]> git.proxmox.com Git - mirror_edk2.git/blob - IntelFrameworkModulePkg/Csm/LegacyBiosDxe/LegacyBootSupport.c
IntelFrameworkModulePkg: Clean up source files
[mirror_edk2.git] / IntelFrameworkModulePkg / Csm / LegacyBiosDxe / LegacyBootSupport.c
1 /** @file
2
3 Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
4
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions
7 of the BSD License which accompanies this distribution. The
8 full text of the license may be found at
9 http://opensource.org/licenses/bsd-license.php
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #include "LegacyBiosInterface.h"
17 #include <IndustryStandard/Pci.h>
18
19 #define BOOT_LEGACY_OS 0
20 #define BOOT_EFI_OS 1
21 #define BOOT_UNCONVENTIONAL_DEVICE 2
22
23 UINT32 mLoadOptionsSize = 0;
24 UINTN mBootMode = BOOT_LEGACY_OS;
25 VOID *mLoadOptions = NULL;
26 BBS_BBS_DEVICE_PATH *mBbsDevicePathPtr = NULL;
27 BBS_BBS_DEVICE_PATH mBbsDevicePathNode;
28 UDC_ATTRIBUTES mAttributes = { 0, 0, 0, 0 };
29 UINTN mBbsEntry = 0;
30 VOID *mBeerData = NULL;
31 VOID *mServiceAreaData = NULL;
32 UINT64 mLowWater = 0xffffffffffffffffULL;
33
34 extern BBS_TABLE *mBbsTable;
35
36 extern VOID *mRuntimeSmbiosEntryPoint;
37 extern EFI_PHYSICAL_ADDRESS mReserveSmbiosEntryPoint;
38 extern EFI_PHYSICAL_ADDRESS mStructureTableAddress;
39
40 /**
41 Print the BBS Table.
42
43 @param BbsTable The BBS table.
44
45
46 **/
47 VOID
48 PrintBbsTable (
49 IN BBS_TABLE *BbsTable
50 )
51 {
52 UINT16 Index;
53 UINT16 SubIndex;
54 CHAR8 *String;
55
56 DEBUG ((EFI_D_INFO, "\n"));
57 DEBUG ((EFI_D_INFO, " NO Prio bb/dd/ff cl/sc Type Stat segm:offs mfgs:mfgo dess:deso\n"));
58 DEBUG ((EFI_D_INFO, "=================================================================\n"));
59 for (Index = 0; Index < MAX_BBS_ENTRIES; Index++) {
60 //
61 // Filter
62 //
63 if (BbsTable[Index].BootPriority == BBS_IGNORE_ENTRY) {
64 continue;
65 }
66
67 DEBUG ((
68 EFI_D_INFO,
69 " %02x: %04x %02x/%02x/%02x %02x/%02x %04x %04x",
70 (UINTN) Index,
71 (UINTN) BbsTable[Index].BootPriority,
72 (UINTN) BbsTable[Index].Bus,
73 (UINTN) BbsTable[Index].Device,
74 (UINTN) BbsTable[Index].Function,
75 (UINTN) BbsTable[Index].Class,
76 (UINTN) BbsTable[Index].SubClass,
77 (UINTN) BbsTable[Index].DeviceType,
78 (UINTN) * (UINT16 *) &BbsTable[Index].StatusFlags
79 ));
80 DEBUG ((
81 EFI_D_INFO,
82 " %04x:%04x %04x:%04x %04x:%04x",
83 (UINTN) BbsTable[Index].BootHandlerSegment,
84 (UINTN) BbsTable[Index].BootHandlerOffset,
85 (UINTN) BbsTable[Index].MfgStringSegment,
86 (UINTN) BbsTable[Index].MfgStringOffset,
87 (UINTN) BbsTable[Index].DescStringSegment,
88 (UINTN) BbsTable[Index].DescStringOffset
89 ));
90
91 //
92 // Print DescString
93 //
94 String = (CHAR8 *)(((UINTN)BbsTable[Index].DescStringSegment << 4) + BbsTable[Index].DescStringOffset);
95 if (String != NULL) {
96 DEBUG ((EFI_D_INFO," ("));
97 for (SubIndex = 0; String[SubIndex] != 0; SubIndex++) {
98 DEBUG ((EFI_D_INFO, "%c", String[SubIndex]));
99 }
100 DEBUG ((EFI_D_INFO,")"));
101 }
102 DEBUG ((EFI_D_INFO,"\n"));
103 }
104
105 DEBUG ((EFI_D_INFO, "\n"));
106
107 return ;
108 }
109
110 /**
111 Print the BBS Table.
112
113 @param HddInfo The HddInfo table.
114
115
116 **/
117 VOID
118 PrintHddInfo (
119 IN HDD_INFO *HddInfo
120 )
121 {
122 UINTN Index;
123
124 DEBUG ((EFI_D_INFO, "\n"));
125 for (Index = 0; Index < MAX_IDE_CONTROLLER; Index++) {
126 DEBUG ((EFI_D_INFO, "Index - %04x\n", Index));
127 DEBUG ((EFI_D_INFO, " Status - %04x\n", (UINTN)HddInfo[Index].Status));
128 DEBUG ((EFI_D_INFO, " B/D/F - %02x/%02x/%02x\n", (UINTN)HddInfo[Index].Bus, (UINTN)HddInfo[Index].Device, (UINTN)HddInfo[Index].Function));
129 DEBUG ((EFI_D_INFO, " Command - %04x\n", HddInfo[Index].CommandBaseAddress));
130 DEBUG ((EFI_D_INFO, " Control - %04x\n", HddInfo[Index].ControlBaseAddress));
131 DEBUG ((EFI_D_INFO, " BusMaster - %04x\n", HddInfo[Index].BusMasterAddress));
132 DEBUG ((EFI_D_INFO, " HddIrq - %02x\n", HddInfo[Index].HddIrq));
133 DEBUG ((EFI_D_INFO, " IdentifyDrive[0].Raw[0] - %x\n", HddInfo[Index].IdentifyDrive[0].Raw[0]));
134 DEBUG ((EFI_D_INFO, " IdentifyDrive[1].Raw[0] - %x\n", HddInfo[Index].IdentifyDrive[1].Raw[0]));
135 }
136
137 DEBUG ((EFI_D_INFO, "\n"));
138
139 return ;
