]> git.proxmox.com Git - mirror_edk2.git/blob - EdkModulePkg/Core/DxeIplPeim/DxeLoad.c
Perfected MSA files.
[mirror_edk2.git] / EdkModulePkg / Core / DxeIplPeim / DxeLoad.c
1 /*++
2
3 Copyright (c) 2006, Intel Corporation
4 All rights reserved. This program and the accompanying materials
5 are licensed and made available under the terms and conditions of the BSD License
6 which accompanies this distribution. The full text of the license may be found at
7 http://opensource.org/licenses/bsd-license.php
8
9 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
10 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
11
12 Module Name:
13
14 DxeLoad.c
15
16 Abstract:
17
18 Last PEIM.
19 Responsibility of this module is to load the DXE Core from a Firmware Volume.
20
21 --*/
22
23 #include "DxeIpl.h"
24
25 BOOLEAN gInMemory = FALSE;
26
27 //
28 // Module Globals used in the DXE to PEI handoff
29 // These must be module globals, so the stack can be switched
30 //
31 static EFI_DXE_IPL_PPI mDxeIplPpi = {
32 DxeLoadCore
33 };
34
35 static EFI_PEI_FV_FILE_LOADER_PPI mLoadFilePpi = {
36 DxeIplLoadFile
37 };
38
39 static EFI_PEI_PPI_DESCRIPTOR mPpiList[] = {
40 {
41 EFI_PEI_PPI_DESCRIPTOR_PPI,
42 &gEfiPeiFvFileLoaderPpiGuid,
43 &mLoadFilePpi
44 },
45 {
46 (EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
47 &gEfiDxeIplPpiGuid,
48 &mDxeIplPpi
49 }
50 };
51
52 static EFI_PEI_PPI_DESCRIPTOR mPpiSignal = {
53 (EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
54 &gEfiEndOfPeiSignalPpiGuid,
55 NULL
56 };
57
58 GLOBAL_REMOVE_IF_UNREFERENCED DECOMPRESS_LIBRARY gEfiDecompress = {
59 UefiDecompressGetInfo,
60 UefiDecompress
61 };
62
63 GLOBAL_REMOVE_IF_UNREFERENCED DECOMPRESS_LIBRARY gTianoDecompress = {
64 TianoDecompressGetInfo,
65 TianoDecompress
66 };
67
68 GLOBAL_REMOVE_IF_UNREFERENCED DECOMPRESS_LIBRARY gCustomDecompress = {
69 CustomDecompressGetInfo,
70 CustomDecompress
71 };
72
73 EFI_STATUS
74 EFIAPI
75 PeimInitializeDxeIpl (
76 IN EFI_FFS_FILE_HEADER *FfsHeader,
77 IN EFI_PEI_SERVICES **PeiServices
78 )
79 /*++
80
81 Routine Description:
82
83 Initializes the Dxe Ipl PPI
84
85 Arguments:
86
87 FfsHeader - Pointer to FFS file header
88 PeiServices - General purpose services available to every PEIM.
89
90 Returns:
91
92 EFI_SUCCESS
93
94 --*/
95 {
96 EFI_STATUS Status;
97 EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader;
98 EFI_BOOT_MODE BootMode;
99
100 Status = PeiServicesGetBootMode (&BootMode);
101 ASSERT_EFI_ERROR (Status);
102
103 if (!gInMemory && (BootMode != BOOT_ON_S3_RESUME)) {
104 //
105 // The DxeIpl has not yet been shadowed
106 //
107 PeiEfiPeiPeCoffLoader = (EFI_PEI_PE_COFF_LOADER_PROTOCOL *)GetPeCoffLoaderProtocol ();
108
109 //
110 // Shadow DxeIpl and then re-run its entry point
111 //
112 Status = ShadowDxeIpl (FfsHeader, PeiEfiPeiPeCoffLoader);
113 } else {
114 //
115 // Install FvFileLoader and DxeIpl PPIs.
