]> git.proxmox.com Git - mirror_edk2.git/blob - EmbeddedPkg/Drivers/Lan9118Dxe/Lan9118DxeUtil.c
EmbeddedPkg: Added Lan9118 Dxe driver
[mirror_edk2.git] / EmbeddedPkg / Drivers / Lan9118Dxe / Lan9118DxeUtil.c
1 /** @file
2 *
3 * Copyright (c) 2012-2014, ARM Limited. All rights reserved.
4 *
5 * This program and the accompanying materials
6 * are licensed and made available under the terms and conditions of the BSD License
7 * which accompanies this distribution. The full text of the license may be found at
8 * http://opensource.org/licenses/bsd-license.php
9 *
10 * THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12 *
13 **/
14
15 #include "Lan9118Dxe.h"
16
17 STATIC EFI_MAC_ADDRESS mZeroMac = { 0 };
18
19 /**
20 This internal function reverses bits for 32bit data.
21
22 @param Value The data to be reversed.
23
24 @return Data reversed.
25
26 **/
27 UINT32
28 ReverseBits (
29 UINT32 Value
30 )
31 {
32 UINTN Index;
33 UINT32 NewValue;
34
35 NewValue = 0;
36 for (Index = 0; Index < 32; Index++) {
37 if ((Value & (1 << Index)) != 0) {
38 NewValue = NewValue | (1 << (31 - Index));
39 }
40 }
41
42 return NewValue;
43 }
44
45 /*
46 ** Create Ethernet CRC
47 **
48 ** INFO USED:
49 ** 1: http://en.wikipedia.org/wiki/Cyclic_redundancy_check
50 **
51 ** 2: http://www.erg.abdn.ac.uk/~gorry/eg3567/dl-pages/crc.html
52 **
53 ** 3: http://en.wikipedia.org/wiki/Computation_of_CRC
54 */
55 UINT32
56 GenEtherCrc32 (
57 IN EFI_MAC_ADDRESS *Mac,
58 IN UINT32 AddrLen
59 )
60 {
61 INT32 Iter;
62 UINT32 Remainder;
63 UINT8 *Ptr;
64
65 Iter = 0;
66 Remainder = 0xFFFFFFFF; // 0xFFFFFFFF is standard seed for Ethernet
67
68 // Convert Mac Address to array of bytes
69 Ptr = (UINT8*)Mac;
70
71 // Generate the Crc bit-by-bit (LSB first)
72 while (AddrLen--) {
73 Remainder ^= *Ptr++;
74 for (Iter = 0;Iter < 8;Iter++) {
75 // Check if exponent is set
76 if (Remainder & 1) {
77 Remainder = (Remainder >> 1) ^ CRC_POLYNOMIAL;
78 } else {
79 Remainder = (Remainder >> 1) ^ 0;
80 }
81 }
82 }
83
84 // Reverse the bits before returning (to Big Endian)
85 //TODO: Need to be reviewed. Do we want to do a bit reverse or a byte reverse (in this case use SwapBytes32())
86 return ReverseBits (Remainder);
87 }
88
89 // Function to read from MAC indirect registers
90 UINT32
91 IndirectMACRead32 (
92 UINT32 Index
93 )
94 {
95 UINT32 MacCSR;
96
97 // Check index is in the range
98 ASSERT(Index <= 12);
99
100 // Wait until CSR busy bit is cleared
101 while ((MmioRead32 (LAN9118_MAC_CSR_CMD) & MAC_CSR_BUSY) == MAC_CSR_BUSY);
102
103 // Set CSR busy bit to ensure read will occur
104 // Set the R/W bit to indicate we are reading
105 // Set the index of CSR Address to access desired register
106 MacCSR = MAC_CSR_BUSY | MAC_CSR_READ | MAC_CSR_ADDR(Index);
107
108 // Write to the register
109 MmioWrite32 (LAN9118_MAC_CSR_CMD, MacCSR);
110
111 // Wait until CSR busy bit is cleared
112 while ((MmioRead32 (LAN9118_MAC_CSR_CMD) & MAC_CSR_BUSY) == MAC_CSR_BUSY);
113
114 // Now read from data register to get read value
115 return MmioRead32 (LAN9118_MAC_CSR_DATA);
116 }
117
118 // Function to write to MAC indirect registers
119 UINT32
120 IndirectMACWrite32 (
121 UINT32 Index,
122 UINT32 Value
123 )
124 {
125 UINT32 ValueWritten;
126 UINT32 MacCSR;
127
128 // Check index is in the range
129 ASSERT(Index <= 12);
130
131 // Wait until CSR busy bit is cleared
132 while ((MmioRead32 (LAN9118_MAC_CSR_CMD) & MAC_CSR_BUSY) == MAC_CSR_BUSY);
133
134 // Set CSR busy bit to ensure read will occur
135 // Set the R/W bit to indicate we are writing
136 // Set the index of CSR Address to access desired register
137 MacCSR = MAC_CSR_BUSY | MAC_CSR_WRITE | MAC_CSR_ADDR(Index);
138
139 // Now write the value to the register before issuing the write command