140 }
141
142 /**
143 Print the PCI Interrupt Line and Interrupt Pin registers.
144 **/
145 VOID
146 PrintPciInterruptRegister (
147 VOID
148 )
149 {
150 EFI_STATUS Status;
151 UINTN Index;
152 EFI_HANDLE *Handles;
153 UINTN HandleNum;
154 EFI_PCI_IO_PROTOCOL *PciIo;
155 UINT8 Interrupt[2];
156 UINTN Segment;
157 UINTN Bus;
158 UINTN Device;
159 UINTN Function;
160
161 gBS->LocateHandleBuffer (
162 ByProtocol,
163 &gEfiPciIoProtocolGuid,
164 NULL,
165 &HandleNum,
166 &Handles
167 );
168
169 Bus = 0;
170 Device = 0;
171 Function = 0;
172
173 DEBUG ((EFI_D_INFO, "\n"));
174 DEBUG ((EFI_D_INFO, " bb/dd/ff interrupt line interrupt pin\n"));
175 DEBUG ((EFI_D_INFO, "======================================\n"));
176 for (Index = 0; Index < HandleNum; Index++) {
177 Status = gBS->HandleProtocol (Handles[Index], &gEfiPciIoProtocolGuid, (VOID **) &PciIo);
178 if (!EFI_ERROR (Status)) {
179 Status = PciIo->Pci.Read (
180 PciIo,
181 EfiPciIoWidthUint8,
182 PCI_INT_LINE_OFFSET,
183 2,
184 Interrupt
185 );
186 }
187 if (!EFI_ERROR (Status)) {
188 Status = PciIo->GetLocation (
189 PciIo,
190 &Segment,
191 &Bus,
192 &Device,
193 &Function
194 );
195 }
196 if (!EFI_ERROR (Status)) {
197 DEBUG ((EFI_D_INFO, " %02x/%02x/%02x 0x%02x 0x%02x\n",
198 Bus, Device, Function, Interrupt[0], Interrupt[1]));
199 }
200 }
201 DEBUG ((EFI_D_INFO, "\n"));
202
203 if (Handles != NULL) {
204 FreePool (Handles);
205 }
206 }
207
208 /**
209 Identify drive data must be updated to actual parameters before boot.
210
211 @param IdentifyDriveData ATA Identify Data
212
213 **/
214 VOID
215 UpdateIdentifyDriveData (
216 IN UINT8 *IdentifyDriveData
217 );
218
219 /**
220 Update SIO data.
221
222 @param Private Legacy BIOS Instance data
223
224 @retval EFI_SUCCESS Removable media not present
225
226 **/
227 EFI_STATUS
228 UpdateSioData (
229 IN LEGACY_BIOS_INSTANCE *Private
230 )
231 {
232 EFI_STATUS Status;
233 UINTN Index;
234 UINTN Index1;
235 UINT8 LegacyInterrupts[16];
236 EFI_LEGACY_IRQ_ROUTING_ENTRY *RoutingTable;
237 UINTN RoutingTableEntries;
238 EFI_LEGACY_IRQ_PRIORITY_TABLE_ENTRY *IrqPriorityTable;
239 UINTN NumberPriorityEntries;
240 EFI_TO_COMPATIBILITY16_BOOT_TABLE *EfiToLegacy16BootTable;
241 UINT8 HddIrq;
242 UINT16 LegacyInt;
243 UINT16 LegMask;
244 UINT32 Register;
245 UINTN HandleCount;
246 EFI_HANDLE *HandleBuffer;
247 EFI_ISA_IO_PROTOCOL *IsaIo;
248
249 LegacyInt = 0;
250 HandleBuffer = NULL;
251
252 EfiToLegacy16BootTable = &Private->IntThunk->EfiToLegacy16BootTable;
253 LegacyBiosBuildSioData (Private);
254 SetMem (LegacyInterrupts, sizeof (LegacyInterrupts), 0);
255
256 //
257 // Create list of legacy interrupts.
258 //
259 for (Index = 0; Index < 4; Index++) {
260 LegacyInterrupts[Index] = EfiToLegacy16BootTable->SioData.Serial[Index].Irq;
261 }
262
263 for (Index = 4; Index < 7; Index++) {
264 LegacyInterrupts[Index] = EfiToLegacy16BootTable->SioData.Parallel[Index - 4].Irq;
265 }
266
267 LegacyInterrupts[7] = EfiToLegacy16BootTable->SioData.Floppy.Irq;
268
269 //
270 // Get Legacy Hdd IRQs. If native mode treat as PCI
271 //
272 for (Index = 0; Index < 2; Index++) {
273 HddIrq = EfiToLegacy16BootTable->HddInfo[Index].HddIrq;
274 if ((HddIrq != 0) && ((HddIrq == 15) || (HddIrq == 14))) {
275 LegacyInterrupts[Index + 8] = HddIrq;
276 }
277 }
278
279 Private->LegacyBiosPlatform->GetRoutingTable (
280 Private->LegacyBiosPlatform,
281 (VOID *) &RoutingTable,
282 &RoutingTableEntries,
283 NULL,
284 NULL,
285 (VOID **) &IrqPriorityTable,
286 &NumberPriorityEntries
287 );
288 //
289 // Remove legacy interrupts from the list of PCI interrupts available.
290 //
291 for (Index = 0; Index <= 0x0b; Index++) {
292 for (Index1 = 0; Index1 <= NumberPriorityEntries; Index1++) {
293 if (LegacyInterrupts[Index] != 0) {
294 LegacyInt = (UINT16) (LegacyInt | (1 << LegacyInterrupts[Index]));
295 if (LegacyInterrupts[Index] == IrqPriorityTable[Index1].Irq) {
296 IrqPriorityTable[Index1].Used = LEGACY_USED;
297 }
298 }
299 }
300 }
301
302 Private->Legacy8259->GetMask (
303 Private->Legacy8259,
304 &LegMask,
305 NULL,
306 NULL,
307 NULL
308 );
309
310 //
311 // Set SIO interrupts and disable mouse. Let mouse driver
312 // re-enable it.
313 //
314 LegMask = (UINT16) ((LegMask &~LegacyInt) | 0x1000);
315 Private->Legacy8259->SetMask (
316 Private->Legacy8259,
317 &LegMask,
318 NULL,
319 NULL,
320 NULL
321 );
322
323 //
324 // Disable mouse in keyboard controller
325 //
326 Register = 0xA7;
327 Status = gBS->LocateHandleBuffer (
328 ByProtocol,
329 &gEfiIsaIoProtocolGuid,
330 NULL,
331 &HandleCount,
332 &HandleBuffer
333 );
334 if (EFI_ERROR (Status)) {
335 return Status;
336 }
337
338 for (Index = 0; Index < HandleCount; Index++) {
339 Status = gBS->HandleProtocol (
340 HandleBuffer[Index],
341 &gEfiIsaIoProtocolGuid,
342 (VOID **) &IsaIo
343 );
344 ASSERT_EFI_ERROR (Status);
345 IsaIo->Io.Write (IsaIo, EfiIsaIoWidthUint8, 0x64, 1, &Register);
346
347 }
348
349 if (HandleBuffer != NULL) {
350 FreePool (HandleBuffer);
351 }
352
353 return EFI_SUCCESS;
354
355 }
356
357 /**
358 Identify drive data must be updated to actual parameters before boot.
359 This requires updating the checksum, if it exists.
360
361 @param IdentifyDriveData ATA Identify Data
362 @param Checksum checksum of the ATA Identify Data
363
364 @retval EFI_SUCCESS checksum calculated
365 @retval EFI_SECURITY_VIOLATION IdentifyData invalid
366
367 **/
368 EFI_STATUS
369 CalculateIdentifyDriveChecksum (
370 IN UINT8 *IdentifyDriveData,
371 OUT UINT8 *Checksum
372 )
373 {
374 UINTN Index;
375 UINT8 LocalChecksum;
376 LocalChecksum = 0;
377 *Checksum = 0;
378 if (IdentifyDriveData[510] != 0xA5) {
379 return EFI_SECURITY_VIOLATION;
380 }
381
382 for (Index = 0; Index < 512; Index++) {
383 LocalChecksum = (UINT8) (LocalChecksum + IdentifyDriveData[Index]);
384 }
385
386 *Checksum = LocalChecksum;
387 return EFI_SUCCESS;
388 }
389
390
391 /**
392 Identify drive data must be updated to actual parameters before boot.
393
394 @param IdentifyDriveData ATA Identify Data
395
396
397 **/
398 VOID
399 UpdateIdentifyDriveData (
400 IN UINT8 *IdentifyDriveData
401 )
402 {
403 UINT16 NumberCylinders;
404 UINT16 NumberHeads;
405 UINT16 NumberSectorsTrack;
406 UINT32 CapacityInSectors;
407 UINT8 OriginalChecksum;
408 UINT8 FinalChecksum;
409 EFI_STATUS Status;
410 ATAPI_IDENTIFY *ReadInfo;
411
412 //
413 // Status indicates if Integrity byte is correct. Checksum should be
414 // 0 if valid.