116 //
117 Status = PeiServicesInstallPpi (mPpiList);
118 ASSERT_EFI_ERROR(Status);
119 }
120
121 return Status;
122 }
123
124 EFI_STATUS
125 EFIAPI
126 DxeLoadCore (
127 IN EFI_DXE_IPL_PPI *This,
128 IN EFI_PEI_SERVICES **PeiServices,
129 IN EFI_PEI_HOB_POINTERS HobList
130 )
131 /*++
132
133 Routine Description:
134
135 Main entry point to last PEIM
136
137 Arguments:
138 This - Entry point for DXE IPL PPI
139 PeiServices - General purpose services available to every PEIM.
140 HobList - Address to the Pei HOB list
141
142 Returns:
143
144 EFI_SUCCESS - DEX core was successfully loaded.
145 EFI_OUT_OF_RESOURCES - There are not enough resources to load DXE core.
146
147 --*/
148 {
149 EFI_STATUS Status;
150 EFI_GUID DxeCoreFileName;
151 EFI_GUID FirmwareFileName;
152 VOID *Pe32Data;
153 VOID *FvImageData;
154 EFI_PHYSICAL_ADDRESS DxeCoreAddress;
155 UINT64 DxeCoreSize;
156 EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint;
157 EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader;
158 EFI_BOOT_MODE BootMode;
159 EFI_PEI_RECOVERY_MODULE_PPI *PeiRecovery;
160 EFI_PEI_S3_RESUME_PPI *S3Resume;
161
162 // PERF_START (PeiServices, L"DxeIpl", NULL, 0);
163
164 //
165 // if in S3 Resume, restore configure
166 //
167 Status = PeiServicesGetBootMode (&BootMode);
168 ASSERT_EFI_ERROR(Status);
169
170 if (BootMode == BOOT_ON_S3_RESUME) {
171 Status = PeiServicesLocatePpi (
172 &gEfiPeiS3ResumePpiGuid,
173 0,
174 NULL,
175 (VOID **)&S3Resume
176 );
177 ASSERT_EFI_ERROR (Status);
178
179 Status = S3Resume->S3RestoreConfig (PeiServices);
180 ASSERT_EFI_ERROR (Status);
181 } else if (BootMode == BOOT_IN_RECOVERY_MODE) {
182
183 Status = PeiServicesLocatePpi (
184 &gEfiPeiRecoveryModulePpiGuid,
185 0,
186 NULL,
187 (VOID **)&PeiRecovery
188 );
189 ASSERT_EFI_ERROR (Status);
190
191 Status = PeiRecovery->LoadRecoveryCapsule (PeiServices, PeiRecovery);
192 if (EFI_ERROR (Status)) {
193 DEBUG ((EFI_D_ERROR, "Load Recovery Capsule Failed.(Status = %r)\n", Status));
194 CpuDeadLoop ();
195 }
196
197 //
198 // Now should have a HOB with the DXE core w/ the old HOB destroyed
199 //
200 }
201
202 //
203 // Install the PEI Protocols that are shared between PEI and DXE
204 //
205 PeiEfiPeiPeCoffLoader = (EFI_PEI_PE_COFF_LOADER_PROTOCOL *)GetPeCoffLoaderProtocol ();
206 ASSERT (PeiEfiPeiPeCoffLoader != NULL);
207
208
209 //
210 // Find the EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE type compressed Firmware Volume file
211 // The file found will be processed by PeiProcessFile: It will first be decompressed to
212 // a normal FV, then a corresponding FV type hob will be built.
