProps *p)
53 {
54 int level = p->level;
55 if (level < 0) level = 5;
56 p->level = level;
57
58 if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level <= 7 ? (1 << 25) : (1 << 26)));
59 if (p->dictSize > p->reduceSize)
60 {
61 unsigned i;
62 UInt32 reduceSize = (UInt32)p->reduceSize;
63 for (i = 11; i <= 30; i++)
64 {
65 if (reduceSize <= ((UInt32)2 << i)) { p->dictSize = ((UInt32)2 << i); break; }
66 if (reduceSize <= ((UInt32)3 << i)) { p->dictSize = ((UInt32)3 << i); break; }
67 }
68 }
69
70 if (p->lc < 0) p->lc = 3;
71 if (p->lp < 0) p->lp = 0;
72 if (p->pb < 0) p->pb = 2;
73
74 if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
75 if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
76 if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
77 if (p->numHashBytes < 0) p->numHashBytes = 4;
78 if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
79
80 if (p->numThreads < 0)
81 p->numThreads =
82 #ifndef _7ZIP_ST
83 ((p->btMode && p->algo) ? 2 : 1);
84 #else
85 1;
86 #endif
87 }
88
89 UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
90 {
91 CLzmaEncProps props = *props2;
92 LzmaEncProps_Normalize(&props);
93 return props.dictSize;
94 }
95
96 #if (_MSC_VER >= 1400)
97 /* BSR code is fast for some new CPUs */
98 /* #define LZMA_LOG_BSR */
99 #endif
100
101 #ifdef LZMA_LOG_BSR
102
103 #define kDicLogSizeMaxCompress 32
104
105 #define BSR2_RET(pos, res) { unsigned long zz; _BitScanReverse(&zz, (pos)); res = (zz + zz) + ((pos >> (zz - 1)) & 1); }
106
107 static unsigned GetPosSlot1(UInt32 pos)
108 {
109 unsigned res;
110 BSR2_RET(pos, res);
111 return res;
112 }
113 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
114 #define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
115
116 #else
117
118 #define kNumLogBits (9 + sizeof(size_t) / 2)
119 /* #define kNumLogBits (11 + sizeof(size_t) / 8 * 3) */
120
121 #define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
122
123 static void LzmaEnc_FastPosInit(Byte *g_FastPos)
124 {
125 unsigned slot;
126 g_FastPos[0] = 0;
127 g_FastPos[1] = 1;
128 g_FastPos += 2;
129
130 for (slot = 2; slot < kNumLogBits * 2; slot++)
131 {
132 size_t k = ((size_t)1 << ((slot >> 1) - 1));
133 size_t j;
134 for (j = 0; j < k; j++)
135 g_FastPos[j] = (Byte)slot;
136 g_FastPos += k;
137 }
138 }
139
140 /* we can use ((limit - pos) >> 31) only if (pos < ((UInt32)1 << 31)) */
141 /*
142 #define BSR2_RET(pos, res) { unsigned zz = 6 + ((kNumLogBits - 1) & \
143 (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
144 res = p->g_FastPos[pos >> zz] + (zz * 2); }
145 */
146
147 /*
148 #define BSR2_RET(pos, res) { unsigned zz = 6 + ((kNumLogBits - 1) & \
149 (0 - (((((UInt32)1 << (kNumLogBits)) - 1) - (pos >> 6)) >> 31))); \
150 res = p->g_FastPos[pos >> zz] + (zz * 2); }
151 */
152
153 #define BSR2_RET(pos, res) { unsigned zz = (pos < (1 << (kNumLogBits + 6))) ? 6 : 6 + kNumLogBits - 1; \
154 res = p->g_FastPos[pos >> zz] + (zz * 2); }
155
156 /*
157 #define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
158 p->g_FastPos[pos >> 6] + 12 : \
159 p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
160 */
161
162 #define GetPosSlot1(pos) p->g_FastPos[pos]
163 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
164 #define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos & (kNumFullDistances - 1)]; else BSR2_RET(pos, res); }
165
166 #endif
167
168
169 #define LZMA_NUM_REPS 4
170
171 typedef UInt16 CState;
172 typedef UInt16 CExtra;
173
174 typedef struct
175 {
176 UInt32 price;
177 CState state;
178 CExtra extra;
179 // 0 : normal
180 // 1 : LIT : MATCH
181 // > 1 : MATCH (extra-1) : LIT : REP0 (len)
182 UInt32 len;
183 UInt32 dist;
184 UInt32 reps[LZMA_NUM_REPS];
185 } COptimal;
186
187
188 // 18.06
189 #define kNumOpts (1 << 11)
190 #define kPackReserve (kNumOpts * 8)
191 // #define kNumOpts (1 << 12)
192 // #define kPackReserve (1 + kNumOpts * 2)
193
194 #define kNumLenToPosStates 4
195 #define kNumPosSlotBits 6
196 #define kDicLogSizeMin 0
197 #define kDicLogSizeMax 32
198 #define kDistTableSizeMax (kDicLogSizeMax * 2)
199
200 #define kNumAlignBits 4
201 #define kAlignTableSize (1 << kNumAlignBits)
202 #define kAlignMask (kAlignTableSize - 1)
203
204 #define kStartPosModelIndex 4
205 #define kEndPosModelIndex 14
206 #define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
207
208 typedef
209 #ifdef _LZMA_PROB32
210 UInt32
211 #else
212 UInt16
213 #endif
214 CLzmaProb;
215
216 #define LZMA_PB_MAX 4
217 #define LZMA_LC_MAX 8
218 #define LZMA_LP_MAX 4
219
220 #define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
221
222 #define kLenNumLowBits 3
223 #define kLenNumLowSymbols (1 << kLenNumLowBits)
224 #define kLenNumHighBits 8
225 #define kLenNumHighSymbols (1 << kLenNumHighBits)
226 #define kLenNumSymbolsTotal (kLenNumLowSymbols * 2 + kLenNumHighSymbols)
227
228 #define LZMA_MATCH_LEN_MIN 2
229 #define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
230
231 #define kNumStates 12
232
233
234 typedef struct
235 {
236 CLzmaProb low[LZMA_NUM_PB_STATES_MAX << (kLenNumLowBits + 1)];
237 CLzmaProb high[kLenNumHighSymbols];
238 } CLenEnc;
239
240
241 typedef struct
242 {
243 unsigned tableSize;
244 UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
245 // UInt32 prices1[LZMA_NUM_PB_STATES_MAX][kLenNumLowSymbols * 2];
246 // UInt32 prices2[kLenNumSymbolsTotal];
247 } CLenPriceEnc;
248
249 #define GET_PRICE_LEN(p, posState, len) \
250 ((p)->prices[posState][(size_t)(len) - LZMA_MATCH_LEN_MIN])
251
252 /*
253 #define GET_PRICE_LEN(p, posState, len) \
254 ((p)->prices2[(size_t)(len) - 2] + ((p)->prices1[posState][((len) - 2) & (kLenNumLowSymbols * 2 - 1)] & (((len) - 2 - kLenNumLowSymbols * 2) >> 9)))
255 */
256
257 typedef struct
258 {
259 UInt32 range;
260 unsigned cache;
261 UInt64 low;
262 UInt64 cacheSize;
263 Byte *buf;
264 Byte *bufLim;
265 Byte *bufBase;
266 ISeqOutStream *outStream;
267 UInt64 processed;
268 SRes res;
269 } CRangeEnc;
270
271
272 typedef struct
273 {
274 CLzmaProb *litProbs;
275
276 unsigned state;
277 UInt32 reps[LZMA_NUM_REPS];
278
279 CLzmaProb posAlignEncoder[1 << kNumAlignBits];
280 CLzmaProb isRep[kNumStates];
281 CLzmaProb isRepG0[kNumStates];
282 CLzmaProb isRepG1[kNumStates];
283 CLzmaProb isRepG2[kNumStates];
284 CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
285 CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
286
287 CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
288 CLzmaProb posEncoders[kNumFullDistances];
289
290 CLenEnc lenProbs;
291 CLenEnc repLenProbs;
292
293 } CSaveState;
294
295
296 typedef UInt32 CProbPrice;
297
298
299 typedef struct
300 {
301 void *matchFinderObj;
302 IMatchFinder matchFinder;
303
304 unsigned optCur;
305 unsigned optEnd;
306
307 unsigned longestMatchLen;
308 unsigned numPairs;
309 UInt32 numAvail;
310
311 unsigned state;
312 unsigned numFastBytes;
313 unsigned additionalOffset;
314 UInt32 reps[LZMA_NUM_REPS];
315 unsigned lpMask, pbMask;
316 CLzmaProb *litProbs;
317 CRangeEnc rc;
318
319 UInt32 backRes;
320
321 unsigned lc, lp, pb;
322 unsigned lclp;
323
324 BoolInt fastMode;
325 BoolInt writeEndMark;
326 BoolInt finished;
327 BoolInt multiThread;
328 BoolInt needInit;
329 // BoolInt _maxMode;
330
331 UInt64 nowPos64;
332
333 unsigned matchPriceCount;
334 // unsigned alignPriceCount;
335 int repLenEncCounter;
336
337 unsigned distTableSize;
338
339 UInt32 dictSize;
340 SRes result;
341
342 #ifndef _7ZIP_ST
343 BoolInt mtMode;
344 // begin of CMatchFinderMt is used in LZ thread
345 CMatchFinderMt matchFinderMt;
346 // end of CMatchFinderMt is used in BT and HASH threads
347 #endif
348
349 CMatchFinder matchFinderBase;
350
351 #ifndef _7ZIP_ST
352 Byte pad[128];
353 #endif
354
355 // LZ thread
356 CProbPrice ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
357
358 UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
359
360 UInt32 alignPrices[kAlignTableSize];
361 UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
362 UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
363
364 CLzmaProb posAlignEncoder[1 << kNumAlignBits];
365 CLzmaProb isRep[kNumStates];
366 CLzmaProb isRepG0[kNumStates];
367 CLzmaProb isRepG1[kNumStates];
368 CLzmaProb isRepG2[kNumStates];
369 CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
370 CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
371 CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
372 CLzmaProb posEncoders[kNumFullDistances];
373
374 CLenEnc lenProbs;
375 CLenEnc repLenProbs;
376
377 #ifndef LZMA_LOG_BSR
378 Byte g_FastPos[1 << kNumLogBits];
379 #endif
380
381 CLenPriceEnc lenEnc;
382 CLenPriceEnc repLenEnc;
383
384 COptimal opt[kNumOpts];
385
386 CSaveState saveState;
387
388 #ifndef _7ZIP_ST
389 Byte pad2[128];
390 #endif
391 } CLzmaEnc;
392
393
394
395 #define COPY_ARR(dest, src, arr) memcpy(dest->arr, src->arr, sizeof(src->arr));
396
397 void LzmaEnc_SaveState(CLzmaEncHandle pp)
398 {
399 CLzmaEnc *p = (CLzmaEnc *)pp;
400 CSaveState *dest = &p->saveState;
401
402 dest->state = p->state;
403
404 dest->lenProbs = p->lenProbs;
405 dest->repLenProbs = p->repLenProbs;
406
407 COPY_ARR(dest, p, reps);
408
409 COPY_ARR(dest, p, posAlignEncoder);
410 COPY_ARR(dest, p, isRep);
411 COPY_ARR(dest, p, isRepG0);
412 COPY_ARR(dest, p, isRepG1);
413 COPY_ARR(dest, p, isRepG2);
414 COPY_ARR(dest, p, isMatch);
415 COPY_ARR(dest, p, isRep0Long);
416 COPY_ARR(dest, p, posSlotEncoder);
417 COPY_ARR(dest, p, posEncoders);
418
419 memcpy(dest->litProbs, p->litProbs, ((UInt32)0x300 << p->lclp) * sizeof(CLzmaProb));
420 }
421
422
423 void LzmaEnc_RestoreState(CLzmaEncHandle pp)
424 {
425 CLzmaEnc *dest = (CLzmaEnc *)pp;
426 const CSaveState *p = &dest->saveState;
427
428 dest->state = p->state;
429
430 dest->lenProbs = p->lenProbs;
431 dest->repLenProbs = p->repLenProbs;
432
433 COPY_ARR(dest, p, reps);
434
435 COPY_ARR(dest, p, posAlignEncoder);
436 COPY_ARR(dest, p, isRep);
437 COPY_ARR(dest, p, isRepG0);
438 COPY_ARR(dest, p, isRepG1);
439 COPY_ARR(dest, p, isRepG2);