415 //
416 ReadInfo = (ATAPI_IDENTIFY *) IdentifyDriveData;
417 Status = CalculateIdentifyDriveChecksum (IdentifyDriveData, &OriginalChecksum);
418 if (OriginalChecksum != 0) {
419 Status = EFI_SECURITY_VIOLATION;
420 }
421 //
422 // If NumberCylinders = 0 then do data(Controller present but don drive attached).
423 //
424 NumberCylinders = ReadInfo->Raw[1];
425 if (NumberCylinders != 0) {
426 ReadInfo->Raw[54] = NumberCylinders;
427
428 NumberHeads = ReadInfo->Raw[3];
429 ReadInfo->Raw[55] = NumberHeads;
430
431 NumberSectorsTrack = ReadInfo->Raw[6];
432 ReadInfo->Raw[56] = NumberSectorsTrack;
433
434 //
435 // Copy Multisector info and set valid bit.
436 //
437 ReadInfo->Raw[59] = (UINT16) (ReadInfo->Raw[47] + 0x100);
438 CapacityInSectors = (UINT32) ((UINT32) (NumberCylinders) * (UINT32) (NumberHeads) * (UINT32) (NumberSectorsTrack));
439 ReadInfo->Raw[57] = (UINT16) (CapacityInSectors >> 16);
440 ReadInfo->Raw[58] = (UINT16) (CapacityInSectors & 0xffff);
441 if (Status == EFI_SUCCESS) {
442 //
443 // Forece checksum byte to 0 and get new checksum.
444 //
445 ReadInfo->Raw[255] &= 0xff;
446 CalculateIdentifyDriveChecksum (IdentifyDriveData, &FinalChecksum);
447
448 //
449 // Force new checksum such that sum is 0.
450 //
451 FinalChecksum = (UINT8) ((UINT8)0 - FinalChecksum);
452 ReadInfo->Raw[255] = (UINT16) (ReadInfo->Raw[255] | (FinalChecksum << 8));
453 }
454 }
455 }
456
457 /**
458 Identify drive data must be updated to actual parameters before boot.
459 Do for all drives.
460
461 @param Private Legacy BIOS Instance data
462
463
464 **/
465 VOID
466 UpdateAllIdentifyDriveData (
467 IN LEGACY_BIOS_INSTANCE *Private
468 )
469 {
470 UINTN Index;
471 HDD_INFO *HddInfo;
472
473 HddInfo = &Private->IntThunk->EfiToLegacy16BootTable.HddInfo[0];
474
475 for (Index = 0; Index < MAX_IDE_CONTROLLER; Index++) {
476 //
477 // Each controller can have 2 devices. Update for each device
478 //
479 if ((HddInfo[Index].Status & HDD_MASTER_IDE) != 0) {
480 UpdateIdentifyDriveData ((UINT8 *) (&HddInfo[Index].IdentifyDrive[0].Raw[0]));
481 }
482
483 if ((HddInfo[Index].Status & HDD_SLAVE_IDE) != 0) {
484 UpdateIdentifyDriveData ((UINT8 *) (&HddInfo[Index].IdentifyDrive[1].Raw[0]));
485 }
486 }
487 }
488
489 /**
490 Enable ide controller. This gets disabled when LegacyBoot.c is about
491 to run the Option ROMs.
492
493 @param Private Legacy BIOS Instance data
494
495
496 **/
497 VOID
498 EnableIdeController (
499 IN LEGACY_BIOS_INSTANCE *Private
500 )
501 {
502 EFI_PCI_IO_PROTOCOL *PciIo;
503 EFI_STATUS Status;
504 EFI_HANDLE IdeController;
505 UINT8 ByteBuffer;
506 UINTN HandleCount;
507 EFI_HANDLE *HandleBuffer;
508
509 Status = Private->LegacyBiosPlatform->GetPlatformHandle (
510 Private->LegacyBiosPlatform,
511 EfiGetPlatformIdeHandle,
512 0,
513 &HandleBuffer,
514 &HandleCount,
515 NULL
516 );
517 if (!EFI_ERROR (Status)) {
518 IdeController = HandleBuffer[0];
519 Status = gBS->HandleProtocol (
520 IdeController,
521 &gEfiPciIoProtocolGuid,
522 (VOID **) &PciIo
523 );
524 ByteBuffer = 0x1f;
525 if (!EFI_ERROR (Status)) {
526 PciIo->Pci.Write (PciIo, EfiPciIoWidthUint8, 0x04, 1, &ByteBuffer);
527 }
528 }
529 }
530
531
532 /**
533 Enable ide controller. This gets disabled when LegacyBoot.c is about
534 to run the Option ROMs.
535
536 @param Private Legacy BIOS Instance data
537
538
539 **/
540 VOID
541 EnableAllControllers (
542 IN LEGACY_BIOS_INSTANCE *Private
543 )
544 {
545 UINTN HandleCount;
546 EFI_HANDLE *HandleBuffer;
547 UINTN Index;
548 EFI_PCI_IO_PROTOCOL *PciIo;
549 PCI_TYPE01 PciConfigHeader;
550 EFI_STATUS Status;
551
552 //
553 //
554 //
555 EnableIdeController (Private);
556
557 //
558 // Assumption is table is built from low bus to high bus numbers.
559 //
560 Status = gBS->LocateHandleBuffer (
561 ByProtocol,
562 &gEfiPciIoProtocolGuid,
563 NULL,
564 &HandleCount,
565 &HandleBuffer
566 );
567 ASSERT_EFI_ERROR (Status);
568
569 for (Index = 0; Index < HandleCount; Index++) {
570 Status = gBS->HandleProtocol (
571 HandleBuffer[Index],
572 &gEfiPciIoProtocolGuid,
573 (VOID **) &PciIo
574 );
575 ASSERT_EFI_ERROR (Status);
576
577 PciIo->Pci.Read (
578 PciIo,
579 EfiPciIoWidthUint32,
580 0,
581 sizeof (PciConfigHeader) / sizeof (UINT32),
582 &PciConfigHeader
583 );
584
585 //
586 // We do not enable PPB here. This is for HotPlug Consideration.
587 // The Platform HotPlug Driver is responsible for Padding enough hot plug
588 // resources. It is also responsible for enable this bridge. If it
589 // does not pad it. It will cause some early Windows fail to installation.