213 //
214 Status = PeiFindFile (
215 EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE,
216 EFI_SECTION_FIRMWARE_VOLUME_IMAGE,
217 &FirmwareFileName,
218 &FvImageData
219 );
220
221 //
222 // Find the DXE Core in a Firmware Volume
223 //
224 Status = PeiFindFile (
225 EFI_FV_FILETYPE_DXE_CORE,
226 EFI_SECTION_PE32,
227 &DxeCoreFileName,
228 &Pe32Data
229 );
230 ASSERT_EFI_ERROR (Status);
231
232 //
233 // Load the DXE Core from a Firmware Volume
234 //
235 Status = PeiLoadFile (
236 PeiEfiPeiPeCoffLoader,
237 Pe32Data,
238 &DxeCoreAddress,
239 &DxeCoreSize,
240 &DxeCoreEntryPoint
241 );
242 ASSERT_EFI_ERROR (Status);
243
244 //
245 // Add HOB for the DXE Core
246 //
247 BuildModuleHob (
248 &DxeCoreFileName,
249 DxeCoreAddress,
250 DxeCoreSize,
251 DxeCoreEntryPoint
252 );
253
254 //
255 // Report Status Code EFI_SW_PEI_PC_HANDOFF_TO_NEXT
256 //
257 REPORT_STATUS_CODE (
258 EFI_PROGRESS_CODE,
259 EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_CORE_PC_HANDOFF_TO_NEXT
260 );
261
262 if (FeaturePcdGet (PcdDxeIplBuildShareCodeHobs)) {
263 if (FeaturePcdGet (PcdDxeIplSupportEfiDecompress)) {
264 //
265 // Add HOB for the EFI Decompress Protocol
266 //
267 BuildGuidDataHob (
268 &gEfiDecompressProtocolGuid,
269 (VOID *)&gEfiDecompress,
270 sizeof (gEfiDecompress)
271 );
272 }
273 if (FeaturePcdGet (PcdDxeIplSupportTianoDecompress)) {
274 //
275 // Add HOB for the Tiano Decompress Protocol
276 //
277 BuildGuidDataHob (
278 &gEfiTianoDecompressProtocolGuid,
279 (VOID *)&gTianoDecompress,
280 sizeof (gTianoDecompress)
281 );
282 }
283 if (FeaturePcdGet (PcdDxeIplSupportCustomDecompress)) {
284 //
285 // Add HOB for the user customized Decompress Protocol
286 //
287 BuildGuidDataHob (
288 &gEfiCustomizedDecompressProtocolGuid,
289 (VOID *)&gCustomDecompress,
290 sizeof (gCustomDecompress)
291 );
292 }
293
294 //
295 // Add HOB for the PE/COFF Loader Protocol
296 //
297 BuildGuidDataHob (
298 &gEfiPeiPeCoffLoaderGuid,
299 (VOID *)&PeiEfiPeiPeCoffLoader,
300 sizeof (VOID *)
301 );
302 }
303
304 //
305 // Transfer control to the DXE Core
306 // The handoff state is simply a pointer to the HOB list
307 //
308
309 DEBUG ((EFI_D_INFO, "DXE Core Entry Point 0x%08x\n", (UINTN) DxeCoreEntryPoint));
310 HandOffToDxeCore (DxeCoreEntryPoint, HobList, &mPpiSignal);
311 //
312 // If we get here, then the DXE Core returned. This is an error
313 // Dxe Core should not return.
314 //
315 ASSERT (FALSE);
316 CpuDeadLoop ();
317
318 return EFI_OUT_OF_RESOURCES;
319 }
320
321 EFI_STATUS
322 PeiFindFile (
323 IN UINT8 Type,
324 IN UINT16 SectionType,
325 OUT EFI_GUID *FileName,
326 OUT VOID **Pe32Data
327 )
328 /*++
329
330 Routine Description:
331
332 Finds a PE/COFF of a specific Type and SectionType in the Firmware Volumes
333 described in the HOB list. Able to search in a compression set in a FFS file.
334 But only one level of compression is supported, that is, not able to search
335 in a compression set that is within another compression set.
336
337 Arguments:
338
339 Type - The Type of file to retrieve
340
341 SectionType - The type of section to retrieve from a file
342
343 FileName - The name of the file found in the Firmware Volume
344
345 Pe32Data - Pointer to the beginning of the PE/COFF file found in the Firmware Volume
346
347 Returns:
348
349 EFI_SUCCESS - The file was found, and the name is returned in FileName, and a pointer to
350 the PE/COFF image is returned in Pe32Data
351
352 EFI_NOT_FOUND - The file was not found in the Firmware Volumes present in the HOB List
353
354 --*/
355 {
356 EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
357 EFI_FFS_FILE_HEADER *FfsFileHeader;
358 EFI_STATUS Status;
359 EFI_PEI_HOB_POINTERS Hob;
360
361
362 FwVolHeader = NULL;
363 FfsFileHeader = NULL;
364 Status = EFI_SUCCESS;
365
366 //
367 // For each Firmware Volume, look for a specified type
368 // of file and break out until no one is found
369 //
370 Hob.Raw = GetHobList ();
371 while ((Hob.Raw = GetNextHob (EFI_HOB_TYPE_FV, Hob.Raw)) != NULL) {
372 FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) (UINTN) (Hob.FirmwareVolume->BaseAddress);
373 Status = PeiServicesFfsFindNextFile (
374 Type,
375 FwVolHeader,
376 &FfsFileHeader
377 );
378 if (!EFI_ERROR (Status)) {
379 Status = PeiProcessFile (
380 SectionType,
381 FfsFileHeader,
382 Pe32Data,
383 &Hob
384 );
385 CopyMem (FileName, &FfsFileHeader->Name, sizeof (EFI_GUID));
386 //
387 // Find all Fv type ffs to get all FvImage and add them into FvHob
388 //
389 if (!EFI_ERROR (Status) && (Type != EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE)) {
390 return EFI_SUCCESS;
391 }
392 }
393 Hob.Raw = GET_NEXT_HOB (Hob);
394 }
395 return EFI_NOT_FOUND;
396 }
397
398 EFI_STATUS
399 PeiLoadFile (
400 IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader,
401 IN VOID *Pe32Data,
402 OUT EFI_PHYSICAL_ADDRESS *ImageAddress,
403 OUT UINT64 *ImageSize,
404 OUT EFI_PHYSICAL_ADDRESS *EntryPoint
405 )