140 ValueWritten = MmioWrite32 (LAN9118_MAC_CSR_DATA, Value);
141
142 // Write the config to the register
143 MmioWrite32 (LAN9118_MAC_CSR_CMD, MacCSR);
144
145 // Wait until CSR busy bit is cleared
146 while ((MmioRead32 (LAN9118_MAC_CSR_CMD) & MAC_CSR_BUSY) == MAC_CSR_BUSY);
147
148 return ValueWritten;
149 }
150
151 // Function to read from MII register (PHY Access)
152 UINT32
153 IndirectPHYRead32 (
154 UINT32 Index
155 )
156 {
157 UINT32 ValueRead;
158 UINT32 MiiAcc;
159
160 // Check it is a valid index
161 ASSERT(Index < 31);
162
163 // Wait for busy bit to clear
164 while ((IndirectMACRead32 (INDIRECT_MAC_INDEX_MII_ACC) & MII_ACC_MII_BUSY) == MII_ACC_MII_BUSY);
165
166 // Clear the R/W bit to indicate we are reading
167 // Set the index of the MII register
168 // Set the PHY Address
169 // Set the MII busy bit to allow read
170 MiiAcc = MII_ACC_MII_READ | MII_ACC_MII_REG_INDEX(Index) | MII_ACC_PHY_VALUE | MII_ACC_MII_BUSY;
171
172 // Now write this config to register
173 IndirectMACWrite32 (INDIRECT_MAC_INDEX_MII_ACC, MiiAcc & 0xFFFF);
174
175 // Wait for busy bit to clear
176 while ((IndirectMACRead32 (INDIRECT_MAC_INDEX_MII_ACC) & MII_ACC_MII_BUSY) == MII_ACC_MII_BUSY);
177
178 // Now read the value of the register
179 ValueRead = (IndirectMACRead32 (INDIRECT_MAC_INDEX_MII_DATA) & 0xFFFF); // only lower 16 bits are valid for any PHY register
180
181 return ValueRead;
182 }
183
184
185 // Function to write to the MII register (PHY Access)
186 UINT32
187 IndirectPHYWrite32 (
188 UINT32 Index,
189 UINT32 Value
190 )
191 {
192 UINT32 MiiAcc;
193 UINT32 ValueWritten;
194
195 // Check it is a valid index
196 ASSERT(Index < 31);
197
198 // Wait for busy bit to clear
199 while ((IndirectMACRead32 (INDIRECT_MAC_INDEX_MII_ACC) & MII_ACC_MII_BUSY) == MII_ACC_MII_BUSY);
200
201 // Clear the R/W bit to indicate we are reading
202 // Set the index of the MII register
203 // Set the PHY Address
204 // Set the MII busy bit to allow read
205 MiiAcc = MII_ACC_MII_WRITE | MII_ACC_MII_REG_INDEX(Index) | MII_ACC_PHY_VALUE | MII_ACC_MII_BUSY;
206
207 // Write the desired value to the register first
208 ValueWritten = IndirectMACWrite32 (INDIRECT_MAC_INDEX_MII_DATA, (Value & 0xFFFF));
209
210 // Now write the config to register
211 IndirectMACWrite32 (INDIRECT_MAC_INDEX_MII_ACC, MiiAcc & 0xFFFF);
212
213 // Wait for operation to terminate
214 while ((IndirectMACRead32 (INDIRECT_MAC_INDEX_MII_ACC) & MII_ACC_MII_BUSY) == MII_ACC_MII_BUSY);
215
216 return ValueWritten;
217 }
218
219
220 /* ---------------- EEPROM Operations ------------------ */
221
222
223 // Function to read from EEPROM memory
224 UINT32
225 IndirectEEPROMRead32 (
226 UINT32 Index
227 )
228 {
229 UINT32 EepromCmd;
230
231 // Set the busy bit to ensure read will occur
232 EepromCmd = E2P_EPC_BUSY | E2P_EPC_CMD_READ;
233
234 // Set the index to access desired EEPROM memory location
235 EepromCmd |= E2P_EPC_ADDRESS(Index);
236
237 // Write to Eeprom command register
238 MmioWrite32 (LAN9118_E2P_CMD, EepromCmd);
239 gBS->Stall (LAN9118_STALL);
240
241 // Wait until operation has completed
242 while (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
243
244 // Check that operation didn't time out
245 if (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_TIMEOUT) {
246 DEBUG ((EFI_D_ERROR, "EEPROM Operation Timed out: Read command on index %x\n",Index));
247 return 0;
248 }
249
250 // Wait until operation has completed
251 while (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
252
253 // Finally read the value
254 return MmioRead32 (LAN9118_E2P_DATA);
255 }
256
257 // Function to write to EEPROM memory
258 UINT32
259 IndirectEEPROMWrite32 (
260 UINT32 Index,
261 UINT32 Value
262 )
263 {
264 UINT32 ValueWritten;