590 // If the platform driver does not pad resource for PPB, PPB should be in
591 // un-enabled state to let Windows know that this PPB is not configured by
592 // BIOS. So Windows will allocate default resource for PPB.
593 //
594 // The reason for why we enable the command register is:
595 // The CSM will use the IO bar to detect some IRQ status, if the command
596 // is disabled, the IO resource will be out of scope.
597 // For example:
598 // We installed a legacy IRQ handle for a PCI IDE controller. When IRQ
599 // comes up, the handle will check the IO space to identify is the
600 // controller generated the IRQ source.
601 // If the IO command is not enabled, the IRQ handler will has wrong
602 // information. It will cause IRQ storm when the correctly IRQ handler fails
603 // to run.
604 //
605 if (!(IS_PCI_VGA (&PciConfigHeader) ||
606 IS_PCI_OLD_VGA (&PciConfigHeader) ||
607 IS_PCI_IDE (&PciConfigHeader) ||
608 IS_PCI_P2P (&PciConfigHeader) ||
609 IS_PCI_P2P_SUB (&PciConfigHeader) ||
610 IS_PCI_LPC (&PciConfigHeader) )) {
611
612 PciConfigHeader.Hdr.Command |= 0x1f;
613
614 PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, 4, 1, &PciConfigHeader.Hdr.Command);
615 }
616 }
617 }
618
619 /**
620 The following routines are identical in operation, so combine
621 for code compaction:
622 EfiGetPlatformBinaryGetMpTable
623 EfiGetPlatformBinaryGetOemIntData
624 EfiGetPlatformBinaryGetOem32Data
625 EfiGetPlatformBinaryGetOem16Data
626
627 @param This Protocol instance pointer.
628 @param Id Table/Data identifier
629
630 @retval EFI_SUCCESS Success
631 @retval EFI_INVALID_PARAMETER Invalid ID
632 @retval EFI_OUT_OF_RESOURCES no resource to get data or table
633
634 **/
635 EFI_STATUS
636 LegacyGetDataOrTable (
637 IN EFI_LEGACY_BIOS_PROTOCOL *This,
638 IN EFI_GET_PLATFORM_INFO_MODE Id
639 )
640 {
641 VOID *Table;
642 UINT32 TablePtr;
643 UINTN TableSize;
644 UINTN Alignment;
645 UINTN Location;
646 EFI_STATUS Status;
647 EFI_LEGACY_BIOS_PLATFORM_PROTOCOL *LegacyBiosPlatform;
648 EFI_COMPATIBILITY16_TABLE *Legacy16Table;
649 EFI_IA32_REGISTER_SET Regs;
650 LEGACY_BIOS_INSTANCE *Private;
651
652 Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
653
654 LegacyBiosPlatform = Private->LegacyBiosPlatform;
655 Legacy16Table = Private->Legacy16Table;
656
657 //
658 // Phase 1 - get an address allocated in 16-bit code
659 //
660 while (TRUE) {
661 switch (Id) {
662 case EfiGetPlatformBinaryMpTable:
663 case EfiGetPlatformBinaryOemIntData:
664 case EfiGetPlatformBinaryOem32Data:
665 case EfiGetPlatformBinaryOem16Data:
666 {
667 Status = LegacyBiosPlatform->GetPlatformInfo (
668 LegacyBiosPlatform,
669 Id,
670 (VOID *) &Table,
671 &TableSize,
672 &Location,
673 &Alignment,
674 0,
675 0
676 );
677 DEBUG ((EFI_D_INFO, "LegacyGetDataOrTable - ID: %x, %r\n", (UINTN)Id, Status));
678 DEBUG ((EFI_D_INFO, " Table - %x, Size - %x, Location - %x, Alignment - %x\n", (UINTN)Table, (UINTN)TableSize, (UINTN)Location, (UINTN)Alignment));
679 break;
680 }
681
682 default:
683 {
684 return EFI_INVALID_PARAMETER;
685 }
686 }
687
688 if (EFI_ERROR (Status)) {
689 return Status;
690 }
691
692 ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
693 Regs.X.AX = Legacy16GetTableAddress;
694 Regs.X.CX = (UINT16) TableSize;
695 Regs.X.BX = (UINT16) Location;
696 Regs.X.DX = (UINT16) Alignment;
697 Private->LegacyBios.FarCall86 (
698 This,
699 Private->Legacy16CallSegment,
700 Private->Legacy16CallOffset,
701 &Regs,
702 NULL,
703 0
704 );
705
706 if (Regs.X.AX != 0) {
707 DEBUG ((EFI_D_ERROR, "Table ID %x length insufficient\n", Id));
708 return EFI_OUT_OF_RESOURCES;
709 } else {
710 break;
711 }
712 }
713 //
714 // Phase 2 Call routine second time with address to allow address adjustment
715 //
716 Status = LegacyBiosPlatform->GetPlatformInfo (
717 LegacyBiosPlatform,
718 Id,
719 (VOID *) &Table,
720 &TableSize,
721 &Location,
722 &Alignment,
723 Regs.X.DS,
724 Regs.X.BX
725 );
726 switch (Id) {
727 case EfiGetPlatformBinaryMpTable:
728 {
729 Legacy16Table->MpTablePtr = (UINT32) (Regs.X.DS * 16 + Regs.X.BX);
730 Legacy16Table->MpTableLength = (UINT32)TableSize;
731 DEBUG ((EFI_D_INFO, "MP table in legacy region - %x\n", (UINTN)Legacy16Table->MpTablePtr));
732 break;
733 }
734
735 case EfiGetPlatformBinaryOemIntData:
736 {
737
738 Legacy16Table->OemIntSegment = Regs.X.DS;
739 Legacy16Table->OemIntOffset = Regs.X.BX;
740 DEBUG ((EFI_D_INFO, "OemInt table in legacy region - %04x:%04x\n", (UINTN)Legacy16Table->OemIntSegment, (UINTN)Legacy16Table->OemIntOffset));
741 break;
742 }
743
744 case EfiGetPlatformBinaryOem32Data:
745 {
746 Legacy16Table->Oem32Segment = Regs.X.DS;
747 Legacy16Table->Oem32Offset = Regs.X.BX;
748 DEBUG ((EFI_D_INFO, "Oem32 table in legacy region - %04x:%04x\n", (UINTN)Legacy16Table->Oem32Segment, (UINTN)Legacy16Table->Oem32Offset));
749 break;
750 }
751
752 case EfiGetPlatformBinaryOem16Data:
753 {
754 //
755 // Legacy16Table->Oem16Segment = Regs.X.DS;
756 // Legacy16Table->Oem16Offset = Regs.X.BX;
757 DEBUG ((EFI_D_INFO, "Oem16 table in legacy region - %04x:%04x\n", (UINTN)Legacy16Table->Oem16Segment, (UINTN)Legacy16Table->Oem16Offset));
758 break;
759 }
760
761 default:
762 {
763 return EFI_INVALID_PARAMETER;
764 }
765 }
766
767 if (EFI_ERROR (Status)) {
768 return Status;
769 }
770 //
771 // Phase 3 Copy table to final location
772 //
773 TablePtr = (UINT32) (Regs.X.DS * 16 + Regs.X.BX);
774
775 CopyMem (
776 (VOID *) (UINTN)TablePtr,
777 Table,
778 TableSize
779 );
780
781 return EFI_SUCCESS;