406 /*++
407
408 Routine Description:
409
410 Loads and relocates a PE/COFF image into memory.
411
412 Arguments:
413
414 PeiEfiPeiPeCoffLoader - Pointer to a PE COFF loader protocol
415
416 Pe32Data - The base address of the PE/COFF file that is to be loaded and relocated
417
418 ImageAddress - The base address of the relocated PE/COFF image
419
420 ImageSize - The size of the relocated PE/COFF image
421
422 EntryPoint - The entry point of the relocated PE/COFF image
423
424 Returns:
425
426 EFI_SUCCESS - The file was loaded and relocated
427
428 EFI_OUT_OF_RESOURCES - There was not enough memory to load and relocate the PE/COFF file
429
430 --*/
431 {
432 EFI_STATUS Status;
433 PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
434
435 ZeroMem (&ImageContext, sizeof (ImageContext));
436 ImageContext.Handle = Pe32Data;
437 Status = GetImageReadFunction (&ImageContext);
438
439 ASSERT_EFI_ERROR (Status);
440
441 Status = PeiEfiPeiPeCoffLoader->GetImageInfo (PeiEfiPeiPeCoffLoader, &ImageContext);
442 if (EFI_ERROR (Status)) {
443 return Status;
444 }
445 //
446 // Allocate Memory for the image
447 //
448 ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)(UINTN) AllocatePages (EFI_SIZE_TO_PAGES ((UINT32) ImageContext.ImageSize));
449 ASSERT (ImageContext.ImageAddress != 0);
450
451 //
452 // Load the image to our new buffer
453 //
454 Status = PeiEfiPeiPeCoffLoader->LoadImage (PeiEfiPeiPeCoffLoader, &ImageContext);
455 if (EFI_ERROR (Status)) {
456 return Status;
457 }
458 //
459 // Relocate the image in our new buffer
460 //
461 Status = PeiEfiPeiPeCoffLoader->RelocateImage (PeiEfiPeiPeCoffLoader, &ImageContext);
462 if (EFI_ERROR (Status)) {
463 return Status;
464 }
465
466 //
467 // Flush the instruction cache so the image data is written before we execute it
468 //
469 InvalidateInstructionCacheRange ((VOID *)(UINTN)ImageContext.ImageAddress, (UINTN)ImageContext.ImageSize);
470
471 *ImageAddress = ImageContext.ImageAddress;
472 *ImageSize = ImageContext.ImageSize;
473 *EntryPoint = ImageContext.EntryPoint;
474
475 return EFI_SUCCESS;
476 }
477
478 EFI_STATUS
479 ShadowDxeIpl (
480 IN EFI_FFS_FILE_HEADER *DxeIplFileHeader,
481 IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader
482 )
483 /*++
484
485 Routine Description:
486
487 Shadow the DXE IPL to a different memory location. This occurs after permanent
488 memory has been discovered.