265 UINT32 EepromCmd;
266
267 ValueWritten = 0;
268
269 // Read the EEPROM Command register
270 EepromCmd = MmioRead32 (LAN9118_E2P_CMD);
271
272 // Set the busy bit to ensure read will occur
273 EepromCmd |= ((UINT32)1 << 31);
274
275 // Set the EEPROM command to write(0b011)
276 EepromCmd &= ~(7 << 28); // Clear the command first
277 EepromCmd |= (3 << 28); // Write 011
278
279 // Set the index to access desired EEPROM memory location
280 EepromCmd |= (Index & 0xF);
281
282 // Write the value to the data register first
283 ValueWritten = MmioWrite32 (LAN9118_E2P_DATA, Value);
284
285 // Write to Eeprom command register
286 MmioWrite32 (LAN9118_E2P_CMD, EepromCmd);
287 gBS->Stall (LAN9118_STALL);
288
289 // Wait until operation has completed
290 while (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
291
292 // Check that operation didn't time out
293 if (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_TIMEOUT) {
294 DEBUG ((EFI_D_ERROR, "EEPROM Operation Timed out: Write command at memloc 0x%x, with value 0x%x\n",Index, Value));
295 return 0;
296 }
297
298 // Wait until operation has completed
299 while (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
300
301 return ValueWritten;
302 }
303
304 /* ---------------- General Operations ----------------- */
305
306 VOID
307 Lan9118SetMacAddress (
308 EFI_MAC_ADDRESS *Mac,
309 EFI_SIMPLE_NETWORK_PROTOCOL *Snp
310 )
311 {
312 IndirectMACWrite32 (INDIRECT_MAC_INDEX_ADDRL,
313 (Mac->Addr[0] & 0xFF) |
314 ((Mac->Addr[1] & 0xFF) << 8) |
315 ((Mac->Addr[2] & 0xFF) << 16) |
316 ((Mac->Addr[3] & 0xFF) << 24)
317 );
318
319 IndirectMACWrite32 (INDIRECT_MAC_INDEX_ADDRH,
320 (UINT32)(Mac->Addr[4] & 0xFF) |
321 ((Mac->Addr[5] & 0xFF) << 8)
322 );
323
324 CopyMem (&Snp->Mode->CurrentAddress, &Mac, NET_ETHER_ADDR_LEN);
325 }
326
327 VOID
328 Lan9118ReadMacAddress (
329 OUT EFI_MAC_ADDRESS *MacAddress
330 )
331 {
332 UINT32 MacAddrHighValue;
333 UINT32 MacAddrLowValue;
334
335 // Read the Mac Addr high register
336 MacAddrHighValue = (IndirectMACRead32 (INDIRECT_MAC_INDEX_ADDRH) & 0xFFFF);
337 // Read the Mac Addr low register
338 MacAddrLowValue = IndirectMACRead32 (INDIRECT_MAC_INDEX_ADDRL);
339
340 SetMem (MacAddress, sizeof(*MacAddress), 0);
341 MacAddress->Addr[0] = (MacAddrLowValue & 0xFF);
342 MacAddress->Addr[1] = (MacAddrLowValue & 0xFF00) >> 8;
343 MacAddress->Addr[2] = (MacAddrLowValue & 0xFF0000) >> 16;
344 MacAddress->Addr[3] = (MacAddrLowValue & 0xFF000000) >> 24;
345 MacAddress->Addr[4] = (MacAddrHighValue & 0xFF);
346 MacAddress->Addr[5] = (MacAddrHighValue & 0xFF00) >> 8;
347 }
348
349 /*
350 * Power up the 9118 and find its MAC address.
351 *
352 * This operation can be carried out when the LAN9118 is in any power state
353 *
354 */
355 EFI_STATUS
356 Lan9118Initialize (
357 IN EFI_SIMPLE_NETWORK_PROTOCOL *Snp
358 )
359 {
360 UINTN Timeout;
361 UINT64 DefaultMacAddress;
362
363 // Attempt to wake-up the device if it is in a lower power state
364 if (((MmioRead32 (LAN9118_PMT_CTRL) & MPTCTRL_PM_MODE_MASK) >> 12) != 0) {
365 DEBUG ((DEBUG_NET, "Waking from reduced power state.\n"));
366 MmioWrite32 (LAN9118_BYTE_TEST, 0xFFFFFFFF);
367 gBS->Stall (LAN9118_STALL);
368 }
369
370 // Check that device is active
371 Timeout = 20;
372 while ((MmioRead32 (LAN9118_PMT_CTRL) & MPTCTRL_READY) == 0 && --Timeout) {
373 gBS->Stall (LAN9118_STALL);
374 }
375 if (!Timeout) {
376 return EFI_TIMEOUT;
377 }
378
379 // Check that EEPROM isn't active
380 Timeout = 20;
381 while ((MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY) && --Timeout){
382 gBS->Stall (LAN9118_STALL);
383 }
384 if (!Timeout) {
385 return EFI_TIMEOUT;
386 }
387
388 // Check if a MAC address was loaded from EEPROM, and if it was, set it as the
389 // current address.