440 COPY_ARR(dest, p, isMatch);
441 COPY_ARR(dest, p, isRep0Long);
442 COPY_ARR(dest, p, posSlotEncoder);
443 COPY_ARR(dest, p, posEncoders);
444
445 memcpy(dest->litProbs, p->litProbs, ((UInt32)0x300 << dest->lclp) * sizeof(CLzmaProb));
446 }
447
448
449
450 SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
451 {
452 CLzmaEnc *p = (CLzmaEnc *)pp;
453 CLzmaEncProps props = *props2;
454 LzmaEncProps_Normalize(&props);
455
456 if (props.lc > LZMA_LC_MAX
457 || props.lp > LZMA_LP_MAX
458 || props.pb > LZMA_PB_MAX
459 || props.dictSize > ((UInt64)1 << kDicLogSizeMaxCompress)
460 || props.dictSize > kLzmaMaxHistorySize)
461 return SZ_ERROR_PARAM;
462
463 p->dictSize = props.dictSize;
464 {
465 unsigned fb = props.fb;
466 if (fb < 5)
467 fb = 5;
468 if (fb > LZMA_MATCH_LEN_MAX)
469 fb = LZMA_MATCH_LEN_MAX;
470 p->numFastBytes = fb;
471 }
472 p->lc = props.lc;
473 p->lp = props.lp;
474 p->pb = props.pb;
475 p->fastMode = (props.algo == 0);
476 // p->_maxMode = True;
477 p->matchFinderBase.btMode = (Byte)(props.btMode ? 1 : 0);
478 {
479 unsigned numHashBytes = 4;
480 if (props.btMode)
481 {
482 if (props.numHashBytes < 2)
483 numHashBytes = 2;
484 else if (props.numHashBytes < 4)
485 numHashBytes = props.numHashBytes;
486 }
487 p->matchFinderBase.numHashBytes = numHashBytes;
488 }
489
490 p->matchFinderBase.cutValue = props.mc;
491
492 p->writeEndMark = props.writeEndMark;
493
494 #ifndef _7ZIP_ST
495 /*
496 if (newMultiThread != _multiThread)
497 {
498 ReleaseMatchFinder();
499 _multiThread = newMultiThread;
500 }
501 */
502 p->multiThread = (props.numThreads > 1);
503 #endif
504
505 return SZ_OK;
506 }
507
508
509 void LzmaEnc_SetDataSize(CLzmaEncHandle pp, UInt64 expectedDataSiize)
510 {
511 CLzmaEnc *p = (CLzmaEnc *)pp;
512 p->matchFinderBase.expectedDataSize = expectedDataSiize;
513 }
514
515
516 #define kState_Start 0
517 #define kState_LitAfterMatch 4
518 #define kState_LitAfterRep 5
519 #define kState_MatchAfterLit 7
520 #define kState_RepAfterLit 8
521
522 static const Byte kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5};
523 static const Byte kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
524 static const Byte kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
525 static const Byte kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
526
527 #define IsLitState(s) ((s) < 7)
528 #define GetLenToPosState2(len) (((len) < kNumLenToPosStates - 1) ? (len) : kNumLenToPosStates - 1)
529 #define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
530
531 #define kInfinityPrice (1 << 30)
532
533 static void RangeEnc_Construct(CRangeEnc *p)
534 {
535 p->outStream = NULL;
536 p->bufBase = NULL;
537 }
538
539 #define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
540 #define RangeEnc_GetProcessed_sizet(p) ((size_t)(p)->processed + ((p)->buf - (p)->bufBase) + (size_t)(p)->cacheSize)
541
542 #define RC_BUF_SIZE (1 << 16)
543
544 static int RangeEnc_Alloc(CRangeEnc *p, ISzAllocPtr alloc)
545 {
546 if (!p->bufBase)
547 {
548 p->bufBase = (Byte *)ISzAlloc_Alloc(alloc, RC_BUF_SIZE);
549 if (!p->bufBase)
550 return 0;
551 p->bufLim = p->bufBase + RC_BUF_SIZE;
552 }
553 return 1;
554 }
555
556 static void RangeEnc_Free(CRangeEnc *p, ISzAllocPtr alloc)
557 {
558 ISzAlloc_Free(alloc, p->bufBase);
559 p->bufBase = 0;
560 }
561
562 static void RangeEnc_Init(CRangeEnc *p)
563 {
564 /* Stream.Init(); */
565 p->range = 0xFFFFFFFF;
566 p->cache = 0;
567 p->low = 0;
568 p->cacheSize = 0;
569
570 p->buf = p->bufBase;
571
572 p->processed = 0;
573 p->res = SZ_OK;
574 }
575
576 MY_NO_INLINE static void RangeEnc_FlushStream(CRangeEnc *p)
577 {
578 size_t num;
579 if (p->res != SZ_OK)
580 return;
581 num = p->buf - p->bufBase;
582 if (num != ISeqOutStream_Write(p->outStream, p->bufBase, num))
583 p->res = SZ_ERROR_WRITE;
584 p->processed += num;
585 p->buf = p->bufBase;
586 }
587
588 MY_NO_INLINE static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
589 {
590 UInt32 low = (UInt32)p->low;
591 unsigned high = (unsigned)(p->low >> 32);
592 p->low = (UInt32)(low << 8);
593 if (low < (UInt32)0xFF000000 || high != 0)
594 {
595 {
596 Byte *buf = p->buf;
597 *buf++ = (Byte)(p->cache + high);
598 p->cache = (unsigned)(low >> 24);
599 p->buf = buf;
600 if (buf == p->bufLim)
601 RangeEnc_FlushStream(p);
602 if (p->cacheSize == 0)
603 return;
604 }
605 high += 0xFF;
606 for (;;)
607 {
608 Byte *buf = p->buf;
609 *buf++ = (Byte)(high);
610 p->buf = buf;
611 if (buf == p->bufLim)
612 RangeEnc_FlushStream(p);
613 if (--p->cacheSize == 0)
614 return;
615 }
616 }
617 p->cacheSize++;
618 }
619
620 static void RangeEnc_FlushData(CRangeEnc *p)
621 {
622 int i;
623 for (i = 0; i < 5; i++)
624 RangeEnc_ShiftLow(p);
625 }
626
627 #define RC_NORM(p) if (range < kTopValue) { range <<= 8; RangeEnc_ShiftLow(p); }
628
629 #define RC_BIT_PRE(p, prob) \
630 ttt = *(prob); \
631 newBound = (range >> kNumBitModelTotalBits) * ttt;
632
633 // #define _LZMA_ENC_USE_BRANCH
634
635 #ifdef _LZMA_ENC_USE_BRANCH
636
637 #define RC_BIT(p, prob, bit) { \
638 RC_BIT_PRE(p, prob) \
639 if (bit == 0) { range = newBound; ttt += (kBitModelTotal - ttt) >> kNumMoveBits; } \
640 else { (p)->low += newBound; range -= newBound; ttt -= ttt >> kNumMoveBits; } \
641 *(prob) = (CLzmaProb)ttt; \
642 RC_NORM(p) \
643 }
644
645 #else
646
647 #define RC_BIT(p, prob, bit) { \
648 UInt32 mask; \
649 RC_BIT_PRE(p, prob) \
650 mask = 0 - (UInt32)bit; \
651 range &= mask; \
652 mask &= newBound; \
653 range -= mask; \
654 (p)->low += mask; \
655 mask = (UInt32)bit - 1; \
656 range += newBound & mask; \
657 mask &= (kBitModelTotal - ((1 << kNumMoveBits) - 1)); \
658 mask += ((1 << kNumMoveBits) - 1); \
659 ttt += (Int32)(mask - ttt) >> kNumMoveBits; \
660 *(prob) = (CLzmaProb)ttt; \
661 RC_NORM(p) \
662 }
663
664 #endif
665
666
667
668
669 #define RC_BIT_0_BASE(p, prob) \
670 range = newBound; *(prob) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
671
672 #define RC_BIT_1_BASE(p, prob) \
673 range -= newBound; (p)->low += newBound; *(prob) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits)); \
674
675 #define RC_BIT_0(p, prob) \
676 RC_BIT_0_BASE(p, prob) \
677 RC_NORM(p)
678
679 #define RC_BIT_1(p, prob) \
680 RC_BIT_1_BASE(p, prob) \
681 RC_NORM(p)
682
683 static void RangeEnc_EncodeBit_0(CRangeEnc *p, CLzmaProb *prob)
684 {
685 UInt32 range, ttt, newBound;
686 range = p->range;
687 RC_BIT_PRE(p, prob)
688 RC_BIT_0(p, prob)
689 p->range = range;
690 }
691
692 static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 sym)
693 {
694 UInt32 range = p->range;
695 sym |= 0x100;
696 do
697 {
698 UInt32 ttt, newBound;
699 // RangeEnc_EncodeBit(p, probs + (sym >> 8), (sym >> 7) & 1);
700 CLzmaProb *prob = probs + (sym >> 8);
701 UInt32 bit = (sym >> 7) & 1;
702 sym <<= 1;
703 RC_BIT(p, prob, bit);
704 }
705 while (sym < 0x10000);
706 p->range = range;
707 }
708
709 static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 sym, UInt32 matchByte)
710 {
711 UInt32 range = p->range;
712 UInt32 offs = 0x100;
713 sym |= 0x100;
714 do
715 {
716 UInt32 ttt, newBound;
717 CLzmaProb *prob;
718 UInt32 bit;
719 matchByte <<= 1;
720 // RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (sym >> 8)), (sym >> 7) & 1);
721 prob = probs + (offs + (matchByte & offs) + (sym >> 8));
722 bit = (sym >> 7) & 1;
723 sym <<= 1;
724 offs &= ~(matchByte ^ sym);
725 RC_BIT(p, prob, bit);
726 }
727 while (sym < 0x10000);
728 p->range = range;
729 }
730
731
732
733 static void LzmaEnc_InitPriceTables(CProbPrice *ProbPrices)
734 {
735 UInt32 i;
736 for (i = 0; i < (kBitModelTotal >> kNumMoveReducingBits); i++)
737 {
738 const unsigned kCyclesBits = kNumBitPriceShiftBits;
739 UInt32 w = (i << kNumMoveReducingBits) + (1 << (kNumMoveReducingBits - 1));
740 unsigned bitCount = 0;
741 unsigned j;
742 for (j = 0; j < kCyclesBits; j++)
743 {
744 w = w * w;
745 bitCount <<= 1;
746 while (w >= ((UInt32)1 << 16))
747 {
748 w >>= 1;
749 bitCount++;
750 }
751 }
752 ProbPrices[i] = (CProbPrice)((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
753 // printf("\n%3d: %5d", i, ProbPrices[i]);
754 }
755 }
756
757
758 #define GET_PRICE(prob, bit) \
759 p->ProbPrices[((prob) ^ (unsigned)(((-(int)(bit))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
760
761 #define GET_PRICEa(prob, bit) \
762 ProbPrices[((prob) ^ (unsigned)((-((int)(bit))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
763
764 #define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
765 #define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
766
767 #define GET_PRICEa_0(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
768 #define GET_PRICEa_1(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
769
770
771 static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 sym, const CProbPrice *ProbPrices)
772 {
773 UInt32 price = 0;
774 sym |= 0x100;
775 do
776 {
777 unsigned bit = sym & 1;
778 sym >>= 1;
779 price += GET_PRICEa(probs[sym], bit);
780 }
781 while (sym >= 2);
782 return price;
783 }
784
785
786 static UInt32 LitEnc_Matched_GetPrice(const CLzmaProb *probs, UInt32 sym, UInt32 matchByte, const CProbPrice *ProbPrices)
787 {
788 UInt32 price = 0;
789 UInt32 offs = 0x100;
790 sym |= 0x100;
791 do
792 {
793 matchByte <<= 1;
794 price += GET_PRICEa(probs[offs + (matchByte & offs) + (sym >> 8)], (sym >> 7) & 1);
795 sym <<= 1;
796 offs &= ~(matchByte ^ sym);
797 }
798 while (sym < 0x10000);
799 return price;
800 }
801
802
803 static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, unsigned numBits, unsigned sym)
804 {
805 UInt32 range = rc->range;
806 unsigned m = 1;
807 do
808 {
809 UInt32 ttt, newBound;
810 unsigned bit = sym & 1;
811 // RangeEnc_EncodeBit(rc, probs + m, bit);
812 sym >>= 1;
813 RC_BIT(rc, probs + m, bit);
814 m = (m << 1) | bit;
815 }
816 while (--numBits);
817 rc->range = range;
818 }
819
820
821
822 static void LenEnc_Init(CLenEnc *p)
823 {
824 unsigned i;
825 for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << (kLenNumLowBits + 1)); i++)