489
490 Arguments:
491
492 DxeIplFileHeader - Pointer to the FFS file header of the DXE IPL driver
493
494 PeiEfiPeiPeCoffLoader - Pointer to a PE COFF loader protocol
495
496 Returns:
497
498 EFI_SUCCESS - DXE IPL was successfully shadowed to a different memory location.
499
500 EFI_ ERROR - The shadow was unsuccessful.
501
502
503 --*/
504 {
505 UINTN SectionLength;
506 UINTN OccupiedSectionLength;
507 EFI_PHYSICAL_ADDRESS DxeIplAddress;
508 UINT64 DxeIplSize;
509 EFI_PHYSICAL_ADDRESS DxeIplEntryPoint;
510 EFI_STATUS Status;
511 EFI_COMMON_SECTION_HEADER *Section;
512
513 Section = (EFI_COMMON_SECTION_HEADER *) (DxeIplFileHeader + 1);
514
515 while ((Section->Type != EFI_SECTION_PE32) && (Section->Type != EFI_SECTION_TE)) {
516 SectionLength = *(UINT32 *) (Section->Size) & 0x00ffffff;
517 OccupiedSectionLength = GET_OCCUPIED_SIZE (SectionLength, 4);
518 Section = (EFI_COMMON_SECTION_HEADER *) ((UINT8 *) Section + OccupiedSectionLength);
519 }
520 //
521 // Relocate DxeIpl into memory by using loadfile service
522 //
523 Status = PeiLoadFile (
524 PeiEfiPeiPeCoffLoader,
525 (VOID *) (Section + 1),
526 &DxeIplAddress,
527 &DxeIplSize,
528 &DxeIplEntryPoint
529 );
530
531 if (Status == EFI_SUCCESS) {
532 //
533 // Set gInMemory global variable to TRUE to indicate the dxeipl is shadowed.
534 //
535 *(BOOLEAN *) ((UINTN) &gInMemory + (UINTN) DxeIplEntryPoint - (UINTN) _ModuleEntryPoint) = TRUE;
536 Status = ((EFI_PEIM_ENTRY_POINT) (UINTN) DxeIplEntryPoint) (DxeIplFileHeader, GetPeiServicesTablePointer());
537 }
538
539 return Status;
540 }
541
542 EFI_STATUS
543 EFIAPI
544 DxeIplLoadFile (
545 IN EFI_PEI_FV_FILE_LOADER_PPI *This,
546 IN EFI_FFS_FILE_HEADER *FfsHeader,
547 OUT EFI_PHYSICAL_ADDRESS *ImageAddress,
548 OUT UINT64 *ImageSize,
549 OUT EFI_PHYSICAL_ADDRESS *EntryPoint
550 )
551 /*++
552
553 Routine Description:
554
555 Given a pointer to an FFS file containing a PE32 image, get the
556 information on the PE32 image, and then "load" it so that it
557 can be executed.
558
559 Arguments:
560
561 This - pointer to our file loader protocol
562
563 FfsHeader - pointer to the FFS file header of the FFS file that
564 contains the PE32 image we want to load
565
566 ImageAddress - returned address where the PE32 image is loaded
567
568 ImageSize - returned size of the loaded PE32 image
569
570 EntryPoint - entry point to the loaded PE32 image
571
572 Returns:
573
574 EFI_SUCCESS - The FFS file was successfully loaded.
575
576 EFI_ERROR - Unable to load the FFS file.
577
578 --*/
579 {
580 EFI_PEI_PE_COFF_LOADER_PROTOCOL *PeiEfiPeiPeCoffLoader;
581 EFI_STATUS Status;
582 VOID *Pe32Data;
583
584 Pe32Data = NULL;
585 PeiEfiPeiPeCoffLoader = (EFI_PEI_PE_COFF_LOADER_PROTOCOL *)GetPeCoffLoaderProtocol ();
586
587 //
588 // Preprocess the FFS file to get a pointer to the PE32 information
589 // in the enclosed PE32 image.
590 //
591 Status = PeiProcessFile (
592 EFI_SECTION_PE32,
593 FfsHeader,
594 &Pe32Data,
595 NULL
596 );
597
598 if (EFI_ERROR (Status)) {
599 return Status;
600 }
601 //
602 // Load the PE image from the FFS file
603 //
604 Status = PeiLoadFile (
605 PeiEfiPeiPeCoffLoader,
606 Pe32Data,
607 ImageAddress,
608 ImageSize,
609 EntryPoint
610 );
611
612 return Status;
613 }
614
615 EFI_STATUS
616 PeiProcessFile (
617 IN UINT16 SectionType,
618 IN EFI_FFS_FILE_HEADER *FfsFileHeader,
619 OUT VOID **Pe32Data,
620 IN EFI_PEI_HOB_POINTERS *OrigHob
621 )
622 /*++
623
624 Routine Description:
625
626 Arguments:
627
628 SectionType - The type of section in the FFS file to process.
629
630 FfsFileHeader - Pointer to the FFS file to process, looking for the
631 specified SectionType
632
633 Pe32Data - returned pointer to the start of the PE32 image found
634 in the FFS file.