782 }
783
784 /**
785 Copy SMBIOS table to EfiReservedMemoryType of memory for legacy boot.
786
787 **/
788 VOID
789 CreateSmbiosTableInReservedMemory (
790 VOID
791 )
792 {
793 SMBIOS_TABLE_ENTRY_POINT *EntryPointStructure;
794
795 if ((mRuntimeSmbiosEntryPoint == NULL) ||
796 (mReserveSmbiosEntryPoint == 0) ||
797 (mStructureTableAddress == 0)) {
798 return;
799 }
800
801 EntryPointStructure = (SMBIOS_TABLE_ENTRY_POINT *) mRuntimeSmbiosEntryPoint;
802
803 //
804 // Copy SMBIOS Entry Point Structure
805 //
806 CopyMem (
807 (VOID *)(UINTN) mReserveSmbiosEntryPoint,
808 EntryPointStructure,
809 EntryPointStructure->EntryPointLength
810 );
811
812 //
813 // Copy SMBIOS Structure Table into EfiReservedMemoryType memory
814 //
815 CopyMem (
816 (VOID *)(UINTN) mStructureTableAddress,
817 (VOID *)(UINTN) EntryPointStructure->TableAddress,
818 EntryPointStructure->TableLength
819 );
820
821 //
822 // Update TableAddress in Entry Point Structure
823 //
824 EntryPointStructure = (SMBIOS_TABLE_ENTRY_POINT *)(UINTN) mReserveSmbiosEntryPoint;
825 EntryPointStructure->TableAddress = (UINT32)(UINTN) mStructureTableAddress;
826
827 //
828 // Fixup checksums in the Entry Point Structure
829 //
830 EntryPointStructure->IntermediateChecksum = 0;
831 EntryPointStructure->EntryPointStructureChecksum = 0;
832
833 EntryPointStructure->IntermediateChecksum =
834 CalculateCheckSum8 (
835 (UINT8 *) EntryPointStructure + OFFSET_OF (SMBIOS_TABLE_ENTRY_POINT, IntermediateAnchorString),
836 EntryPointStructure->EntryPointLength - OFFSET_OF (SMBIOS_TABLE_ENTRY_POINT, IntermediateAnchorString)
837 );
838 EntryPointStructure->EntryPointStructureChecksum =
839 CalculateCheckSum8 ((UINT8 *) EntryPointStructure, EntryPointStructure->EntryPointLength);
840 }
841
842 /**
843 Assign drive number to legacy HDD drives prior to booting an EFI
844 aware OS so the OS can access drives without an EFI driver.
845 Note: BBS compliant drives ARE NOT available until this call by
846 either shell or EFI.
847
848 @param This Protocol instance pointer.
849
850 @retval EFI_SUCCESS Drive numbers assigned
851
852 **/
853 EFI_STATUS
854 GenericLegacyBoot (
855 IN EFI_LEGACY_BIOS_PROTOCOL *This
856 )
857 {
858 EFI_STATUS Status;
859 LEGACY_BIOS_INSTANCE *Private;
860 EFI_IA32_REGISTER_SET Regs;
861 EFI_TO_COMPATIBILITY16_BOOT_TABLE *EfiToLegacy16BootTable;
862 EFI_LEGACY_BIOS_PLATFORM_PROTOCOL *LegacyBiosPlatform;
863 UINTN CopySize;
864 VOID *AcpiPtr;
865 HDD_INFO *HddInfo;
866 HDD_INFO *LocalHddInfo;
867 UINTN Index;
868 EFI_COMPATIBILITY16_TABLE *Legacy16Table;
869 UINT32 *BdaPtr;
870 UINT16 HddCount;
871 UINT16 BbsCount;
872 BBS_TABLE *LocalBbsTable;
873 UINT32 *BaseVectorMaster;
874 EFI_TIME BootTime;
875 UINT32 LocalTime;
876 EFI_HANDLE IdeController;
877 UINTN HandleCount;
878 EFI_HANDLE *HandleBuffer;
879 VOID *AcpiTable;
880 UINTN ShadowAddress;
881 UINT32 Granularity;
882
883 LocalHddInfo = NULL;
884 HddCount = 0;
885 BbsCount = 0;
886 LocalBbsTable = NULL;
887
888 Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
889 DEBUG_CODE (
890 DEBUG ((EFI_D_ERROR, "Start of legacy boot\n"));
891 );
892
893 Legacy16Table = Private->Legacy16Table;
894 EfiToLegacy16BootTable = &Private->IntThunk->EfiToLegacy16BootTable;
895 HddInfo = &EfiToLegacy16BootTable->HddInfo[0];
896
897 LegacyBiosPlatform = Private->LegacyBiosPlatform;
898
899 EfiToLegacy16BootTable->MajorVersion = EFI_TO_LEGACY_MAJOR_VERSION;
900 EfiToLegacy16BootTable->MinorVersion = EFI_TO_LEGACY_MINOR_VERSION;
901
902 //
903 // If booting to a legacy OS then force HDD drives to the appropriate
904 // boot mode by calling GetIdeHandle.
905 // A reconnect -r can force all HDDs back to native mode.
906 //
907 IdeController = NULL;
908 if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
909 Status = LegacyBiosPlatform->GetPlatformHandle (
910 Private->LegacyBiosPlatform,
911 EfiGetPlatformIdeHandle,
912 0,
913 &HandleBuffer,
914 &HandleCount,
915 NULL
916 );
917 if (!EFI_ERROR (Status)) {
918 IdeController = HandleBuffer[0];
919 }
920 }
921 //
922 // Unlock the Legacy BIOS region
923 //
924 Private->LegacyRegion->UnLock (
925 Private->LegacyRegion,
926 0xE0000,
927 0x20000,
928 &Granularity
929 );
930
931 //
932 // Reconstruct the Legacy16 boot memory map
933 //
934 LegacyBiosBuildE820 (Private, &CopySize);
935 if (CopySize > Private->Legacy16Table->E820Length) {
936 ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
937 Regs.X.AX = Legacy16GetTableAddress;
938 Regs.X.CX = (UINT16) CopySize;
939 Private->LegacyBios.FarCall86 (
940 &Private->LegacyBios,
941 Private->Legacy16Table->Compatibility16CallSegment,
942 Private->Legacy16Table->Compatibility16CallOffset,
943 &Regs,
944 NULL,
945 0
946 );
947
948 Private->Legacy16Table->E820Pointer = (UINT32) (Regs.X.DS * 16 + Regs.X.BX);
949 Private->Legacy16Table->E820Length = (UINT32) CopySize;
950 if (Regs.X.AX != 0) {
951 DEBUG ((EFI_D_ERROR, "Legacy16 E820 length insufficient\n"));
952 } else {
953 CopyMem (
954 (VOID *)(UINTN) Private->Legacy16Table->E820Pointer,
955 Private->E820Table,
956 CopySize
957 );
958 }
959 } else {
960 CopyMem (
961 (VOID *)(UINTN) Private->Legacy16Table->E820Pointer,
962 Private->E820Table,
963 CopySize
964 );
965 Private->Legacy16Table->E820Length = (UINT32) CopySize;
966 }
967
968 //
969 // We do not ASSERT if SmbiosTable not found. It is possbile that a platform does not produce SmbiosTable.
