]> git.proxmox.com Git - mirror_edk2.git/blob - CryptoPkg/Library/BaseCryptLib/Pk/CryptRsaBasic.c
e68dd02480e428cf86ee19ca6231a41ed628770c
[mirror_edk2.git] / CryptoPkg / Library / BaseCryptLib / Pk / CryptRsaBasic.c
1 /** @file
2 RSA Asymmetric Cipher Wrapper Implementation over OpenSSL.
3
4 This file implements following APIs which provide basic capabilities for RSA:
5 1) RsaNew
6 2) RsaFree
7 3) RsaSetKey
8 4) RsaPkcs1Verify
9
10 Copyright (c) 2009 - 2015, Intel Corporation. All rights reserved.<BR>
11 This program and the accompanying materials
12 are licensed and made available under the terms and conditions of the BSD License
13 which accompanies this distribution. The full text of the license may be found at
14 http://opensource.org/licenses/bsd-license.php
15
16 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
17 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
18
19 **/
20
21 #include "InternalCryptLib.h"
22
23 #include <openssl/bn.h>
24 #include <openssl/rsa.h>
25 #include <openssl/objects.h>
26
27 /**
28 Allocates and initializes one RSA context for subsequent use.
29
30 @return Pointer to the RSA context that has been initialized.
31 If the allocations fails, RsaNew() returns NULL.
32
33 **/
34 VOID *
35 EFIAPI
36 RsaNew (
37 VOID
38 )
39 {
40 //
41 // Allocates & Initializes RSA Context by OpenSSL RSA_new()
42 //
43 return (VOID *) RSA_new ();
44 }
45
46 /**
47 Release the specified RSA context.
48
49 @param[in] RsaContext Pointer to the RSA context to be released.
50
51 **/
52 VOID
53 EFIAPI
54 RsaFree (
55 IN VOID *RsaContext
56 )
57 {
58 //
59 // Free OpenSSL RSA Context
60 //
61 RSA_free ((RSA *) RsaContext);
62 }
63
64 /**
65 Sets the tag-designated key component into the established RSA context.
66
67 This function sets the tag-designated RSA key component into the established
68 RSA context from the user-specified non-negative integer (octet string format
69 represented in RSA PKCS#1).
70 If BigNumber is NULL, then the specified key component in RSA context is cleared.
71
72 If RsaContext is NULL, then return FALSE.
73
74 @param[in, out] RsaContext Pointer to RSA context being set.
75 @param[in] KeyTag Tag of RSA key component being set.
76 @param[in] BigNumber Pointer to octet integer buffer.
77 If NULL, then the specified key component in RSA
78 context is cleared.
79 @param[in] BnSize Size of big number buffer in bytes.
80 If BigNumber is NULL, then it is ignored.
81
82 @retval TRUE RSA key component was set successfully.
83 @retval FALSE Invalid RSA key component tag.
84
85 **/
86 BOOLEAN
87 EFIAPI
88 RsaSetKey (
89 IN OUT VOID *RsaContext,
90 IN RSA_KEY_TAG KeyTag,
91 IN CONST UINT8 *BigNumber,
92 IN UINTN BnSize
93 )
94 {
95 RSA *RsaKey;
96
97 //
98 // Check input parameters.
99 //
100 if (RsaContext == NULL || BnSize > INT_MAX) {
101 return FALSE;
102 }
103
104 RsaKey = (RSA *) RsaContext;
105 //
106 // Set RSA Key Components by converting octet string to OpenSSL BN representation.
107 // NOTE: For RSA public key (used in signature verification), only public components
108 // (N, e) are needed.