826 p->low[i] = kProbInitValue;
827 for (i = 0; i < kLenNumHighSymbols; i++)
828 p->high[i] = kProbInitValue;
829 }
830
831 static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, unsigned sym, unsigned posState)
832 {
833 UInt32 range, ttt, newBound;
834 CLzmaProb *probs = p->low;
835 range = rc->range;
836 RC_BIT_PRE(rc, probs);
837 if (sym >= kLenNumLowSymbols)
838 {
839 RC_BIT_1(rc, probs);
840 probs += kLenNumLowSymbols;
841 RC_BIT_PRE(rc, probs);
842 if (sym >= kLenNumLowSymbols * 2)
843 {
844 RC_BIT_1(rc, probs);
845 rc->range = range;
846 // RcTree_Encode(rc, p->high, kLenNumHighBits, sym - kLenNumLowSymbols * 2);
847 LitEnc_Encode(rc, p->high, sym - kLenNumLowSymbols * 2);
848 return;
849 }
850 sym -= kLenNumLowSymbols;
851 }
852
853 // RcTree_Encode(rc, probs + (posState << kLenNumLowBits), kLenNumLowBits, sym);
854 {
855 unsigned m;
856 unsigned bit;
857 RC_BIT_0(rc, probs);
858 probs += (posState << (1 + kLenNumLowBits));
859 bit = (sym >> 2) ; RC_BIT(rc, probs + 1, bit); m = (1 << 1) + bit;
860 bit = (sym >> 1) & 1; RC_BIT(rc, probs + m, bit); m = (m << 1) + bit;
861 bit = sym & 1; RC_BIT(rc, probs + m, bit);
862 rc->range = range;
863 }
864 }
865
866 static void SetPrices_3(const CLzmaProb *probs, UInt32 startPrice, UInt32 *prices, const CProbPrice *ProbPrices)
867 {
868 unsigned i;
869 for (i = 0; i < 8; i += 2)
870 {
871 UInt32 price = startPrice;
872 UInt32 prob;
873 price += GET_PRICEa(probs[1 ], (i >> 2));
874 price += GET_PRICEa(probs[2 + (i >> 2)], (i >> 1) & 1);
875 prob = probs[4 + (i >> 1)];
876 prices[i ] = price + GET_PRICEa_0(prob);
877 prices[i + 1] = price + GET_PRICEa_1(prob);
878 }
879 }
880
881
882 MY_NO_INLINE static void MY_FAST_CALL LenPriceEnc_UpdateTables(
883 CLenPriceEnc *p,
884 unsigned numPosStates,
885 const CLenEnc *enc,
886 const CProbPrice *ProbPrices)
887 {
888 UInt32 b;
889
890 {
891 unsigned prob = enc->low[0];
892 UInt32 a, c;
893 unsigned posState;
894 b = GET_PRICEa_1(prob);
895 a = GET_PRICEa_0(prob);
896 c = b + GET_PRICEa_0(enc->low[kLenNumLowSymbols]);
897 for (posState = 0; posState < numPosStates; posState++)
898 {
899 UInt32 *prices = p->prices[posState];
900 const CLzmaProb *probs = enc->low + (posState << (1 + kLenNumLowBits));
901 SetPrices_3(probs, a, prices, ProbPrices);
902 SetPrices_3(probs + kLenNumLowSymbols, c, prices + kLenNumLowSymbols, ProbPrices);
903 }
904 }
905
906 /*
907 {
908 unsigned i;
909 UInt32 b;
910 a = GET_PRICEa_0(enc->low[0]);
911 for (i = 0; i < kLenNumLowSymbols; i++)
912 p->prices2[i] = a;
913 a = GET_PRICEa_1(enc->low[0]);
914 b = a + GET_PRICEa_0(enc->low[kLenNumLowSymbols]);
915 for (i = kLenNumLowSymbols; i < kLenNumLowSymbols * 2; i++)
916 p->prices2[i] = b;
917 a += GET_PRICEa_1(enc->low[kLenNumLowSymbols]);
918 }
919 */
920
921 // p->counter = numSymbols;
922 // p->counter = 64;
923
924 {
925 unsigned i = p->tableSize;
926
927 if (i > kLenNumLowSymbols * 2)
928 {
929 const CLzmaProb *probs = enc->high;
930 UInt32 *prices = p->prices[0] + kLenNumLowSymbols * 2;
931 i -= kLenNumLowSymbols * 2 - 1;
932 i >>= 1;
933 b += GET_PRICEa_1(enc->low[kLenNumLowSymbols]);
934 do
935 {
936 /*
937 p->prices2[i] = a +
938 // RcTree_GetPrice(enc->high, kLenNumHighBits, i - kLenNumLowSymbols * 2, ProbPrices);
939 LitEnc_GetPrice(probs, i - kLenNumLowSymbols * 2, ProbPrices);
940 */
941 // UInt32 price = a + RcTree_GetPrice(probs, kLenNumHighBits - 1, sym, ProbPrices);
942 unsigned sym = --i + (1 << (kLenNumHighBits - 1));
943 UInt32 price = b;
944 do
945 {
946 unsigned bit = sym & 1;
947 sym >>= 1;
948 price += GET_PRICEa(probs[sym], bit);
949 }
950 while (sym >= 2);
951
952 {
953 unsigned prob = probs[(size_t)i + (1 << (kLenNumHighBits - 1))];
954 prices[(size_t)i * 2 ] = price + GET_PRICEa_0(prob);
955 prices[(size_t)i * 2 + 1] = price + GET_PRICEa_1(prob);
956 }
957 }
958 while (i);
959
960 {
961 unsigned posState;
962 size_t num = (p->tableSize - kLenNumLowSymbols * 2) * sizeof(p->prices[0][0]);
963 for (posState = 1; posState < numPosStates; posState++)
964 memcpy(p->prices[posState] + kLenNumLowSymbols * 2, p->prices[0] + kLenNumLowSymbols * 2, num);
965 }
966 }
967 }
968 }
969
970 /*
971 #ifdef SHOW_STAT
972 g_STAT_OFFSET += num;
973 printf("\n MovePos %u", num);
974 #endif
975 */
976
977 #define MOVE_POS(p, num) { \
978 p->additionalOffset += (num); \
979 p->matchFinder.Skip(p->matchFinderObj, (UInt32)(num)); }
980
981
982 static unsigned ReadMatchDistances(CLzmaEnc *p, unsigned *numPairsRes)
983 {
984 unsigned numPairs;
985
986 p->additionalOffset++;
987 p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
988 numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
989 *numPairsRes = numPairs;
990
991 #ifdef SHOW_STAT
992 printf("\n i = %u numPairs = %u ", g_STAT_OFFSET, numPairs / 2);
993 g_STAT_OFFSET++;
994 {
995 unsigned i;
996 for (i = 0; i < numPairs; i += 2)
997 printf("%2u %6u | ", p->matches[i], p->matches[i + 1]);
998 }
999 #endif
1000
1001 if (numPairs == 0)
1002 return 0;
1003 {
1004 unsigned len = p->matches[(size_t)numPairs - 2];
1005 if (len != p->numFastBytes)
1006 return len;
1007 {
1008 UInt32 numAvail = p->numAvail;
1009 if (numAvail > LZMA_MATCH_LEN_MAX)
1010 numAvail = LZMA_MATCH_LEN_MAX;
1011 {
1012 const Byte *p1 = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1013 const Byte *p2 = p1 + len;
1014 ptrdiff_t dif = (ptrdiff_t)-1 - p->matches[(size_t)numPairs - 1];
1015 const Byte *lim = p1 + numAvail;
1016 for (; p2 != lim && *p2 == p2[dif]; p2++)
1017 {}
1018 return (unsigned)(p2 - p1);
1019 }
1020 }
1021 }
1022 }
1023
1024 #define MARK_LIT ((UInt32)(Int32)-1)
1025
1026 #define MakeAs_Lit(p) { (p)->dist = MARK_LIT; (p)->extra = 0; }
1027 #define MakeAs_ShortRep(p) { (p)->dist = 0; (p)->extra = 0; }
1028 #define IsShortRep(p) ((p)->dist == 0)
1029
1030
1031 #define GetPrice_ShortRep(p, state, posState) \
1032 ( GET_PRICE_0(p->isRepG0[state]) + GET_PRICE_0(p->isRep0Long[state][posState]))
1033
1034 #define GetPrice_Rep_0(p, state, posState) ( \
1035 GET_PRICE_1(p->isMatch[state][posState]) \
1036 + GET_PRICE_1(p->isRep0Long[state][posState])) \
1037 + GET_PRICE_1(p->isRep[state]) \
1038 + GET_PRICE_0(p->isRepG0[state])
1039
1040 MY_FORCE_INLINE
1041 static UInt32 GetPrice_PureRep(const CLzmaEnc *p, unsigned repIndex, size_t state, size_t posState)
1042 {
1043 UInt32 price;
1044 UInt32 prob = p->isRepG0[state];
1045 if (repIndex == 0)
1046 {
1047 price = GET_PRICE_0(prob);
1048 price += GET_PRICE_1(p->isRep0Long[state][posState]);
1049 }
1050 else
1051 {
1052 price = GET_PRICE_1(prob);
1053 prob = p->isRepG1[state];
1054 if (repIndex == 1)
1055 price += GET_PRICE_0(prob);
1056 else
1057 {
1058 price += GET_PRICE_1(prob);
1059 price += GET_PRICE(p->isRepG2[state], repIndex - 2);
1060 }
1061 }
1062 return price;
1063 }
1064
1065
1066 static unsigned Backward(CLzmaEnc *p, unsigned cur)
1067 {
1068 unsigned wr = cur + 1;
1069 p->optEnd = wr;
1070
1071 for (;;)
1072 {
1073 UInt32 dist = p->opt[cur].dist;
1074 unsigned len = (unsigned)p->opt[cur].len;
1075 unsigned extra = (unsigned)p->opt[cur].extra;
1076 cur -= len;
1077
1078 if (extra)
1079 {
1080 wr--;
1081 p->opt[wr].len = (UInt32)len;
1082 cur -= extra;
1083 len = extra;
1084 if (extra == 1)
1085 {
1086 p->opt[wr].dist = dist;
1087 dist = MARK_LIT;
1088 }
1089 else
1090 {
1091 p->opt[wr].dist = 0;
1092 len--;
1093 wr--;
1094 p->opt[wr].dist = MARK_LIT;
1095 p->opt[wr].len = 1;
1096 }
1097 }
1098
1099 if (cur == 0)
1100 {
1101 p->backRes = dist;
1102 p->optCur = wr;
1103 return len;
1104 }
1105
1106 wr--;
1107 p->opt[wr].dist = dist;
1108 p->opt[wr].len = (UInt32)len;
1109 }
1110 }
1111
1112
1113
1114 #define LIT_PROBS(pos, prevByte) \
1115 (p->litProbs + (UInt32)3 * (((((pos) << 8) + (prevByte)) & p->lpMask) << p->lc))
1116
1117
1118 static unsigned GetOptimum(CLzmaEnc *p, UInt32 position)
1119 {
1120 unsigned last, cur;
1121 UInt32 reps[LZMA_NUM_REPS];
1122 unsigned repLens[LZMA_NUM_REPS];
1123 UInt32 *matches;
1124
1125 {
1126 UInt32 numAvail;
1127 unsigned numPairs, mainLen, repMaxIndex, i, posState;
1128 UInt32 matchPrice, repMatchPrice;
1129 const Byte *data;
1130 Byte curByte, matchByte;
1131
1132 p->optCur = p->optEnd = 0;
1133
1134 if (p->additionalOffset == 0)
1135 mainLen = ReadMatchDistances(p, &numPairs);
1136 else
1137 {
1138 mainLen = p->longestMatchLen;
1139 numPairs = p->numPairs;
1140 }
1141
1142 numAvail = p->numAvail;
1143 if (numAvail < 2)
1144 {
1145 p->backRes = MARK_LIT;
1146 return 1;
1147 }
1148 if (numAvail > LZMA_MATCH_LEN_MAX)
1149 numAvail = LZMA_MATCH_LEN_MAX;
1150
1151 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1152 repMaxIndex = 0;
1153
1154 for (i = 0; i < LZMA_NUM_REPS; i++)
1155 {
1156 unsigned len;
1157 const Byte *data2;
1158 reps[i] = p->reps[i];
1159 data2 = data - reps[i];
1160 if (data[0] != data2[0] || data[1] != data2[1])
1161 {
1162 repLens[i] = 0;
1163 continue;
1164 }
1165 for (len = 2; len < numAvail && data[len] == data2[len]; len++)
1166 {}
1167 repLens[i] = len;
1168 if (len > repLens[repMaxIndex])
1169 repMaxIndex = i;
1170 }
1171
1172 if (repLens[repMaxIndex] >= p->numFastBytes)
1173 {
1174 unsigned len;
1175 p->backRes = (UInt32)repMaxIndex;
1176 len = repLens[repMaxIndex];
1177 MOVE_POS(p, len - 1)
1178 return len;
1179 }
1180
1181 matches = p->matches;
1182
1183 if (mainLen >= p->numFastBytes)
1184 {
1185 p->backRes = matches[(size_t)numPairs - 1] + LZMA_NUM_REPS;
1186 MOVE_POS(p, mainLen - 1)
1187 return mainLen;
1188 }
1189
1190 curByte = *data;
1191 matchByte = *(data - reps[0]);
1192
1193 last = repLens[repMaxIndex];
1194 if (last <= mainLen)
1195 last = mainLen;
1196
1197 if (last < 2 && curByte != matchByte)
1198 {
1199 p->backRes = MARK_LIT;
1200 return 1;
1201 }
1202
1203 p->opt[0].state = (CState)p->state;
1204
1205 posState = (position & p->pbMask);
1206
1207 {
1208 const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1209 p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
1210 (!IsLitState(p->state) ?