635
636 Returns:
637
638 EFI_SUCCESS - found the PE32 section in the FFS file
639
640 --*/
641 {
642 EFI_STATUS Status;
643 VOID *SectionData;
644 DECOMPRESS_LIBRARY *DecompressLibrary;
645 UINT8 *DstBuffer;
646 UINT8 *ScratchBuffer;
647 UINT32 DstBufferSize;
648 UINT32 ScratchBufferSize;
649 EFI_COMMON_SECTION_HEADER *CmpSection;
650 UINTN CmpSectionLength;
651 UINTN OccupiedCmpSectionLength;
652 VOID *CmpFileData;
653 UINTN CmpFileSize;
654 EFI_COMMON_SECTION_HEADER *Section;
655 UINTN SectionLength;
656 UINTN OccupiedSectionLength;
657 UINT64 FileSize;
658 UINT32 AuthenticationStatus;
659 EFI_PEI_SECTION_EXTRACTION_PPI *SectionExtract;
660 UINT32 BufferSize;
661 UINT8 *Buffer;
662 EFI_PEI_SECURITY_PPI *Security;
663 BOOLEAN StartCrisisRecovery;
664 EFI_GUID TempGuid;
665 EFI_FIRMWARE_VOLUME_HEADER *FvHeader;
666 EFI_COMPRESSION_SECTION *CompressionSection;
667
668 //
669 // Initialize local variables.
670 //
671 DecompressLibrary = NULL;
672 DstBuffer = NULL;
673 DstBufferSize = 0;
674
675 Status = PeiServicesFfsFindSectionData (
676 EFI_SECTION_COMPRESSION,
677 FfsFileHeader,
678 &SectionData
679 );
680
681 //
682 // First process the compression section
683 //
684 if (!EFI_ERROR (Status)) {
685 //
686 // Yes, there is a compression section, so extract the contents
687 // Decompress the image here
688 //
689 Section = (EFI_COMMON_SECTION_HEADER *) (UINTN) (VOID *) ((UINT8 *) (FfsFileHeader) + (UINTN) sizeof (EFI_FFS_FILE_HEADER));
690
691 do {
692 SectionLength = *(UINT32 *) (Section->Size) & 0x00ffffff;
693 OccupiedSectionLength = GET_OCCUPIED_SIZE (SectionLength, 4);
694
695 //
696 // Was the DXE Core file encapsulated in a GUID'd section?
697 //
698 if (Section->Type == EFI_SECTION_GUID_DEFINED) {
699
700 //
701 // This following code constitutes the addition of the security model
702 // to the DXE IPL.
703 //
704 //
705 // Set a default authenticatino state
706 //
707 AuthenticationStatus = 0;
708
709 Status = PeiServicesLocatePpi (
710 &gEfiPeiSectionExtractionPpiGuid,
711 0,
712 NULL,
713 (VOID **)&SectionExtract
714 );
715
716 if (EFI_ERROR (Status)) {
717 return Status;
718 }
719 //
720 // Verify Authentication State
721 //
722 CopyMem (&TempGuid, Section + 1, sizeof (EFI_GUID));
723
724 Status = SectionExtract->PeiGetSection (
725 GetPeiServicesTablePointer(),
726 SectionExtract,
727 (EFI_SECTION_TYPE *) &SectionType,
728 &TempGuid,
729 0,
730 (VOID **) &Buffer,
731 &BufferSize,
732 &AuthenticationStatus
733 );
734
735 if (EFI_ERROR (Status)) {
736 return Status;
737 }
738 //
739 // If not ask the Security PPI, if exists, for disposition
740 //
741 //
742 Status = PeiServicesLocatePpi (
743 &gEfiPeiSecurityPpiGuid,
744 0,
745 NULL,
746 (VOID **)&Security
747 );
748 if (EFI_ERROR (Status)) {
749 return Status;
750 }
751
752 Status = Security->AuthenticationState (
753 GetPeiServicesTablePointer(),
754 (struct _EFI_PEI_SECURITY_PPI *) Security,
755 AuthenticationStatus,
756 FfsFileHeader,
757 &StartCrisisRecovery
758 );
759
760 if (EFI_ERROR (Status)) {
761 return Status;
762 }
763 //
764 // If there is a security violation, report to caller and have
765 // the upper-level logic possible engender a crisis recovery
766 //
767 if (StartCrisisRecovery) {
768 return EFI_SECURITY_VIOLATION;
769 }
770 }
771
772 if (Section->Type == EFI_SECTION_PE32) {
773 //
774 // This is what we want
775 //
776 *Pe32Data = (VOID *) (Section + 1);
777 return EFI_SUCCESS;
778 } else if (Section->Type == EFI_SECTION_COMPRESSION) {
779 //
780 // This is a compression set, expand it
781 //
782 CompressionSection = (EFI_COMPRESSION_SECTION *) Section;
783
784 switch (CompressionSection->CompressionType) {
785 case EFI_STANDARD_COMPRESSION:
786 //
787 // Load EFI standard compression.