109 //
110 switch (KeyTag) {
111
112 //
113 // RSA Public Modulus (N)
114 //
115 case RsaKeyN:
116 if (RsaKey->n != NULL) {
117 BN_free (RsaKey->n);
118 }
119 RsaKey->n = NULL;
120 if (BigNumber == NULL) {
121 break;
122 }
123 RsaKey->n = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->n);
124 if (RsaKey->n == NULL) {
125 return FALSE;
126 }
127
128 break;
129
130 //
131 // RSA Public Exponent (e)
132 //
133 case RsaKeyE:
134 if (RsaKey->e != NULL) {
135 BN_free (RsaKey->e);
136 }
137 RsaKey->e = NULL;
138 if (BigNumber == NULL) {
139 break;
140 }
141 RsaKey->e = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->e);
142 if (RsaKey->e == NULL) {
143 return FALSE;
144 }
145
146 break;
147
148 //
149 // RSA Private Exponent (d)
150 //
151 case RsaKeyD:
152 if (RsaKey->d != NULL) {
153 BN_free (RsaKey->d);
154 }
155 RsaKey->d = NULL;
156 if (BigNumber == NULL) {
157 break;
158 }
159 RsaKey->d = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->d);
160 if (RsaKey->d == NULL) {
161 return FALSE;
162 }
163
164 break;
165
166 //
167 // RSA Secret Prime Factor of Modulus (p)
168 //
169 case RsaKeyP:
170 if (RsaKey->p != NULL) {
171 BN_free (RsaKey->p);
172 }
173 RsaKey->p = NULL;
174 if (BigNumber == NULL) {
175 break;
176 }
177 RsaKey->p = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->p);
178 if (RsaKey->p == NULL) {
179 return FALSE;
180 }
181
182 break;
183
184 //
185 // RSA Secret Prime Factor of Modules (q)
186 //
187 case RsaKeyQ:
188 if (RsaKey->q != NULL) {
189 BN_free (RsaKey->q);
190 }
191 RsaKey->q = NULL;
192 if (BigNumber == NULL) {
193 break;
194 }
195 RsaKey->q = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->q);
196 if (RsaKey->q == NULL) {
197 return FALSE;
198 }
199
200 break;
201
202 //
203 // p's CRT Exponent (== d mod (p - 1))
204 //
205 case RsaKeyDp:
206 if (RsaKey->dmp1 != NULL) {
207 BN_free (RsaKey->dmp1);
208 }
209 RsaKey->dmp1 = NULL;
210 if (BigNumber == NULL) {
211 break;
212 }
213 RsaKey->dmp1 = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->dmp1);
214 if (RsaKey->dmp1 == NULL) {
215 return FALSE;
216 }
217
218 break;
219
220 //
221 // q's CRT Exponent (== d mod (q - 1))
222 //
223 case RsaKeyDq:
224 if (RsaKey->dmq1 != NULL) {
225 BN_free (RsaKey->dmq1);
226 }
227 RsaKey->dmq1 = NULL;
228 if (BigNumber == NULL) {
229 break;
230 }
231 RsaKey->dmq1 = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->dmq1);
232 if (RsaKey->dmq1 == NULL) {
233 return FALSE;
234 }
235
236 break;
237
238 //
239 // The CRT Coefficient (== 1/q mod p)
240 //
241 case RsaKeyQInv:
242 if (RsaKey->iqmp != NULL) {
243 BN_free (RsaKey->iqmp);
244 }
245 RsaKey->iqmp = NULL;
246 if (BigNumber == NULL) {
247 break;
248 }
249 RsaKey->iqmp = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->iqmp);
250 if (RsaKey->iqmp == NULL) {
251 return FALSE;
252 }
253
254 break;
255
256 default:
257 return FALSE;
258 }
259
260 return TRUE;
261 }
262
263 /**
264 Verifies the RSA-SSA signature with EMSA-PKCS1-v1_5 encoding scheme defined in
265 RSA PKCS#1.
266
267 If RsaContext is NULL, then return FALSE.
268 If MessageHash is NULL, then return FALSE.
269 If Signature is NULL, then return FALSE.
270 If HashSize is not equal to the size of MD5, SHA-1 or SHA-256 digest, then return FALSE.
271
272 @param[in] RsaContext Pointer to RSA context for signature verification.
273 @param[in] MessageHash Pointer to octet message hash to be checked.
274 @param[in] HashSize Size of the message hash in bytes.
275 @param[in] Signature Pointer to RSA PKCS1-v1_5 signature to be verified.
276 @param[in] SigSize Size of signature in bytes.
277
278 @retval TRUE Valid signature encoded in PKCS1-v1_5.
279 @retval FALSE Invalid signature or invalid RSA context.
280
281 **/
282 BOOLEAN
283 EFIAPI
284 RsaPkcs1Verify (
285 IN VOID *RsaContext,
286 IN CONST UINT8 *MessageHash,
287 IN UINTN HashSize,
288 IN CONST UINT8 *Signature,
289 IN UINTN SigSize
290 )
291 {
292 INT32 DigestType;
293 UINT8 *SigBuf;
294
295 //
296 // Check input parameters.
297 //
298 if (RsaContext == NULL || MessageHash == NULL || Signature == NULL) {
299 return FALSE;
300 }
301
302 if (SigSize > INT_MAX || SigSize == 0) {
303 return FALSE;
304 }
305
306 //
307 // Determine the message digest algorithm according to digest size.
308 // Only MD5, SHA-1 or SHA-256 algorithm is supported.
309 //
310 switch (HashSize) {
311 case MD5_DIGEST_SIZE:
312 DigestType = NID_md5;
313 break;
314
315 case SHA1_DIGEST_SIZE:
316 DigestType = NID_sha1;
317 break;
318
319 case SHA256_DIGEST_SIZE:
320 DigestType = NID_sha256;
321 break;
322
323 default:
324 return FALSE;
325 }
326
327 SigBuf = (UINT8 *) Signature;
328 return (BOOLEAN) RSA_verify (
329 DigestType,
330 MessageHash,
331 (UINT32) HashSize,
332 SigBuf,
333 (UINT32) SigSize,
334 (RSA *) RsaContext
335 );
336 }