1211 LitEnc_Matched_GetPrice(probs, curByte, matchByte, p->ProbPrices) :
1212 LitEnc_GetPrice(probs, curByte, p->ProbPrices));
1213 }
1214
1215 MakeAs_Lit(&p->opt[1]);
1216
1217 matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
1218 repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
1219
1220 // 18.06
1221 if (matchByte == curByte && repLens[0] == 0)
1222 {
1223 UInt32 shortRepPrice = repMatchPrice + GetPrice_ShortRep(p, p->state, posState);
1224 if (shortRepPrice < p->opt[1].price)
1225 {
1226 p->opt[1].price = shortRepPrice;
1227 MakeAs_ShortRep(&p->opt[1]);
1228 }
1229 if (last < 2)
1230 {
1231 p->backRes = p->opt[1].dist;
1232 return 1;
1233 }
1234 }
1235
1236 p->opt[1].len = 1;
1237
1238 p->opt[0].reps[0] = reps[0];
1239 p->opt[0].reps[1] = reps[1];
1240 p->opt[0].reps[2] = reps[2];
1241 p->opt[0].reps[3] = reps[3];
1242
1243 // ---------- REP ----------
1244
1245 for (i = 0; i < LZMA_NUM_REPS; i++)
1246 {
1247 unsigned repLen = repLens[i];
1248 UInt32 price;
1249 if (repLen < 2)
1250 continue;
1251 price = repMatchPrice + GetPrice_PureRep(p, i, p->state, posState);
1252 do
1253 {
1254 UInt32 price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState, repLen);
1255 COptimal *opt = &p->opt[repLen];
1256 if (price2 < opt->price)
1257 {
1258 opt->price = price2;
1259 opt->len = (UInt32)repLen;
1260 opt->dist = (UInt32)i;
1261 opt->extra = 0;
1262 }
1263 }
1264 while (--repLen >= 2);
1265 }
1266
1267
1268 // ---------- MATCH ----------
1269 {
1270 unsigned len = repLens[0] + 1;
1271 if (len <= mainLen)
1272 {
1273 unsigned offs = 0;
1274 UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
1275
1276 if (len < 2)
1277 len = 2;
1278 else
1279 while (len > matches[offs])
1280 offs += 2;
1281
1282 for (; ; len++)
1283 {
1284 COptimal *opt;
1285 UInt32 dist = matches[(size_t)offs + 1];
1286 UInt32 price = normalMatchPrice + GET_PRICE_LEN(&p->lenEnc, posState, len);
1287 unsigned lenToPosState = GetLenToPosState(len);
1288
1289 if (dist < kNumFullDistances)
1290 price += p->distancesPrices[lenToPosState][dist & (kNumFullDistances - 1)];
1291 else
1292 {
1293 unsigned slot;
1294 GetPosSlot2(dist, slot);
1295 price += p->alignPrices[dist & kAlignMask];
1296 price += p->posSlotPrices[lenToPosState][slot];
1297 }
1298
1299 opt = &p->opt[len];
1300
1301 if (price < opt->price)
1302 {
1303 opt->price = price;
1304 opt->len = (UInt32)len;
1305 opt->dist = dist + LZMA_NUM_REPS;
1306 opt->extra = 0;
1307 }
1308
1309 if (len == matches[offs])
1310 {
1311 offs += 2;
1312 if (offs == numPairs)
1313 break;
1314 }
1315 }
1316 }
1317 }
1318
1319
1320 cur = 0;
1321
1322 #ifdef SHOW_STAT2
1323 /* if (position >= 0) */
1324 {
1325 unsigned i;
1326 printf("\n pos = %4X", position);
1327 for (i = cur; i <= last; i++)
1328 printf("\nprice[%4X] = %u", position - cur + i, p->opt[i].price);
1329 }
1330 #endif
1331 }
1332
1333
1334
1335 // ---------- Optimal Parsing ----------
1336
1337 for (;;)
1338 {
1339 unsigned numAvail;
1340 UInt32 numAvailFull;
1341 unsigned newLen, numPairs, prev, state, posState, startLen;
1342 UInt32 litPrice, matchPrice, repMatchPrice;
1343 BoolInt nextIsLit;
1344 Byte curByte, matchByte;
1345 const Byte *data;
1346 COptimal *curOpt, *nextOpt;
1347
1348 if (++cur == last)
1349 break;
1350
1351 // 18.06
1352 if (cur >= kNumOpts - 64)
1353 {
1354 unsigned j, best;
1355 UInt32 price = p->opt[cur].price;
1356 best = cur;
1357 for (j = cur + 1; j <= last; j++)
1358 {
1359 UInt32 price2 = p->opt[j].price;
1360 if (price >= price2)
1361 {
1362 price = price2;
1363 best = j;
1364 }
1365 }
1366 {
1367 unsigned delta = best - cur;
1368 if (delta != 0)
1369 {
1370 MOVE_POS(p, delta);
1371 }
1372 }
1373 cur = best;
1374 break;
1375 }
1376
1377 newLen = ReadMatchDistances(p, &numPairs);
1378
1379 if (newLen >= p->numFastBytes)
1380 {
1381 p->numPairs = numPairs;
1382 p->longestMatchLen = newLen;
1383 break;
1384 }
1385
1386 curOpt = &p->opt[cur];
1387
1388 position++;
1389
1390 // we need that check here, if skip_items in p->opt are possible
1391 /*
1392 if (curOpt->price >= kInfinityPrice)
1393 continue;
1394 */
1395
1396 prev = cur - curOpt->len;
1397
1398 if (curOpt->len == 1)
1399 {
1400 state = (unsigned)p->opt[prev].state;
1401 if (IsShortRep(curOpt))
1402 state = kShortRepNextStates[state];
1403 else
1404 state = kLiteralNextStates[state];
1405 }
1406 else
1407 {
1408 const COptimal *prevOpt;
1409 UInt32 b0;
1410 UInt32 dist = curOpt->dist;
1411
1412 if (curOpt->extra)
1413 {
1414 prev -= (unsigned)curOpt->extra;
1415 state = kState_RepAfterLit;
1416 if (curOpt->extra == 1)
1417 state = (dist < LZMA_NUM_REPS ? kState_RepAfterLit : kState_MatchAfterLit);
1418 }
1419 else
1420 {
1421 state = (unsigned)p->opt[prev].state;
1422 if (dist < LZMA_NUM_REPS)
1423 state = kRepNextStates[state];
1424 else
1425 state = kMatchNextStates[state];
1426 }
1427
1428 prevOpt = &p->opt[prev];
1429 b0 = prevOpt->reps[0];
1430
1431 if (dist < LZMA_NUM_REPS)
1432 {
1433 if (dist == 0)
1434 {
1435 reps[0] = b0;
1436 reps[1] = prevOpt->reps[1];
1437 reps[2] = prevOpt->reps[2];
1438 reps[3] = prevOpt->reps[3];
1439 }
1440 else
1441 {
1442 reps[1] = b0;
1443 b0 = prevOpt->reps[1];
1444 if (dist == 1)
1445 {
1446 reps[0] = b0;
1447 reps[2] = prevOpt->reps[2];
1448 reps[3] = prevOpt->reps[3];
1449 }
1450 else
1451 {
1452 reps[2] = b0;
1453 reps[0] = prevOpt->reps[dist];
1454 reps[3] = prevOpt->reps[dist ^ 1];
1455 }
1456 }
1457 }
1458 else
1459 {
1460 reps[0] = (dist - LZMA_NUM_REPS + 1);
1461 reps[1] = b0;
1462 reps[2] = prevOpt->reps[1];
1463 reps[3] = prevOpt->reps[2];
1464 }
1465 }
1466
1467 curOpt->state = (CState)state;
1468 curOpt->reps[0] = reps[0];
1469 curOpt->reps[1] = reps[1];
1470 curOpt->reps[2] = reps[2];
1471 curOpt->reps[3] = reps[3];
1472
1473 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1474 curByte = *data;
1475 matchByte = *(data - reps[0]);
1476
1477 posState = (position & p->pbMask);
1478
1479 /*
1480 The order of Price checks:
1481 < LIT
1482 <= SHORT_REP
1483 < LIT : REP_0
1484 < REP [ : LIT : REP_0 ]
1485 < MATCH [ : LIT : REP_0 ]
1486 */
1487
1488 {
1489 UInt32 curPrice = curOpt->price;
1490 unsigned prob = p->isMatch[state][posState];
1491 matchPrice = curPrice + GET_PRICE_1(prob);
1492 litPrice = curPrice + GET_PRICE_0(prob);
1493 }
1494
1495 nextOpt = &p->opt[(size_t)cur + 1];
1496 nextIsLit = False;
1497
1498 // here we can allow skip_items in p->opt, if we don't check (nextOpt->price < kInfinityPrice)
1499 // 18.new.06
1500 if ((nextOpt->price < kInfinityPrice
1501 // && !IsLitState(state)
1502 && matchByte == curByte)
1503 || litPrice > nextOpt->price
1504 )
1505 litPrice = 0;
1506 else
1507 {
1508 const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1509 litPrice += (!IsLitState(state) ?