788 //
789 if (FeaturePcdGet (PcdDxeIplSupportTianoDecompress)) {
790 DecompressLibrary = &gEfiDecompress;
791 } else {
792 ASSERT (FALSE);
793 return EFI_NOT_FOUND;
794 }
795 break;
796
797 case EFI_CUSTOMIZED_COMPRESSION:
798 //
799 // Load user customized compression.
800 //
801 if (FeaturePcdGet (PcdDxeIplSupportCustomDecompress)) {
802 DecompressLibrary = &gCustomDecompress;
803 } else {
804 ASSERT (FALSE);
805 return EFI_NOT_FOUND;
806 }
807 break;
808
809 case EFI_NOT_COMPRESSED:
810 //
811 // Allocate destination buffer
812 //
813 DstBufferSize = CompressionSection->UncompressedLength;
814 DstBuffer = AllocatePages (EFI_SIZE_TO_PAGES (DstBufferSize));
815 if (DstBuffer == NULL) {
816 return EFI_OUT_OF_RESOURCES;
817 }
818 //
819 // stream is not actually compressed, just encapsulated. So just copy it.
820 //
821 CopyMem (DstBuffer, CompressionSection + 1, DstBufferSize);
822 break;
823
824 default:
825 //
826 // Don't support other unknown compression type.
827 //
828 ASSERT_EFI_ERROR (Status);
829 return EFI_NOT_FOUND;
830 }
831
832 if (CompressionSection->CompressionType != EFI_NOT_COMPRESSED) {
833 //
834 // For compressed data, decompress them to dstbuffer.
835 //
836 Status = DecompressLibrary->GetInfo (
837 (UINT8 *) ((EFI_COMPRESSION_SECTION *) Section + 1),
838 (UINT32) SectionLength - sizeof (EFI_COMPRESSION_SECTION),
839 &DstBufferSize,
840 &ScratchBufferSize
841 );
842 if (EFI_ERROR (Status)) {
843 //
844 // GetInfo failed
845 //
846 DEBUG ((EFI_D_ERROR, "Decompress GetInfo Failed - %r\n", Status));
847 return EFI_NOT_FOUND;
848 }
849
850 //
851 // Allocate scratch buffer
852 //
853 ScratchBuffer = AllocatePages (EFI_SIZE_TO_PAGES (ScratchBufferSize));
854 if (ScratchBuffer == NULL) {
855 return EFI_OUT_OF_RESOURCES;
856 }
857
858 //
859 // Allocate destination buffer
860 //
861 DstBuffer = AllocatePages (EFI_SIZE_TO_PAGES (DstBufferSize));
862 if (DstBuffer == NULL) {
863 return EFI_OUT_OF_RESOURCES;
864 }
865
866 //
867 // Call decompress function
868 //
869 Status = DecompressLibrary->Decompress (
870 (CHAR8 *) ((EFI_COMPRESSION_SECTION *) Section + 1),
871 DstBuffer,
872 ScratchBuffer
873 );
874 if (EFI_ERROR (Status)) {
875 //
876 // Decompress failed
877 //
878 DEBUG ((EFI_D_ERROR, "Decompress Failed - %r\n", Status));
879 return EFI_NOT_FOUND;
880 }
881 }
882
883 //
884 // Decompress successfully.