390 if ((MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_MAC_ADDRESS_LOADED) == 0) {
391 DEBUG ((EFI_D_ERROR, "Warning: There was an error detecting EEPROM or loading the MAC Address.\n"));
392
393 // If we had an address before (set by StationAddess), continue to use it
394 if (CompareMem (&Snp->Mode->CurrentAddress, &mZeroMac, NET_ETHER_ADDR_LEN)) {
395 Lan9118SetMacAddress (&Snp->Mode->CurrentAddress, Snp);
396 } else {
397 // If there are no cached addresses, then fall back to a default
398 DEBUG ((EFI_D_WARN, "Warning: using driver-default MAC address\n"));
399 DefaultMacAddress = FixedPcdGet64 (PcdLan9118DefaultMacAddress);
400 Lan9118SetMacAddress((EFI_MAC_ADDRESS *) &DefaultMacAddress, Snp);
401 }
402 } else {
403 // Store the MAC address that was loaded from EEPROM
404 Lan9118ReadMacAddress (&Snp->Mode->CurrentAddress);
405 CopyMem (&Snp->Mode->PermanentAddress, &Snp->Mode->CurrentAddress, NET_ETHER_ADDR_LEN);
406 }
407
408 // Clear and acknowledge interrupts
409 MmioWrite32 (LAN9118_INT_EN, 0);
410 MmioWrite32 (LAN9118_IRQ_CFG, 0);
411 MmioWrite32 (LAN9118_INT_STS, 0xFFFFFFFF);
412
413 // Do self tests here?
414
415 return EFI_SUCCESS;
416 }
417
418
419 // Perform software reset on the LAN9118
420 // Return 0 on success, -1 on error
421 EFI_STATUS
422 SoftReset (
423 UINT32 Flags,
424 EFI_SIMPLE_NETWORK_PROTOCOL *Snp
425 )
426 {
427 UINT32 HwConf;
428 UINT32 ResetTime;
429
430 // Initialize variable
431 ResetTime = 0;
432
433 // Stop Rx and Tx
434 StopTx (STOP_TX_MAC | STOP_TX_CFG | STOP_TX_CLEAR, Snp);
435 StopRx (STOP_RX_CLEAR, Snp); // Clear receiver FIFO
436
437 // Issue the reset
438 HwConf = MmioRead32 (LAN9118_HW_CFG);
439 HwConf |= 1;
440
441 // Set the Must Be One (MBO) bit
442 if (((HwConf & HWCFG_MBO) >> 20) == 0) {
443 HwConf |= HWCFG_MBO;
444 }
445
446 // Check that EEPROM isn't active
447 while (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
448
449 // Write the configuration
450 MmioWrite32 (LAN9118_HW_CFG, HwConf);
451 gBS->Stall (LAN9118_STALL);
452
453 // Wait for reset to complete
454 while (MmioRead32 (LAN9118_HW_CFG) & HWCFG_SRST) {
455
456 gBS->Stall (LAN9118_STALL);
457 ResetTime += 1;
458
459 // If time taken exceeds 100us, then there was an error condition
460 if (ResetTime > 1000) {
461 Snp->Mode->State = EfiSimpleNetworkStopped;
462 return EFI_TIMEOUT;
463 }
464 }
465
466 // Check that EEPROM isn't active
467 while (MmioRead32 (LAN9118_E2P_CMD) & E2P_EPC_BUSY);
468
469 // TODO we probably need to re-set the mac address here.
470
471 // Clear and acknowledge all interrupts
472 if (Flags & SOFT_RESET_CLEAR_INT) {
473 MmioWrite32 (LAN9118_INT_EN, 0);
474 MmioWrite32 (LAN9118_IRQ_CFG, 0);
475 MmioWrite32 (LAN9118_INT_STS, 0xFFFFFFFF);
476 }
477
478 // Do self tests here?