1510 LitEnc_Matched_GetPrice(probs, curByte, matchByte, p->ProbPrices) :
1511 LitEnc_GetPrice(probs, curByte, p->ProbPrices));
1512
1513 if (litPrice < nextOpt->price)
1514 {
1515 nextOpt->price = litPrice;
1516 nextOpt->len = 1;
1517 MakeAs_Lit(nextOpt);
1518 nextIsLit = True;
1519 }
1520 }
1521
1522 repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
1523
1524 numAvailFull = p->numAvail;
1525 {
1526 unsigned temp = kNumOpts - 1 - cur;
1527 if (numAvailFull > temp)
1528 numAvailFull = (UInt32)temp;
1529 }
1530
1531 // 18.06
1532 // ---------- SHORT_REP ----------
1533 if (IsLitState(state)) // 18.new
1534 if (matchByte == curByte)
1535 if (repMatchPrice < nextOpt->price) // 18.new
1536 // if (numAvailFull < 2 || data[1] != *(data - reps[0] + 1))
1537 if (
1538 // nextOpt->price >= kInfinityPrice ||
1539 nextOpt->len < 2 // we can check nextOpt->len, if skip items are not allowed in p->opt
1540 || (nextOpt->dist != 0
1541 // && nextOpt->extra <= 1 // 17.old
1542 )
1543 )
1544 {
1545 UInt32 shortRepPrice = repMatchPrice + GetPrice_ShortRep(p, state, posState);
1546 // if (shortRepPrice <= nextOpt->price) // 17.old
1547 if (shortRepPrice < nextOpt->price) // 18.new
1548 {
1549 nextOpt->price = shortRepPrice;
1550 nextOpt->len = 1;
1551 MakeAs_ShortRep(nextOpt);
1552 nextIsLit = False;
1553 }
1554 }
1555
1556 if (numAvailFull < 2)
1557 continue;
1558 numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes);
1559
1560 // numAvail <= p->numFastBytes
1561
1562 // ---------- LIT : REP_0 ----------
1563
1564 if (!nextIsLit
1565 && litPrice != 0 // 18.new
1566 && matchByte != curByte
1567 && numAvailFull > 2)
1568 {
1569 const Byte *data2 = data - reps[0];
1570 if (data[1] == data2[1] && data[2] == data2[2])
1571 {
1572 unsigned len;
1573 unsigned limit = p->numFastBytes + 1;
1574 if (limit > numAvailFull)
1575 limit = numAvailFull;
1576 for (len = 3; len < limit && data[len] == data2[len]; len++)
1577 {}
1578
1579 {
1580 unsigned state2 = kLiteralNextStates[state];
1581 unsigned posState2 = (position + 1) & p->pbMask;
1582 UInt32 price = litPrice + GetPrice_Rep_0(p, state2, posState2);
1583 {
1584 unsigned offset = cur + len;
1585
1586 if (last < offset)
1587 last = offset;
1588
1589 // do
1590 {
1591 UInt32 price2;
1592 COptimal *opt;
1593 len--;
1594 // price2 = price + GetPrice_Len_Rep_0(p, len, state2, posState2);
1595 price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState2, len);
1596
1597 opt = &p->opt[offset];
1598 // offset--;
1599 if (price2 < opt->price)
1600 {
1601 opt->price = price2;
1602 opt->len = (UInt32)len;
1603 opt->dist = 0;
1604 opt->extra = 1;
1605 }
1606 }
1607 // while (len >= 3);
1608 }
1609 }
1610 }
1611 }
1612
1613 startLen = 2; /* speed optimization */
1614
1615 {
1616 // ---------- REP ----------
1617 unsigned repIndex = 0; // 17.old
1618 // unsigned repIndex = IsLitState(state) ? 0 : 1; // 18.notused
1619 for (; repIndex < LZMA_NUM_REPS; repIndex++)
1620 {
1621 unsigned len;
1622 UInt32 price;
1623 const Byte *data2 = data - reps[repIndex];
1624 if (data[0] != data2[0] || data[1] != data2[1])
1625 continue;
1626
1627 for (len = 2; len < numAvail && data[len] == data2[len]; len++)
1628 {}
1629
1630 // if (len < startLen) continue; // 18.new: speed optimization
1631
1632 {
1633 unsigned offset = cur + len;
1634 if (last < offset)
1635 last = offset;
1636 }
1637 {
1638 unsigned len2 = len;
1639 price = repMatchPrice + GetPrice_PureRep(p, repIndex, state, posState);
1640 do
1641 {
1642 UInt32 price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState, len2);
1643 COptimal *opt = &p->opt[cur + len2];
1644 if (price2 < opt->price)
1645 {
1646 opt->price = price2;
1647 opt->len = (UInt32)len2;
1648 opt->dist = (UInt32)repIndex;
1649 opt->extra = 0;
1650 }
1651 }
1652 while (--len2 >= 2);
1653 }
1654
1655 if (repIndex == 0) startLen = len + 1; // 17.old
1656 // startLen = len + 1; // 18.new
1657
1658 /* if (_maxMode) */
1659 {
1660 // ---------- REP : LIT : REP_0 ----------
1661 // numFastBytes + 1 + numFastBytes
1662
1663 unsigned len2 = len + 1;
1664 unsigned limit = len2 + p->numFastBytes;
1665 if (limit > numAvailFull)
1666 limit = numAvailFull;
1667
1668 len2 += 2;
1669 if (len2 <= limit)
1670 if (data[len2 - 2] == data2[len2 - 2])
1671 if (data[len2 - 1] == data2[len2 - 1])
1672 {
1673 unsigned state2 = kRepNextStates[state];
1674 unsigned posState2 = (position + len) & p->pbMask;
1675 price += GET_PRICE_LEN(&p->repLenEnc, posState, len)
1676 + GET_PRICE_0(p->isMatch[state2][posState2])
1677 + LitEnc_Matched_GetPrice(LIT_PROBS(position + len, data[(size_t)len - 1]),
1678 data[len], data2[len], p->ProbPrices);
1679
1680 // state2 = kLiteralNextStates[state2];
1681 state2 = kState_LitAfterRep;
1682 posState2 = (posState2 + 1) & p->pbMask;
1683
1684
1685 price += GetPrice_Rep_0(p, state2, posState2);
1686
1687 for (; len2 < limit && data[len2] == data2[len2]; len2++)
1688 {}
1689
1690 len2 -= len;
1691 // if (len2 >= 3)
1692 {
1693 {
1694 unsigned offset = cur + len + len2;
1695
1696 if (last < offset)
1697 last = offset;
1698 // do
1699 {
1700 UInt32 price2;
1701 COptimal *opt;
1702 len2--;
1703 // price2 = price + GetPrice_Len_Rep_0(p, len2, state2, posState2);
1704 price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState2, len2);
1705
1706 opt = &p->opt[offset];
1707 // offset--;
1708 if (price2 < opt->price)
1709 {
1710 opt->price = price2;
1711 opt->len = (UInt32)len2;
1712 opt->extra = (CExtra)(len + 1);
1713 opt->dist = (UInt32)repIndex;
1714 }
1715 }
1716 // while (len2 >= 3);
1717 }
1718 }
1719 }
1720 }
1721 }
1722 }
1723
1724
1725 // ---------- MATCH ----------
1726 /* for (unsigned len = 2; len <= newLen; len++) */
1727 if (newLen > numAvail)
1728 {
1729 newLen = numAvail;
1730 for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2);
1731 matches[numPairs] = (UInt32)newLen;
1732 numPairs += 2;
1733 }
1734
1735 // startLen = 2; /* speed optimization */
1736
1737 if (newLen >= startLen)
1738 {
1739 UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
1740 UInt32 dist;
1741 unsigned offs, posSlot, len;
1742
1743 {
1744 unsigned offset = cur + newLen;
1745 if (last < offset)
1746 last = offset;
1747 }
1748
1749 offs = 0;
1750 while (startLen > matches[offs])
1751 offs += 2;
1752 dist = matches[(size_t)offs + 1];
1753
1754 // if (dist >= kNumFullDistances)
1755 GetPosSlot2(dist, posSlot);
1756
1757 for (len = /*2*/ startLen; ; len++)
1758 {
1759 UInt32 price = normalMatchPrice + GET_PRICE_LEN(&p->lenEnc, posState, len);
1760 {
1761 COptimal *opt;
1762 unsigned lenNorm = len - 2;
1763 lenNorm = GetLenToPosState2(lenNorm);
1764 if (dist < kNumFullDistances)
1765 price += p->distancesPrices[lenNorm][dist & (kNumFullDistances - 1)];
1766 else
1767 price += p->posSlotPrices[lenNorm][posSlot] + p->alignPrices[dist & kAlignMask];
1768
1769 opt = &p->opt[cur + len];
1770 if (price < opt->price)
1771 {
1772 opt->price = price;
1773 opt->len = (UInt32)len;
1774 opt->dist = dist + LZMA_NUM_REPS;
1775 opt->extra = 0;
1776 }
1777 }
1778
1779 if (len == matches[offs])
1780 {
1781 // if (p->_maxMode) {
1782 // MATCH : LIT : REP_0
1783
1784 const Byte *data2 = data - dist - 1;
1785 unsigned len2 = len + 1;
1786 unsigned limit = len2 + p->numFastBytes;
1787 if (limit > numAvailFull)
1788 limit = numAvailFull;
1789
1790 len2 += 2;
1791 if (len2 <= limit)
1792 if (data[len2 - 2] == data2[len2 - 2])
1793 if (data[len2 - 1] == data2[len2 - 1])
1794 {
1795 for (; len2 < limit && data[len2] == data2[len2]; len2++)
1796 {}
1797
1798 len2 -= len;
1799
1800 // if (len2 >= 3)
1801 {
1802 unsigned state2 = kMatchNextStates[state];
1803 unsigned posState2 = (position + len) & p->pbMask;
1804 unsigned offset;
1805 price += GET_PRICE_0(p->isMatch[state2][posState2]);
1806 price += LitEnc_Matched_GetPrice(LIT_PROBS(position + len, data[(size_t)len - 1]),
1807 data[len], data2[len], p->ProbPrices);
1808
1809 // state2 = kLiteralNextStates[state2];
1810 state2 = kState_LitAfterMatch;
1811
1812 posState2 = (posState2 + 1) & p->pbMask;
1813 price += GetPrice_Rep_0(p, state2, posState2);
1814
1815 offset = cur + len + len2;
1816
1817 if (last < offset)
1818 last = offset;
1819 // do
1820 {
1821 UInt32 price2;
1822 COptimal *opt;
1823 len2--;
1824 // price2 = price + GetPrice_Len_Rep_0(p, len2, state2, posState2);
1825 price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState2, len2);
1826 opt = &p->opt[offset];
1827 // offset--;
1828 if (price2 < opt->price)
1829 {
1830 opt->price = price2;
1831 opt->len = (UInt32)len2;
1832 opt->extra = (CExtra)(len + 1);
1833 opt->dist = dist + LZMA_NUM_REPS;
1834 }
1835 }
1836 // while (len2 >= 3);
1837 }
1838
1839 }
1840
1841 offs += 2;
1842 if (offs == numPairs)
1843 break;
1844 dist = matches[(size_t)offs + 1];
1845 // if (dist >= kNumFullDistances)
1846 GetPosSlot2(dist, posSlot);
1847 }
1848 }
1849 }
1850 }
1851
1852 do
1853 p->opt[last].price = kInfinityPrice;
1854 while (--last);
1855
1856 return Backward(p, cur);
1857 }
1858
1859
1860
1861 #define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
1862
1863
1864
1865 static unsigned GetOptimumFast(CLzmaEnc *p)
1866 {
1867 UInt32 numAvail, mainDist;
1868 unsigned mainLen, numPairs, repIndex, repLen, i;
1869 const Byte *data;
1870
1871 if (p->additionalOffset == 0)
1872 mainLen = ReadMatchDistances(p, &numPairs);
1873 else
1874 {
1875 mainLen = p->longestMatchLen;
1876 numPairs = p->numPairs;
1877 }
1878
1879 numAvail = p->numAvail;
1880 p->backRes = MARK_LIT;
1881 if (numAvail < 2)
1882 return 1;
1883 // if (mainLen < 2 && p->state == 0) return 1; // 18.06.notused
1884 if (numAvail > LZMA_MATCH_LEN_MAX)