970 //
971 if (mReserveSmbiosEntryPoint == 0) {
972 DEBUG ((EFI_D_INFO, "Smbios table is not found!\n"));
973 }
974 CreateSmbiosTableInReservedMemory ();
975 EfiToLegacy16BootTable->SmbiosTable = (UINT32)(UINTN)mReserveSmbiosEntryPoint;
976
977 AcpiTable = NULL;
978 Status = EfiGetSystemConfigurationTable (
979 &gEfiAcpi20TableGuid,
980 &AcpiTable
981 );
982 if (EFI_ERROR (Status)) {
983 Status = EfiGetSystemConfigurationTable (
984 &gEfiAcpi10TableGuid,
985 &AcpiTable
986 );
987 }
988 //
989 // We do not ASSERT if AcpiTable not found. It is possbile that a platform does not produce AcpiTable.
990 //
991 if (AcpiTable == NULL) {
992 DEBUG ((EFI_D_INFO, "ACPI table is not found!\n"));
993 }
994 EfiToLegacy16BootTable->AcpiTable = (UINT32)(UINTN)AcpiTable;
995
996 //
997 // Get RSD Ptr table rev at offset 15 decimal
998 // Rev = 0 Length is 20 decimal
999 // Rev != 0 Length is UINT32 at offset 20 decimal
1000 //
1001 if (AcpiTable != NULL) {
1002
1003 AcpiPtr = AcpiTable;
1004 if (*((UINT8 *) AcpiPtr + 15) == 0) {
1005 CopySize = 20;
1006 } else {
1007 AcpiPtr = ((UINT8 *) AcpiPtr + 20);
1008 CopySize = (*(UINT32 *) AcpiPtr);
1009 }
1010
1011 CopyMem (
1012 (VOID *)(UINTN) Private->Legacy16Table->AcpiRsdPtrPointer,
1013 AcpiTable,
1014 CopySize
1015 );
1016 }
1017 //
1018 // Make sure all PCI Interrupt Line register are programmed to match 8259
1019 //
1020 PciProgramAllInterruptLineRegisters (Private);
1021
1022 //
1023 // Unlock the Legacy BIOS region as PciProgramAllInterruptLineRegisters
1024 // can lock it.
1025 //
1026 Private->LegacyRegion->UnLock (
1027 Private->LegacyRegion,
1028 Private->BiosStart,
1029 Private->LegacyBiosImageSize,
1030 &Granularity
1031 );
1032
1033 //
1034 // Configure Legacy Device Magic
1035 //
1036 // Only do this code if booting legacy OS
1037 //
1038 if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
1039 UpdateSioData (Private);
1040 }
1041 //
1042 // Setup BDA and EBDA standard areas before Legacy Boot
1043 //
1044 ACCESS_PAGE0_CODE (
1045 LegacyBiosCompleteBdaBeforeBoot (Private);
1046 );
1047 LegacyBiosCompleteStandardCmosBeforeBoot (Private);
1048
1049 //
1050 // We must build IDE data, if it hasn't been done, before PciShadowRoms
1051 // to insure EFI drivers are connected.
1052 //
1053 LegacyBiosBuildIdeData (Private, &HddInfo, 1);
1054 UpdateAllIdentifyDriveData (Private);
1055
1056 //
1057 // Clear IO BAR, if IDE controller in legacy mode.
1058 //
1059 InitLegacyIdeController (IdeController);
1060
1061 //
1062 // Generate number of ticks since midnight for BDA. DOS requires this
1063 // for its time. We have to make assumptions as to how long following
1064 // code takes since after PciShadowRoms PciIo is gone. Place result in
1065 // 40:6C-6F
1066 //
1067 // Adjust value by 1 second.
1068 //
1069 gRT->GetTime (&BootTime, NULL);
1070 LocalTime = BootTime.Hour * 3600 + BootTime.Minute * 60 + BootTime.Second;
1071 LocalTime += 1;
1072
1073 //
1074 // Multiply result by 18.2 for number of ticks since midnight.
1075 // Use 182/10 to avoid floating point math.
1076 //
1077 LocalTime = (LocalTime * 182) / 10;
1078 ACCESS_PAGE0_CODE (
1079 BdaPtr = (UINT32 *) (UINTN)0x46C;
1080 *BdaPtr = LocalTime;
1081 );
1082
1083 //
1084 // Shadow PCI ROMs. We must do this near the end since this will kick
1085 // of Native EFI drivers that may be needed to collect info for Legacy16
1086 //
1087 // WARNING: PciIo is gone after this call.
1088 //
1089 PciShadowRoms (Private);
1090
1091 //
1092 // Shadow PXE base code, BIS etc.
1093 //
1094 Private->LegacyRegion->UnLock (Private->LegacyRegion, 0xc0000, 0x40000, &Granularity);
1095 ShadowAddress = Private->OptionRom;
1096 Private->LegacyBiosPlatform->PlatformHooks (
1097 Private->LegacyBiosPlatform,
1098 EfiPlatformHookShadowServiceRoms,
1099 0,
1100 0,
1101 &ShadowAddress,
1102 Legacy16Table,
1103 NULL
1104 );
1105 Private->OptionRom = (UINT32)ShadowAddress;
1106 //
1107 // Register Legacy SMI Handler
1108 //
1109 LegacyBiosPlatform->SmmInit (
1110 LegacyBiosPlatform,
1111 EfiToLegacy16BootTable
1112 );
1113
1114 //
1115 // Let platform code know the boot options
1116 //
1117 LegacyBiosGetBbsInfo (
1118 This,
1119 &HddCount,
1120 &LocalHddInfo,
1121 &BbsCount,
1122 &LocalBbsTable
1123 );
1124
1125 DEBUG_CODE (
1126 PrintPciInterruptRegister ();
1127 PrintBbsTable (LocalBbsTable);
1128 PrintHddInfo (LocalHddInfo);
1129 );
1130 //
1131 // If drive wasn't spun up then BuildIdeData may have found new drives.
1132 // Need to update BBS boot priority.