479 if (Flags & SOFT_RESET_SELF_TEST) {
480
481 }
482
483 return EFI_SUCCESS;
484 }
485
486
487 // Perform PHY software reset
488 INT32
489 PhySoftReset (
490 UINT32 Flags,
491 EFI_SIMPLE_NETWORK_PROTOCOL *Snp
492 )
493 {
494 UINT32 PmtCtrl = 0;
495 UINT32 LinkTo = 0;
496
497 // PMT PHY reset takes precedence over BCR
498 if (Flags & PHY_RESET_PMT) {
499 PmtCtrl = MmioRead32 (LAN9118_PMT_CTRL);
500 PmtCtrl |= MPTCTRL_PHY_RST;
501 MmioWrite32 (LAN9118_PMT_CTRL,PmtCtrl);
502
503 // Wait for completion
504 while (MmioRead32 (LAN9118_PMT_CTRL) & MPTCTRL_PHY_RST) {
505 gBS->Stall (LAN9118_STALL);
506 }
507 // PHY Basic Control Register reset
508 } else if (Flags & PHY_RESET_PMT) {
509 IndirectPHYWrite32 (PHY_INDEX_BASIC_CTRL, PHYCR_RESET);
510
511 // Wait for completion
512 while (IndirectPHYRead32 (PHY_INDEX_BASIC_CTRL) & PHYCR_RESET) {
513 gBS->Stall (LAN9118_STALL);
514 }
515 }
516
517 // Check the link status
518 if (Flags & PHY_RESET_CHECK_LINK) {
519 LinkTo = 100000; // 2 second (could be 50% more)
520 while (EFI_ERROR (CheckLinkStatus (0, Snp)) && (LinkTo > 0)) {
521 gBS->Stall (LAN9118_STALL);
522 LinkTo--;
523 }
524
525 // Timed out
526 if (LinkTo <= 0) {
527 return -1;
528 }
529 }
530
531 // Clear and acknowledge all interrupts
532 if (Flags & PHY_SOFT_RESET_CLEAR_INT) {
533 MmioWrite32 (LAN9118_INT_EN, 0);
534 MmioWrite32 (LAN9118_IRQ_CFG, 0);
535 MmioWrite32 (LAN9118_INT_STS, 0xFFFFFFFF);
536 }
537
538 return 0;
539 }
540
541
542 // Configure hardware for LAN9118
543 EFI_STATUS
544 ConfigureHardware (
545 UINT32 Flags,
546 EFI_SIMPLE_NETWORK_PROTOCOL *Snp
547 )
548 {
549 UINT32 GpioConf;
550
551 // Check if we want to use LEDs on GPIO
552 if (Flags & HW_CONF_USE_LEDS) {
553 GpioConf = MmioRead32 (LAN9118_GPIO_CFG);
554
555 // Enable GPIO as LEDs and Config as Push-Pull driver
556 GpioConf |= GPIO_GPIO0_PUSH_PULL | GPIO_GPIO1_PUSH_PULL | GPIO_GPIO2_PUSH_PULL |
557 GPIO_LED1_ENABLE | GPIO_LED2_ENABLE | GPIO_LED3_ENABLE;
558
559 // Write the configuration
560 MmioWrite32 (LAN9118_GPIO_CFG, GpioConf);
561 gBS->Stall (LAN9118_STALL);
562 }
563
564 return EFI_SUCCESS;
565 }
566
567 // Configure flow control
568 EFI_STATUS
569 ConfigureFlow (
570 UINT32 Flags,
571 UINT32 HighTrig,
572 UINT32 LowTrig,
573 UINT32 BPDuration,
574 EFI_SIMPLE_NETWORK_PROTOCOL *Snp
575 )
576 {
577 return EFI_SUCCESS;
578 }
579
580 // Do auto-negotiation
581 EFI_STATUS
582 AutoNegotiate (
583 UINT32 Flags,
584 EFI_SIMPLE_NETWORK_PROTOCOL *Snp
585 )
586 {
587 UINT32 PhyControl;
588 UINT32 PhyStatus;
589 UINT32 Features;
590 UINT32 TimeOut;
591
592 // First check that auto-negotiation is supported
593 PhyStatus = IndirectPHYRead32 (PHY_INDEX_BASIC_STATUS);
594 if ((PhyStatus & PHYSTS_AUTO_CAP) == 0) {
595 DEBUG ((EFI_D_ERROR, "Auto-negotiation not supported.\n"));
596 return EFI_DEVICE_ERROR;
597 }
598
599 // Check that link is up first
600 if ((PhyStatus & PHYSTS_LINK_STS) == 0) {
601 // Wait until it is up or until Time Out
602 TimeOut = 2000;
603 while ((IndirectPHYRead32 (PHY_INDEX_BASIC_STATUS) & PHYSTS_LINK_STS) == 0) {
604 gBS->Stall (LAN9118_STALL);
605 TimeOut--;
606 if (!TimeOut) {
607 DEBUG ((EFI_D_ERROR, "Link timeout in auto-negotiation.\n"));
608 return EFI_TIMEOUT;
609 }
610 }
611 }
612
613 // Configure features to advertise
614 Features = IndirectPHYRead32 (PHY_INDEX_AUTO_NEG_ADVERT);
615
616 if ((Flags & AUTO_NEGOTIATE_ADVERTISE_ALL) > 0) {
617 // Link speed capabilities