1885 numAvail = LZMA_MATCH_LEN_MAX;
1886 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1887 repLen = repIndex = 0;
1888
1889 for (i = 0; i < LZMA_NUM_REPS; i++)
1890 {
1891 unsigned len;
1892 const Byte *data2 = data - p->reps[i];
1893 if (data[0] != data2[0] || data[1] != data2[1])
1894 continue;
1895 for (len = 2; len < numAvail && data[len] == data2[len]; len++)
1896 {}
1897 if (len >= p->numFastBytes)
1898 {
1899 p->backRes = (UInt32)i;
1900 MOVE_POS(p, len - 1)
1901 return len;
1902 }
1903 if (len > repLen)
1904 {
1905 repIndex = i;
1906 repLen = len;
1907 }
1908 }
1909
1910 if (mainLen >= p->numFastBytes)
1911 {
1912 p->backRes = p->matches[(size_t)numPairs - 1] + LZMA_NUM_REPS;
1913 MOVE_POS(p, mainLen - 1)
1914 return mainLen;
1915 }
1916
1917 mainDist = 0; /* for GCC */
1918
1919 if (mainLen >= 2)
1920 {
1921 mainDist = p->matches[(size_t)numPairs - 1];
1922 while (numPairs > 2)
1923 {
1924 UInt32 dist2;
1925 if (mainLen != p->matches[(size_t)numPairs - 4] + 1)
1926 break;
1927 dist2 = p->matches[(size_t)numPairs - 3];
1928 if (!ChangePair(dist2, mainDist))
1929 break;
1930 numPairs -= 2;
1931 mainLen--;
1932 mainDist = dist2;
1933 }
1934 if (mainLen == 2 && mainDist >= 0x80)
1935 mainLen = 1;
1936 }
1937
1938 if (repLen >= 2)
1939 if ( repLen + 1 >= mainLen
1940 || (repLen + 2 >= mainLen && mainDist >= (1 << 9))
1941 || (repLen + 3 >= mainLen && mainDist >= (1 << 15)))
1942 {
1943 p->backRes = (UInt32)repIndex;
1944 MOVE_POS(p, repLen - 1)
1945 return repLen;
1946 }
1947
1948 if (mainLen < 2 || numAvail <= 2)
1949 return 1;
1950
1951 {
1952 unsigned len1 = ReadMatchDistances(p, &p->numPairs);
1953 p->longestMatchLen = len1;
1954
1955 if (len1 >= 2)
1956 {
1957 UInt32 newDist = p->matches[(size_t)p->numPairs - 1];
1958 if ( (len1 >= mainLen && newDist < mainDist)
1959 || (len1 == mainLen + 1 && !ChangePair(mainDist, newDist))
1960 || (len1 > mainLen + 1)
1961 || (len1 + 1 >= mainLen && mainLen >= 3 && ChangePair(newDist, mainDist)))
1962 return 1;
1963 }
1964 }
1965
1966 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1967
1968 for (i = 0; i < LZMA_NUM_REPS; i++)
1969 {
1970 unsigned len, limit;
1971 const Byte *data2 = data - p->reps[i];
1972 if (data[0] != data2[0] || data[1] != data2[1])
1973 continue;
1974 limit = mainLen - 1;
1975 for (len = 2;; len++)
1976 {
1977 if (len >= limit)
1978 return 1;
1979 if (data[len] != data2[len])
1980 break;
1981 }
1982 }
1983
1984 p->backRes = mainDist + LZMA_NUM_REPS;
1985 if (mainLen != 2)
1986 {
1987 MOVE_POS(p, mainLen - 2)
1988 }
1989 return mainLen;
1990 }
1991
1992
1993
1994
1995 static void WriteEndMarker(CLzmaEnc *p, unsigned posState)
1996 {
1997 UInt32 range;
1998 range = p->rc.range;
1999 {
2000 UInt32 ttt, newBound;
2001 CLzmaProb *prob = &p->isMatch[p->state][posState];
2002 RC_BIT_PRE(&p->rc, prob)
2003 RC_BIT_1(&p->rc, prob)
2004 prob = &p->isRep[p->state];
2005 RC_BIT_PRE(&p->rc, prob)
2006 RC_BIT_0(&p->rc, prob)
2007 }
2008 p->state = kMatchNextStates[p->state];
2009
2010 p->rc.range = range;
2011 LenEnc_Encode(&p->lenProbs, &p->rc, 0, posState);
2012 range = p->rc.range;
2013
2014 {
2015 // RcTree_Encode_PosSlot(&p->rc, p->posSlotEncoder[0], (1 << kNumPosSlotBits) - 1);
2016 CLzmaProb *probs = p->posSlotEncoder[0];
2017 unsigned m = 1;
2018 do
2019 {
2020 UInt32 ttt, newBound;
2021 RC_BIT_PRE(p, probs + m)
2022 RC_BIT_1(&p->rc, probs + m);
2023 m = (m << 1) + 1;
2024 }
2025 while (m < (1 << kNumPosSlotBits));
2026 }
2027 {
2028 // RangeEnc_EncodeDirectBits(&p->rc, ((UInt32)1 << (30 - kNumAlignBits)) - 1, 30 - kNumAlignBits); UInt32 range = p->range;
2029 unsigned numBits = 30 - kNumAlignBits;
2030 do
2031 {
2032 range >>= 1;
2033 p->rc.low += range;
2034 RC_NORM(&p->rc)
2035 }
2036 while (--numBits);
2037 }
2038
2039 {
2040 // RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
2041 CLzmaProb *probs = p->posAlignEncoder;
2042 unsigned m = 1;
2043 do
2044 {
2045 UInt32 ttt, newBound;
2046 RC_BIT_PRE(p, probs + m)
2047 RC_BIT_1(&p->rc, probs + m);
2048 m = (m << 1) + 1;
2049 }
2050 while (m < kAlignTableSize);
2051 }
2052 p->rc.range = range;
2053 }
2054
2055
2056 static SRes CheckErrors(CLzmaEnc *p)
2057 {
2058 if (p->result != SZ_OK)
2059 return p->result;
2060 if (p->rc.res != SZ_OK)
2061 p->result = SZ_ERROR_WRITE;
2062 if (p->matchFinderBase.result != SZ_OK)
2063 p->result = SZ_ERROR_READ;
2064 if (p->result != SZ_OK)
2065 p->finished = True;
2066 return p->result;
2067 }
2068
2069
2070 MY_NO_INLINE static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
2071 {
2072 /* ReleaseMFStream(); */
2073 p->finished = True;
2074 if (p->writeEndMark)
2075 WriteEndMarker(p, nowPos & p->pbMask);
2076 RangeEnc_FlushData(&p->rc);
2077 RangeEnc_FlushStream(&p->rc);
2078 return CheckErrors(p);
2079 }
2080
2081
2082 MY_NO_INLINE static void FillAlignPrices(CLzmaEnc *p)
2083 {
2084 unsigned i;
2085 const CProbPrice *ProbPrices = p->ProbPrices;
2086 const CLzmaProb *probs = p->posAlignEncoder;
2087 // p->alignPriceCount = 0;
2088 for (i = 0; i < kAlignTableSize / 2; i++)
2089 {
2090 UInt32 price = 0;
2091 unsigned sym = i;
2092 unsigned m = 1;
2093 unsigned bit;
2094 UInt32 prob;
2095 bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) + bit;
2096 bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) + bit;
2097 bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) + bit;
2098 prob = probs[m];
2099 p->alignPrices[i ] = price + GET_PRICEa_0(prob);
2100 p->alignPrices[i + 8] = price + GET_PRICEa_1(prob);
2101 // p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
2102 }
2103 }
2104
2105
2106 MY_NO_INLINE static void FillDistancesPrices(CLzmaEnc *p)
2107 {
2108 // int y; for (y = 0; y < 100; y++) {
2109
2110 UInt32 tempPrices[kNumFullDistances];
2111 unsigned i, lps;
2112
2113 const CProbPrice *ProbPrices = p->ProbPrices;
2114 p->matchPriceCount = 0;
2115
2116 for (i = kStartPosModelIndex / 2; i < kNumFullDistances / 2; i++)
2117 {
2118 unsigned posSlot = GetPosSlot1(i);
2119 unsigned footerBits = (posSlot >> 1) - 1;
2120 unsigned base = ((2 | (posSlot & 1)) << footerBits);
2121 const CLzmaProb *probs = p->posEncoders + (size_t)base * 2;
2122 // tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base, footerBits, i - base, p->ProbPrices);
2123 UInt32 price = 0;
2124 unsigned m = 1;
2125 unsigned sym = i;
2126 unsigned offset = (unsigned)1 << footerBits;
2127 base += i;
2128
2129 if (footerBits)
2130 do
2131 {
2132 unsigned bit = sym & 1;
2133 sym >>= 1;
2134 price += GET_PRICEa(probs[m], bit);
2135 m = (m << 1) + bit;
2136 }
2137 while (--footerBits);
2138
2139 {
2140 unsigned prob = probs[m];
2141 tempPrices[base ] = price + GET_PRICEa_0(prob);
2142 tempPrices[base + offset] = price + GET_PRICEa_1(prob);
2143 }
2144 }
2145
2146 for (lps = 0; lps < kNumLenToPosStates; lps++)
2147 {
2148 unsigned slot;
2149 unsigned distTableSize2 = (p->distTableSize + 1) >> 1;
2150 UInt32 *posSlotPrices = p->posSlotPrices[lps];
2151 const CLzmaProb *probs = p->posSlotEncoder[lps];
2152
2153 for (slot = 0; slot < distTableSize2; slot++)
2154 {
2155 // posSlotPrices[slot] = RcTree_GetPrice(encoder, kNumPosSlotBits, slot, p->ProbPrices);
2156 UInt32 price;
2157 unsigned bit;
2158 unsigned sym = slot + (1 << (kNumPosSlotBits - 1));
2159 unsigned prob;
2160 bit = sym & 1; sym >>= 1; price = GET_PRICEa(probs[sym], bit);
2161 bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit);
2162 bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit);
2163 bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit);
2164 bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit);
2165 prob = probs[(size_t)slot + (1 << (kNumPosSlotBits - 1))];
2166 posSlotPrices[(size_t)slot * 2 ] = price + GET_PRICEa_0(prob);
2167 posSlotPrices[(size_t)slot * 2 + 1] = price + GET_PRICEa_1(prob);
2168 }
2169
2170 {
2171 UInt32 delta = ((UInt32)((kEndPosModelIndex / 2 - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
2172 for (slot = kEndPosModelIndex / 2; slot < distTableSize2; slot++)
2173 {
2174 posSlotPrices[(size_t)slot * 2 ] += delta;
2175 posSlotPrices[(size_t)slot * 2 + 1] += delta;
2176 delta += ((UInt32)1 << kNumBitPriceShiftBits);
2177 }
2178 }
2179
2180 {
2181 UInt32 *dp = p->distancesPrices[lps];
2182
2183 dp[0] = posSlotPrices[0];
2184 dp[1] = posSlotPrices[1];
2185 dp[2] = posSlotPrices[2];
2186 dp[3] = posSlotPrices[3];
2187
2188 for (i = 4; i < kNumFullDistances; i += 2)
2189 {
2190 UInt32 slotPrice = posSlotPrices[GetPosSlot1(i)];
2191 dp[i ] = slotPrice + tempPrices[i];
2192 dp[i + 1] = slotPrice + tempPrices[i + 1];
2193 }
2194 }
2195 }
2196 // }
2197 }
2198
2199
2200
2201 void LzmaEnc_Construct(CLzmaEnc *p)
2202 {
2203 RangeEnc_Construct(&p->rc);
2204 MatchFinder_Construct(&p->matchFinderBase);
2205
2206 #ifndef _7ZIP_ST
2207 MatchFinderMt_Construct(&p->matchFinderMt);
2208 p->matchFinderMt.MatchFinder = &p->matchFinderBase;
2209 #endif
2210
2211 {
2212 CLzmaEncProps props;
2213 LzmaEncProps_Init(&props);
2214 LzmaEnc_SetProps(p, &props);
2215 }
2216
2217 #ifndef LZMA_LOG_BSR
2218 LzmaEnc_FastPosInit(p->g_FastPos);
2219 #endif
2220
2221 LzmaEnc_InitPriceTables(p->ProbPrices);
2222 p->litProbs = NULL;
2223 p->saveState.litProbs = NULL;
2224
2225 }
2226
2227 CLzmaEncHandle LzmaEnc_Create(ISzAllocPtr alloc)
2228 {
2229 void *p;
2230 p = ISzAlloc_Alloc(alloc, sizeof(CLzmaEnc));
2231 if (p)
2232 LzmaEnc_Construct((CLzmaEnc *)p);
2233 return p;
2234 }
2235
2236 void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAllocPtr alloc)
2237 {
2238 ISzAlloc_Free(alloc, p->litProbs);
2239 ISzAlloc_Free(alloc, p->saveState.litProbs);
2240 p->litProbs = NULL;
2241 p->saveState.litProbs = NULL;
2242 }