1133 //
1134 for (Index = 0; Index < MAX_IDE_CONTROLLER; Index++) {
1135 if ((LocalHddInfo[Index].IdentifyDrive[0].Raw[0] != 0) &&
1136 (LocalBbsTable[2 * Index + 1].BootPriority == BBS_IGNORE_ENTRY)
1137 ) {
1138 LocalBbsTable[2 * Index + 1].BootPriority = BBS_UNPRIORITIZED_ENTRY;
1139 }
1140
1141 if ((LocalHddInfo[Index].IdentifyDrive[1].Raw[0] != 0) &&
1142 (LocalBbsTable[2 * Index + 2].BootPriority == BBS_IGNORE_ENTRY)
1143 ) {
1144 LocalBbsTable[2 * Index + 2].BootPriority = BBS_UNPRIORITIZED_ENTRY;
1145 }
1146 }
1147
1148 Private->LegacyRegion->UnLock (
1149 Private->LegacyRegion,
1150 0xc0000,
1151 0x40000,
1152 &Granularity
1153 );
1154
1155 LegacyBiosPlatform->PrepareToBoot (
1156 LegacyBiosPlatform,
1157 mBbsDevicePathPtr,
1158 mBbsTable,
1159 mLoadOptionsSize,
1160 mLoadOptions,
1161 (VOID *) &Private->IntThunk->EfiToLegacy16BootTable
1162 );
1163
1164 //
1165 // If no boot device return to BDS
1166 //
1167 if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
1168 for (Index = 0; Index < BbsCount; Index++){
1169 if ((LocalBbsTable[Index].BootPriority != BBS_DO_NOT_BOOT_FROM) &&
1170 (LocalBbsTable[Index].BootPriority != BBS_UNPRIORITIZED_ENTRY) &&
1171 (LocalBbsTable[Index].BootPriority != BBS_IGNORE_ENTRY)) {
1172 break;
1173 }
1174 }
1175 if (Index == BbsCount) {
1176 return EFI_DEVICE_ERROR;
1177 }
1178 }
1179 //
1180 // Let the Legacy16 code know the device path type for legacy boot
1181 //
1182 EfiToLegacy16BootTable->DevicePathType = mBbsDevicePathPtr->DeviceType;
1183
1184 //
1185 // Copy MP table, if it exists.
1186 //
1187 LegacyGetDataOrTable (This, EfiGetPlatformBinaryMpTable);
1188
1189 if (!Private->LegacyBootEntered) {
1190 //
1191 // Copy OEM INT Data, if it exists. Note: This code treats any data
1192 // as a bag of bits and knows nothing of the contents nor cares.
1193 // Contents are IBV specific.
1194 //
1195 LegacyGetDataOrTable (This, EfiGetPlatformBinaryOemIntData);
1196
1197 //
1198 // Copy OEM16 Data, if it exists.Note: This code treats any data
1199 // as a bag of bits and knows nothing of the contents nor cares.
1200 // Contents are IBV specific.
1201 //
1202 LegacyGetDataOrTable (This, EfiGetPlatformBinaryOem16Data);
1203
1204 //
1205 // Copy OEM32 Data, if it exists.Note: This code treats any data
1206 // as a bag of bits and knows nothing of the contents nor cares.
1207 // Contents are IBV specific.
1208 //
1209 LegacyGetDataOrTable (This, EfiGetPlatformBinaryOem32Data);
1210 }
1211
1212 //
1213 // Call into Legacy16 code to prepare for INT 19h
1214 //
1215 ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
1216 Regs.X.AX = Legacy16PrepareToBoot;
1217
1218 //
1219 // Pass in handoff data
1220 //
1221 Regs.X.ES = NORMALIZE_EFI_SEGMENT ((UINTN)EfiToLegacy16BootTable);
1222 Regs.X.BX = NORMALIZE_EFI_OFFSET ((UINTN)EfiToLegacy16BootTable);
1223
1224 Private->LegacyBios.FarCall86 (
1225 This,
1226 Private->Legacy16CallSegment,
1227 Private->Legacy16CallOffset,
1228 &Regs,
1229 NULL,
1230 0
1231 );
1232
1233 if (Regs.X.AX != 0) {
1234 return EFI_DEVICE_ERROR;
1235 }
1236 //
1237 // Lock the Legacy BIOS region
1238 //
1239 Private->LegacyRegion->Lock (
1240 Private->LegacyRegion,
1241 0xc0000,
1242 0x40000,
1243 &Granularity
1244 );
1245
1246 if ((Private->Legacy16Table->TableLength >= OFFSET_OF (EFI_COMPATIBILITY16_TABLE, HiPermanentMemoryAddress)) &&
1247 ((Private->Legacy16Table->UmaAddress != 0) && (Private->Legacy16Table->UmaSize != 0))) {
1248 //
1249 // Here we could reduce UmaAddress down as far as Private->OptionRom, taking into
1250 // account the granularity of the access control.
1251 //
1252 DEBUG((EFI_D_INFO, "Unlocking UMB RAM region 0x%x-0x%x\n", Private->Legacy16Table->UmaAddress,
1253 Private->Legacy16Table->UmaAddress + Private->Legacy16Table->UmaSize));
1254
1255 Private->LegacyRegion->UnLock (
1256 Private->LegacyRegion,
1257 Private->Legacy16Table->UmaAddress,
1258 Private->Legacy16Table->UmaSize,
1259 &Granularity
1260 );
1261 }
1262
1263 //
1264 // Lock attributes of the Legacy Region if chipset supports
1265 //
1266 Private->LegacyRegion->BootLock (
1267 Private->LegacyRegion,
1268 0xc0000,
1269 0x40000,
1270 &Granularity
1271 );
1272
1273 //
1274 // Call into Legacy16 code to do the INT 19h
1275 //
1276 EnableAllControllers (Private);
1277 if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
1278
1279 //
1280 // Signal all the events that are waiting on EVT_SIGNAL_LEGACY_BOOT
1281 //
1282 EfiSignalEventLegacyBoot ();
1283
1284 //
1285 // Report Status Code to indicate legacy boot event was signalled
1286 //
1287 REPORT_STATUS_CODE (
1288 EFI_PROGRESS_CODE,
1289 (EFI_SOFTWARE_DXE_BS_DRIVER | EFI_SW_DXE_BS_PC_LEGACY_BOOT_EVENT)
1290 );
1291
1292 DEBUG ((EFI_D_INFO, "Legacy INT19 Boot...\n"));
1293
1294 //
1295 // Disable DXE Timer while executing in real mode
1296 //
1297 Private->Timer->SetTimerPeriod (Private->Timer, 0);
1298
1299 //
1300 // Save and disable interrupt of debug timer
1301 //
1302 SaveAndSetDebugTimerInterrupt (FALSE);
1303
1304
1305 //
1306 // Put the 8259 into its legacy mode by reprogramming the vector bases
1307 //
1308 Private->Legacy8259->SetVectorBase (Private->Legacy8259, LEGACY_MODE_BASE_VECTOR_MASTER, LEGACY_MODE_BASE_VECTOR_SLAVE);
1309 //
1310 // PC History
1311 // The original PC used INT8-F for master PIC. Since these mapped over
1312 // processor exceptions TIANO moved the master PIC to INT68-6F.
1313 // We need to set these back to the Legacy16 unexpected interrupt(saved
1314 // in LegacyBios.c) since some OS see that these have values different from
1315 // what is expected and invoke them. Since the legacy OS corrupts EFI
1316 // memory, there is no handler for these interrupts and OS blows up.
1317 //
1318 // We need to save the TIANO values for the rare case that the Legacy16
1319 // code cannot boot but knows memory hasn't been destroyed.
1320 //
1321 // To compound the problem, video takes over one of these INTS and must be
1322 // be left.
1323 // @bug - determine if video hooks INT(in which case we must find new
1324 // set of TIANO vectors) or takes it over.