618 Features |= (PHYANA_10BASET | PHYANA_10BASETFD | PHYANA_100BASETX | PHYANA_100BASETXFD);
619
620 // Pause frame capabilities
621 Features &= ~(PHYANA_PAUSE_OP_MASK);
622 Features |= 3 << 10;
623 }
624
625 // Write the features
626 IndirectPHYWrite32 (PHY_INDEX_AUTO_NEG_ADVERT, Features);
627
628 // Read control register
629 PhyControl = IndirectPHYRead32 (PHY_INDEX_BASIC_CTRL);
630
631 // Enable Auto-Negotiation
632 if ((PhyControl & PHYCR_AUTO_EN) == 0) {
633 PhyControl |= PHYCR_AUTO_EN;
634 }
635
636 // Restart auto-negotiation
637 PhyControl |= PHYCR_RST_AUTO;
638
639 // Enable collision test if required to do so
640 if (Flags & AUTO_NEGOTIATE_COLLISION_TEST) {
641 PhyControl |= PHYCR_COLL_TEST;
642 } else {
643 PhyControl &= ~ PHYCR_COLL_TEST;
644 }
645
646 // Write this configuration
647 IndirectPHYWrite32 (PHY_INDEX_BASIC_CTRL, PhyControl);
648
649 // Wait until process has completed
650 while ((IndirectPHYRead32 (PHY_INDEX_BASIC_STATUS) & PHYSTS_AUTO_COMP) == 0);
651
652 return EFI_SUCCESS;
653 }
654
655 // Check the Link Status and take appropriate action
656 EFI_STATUS
657 CheckLinkStatus (
658 UINT32 Flags,
659 EFI_SIMPLE_NETWORK_PROTOCOL *Snp
660 )
661 {
662 // Get the PHY Status
663 UINT32 PhyBStatus = IndirectPHYRead32 (PHY_INDEX_BASIC_STATUS);
664
665 if (PhyBStatus & PHYSTS_LINK_STS) {
666 return EFI_SUCCESS;
667 } else {
668 return EFI_DEVICE_ERROR;
669 }
670 }
671
672 // Stop the transmitter
673 EFI_STATUS
674 StopTx (
675 UINT32 Flags,
676 EFI_SIMPLE_NETWORK_PROTOCOL *Snp
677 )
678 {
679 UINT32 MacCsr;
680 UINT32 TxCfg;
681
682 MacCsr = 0;
683 TxCfg = 0;
684
685 // Check if we want to clear tx
686 if (Flags & STOP_TX_CLEAR) {
687 TxCfg = MmioRead32 (LAN9118_TX_CFG);
688 TxCfg |= TXCFG_TXS_DUMP | TXCFG_TXD_DUMP;
689 MmioWrite32 (LAN9118_TX_CFG, TxCfg);
690 gBS->Stall (LAN9118_STALL);
691 }
692
693 // Check if already stopped
694 if (Flags & STOP_TX_MAC) {
695 MacCsr = IndirectMACRead32 (INDIRECT_MAC_INDEX_CR);
696
697 if (MacCsr & MACCR_TX_EN) {
698 MacCsr &= ~MACCR_TX_EN;
699 IndirectMACWrite32 (INDIRECT_MAC_INDEX_CR, MacCsr);
700 }
701 }
702
703 if (Flags & STOP_TX_CFG) {
704 TxCfg = MmioRead32 (LAN9118_TX_CFG);
705
706 if (TxCfg & TXCFG_TX_ON) {
707 TxCfg |= TXCFG_STOP_TX;
708 MmioWrite32 (LAN9118_TX_CFG, TxCfg);
709 gBS->Stall (LAN9118_STALL);
710
711 // Wait for Tx to finish transmitting
712 while (MmioRead32 (LAN9118_TX_CFG) & TXCFG_STOP_TX);
713 }
714 }
715
716 return EFI_SUCCESS;
717 }
718
719 // Stop the receiver
720 EFI_STATUS
721 StopRx (
722 UINT32 Flags,
723 EFI_SIMPLE_NETWORK_PROTOCOL *Snp
724 )
725 {
726 UINT32 MacCsr;
727 UINT32 RxCfg;
728
729 RxCfg = 0;
730
731 // Check if already stopped
732 MacCsr = IndirectMACRead32 (INDIRECT_MAC_INDEX_CR);
733
734 if (MacCsr & MACCR_RX_EN) {
735 MacCsr &= ~ MACCR_RX_EN;
736 IndirectMACWrite32 (INDIRECT_MAC_INDEX_CR, MacCsr);
737 }
738
739 // Check if we want to clear receiver FIFOs
740 if (Flags & STOP_RX_CLEAR) {
741 RxCfg = MmioRead32 (LAN9118_RX_CFG);
742 RxCfg |= RXCFG_RX_DUMP;
743 MmioWrite32 (LAN9118_RX_CFG, RxCfg);
744 gBS->Stall (LAN9118_STALL);
745
746 while (MmioRead32 (LAN9118_RX_CFG) & RXCFG_RX_DUMP);
747 }
748
749 return EFI_SUCCESS;
750 }
751
752 // Start the transmitter
753 EFI_STATUS
754 StartTx (
755 UINT32 Flags,
756 EFI_SIMPLE_NETWORK_PROTOCOL *Snp
757 )
758 {
759 UINT32 MacCsr;
760 UINT32 TxCfg;
761
762 MacCsr = 0;
763 TxCfg = 0;
764
765 // Check if we want to clear tx
766 if (Flags & START_TX_CLEAR) {