2243
2244 void LzmaEnc_Destruct(CLzmaEnc *p, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2245 {
2246 #ifndef _7ZIP_ST
2247 MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
2248 #endif
2249
2250 MatchFinder_Free(&p->matchFinderBase, allocBig);
2251 LzmaEnc_FreeLits(p, alloc);
2252 RangeEnc_Free(&p->rc, alloc);
2253 }
2254
2255 void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2256 {
2257 LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
2258 ISzAlloc_Free(alloc, p);
2259 }
2260
2261
2262 static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, UInt32 maxPackSize, UInt32 maxUnpackSize)
2263 {
2264 UInt32 nowPos32, startPos32;
2265 if (p->needInit)
2266 {
2267 p->matchFinder.Init(p->matchFinderObj);
2268 p->needInit = 0;
2269 }
2270
2271 if (p->finished)
2272 return p->result;
2273 RINOK(CheckErrors(p));
2274
2275 nowPos32 = (UInt32)p->nowPos64;
2276 startPos32 = nowPos32;
2277
2278 if (p->nowPos64 == 0)
2279 {
2280 unsigned numPairs;
2281 Byte curByte;
2282 if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
2283 return Flush(p, nowPos32);
2284 ReadMatchDistances(p, &numPairs);
2285 RangeEnc_EncodeBit_0(&p->rc, &p->isMatch[kState_Start][0]);
2286 // p->state = kLiteralNextStates[p->state];
2287 curByte = *(p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset);
2288 LitEnc_Encode(&p->rc, p->litProbs, curByte);
2289 p->additionalOffset--;
2290 nowPos32++;
2291 }
2292
2293 if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
2294
2295 for (;;)
2296 {
2297 UInt32 dist;
2298 unsigned len, posState;
2299 UInt32 range, ttt, newBound;
2300 CLzmaProb *probs;
2301
2302 if (p->fastMode)
2303 len = GetOptimumFast(p);
2304 else
2305 {
2306 unsigned oci = p->optCur;
2307 if (p->optEnd == oci)
2308 len = GetOptimum(p, nowPos32);
2309 else
2310 {
2311 const COptimal *opt = &p->opt[oci];
2312 len = opt->len;
2313 p->backRes = opt->dist;
2314 p->optCur = oci + 1;
2315 }
2316 }
2317
2318 posState = (unsigned)nowPos32 & p->pbMask;
2319 range = p->rc.range;
2320 probs = &p->isMatch[p->state][posState];
2321
2322 RC_BIT_PRE(&p->rc, probs)
2323
2324 dist = p->backRes;
2325
2326 #ifdef SHOW_STAT2
2327 printf("\n pos = %6X, len = %3u pos = %6u", nowPos32, len, dist);
2328 #endif
2329
2330 if (dist == MARK_LIT)
2331 {
2332 Byte curByte;
2333 const Byte *data;
2334 unsigned state;
2335
2336 RC_BIT_0(&p->rc, probs);
2337 p->rc.range = range;
2338 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
2339 probs = LIT_PROBS(nowPos32, *(data - 1));
2340 curByte = *data;
2341 state = p->state;
2342 p->state = kLiteralNextStates[state];
2343 if (IsLitState(state))
2344 LitEnc_Encode(&p->rc, probs, curByte);
2345 else
2346 LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0]));
2347 }
2348 else
2349 {
2350 RC_BIT_1(&p->rc, probs);
2351 probs = &p->isRep[p->state];
2352 RC_BIT_PRE(&p->rc, probs)
2353
2354 if (dist < LZMA_NUM_REPS)
2355 {
2356 RC_BIT_1(&p->rc, probs);
2357 probs = &p->isRepG0[p->state];
2358 RC_BIT_PRE(&p->rc, probs)
2359 if (dist == 0)
2360 {
2361 RC_BIT_0(&p->rc, probs);
2362 probs = &p->isRep0Long[p->state][posState];
2363 RC_BIT_PRE(&p->rc, probs)
2364 if (len != 1)
2365 {
2366 RC_BIT_1_BASE(&p->rc, probs);
2367 }
2368 else
2369 {
2370 RC_BIT_0_BASE(&p->rc, probs);
2371 p->state = kShortRepNextStates[p->state];
2372 }
2373 }
2374 else
2375 {
2376 RC_BIT_1(&p->rc, probs);
2377 probs = &p->isRepG1[p->state];
2378 RC_BIT_PRE(&p->rc, probs)
2379 if (dist == 1)
2380 {
2381 RC_BIT_0_BASE(&p->rc, probs);
2382 dist = p->reps[1];
2383 }
2384 else
2385 {
2386 RC_BIT_1(&p->rc, probs);
2387 probs = &p->isRepG2[p->state];
2388 RC_BIT_PRE(&p->rc, probs)
2389 if (dist == 2)
2390 {
2391 RC_BIT_0_BASE(&p->rc, probs);
2392 dist = p->reps[2];
2393 }
2394 else
2395 {
2396 RC_BIT_1_BASE(&p->rc, probs);
2397 dist = p->reps[3];
2398 p->reps[3] = p->reps[2];
2399 }
2400 p->reps[2] = p->reps[1];
2401 }
2402 p->reps[1] = p->reps[0];
2403 p->reps[0] = dist;
2404 }
2405
2406 RC_NORM(&p->rc)
2407
2408 p->rc.range = range;
2409
2410 if (len != 1)
2411 {
2412 LenEnc_Encode(&p->repLenProbs, &p->rc, len - LZMA_MATCH_LEN_MIN, posState);
2413 --p->repLenEncCounter;
2414 p->state = kRepNextStates[p->state];
2415 }
2416 }
2417 else
2418 {
2419 unsigned posSlot;
2420 RC_BIT_0(&p->rc, probs);
2421 p->rc.range = range;
2422 p->state = kMatchNextStates[p->state];
2423
2424 LenEnc_Encode(&p->lenProbs, &p->rc, len - LZMA_MATCH_LEN_MIN, posState);
2425 // --p->lenEnc.counter;
2426
2427 dist -= LZMA_NUM_REPS;
2428 p->reps[3] = p->reps[2];
2429 p->reps[2] = p->reps[1];
2430 p->reps[1] = p->reps[0];
2431 p->reps[0] = dist + 1;
2432
2433 p->matchPriceCount++;
2434 GetPosSlot(dist, posSlot);
2435 // RcTree_Encode_PosSlot(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], posSlot);
2436 {
2437 UInt32 sym = (UInt32)posSlot + (1 << kNumPosSlotBits);
2438 range = p->rc.range;
2439 probs = p->posSlotEncoder[GetLenToPosState(len)];
2440 do
2441 {
2442 CLzmaProb *prob = probs + (sym >> kNumPosSlotBits);
2443 UInt32 bit = (sym >> (kNumPosSlotBits - 1)) & 1;
2444 sym <<= 1;
2445 RC_BIT(&p->rc, prob, bit);
2446 }
2447 while (sym < (1 << kNumPosSlotBits * 2));
2448 p->rc.range = range;
2449 }
2450
2451 if (dist >= kStartPosModelIndex)
2452 {
2453 unsigned footerBits = ((posSlot >> 1) - 1);
2454
2455 if (dist < kNumFullDistances)
2456 {
2457 unsigned base = ((2 | (posSlot & 1)) << footerBits);
2458 RcTree_ReverseEncode(&p->rc, p->posEncoders + base, footerBits, (unsigned)(dist /* - base */));
2459 }
2460 else
2461 {
2462 UInt32 pos2 = (dist | 0xF) << (32 - footerBits);
2463 range = p->rc.range;
2464 // RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
2465 /*
2466 do
2467 {
2468 range >>= 1;
2469 p->rc.low += range & (0 - ((dist >> --footerBits) & 1));
2470 RC_NORM(&p->rc)
2471 }
2472 while (footerBits > kNumAlignBits);
2473 */
2474 do
2475 {
2476 range >>= 1;
2477 p->rc.low += range & (0 - (pos2 >> 31));
2478 pos2 += pos2;
2479 RC_NORM(&p->rc)
2480 }
2481 while (pos2 != 0xF0000000);
2482
2483
2484 // RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
2485
2486 {
2487 unsigned m = 1;
2488 unsigned bit;
2489 bit = dist & 1; dist >>= 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit); m = (m << 1) + bit;
2490 bit = dist & 1; dist >>= 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit); m = (m << 1) + bit;
2491 bit = dist & 1; dist >>= 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit); m = (m << 1) + bit;
2492 bit = dist & 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit);
2493 p->rc.range = range;
2494 // p->alignPriceCount++;
2495 }
2496 }
2497 }
2498 }
2499 }
2500
2501 nowPos32 += (UInt32)len;
2502 p->additionalOffset -= len;
2503
2504 if (p->additionalOffset == 0)
2505 {
2506 UInt32 processed;
2507
2508 if (!p->fastMode)
2509 {
2510 /*
2511 if (p->alignPriceCount >= 16) // kAlignTableSize
2512 FillAlignPrices(p);
2513 if (p->matchPriceCount >= 128)
2514 FillDistancesPrices(p);
2515 if (p->lenEnc.counter <= 0)
2516 LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, &p->lenProbs, p->ProbPrices);
2517 */
2518 if (p->matchPriceCount >= 64)
2519 {
2520 FillAlignPrices(p);
2521 // { int y; for (y = 0; y < 100; y++) {
2522 FillDistancesPrices(p);
2523 // }}
2524 LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, &p->lenProbs, p->ProbPrices);
2525 }
2526 if (p->repLenEncCounter <= 0)
2527 {
2528 p->repLenEncCounter = REP_LEN_COUNT;
2529 LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, &p->repLenProbs, p->ProbPrices);
2530 }
2531 }
2532
2533 if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
2534 break;
2535 processed = nowPos32 - startPos32;
2536
2537 if (maxPackSize)
2538 {
2539 if (processed + kNumOpts + 300 >= maxUnpackSize
2540 || RangeEnc_GetProcessed_sizet(&p->rc) + kPackReserve >= maxPackSize)
2541 break;
2542 }
2543 else if (processed >= (1 << 17))
2544 {
2545 p->nowPos64 += nowPos32 - startPos32;
2546 return CheckErrors(p);
2547 }
2548 }
2549 }
2550
2551 p->nowPos64 += nowPos32 - startPos32;
2552 return Flush(p, nowPos32);
2553 }
2554
2555
2556
2557 #define kBigHashDicLimit ((UInt32)1 << 24)
2558
2559 static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2560 {
2561 UInt32 beforeSize = kNumOpts;
2562 if (!RangeEnc_Alloc(&p->rc, alloc))
2563 return SZ_ERROR_MEM;
2564
2565 #ifndef _7ZIP_ST
2566 p->mtMode = (p->multiThread && !p->fastMode && (p->matchFinderBase.btMode != 0));
2567 #endif
2568
2569 {
2570 unsigned lclp = p->lc + p->lp;
2571 if (!p->litProbs || !p->saveState.litProbs || p->lclp != lclp)
2572 {
2573 LzmaEnc_FreeLits(p, alloc);
2574 p->litProbs = (CLzmaProb *)ISzAlloc_Alloc(alloc, ((UInt32)0x300 << lclp) * sizeof(CLzmaProb));
2575 p->saveState.litProbs = (CLzmaProb *)ISzAlloc_Alloc(alloc, ((UInt32)0x300 << lclp) * sizeof(CLzmaProb));
2576 if (!p->litProbs || !p->saveState.litProbs)
2577 {
2578 LzmaEnc_FreeLits(p, alloc);
2579 return SZ_ERROR_MEM;
2580 }
2581 p->lclp = lclp;
2582 }
2583 }
2584
2585 p->matchFinderBase.bigHash = (Byte)(p->dictSize > kBigHashDicLimit ? 1 : 0);
2586
2587 if (beforeSize + p->dictSize < keepWindowSize)
2588 beforeSize = keepWindowSize - p->dictSize;
2589
2590 #ifndef _7ZIP_ST
2591 if (p->mtMode)
2592 {
2593 RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes,
2594 LZMA_MATCH_LEN_MAX
2595 + 1 /* 18.04 */
2596 , allocBig));
2597 p->matchFinderObj = &p->matchFinderMt;
2598 p->matchFinderBase.bigHash = (Byte)(
2599 (p->dictSize > kBigHashDicLimit && p->matchFinderBase.hashMask >= 0xFFFFFF) ? 1 : 0);
2600 MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
2601 }
2602 else
2603 #endif
2604 {
2605 if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