885 // Loop the decompressed data searching for expected section.
886 //
887 CmpSection = (EFI_COMMON_SECTION_HEADER *) DstBuffer;
888 CmpFileData = (VOID *) DstBuffer;
889 CmpFileSize = DstBufferSize;
890 do {
891 CmpSectionLength = *(UINT32 *) (CmpSection->Size) & 0x00ffffff;
892 if (CmpSection->Type == SectionType) {
893 //
894 // This is what we want
895 //
896 if (SectionType == EFI_SECTION_PE32) {
897 *Pe32Data = (VOID *) (CmpSection + 1);
898 return EFI_SUCCESS;
899 } else if (SectionType == EFI_SECTION_FIRMWARE_VOLUME_IMAGE) {
900 //
901 // Firmware Volume Image in this Section
902 // Skip the section header to get FvHeader
903 //
904 FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) (CmpSection + 1);
905
906 if (FvHeader->Signature == EFI_FVH_SIGNATURE) {
907 //
908 // Because FvLength in FvHeader is UINT64 type,
909 // so FvHeader must meed at least 8 bytes alignment.
910 // If current FvImage base address doesn't meet its alignment,
911 // we need to reload this FvImage to another correct memory address.
912 //
913 if (((UINTN) FvHeader % sizeof (UINT64)) != 0) {
914 DstBuffer = AllocateAlignedPages (EFI_SIZE_TO_PAGES ((UINTN) CmpSectionLength - sizeof (EFI_COMMON_SECTION_HEADER)), sizeof (UINT64));
915 if (DstBuffer == NULL) {
916 return EFI_OUT_OF_RESOURCES;
917 }
918 CopyMem (DstBuffer, FvHeader, (UINTN) CmpSectionLength - sizeof (EFI_COMMON_SECTION_HEADER));
919 FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) DstBuffer;
920 }
921
922 //
923 // Build new FvHob for new decompressed Fv image.
924 //
925 BuildFvHob ((EFI_PHYSICAL_ADDRESS) (UINTN) FvHeader, FvHeader->FvLength);
926
927 //
928 // Set the original FvHob to unused.
929 //
930 if (OrigHob != NULL) {
931 OrigHob->Header->HobType = EFI_HOB_TYPE_UNUSED;
932 }
933
934 //
935 // return found FvImage data.
936 //
937 *Pe32Data = (VOID *) FvHeader;
938 return EFI_SUCCESS;
939 }
940 }
941 }
942 OccupiedCmpSectionLength = GET_OCCUPIED_SIZE (CmpSectionLength, 4);
943 CmpSection = (EFI_COMMON_SECTION_HEADER *) ((UINT8 *) CmpSection + OccupiedCmpSectionLength);
944 } while (CmpSection->Type != 0 && (UINTN) ((UINT8 *) CmpSection - (UINT8 *) CmpFileData) < CmpFileSize);
945 }
946 //
947 // End of the decompression activity
948 //
949
950 Section = (EFI_COMMON_SECTION_HEADER *) ((UINT8 *) Section + OccupiedSectionLength);
951 FileSize = FfsFileHeader->Size[0] & 0xFF;
952 FileSize += (FfsFileHeader->Size[1] << 8) & 0xFF00;
953 FileSize += (FfsFileHeader->Size[2] << 16) & 0xFF0000;
954 FileSize &= 0x00FFFFFF;
955 } while (Section->Type != 0 && (UINTN) ((UINT8 *) Section - (UINT8 *) FfsFileHeader) < FileSize);
956
957 //
958 // search all sections (compression and non compression) in this FFS, don't
959 // find expected section.
960 //
961 return EFI_NOT_FOUND;
962 } else {
963 //
964 // For those FFS that doesn't contain compression section, directly search
965 // PE or TE section in this FFS.
966 //
967
968 Status = PeiServicesFfsFindSectionData (
969 EFI_SECTION_PE32,
970 FfsFileHeader,
971 &SectionData
972 );
973
974 if (EFI_ERROR (Status)) {
975 Status = PeiServicesFfsFindSectionData (
976 EFI_SECTION_TE,
977 FfsFileHeader,
978 &SectionData
979 );
980 if (EFI_ERROR (Status)) {
981 return Status;
982 }
983 }
984 }
985
986 *Pe32Data = SectionData;
987
988 return EFI_SUCCESS;
989 }
990