767 TxCfg = MmioRead32 (LAN9118_TX_CFG);
768 TxCfg |= TXCFG_TXS_DUMP | TXCFG_TXD_DUMP;
769 MmioWrite32 (LAN9118_TX_CFG, TxCfg);
770 gBS->Stall (LAN9118_STALL);
771 }
772
773 // Check if tx was started from MAC and enable if not
774 if (Flags & START_TX_MAC) {
775 MacCsr = IndirectMACRead32 (INDIRECT_MAC_INDEX_CR);
776 gBS->Stall (LAN9118_STALL);
777 if ((MacCsr & MACCR_TX_EN) == 0) {
778 MacCsr |= MACCR_TX_EN;
779 IndirectMACWrite32 (INDIRECT_MAC_INDEX_CR, MacCsr);
780 gBS->Stall (LAN9118_STALL);
781 }
782 }
783
784 // Check if tx was started from TX_CFG and enable if not
785 if (Flags & START_TX_CFG) {
786 TxCfg = MmioRead32 (LAN9118_TX_CFG);
787 gBS->Stall (LAN9118_STALL);
788 if ((TxCfg & TXCFG_TX_ON) == 0) {
789 TxCfg |= TXCFG_TX_ON;
790 MmioWrite32 (LAN9118_TX_CFG, TxCfg);
791 gBS->Stall (LAN9118_STALL);
792 }
793 }
794
795 // Set the tx data trigger level
796
797 return EFI_SUCCESS;
798 }
799
800 // Start the receiver
801 EFI_STATUS
802 StartRx (
803 UINT32 Flags,
804 EFI_SIMPLE_NETWORK_PROTOCOL *Snp
805 )
806 {
807 UINT32 MacCsr;
808 UINT32 RxCfg;
809
810 RxCfg = 0;
811
812 // Check if already started
813 MacCsr = IndirectMACRead32 (INDIRECT_MAC_INDEX_CR);
814
815 if ((MacCsr & MACCR_RX_EN) == 0) {
816 // Check if we want to clear receiver FIFOs before starting
817 if (Flags & START_RX_CLEAR) {
818 RxCfg = MmioRead32 (LAN9118_RX_CFG);
819 RxCfg |= RXCFG_RX_DUMP;
820 MmioWrite32 (LAN9118_RX_CFG, RxCfg);
821 gBS->Stall (LAN9118_STALL);
822
823 while (MmioRead32 (LAN9118_RX_CFG) & RXCFG_RX_DUMP);
824 }
825
826 MacCsr |= MACCR_RX_EN;
827 IndirectMACWrite32 (INDIRECT_MAC_INDEX_CR, MacCsr);
828 gBS->Stall (LAN9118_STALL);
829 }
830
831 return EFI_SUCCESS;
832 }
833
834 // Check Tx Data available space
835 UINT32
836 TxDataFreeSpace (
837 UINT32 Flags,
838 EFI_SIMPLE_NETWORK_PROTOCOL *Snp
839 )
840 {
841 UINT32 TxInf;
842 UINT32 FreeSpace;
843
844 // Get the amount of free space from information register
845 TxInf = MmioRead32 (LAN9118_TX_FIFO_INF);
846 FreeSpace = (TxInf & TXFIFOINF_TDFREE_MASK);
847
848 return FreeSpace; // Value in bytes
849 }
850
851 // Check Tx Status used space
852 UINT32
853 TxStatusUsedSpace (
854 UINT32 Flags,
855 EFI_SIMPLE_NETWORK_PROTOCOL *Snp
856 )
857 {
858 UINT32 TxInf;
859 UINT32 UsedSpace;
860
861 // Get the amount of used space from information register
862 TxInf = MmioRead32 (LAN9118_TX_FIFO_INF);
863 UsedSpace = (TxInf & TXFIFOINF_TXSUSED_MASK) >> 16;
864
865 return UsedSpace << 2; // Value in bytes
866 }
867
868 // Check Rx Data used space
869 UINT32
870 RxDataUsedSpace (
871 UINT32 Flags,
872 EFI_SIMPLE_NETWORK_PROTOCOL *Snp
873 )
874 {
875 UINT32 RxInf;
876 UINT32 UsedSpace;
877
878 // Get the amount of used space from information register
879 RxInf = MmioRead32 (LAN9118_RX_FIFO_INF);
880 UsedSpace = (RxInf & RXFIFOINF_RXDUSED_MASK);
881
882 return UsedSpace; // Value in bytes (rounded up to nearest DWORD)
883 }
884
885 // Check Rx Status used space
886 UINT32
887 RxStatusUsedSpace (
888 UINT32 Flags,
889 EFI_SIMPLE_NETWORK_PROTOCOL *Snp
890 )
891 {
892 UINT32 RxInf;
893 UINT32 UsedSpace;
894
895 // Get the amount of used space from information register
896 RxInf = MmioRead32 (LAN9118_RX_FIFO_INF);
897 UsedSpace = (RxInf & RXFIFOINF_RXSUSED_MASK) >> 16;
898
899 return UsedSpace << 2; // Value in bytes
900 }
901
902
903 // Change the allocation of FIFOs
904 EFI_STATUS
905 ChangeFifoAllocation (
906 IN UINT32 Flags,
907 IN OUT UINTN *TxDataSize OPTIONAL,