2606 return SZ_ERROR_MEM;
2607 p->matchFinderObj = &p->matchFinderBase;
2608 MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
2609 }
2610
2611 return SZ_OK;
2612 }
2613
2614 void LzmaEnc_Init(CLzmaEnc *p)
2615 {
2616 unsigned i;
2617 p->state = 0;
2618 p->reps[0] =
2619 p->reps[1] =
2620 p->reps[2] =
2621 p->reps[3] = 1;
2622
2623 RangeEnc_Init(&p->rc);
2624
2625 for (i = 0; i < (1 << kNumAlignBits); i++)
2626 p->posAlignEncoder[i] = kProbInitValue;
2627
2628 for (i = 0; i < kNumStates; i++)
2629 {
2630 unsigned j;
2631 for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
2632 {
2633 p->isMatch[i][j] = kProbInitValue;
2634 p->isRep0Long[i][j] = kProbInitValue;
2635 }
2636 p->isRep[i] = kProbInitValue;
2637 p->isRepG0[i] = kProbInitValue;
2638 p->isRepG1[i] = kProbInitValue;
2639 p->isRepG2[i] = kProbInitValue;
2640 }
2641
2642 {
2643 for (i = 0; i < kNumLenToPosStates; i++)
2644 {
2645 CLzmaProb *probs = p->posSlotEncoder[i];
2646 unsigned j;
2647 for (j = 0; j < (1 << kNumPosSlotBits); j++)
2648 probs[j] = kProbInitValue;
2649 }
2650 }
2651 {
2652 for (i = 0; i < kNumFullDistances; i++)
2653 p->posEncoders[i] = kProbInitValue;
2654 }
2655
2656 {
2657 UInt32 num = (UInt32)0x300 << (p->lp + p->lc);
2658 UInt32 k;
2659 CLzmaProb *probs = p->litProbs;
2660 for (k = 0; k < num; k++)
2661 probs[k] = kProbInitValue;
2662 }
2663
2664
2665 LenEnc_Init(&p->lenProbs);
2666 LenEnc_Init(&p->repLenProbs);
2667
2668 p->optEnd = 0;
2669 p->optCur = 0;
2670
2671 {
2672 for (i = 0; i < kNumOpts; i++)
2673 p->opt[i].price = kInfinityPrice;
2674 }
2675
2676 p->additionalOffset = 0;
2677
2678 p->pbMask = (1 << p->pb) - 1;
2679 p->lpMask = ((UInt32)0x100 << p->lp) - ((unsigned)0x100 >> p->lc);
2680 }
2681
2682
2683 void LzmaEnc_InitPrices(CLzmaEnc *p)
2684 {
2685 if (!p->fastMode)
2686 {
2687 FillDistancesPrices(p);
2688 FillAlignPrices(p);
2689 }
2690
2691 p->lenEnc.tableSize =
2692 p->repLenEnc.tableSize =
2693 p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
2694
2695 p->repLenEncCounter = REP_LEN_COUNT;
2696
2697 LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, &p->lenProbs, p->ProbPrices);
2698 LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, &p->repLenProbs, p->ProbPrices);
2699 }
2700
2701 static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2702 {
2703 unsigned i;
2704 for (i = kEndPosModelIndex / 2; i < kDicLogSizeMax; i++)
2705 if (p->dictSize <= ((UInt32)1 << i))
2706 break;
2707 p->distTableSize = i * 2;
2708
2709 p->finished = False;
2710 p->result = SZ_OK;
2711 RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
2712 LzmaEnc_Init(p);
2713 LzmaEnc_InitPrices(p);
2714 p->nowPos64 = 0;
2715 return SZ_OK;
2716 }
2717
2718 static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream,
2719 ISzAllocPtr alloc, ISzAllocPtr allocBig)
2720 {
2721 CLzmaEnc *p = (CLzmaEnc *)pp;
2722 p->matchFinderBase.stream = inStream;
2723 p->needInit = 1;
2724 p->rc.outStream = outStream;
2725 return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
2726 }
2727
2728 SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
2729 ISeqInStream *inStream, UInt32 keepWindowSize,
2730 ISzAllocPtr alloc, ISzAllocPtr allocBig)
2731 {
2732 CLzmaEnc *p = (CLzmaEnc *)pp;
2733 p->matchFinderBase.stream = inStream;
2734 p->needInit = 1;
2735 return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
2736 }
2737
2738 static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
2739 {
2740 p->matchFinderBase.directInput = 1;
2741 p->matchFinderBase.bufferBase = (Byte *)src;
2742 p->matchFinderBase.directInputRem = srcLen;
2743 }
2744
2745 SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
2746 UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2747 {
2748 CLzmaEnc *p = (CLzmaEnc *)pp;
2749 LzmaEnc_SetInputBuf(p, src, srcLen);
2750 p->needInit = 1;
2751
2752 LzmaEnc_SetDataSize(pp, srcLen);
2753 return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
2754 }
2755
2756 void LzmaEnc_Finish(CLzmaEncHandle pp)
2757 {
2758 #ifndef _7ZIP_ST
2759 CLzmaEnc *p = (CLzmaEnc *)pp;
2760 if (p->mtMode)
2761 MatchFinderMt_ReleaseStream(&p->matchFinderMt);
2762 #else
2763 UNUSED_VAR(pp);
2764 #endif
2765 }
2766
2767
2768 typedef struct
2769 {
2770 ISeqOutStream vt;
2771 Byte *data;
2772 SizeT rem;
2773 BoolInt overflow;
2774 } CLzmaEnc_SeqOutStreamBuf;
2775
2776 static size_t SeqOutStreamBuf_Write(const ISeqOutStream *pp, const void *data, size_t size)
2777 {
2778 CLzmaEnc_SeqOutStreamBuf *p = CONTAINER_FROM_VTBL(pp, CLzmaEnc_SeqOutStreamBuf, vt);
2779 if (p->rem < size)
2780 {
2781 size = p->rem;
2782 p->overflow = True;
2783 }
2784 memcpy(p->data, data, size);
2785 p->rem -= size;
2786 p->data += size;
2787 return size;
2788 }
2789
2790
2791 UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
2792 {
2793 const CLzmaEnc *p = (CLzmaEnc *)pp;
2794 return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
2795 }
2796
2797
2798 const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
2799 {
2800 const CLzmaEnc *p = (CLzmaEnc *)pp;
2801 return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
2802 }
2803
2804
2805 SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, BoolInt reInit,
2806 Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
2807 {
2808 CLzmaEnc *p = (CLzmaEnc *)pp;
2809 UInt64 nowPos64;
2810 SRes res;
2811 CLzmaEnc_SeqOutStreamBuf outStream;
2812
2813 outStream.vt.Write = SeqOutStreamBuf_Write;
2814 outStream.data = dest;
2815 outStream.rem = *destLen;
2816 outStream.overflow = False;
2817
2818 p->writeEndMark = False;
2819 p->finished = False;
2820 p->result = SZ_OK;
2821
2822 if (reInit)
2823 LzmaEnc_Init(p);
2824 LzmaEnc_InitPrices(p);
2825
2826 nowPos64 = p->nowPos64;
2827 RangeEnc_Init(&p->rc);
2828
2829 if (desiredPackSize == 0)
2830 return SZ_ERROR_OUTPUT_EOF;
2831
2832 p->rc.outStream = &outStream.vt;
2833 res = LzmaEnc_CodeOneBlock(p, desiredPackSize, *unpackSize);
2834 p->rc.outStream = NULL;
2835
2836 *unpackSize = (UInt32)(p->nowPos64 - nowPos64);
2837 *destLen -= outStream.rem;
2838 if (outStream.overflow)
2839 return SZ_ERROR_OUTPUT_EOF;
2840
2841 return res;
2842 }
2843
2844
2845 static SRes LzmaEnc_Encode2(CLzmaEnc *p, ICompressProgress *progress)
2846 {
2847 SRes res = SZ_OK;
2848
2849 #ifndef _7ZIP_ST
2850 Byte allocaDummy[0x300];
2851 allocaDummy[0] = 0;
2852 allocaDummy[1] = allocaDummy[0];
2853 #endif
2854
2855 for (;;)
2856 {
2857 res = LzmaEnc_CodeOneBlock(p, 0, 0);
2858 if (res != SZ_OK || p->finished)
2859 break;
2860 if (progress)
2861 {
2862 res = ICompressProgress_Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
2863 if (res != SZ_OK)
2864 {
2865 res = SZ_ERROR_PROGRESS;
2866 break;
2867 }
2868 }
2869 }
2870
2871 LzmaEnc_Finish(p);
2872
2873 /*
2874 if (res == SZ_OK && !Inline_MatchFinder_IsFinishedOK(&p->matchFinderBase))
2875 res = SZ_ERROR_FAIL;
2876 }
2877 */
2878
2879 return res;
2880 }
2881
2882
2883 SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
2884 ISzAllocPtr alloc, ISzAllocPtr allocBig)
2885 {
2886 RINOK(LzmaEnc_Prepare(pp, outStream, inStream, alloc, allocBig));
2887 return LzmaEnc_Encode2((CLzmaEnc *)pp, progress);
2888 }
2889
2890
2891 SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
2892 {
2893 CLzmaEnc *p = (CLzmaEnc *)pp;
2894 unsigned i;
2895 UInt32 dictSize = p->dictSize;
2896 if (*size < LZMA_PROPS_SIZE)
2897 return SZ_ERROR_PARAM;
2898 *size = LZMA_PROPS_SIZE;
2899 props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
2900
2901 if (dictSize >= ((UInt32)1 << 22))
2902 {
2903 UInt32 kDictMask = ((UInt32)1 << 20) - 1;
2904 if (dictSize < (UInt32)0xFFFFFFFF - kDictMask)
2905 dictSize = (dictSize + kDictMask) & ~kDictMask;
2906 }
2907 else for (i = 11; i <= 30; i++)
2908 {
2909 if (dictSize <= ((UInt32)2 << i)) { dictSize = (2 << i); break; }
2910 if (dictSize <= ((UInt32)3 << i)) { dictSize = (3 << i); break; }
2911 }
2912
2913 for (i = 0; i < 4; i++)
2914 props[1 + i] = (Byte)(dictSize >> (8 * i));
2915 return SZ_OK;
2916 }
2917
2918
2919 unsigned LzmaEnc_IsWriteEndMark(CLzmaEncHandle pp)
2920 {
2921 return ((CLzmaEnc *)pp)->writeEndMark;
2922 }
2923
2924
2925 SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
2926 int writeEndMark, ICompressProgress *progress, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2927 {
2928 SRes res;
2929 CLzmaEnc *p = (CLzmaEnc *)pp;
2930
2931 CLzmaEnc_SeqOutStreamBuf outStream;
2932
2933 outStream.vt.Write = SeqOutStreamBuf_Write;
2934 outStream.data = dest;
2935 outStream.rem = *destLen;
2936 outStream.overflow = False;
2937
2938 p->writeEndMark = writeEndMark;
2939 p->rc.outStream = &outStream.vt;
2940
2941 res = LzmaEnc_MemPrepare(pp, src, srcLen, 0, alloc, allocBig);
2942
2943 if (res == SZ_OK)
2944 {
2945 res = LzmaEnc_Encode2(p, progress);
2946 if (res == SZ_OK && p->nowPos64 != srcLen)
2947 res = SZ_ERROR_FAIL;
2948 }
2949
2950 *destLen -= outStream.rem;
2951 if (outStream.overflow)
2952 return SZ_ERROR_OUTPUT_EOF;
2953 return res;
2954 }
2955
2956
2957 SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
2958 const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
2959 ICompressProgress *progress, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2960 {
2961 CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
2962 SRes res;
2963 if (!p)
2964 return SZ_ERROR_MEM;
2965
2966 res = LzmaEnc_SetProps(p, props);
2967 if (res == SZ_OK)
2968 {
2969 res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
2970 if (res == SZ_OK)
2971 res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
2972 writeEndMark, progress, alloc, allocBig);
2973 }
2974
2975 LzmaEnc_Destroy(p, alloc, allocBig);
2976 return res;
2977 }