908 IN OUT UINTN *RxDataSize OPTIONAL,
909 IN OUT UINT32 *TxStatusSize OPTIONAL,
910 IN OUT UINT32 *RxStatusSize OPTIONAL,
911 IN OUT EFI_SIMPLE_NETWORK_PROTOCOL *Snp
912 )
913 {
914 UINT32 HwConf;
915 UINT32 TxFifoOption;
916
917 // Check that desired sizes don't exceed limits
918 if (*TxDataSize > TX_FIFO_MAX_SIZE)
919 return EFI_INVALID_PARAMETER;
920
921 #if defined(RX_FIFO_MIN_SIZE) && defined(RX_FIFO_MAX_SIZE)
922 if (*RxDataSize > RX_FIFO_MAX_SIZE) {
923 return EFI_INVALID_PARAMETER;
924 }
925 #endif
926
927 if (Flags & ALLOC_USE_DEFAULT) {
928 return EFI_SUCCESS;
929 }
930
931 // If we use the FIFOs (always use this first)
932 if (Flags & ALLOC_USE_FIFOS) {
933 // Read the current value of allocation
934 HwConf = MmioRead32 (LAN9118_HW_CFG);
935 TxFifoOption = (HwConf >> 16) & 0xF;
936
937 // Choose the correct size (always use larger than requested if possible)
938 if (*TxDataSize < TX_FIFO_MIN_SIZE) {
939 *TxDataSize = TX_FIFO_MIN_SIZE;
940 *RxDataSize = 13440;
941 *RxStatusSize = 896;
942 TxFifoOption = 2;
943 } else if ((*TxDataSize > TX_FIFO_MIN_SIZE) && (*TxDataSize <= 2560)) {
944 *TxDataSize = 2560;
945 *RxDataSize = 12480;
946 *RxStatusSize = 832;
947 TxFifoOption = 3;
948 } else if ((*TxDataSize > 2560) && (*TxDataSize <= 3584)) {
949 *TxDataSize = 3584;
950 *RxDataSize = 11520;
951 *RxStatusSize = 768;
952 TxFifoOption = 4;
953 } else if ((*TxDataSize > 3584) && (*TxDataSize <= 4608)) { // default option
954 *TxDataSize = 4608;
955 *RxDataSize = 10560;
956 *RxStatusSize = 704;
957 TxFifoOption = 5;
958 } else if ((*TxDataSize > 4608) && (*TxDataSize <= 5632)) {
959 *TxDataSize = 5632;
960 *RxDataSize = 9600;
961 *RxStatusSize = 640;
962 TxFifoOption = 6;
963 } else if ((*TxDataSize > 5632) && (*TxDataSize <= 6656)) {
964 *TxDataSize = 6656;
965 *RxDataSize = 8640;
966 *RxStatusSize = 576;
967 TxFifoOption = 7;
968 } else if ((*TxDataSize > 6656) && (*TxDataSize <= 7680)) {
969 *TxDataSize = 7680;
970 *RxDataSize = 7680;
971 *RxStatusSize = 512;
972 TxFifoOption = 8;
973 } else if ((*TxDataSize > 7680) && (*TxDataSize <= 8704)) {
974 *TxDataSize = 8704;
975 *RxDataSize = 6720;
976 *RxStatusSize = 448;
977 TxFifoOption = 9;
978 } else if ((*TxDataSize > 8704) && (*TxDataSize <= 9728)) {
979 *TxDataSize = 9728;
980 *RxDataSize = 5760;
981 *RxStatusSize = 384;
982 TxFifoOption = 10;
983 } else if ((*TxDataSize > 9728) && (*TxDataSize <= 10752)) {
984 *TxDataSize = 10752;
985 *RxDataSize = 4800;
986 *RxStatusSize = 320;
987 TxFifoOption = 11;
988 } else if ((*TxDataSize > 10752) && (*TxDataSize <= 11776)) {
989 *TxDataSize = 11776;
990 *RxDataSize = 3840;
991 *RxStatusSize = 256;
992 TxFifoOption = 12;
993 } else if ((*TxDataSize > 11776) && (*TxDataSize <= 12800)) {
994 *TxDataSize = 12800;
995 *RxDataSize = 2880;
996 *RxStatusSize = 192;
997 TxFifoOption = 13;
998 } else if ((*TxDataSize > 12800) && (*TxDataSize <= 13824)) {
999 *TxDataSize = 13824;
1000 *RxDataSize = 1920;
1001 *RxStatusSize = 128;
1002 TxFifoOption = 14;
1003 }
1004 } else {
1005 ASSERT(0); // Untested code path
1006 HwConf = 0;
1007 TxFifoOption = 0;
1008 }
1009
1010 // Do we need DMA?
1011 if (Flags & ALLOC_USE_DMA) {
1012 return EFI_UNSUPPORTED; // Unsupported as of now
1013 }
1014 // Clear and assign the new size option
1015 HwConf &= ~(0xF0000);
1016 HwConf |= ((TxFifoOption & 0xF) << 16);
1017 MmioWrite32 (LAN9118_HW_CFG, HwConf);
1018 gBS->Stall (LAN9118_STALL);
1019
1020 return EFI_SUCCESS;
1021 }