1325 //
1326 //
1327 ACCESS_PAGE0_CODE (
1328 BaseVectorMaster = (UINT32 *) (sizeof (UINT32) * PROTECTED_MODE_BASE_VECTOR_MASTER);
1329 for (Index = 0; Index < 8; Index++) {
1330 Private->ThunkSavedInt[Index] = BaseVectorMaster[Index];
1331 if (Private->ThunkSeg == (UINT16) (BaseVectorMaster[Index] >> 16)) {
1332 BaseVectorMaster[Index] = (UINT32) (Private->BiosUnexpectedInt);
1333 }
1334 }
1335 );
1336
1337 ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
1338 Regs.X.AX = Legacy16Boot;
1339
1340 Private->LegacyBios.FarCall86 (
1341 This,
1342 Private->Legacy16CallSegment,
1343 Private->Legacy16CallOffset,
1344 &Regs,
1345 NULL,
1346 0
1347 );
1348
1349 ACCESS_PAGE0_CODE (
1350 BaseVectorMaster = (UINT32 *) (sizeof (UINT32) * PROTECTED_MODE_BASE_VECTOR_MASTER);
1351 for (Index = 0; Index < 8; Index++) {
1352 BaseVectorMaster[Index] = Private->ThunkSavedInt[Index];
1353 }
1354 );
1355 }
1356 Private->LegacyBootEntered = TRUE;
1357 if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
1358 //
1359 // Should never return unless never passed control to 0:7c00(first stage
1360 // OS loader) and only then if no bootable device found.
1361 //
1362 return EFI_DEVICE_ERROR;
1363 } else {
1364 //
1365 // If boot to EFI then expect to return to caller
1366 //
1367 return EFI_SUCCESS;
1368 }
1369 }
1370
1371
1372 /**
1373 Assign drive number to legacy HDD drives prior to booting an EFI
1374 aware OS so the OS can access drives without an EFI driver.
1375 Note: BBS compliant drives ARE NOT available until this call by
1376 either shell or EFI.
1377
1378 @param This Protocol instance pointer.
1379 @param BbsCount Number of BBS_TABLE structures
1380 @param BbsTable List BBS entries
1381
1382 @retval EFI_SUCCESS Drive numbers assigned
1383
1384 **/
1385 EFI_STATUS
1386 EFIAPI
1387 LegacyBiosPrepareToBootEfi (
1388 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1389 OUT UINT16 *BbsCount,
1390 OUT BBS_TABLE **BbsTable
1391 )
1392 {
1393 EFI_STATUS Status;
1394 EFI_TO_COMPATIBILITY16_BOOT_TABLE *EfiToLegacy16BootTable;
1395 LEGACY_BIOS_INSTANCE *Private;
1396
1397 Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
1398 EfiToLegacy16BootTable = &Private->IntThunk->EfiToLegacy16BootTable;
1399 mBootMode = BOOT_EFI_OS;
1400 mBbsDevicePathPtr = NULL;
1401 Status = GenericLegacyBoot (This);
1402 *BbsTable = (BBS_TABLE*)(UINTN)EfiToLegacy16BootTable->BbsTable;
1403 *BbsCount = (UINT16) (sizeof (Private->IntThunk->BbsTable) / sizeof (BBS_TABLE));
1404 return Status;
1405 }
1406
1407 /**
1408 To boot from an unconventional device like parties and/or execute HDD diagnostics.
1409
1410 @param This Protocol instance pointer.
1411 @param Attributes How to interpret the other input parameters
1412 @param BbsEntry The 0-based index into the BbsTable for the parent
1413 device.
1414 @param BeerData Pointer to the 128 bytes of ram BEER data.
1415 @param ServiceAreaData Pointer to the 64 bytes of raw Service Area data. The
1416 caller must provide a pointer to the specific Service
1417 Area and not the start all Service Areas.
1418
1419 @retval EFI_INVALID_PARAMETER if error. Does NOT return if no error.
1420
1421 ***/
1422 EFI_STATUS
1423 EFIAPI
1424 LegacyBiosBootUnconventionalDevice (
1425 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1426 IN UDC_ATTRIBUTES Attributes,
1427 IN UINTN BbsEntry,
1428 IN VOID *BeerData,
1429 IN VOID *ServiceAreaData
1430 )
1431 {
1432 EFI_STATUS Status;
1433 EFI_TO_COMPATIBILITY16_BOOT_TABLE *EfiToLegacy16BootTable;
1434 LEGACY_BIOS_INSTANCE *Private;
1435 UD_TABLE *UcdTable;
1436 UINTN Index;
1437 UINT16 BootPriority;
1438 BBS_TABLE *BbsTable;
1439
1440 BootPriority = 0;
1441 Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
1442 mBootMode = BOOT_UNCONVENTIONAL_DEVICE;
1443 mBbsDevicePathPtr = &mBbsDevicePathNode;
1444 mAttributes = Attributes;
1445 mBbsEntry = BbsEntry;
1446 mBeerData = BeerData, mServiceAreaData = ServiceAreaData;
1447
1448 EfiToLegacy16BootTable = &Private->IntThunk->EfiToLegacy16BootTable;
1449
1450 //
1451 // Do input parameter checking
1452 //
1453 if ((Attributes.DirectoryServiceValidity == 0) &&
1454 (Attributes.RabcaUsedFlag == 0) &&
1455 (Attributes.ExecuteHddDiagnosticsFlag == 0)
1456 ) {
1457 return EFI_INVALID_PARAMETER;
1458 }
1459
1460 if (((Attributes.DirectoryServiceValidity != 0) && (ServiceAreaData == NULL)) ||
1461 (((Attributes.DirectoryServiceValidity | Attributes.RabcaUsedFlag) != 0) && (BeerData == NULL))
1462 ) {
1463 return EFI_INVALID_PARAMETER;
1464 }
1465
1466 UcdTable = (UD_TABLE *) AllocatePool (
1467 sizeof (UD_TABLE)
1468 );
1469 if (NULL == UcdTable) {
1470 return EFI_OUT_OF_RESOURCES;
1471 }
1472
1473 EfiToLegacy16BootTable->UnconventionalDeviceTable = (UINT32)(UINTN)UcdTable;
1474 UcdTable->Attributes = Attributes;
1475 UcdTable->BbsTableEntryNumberForParentDevice = (UINT8) BbsEntry;
1476 //
1477 // Force all existing BBS entries to DoNotBoot. This allows 16-bit CSM
1478 // to assign drive numbers but bot boot from. Only newly created entries
1479 // will be valid.
1480 //
1481 BbsTable = (BBS_TABLE*)(UINTN)EfiToLegacy16BootTable->BbsTable;
1482 for (Index = 0; Index < EfiToLegacy16BootTable->NumberBbsEntries; Index++) {
1483 BbsTable[Index].BootPriority = BBS_DO_NOT_BOOT_FROM;
1484 }
1485 //
1486 // If parent is onboard IDE then assign controller & device number
1487 // else they are 0.
1488 //
1489 if (BbsEntry < MAX_IDE_CONTROLLER * 2) {
1490 UcdTable->DeviceNumber = (UINT8) ((BbsEntry - 1) % 2);
1491 }
1492
1493 if (BeerData != NULL) {
1494 CopyMem (
1495 (VOID *) UcdTable->BeerData,
1496 BeerData,
1497 (UINTN) 128
1498 );
1499 }
1500
1501 if (ServiceAreaData != NULL) {
1502 CopyMem (
1503 (VOID *) UcdTable->ServiceAreaData,
1504 ServiceAreaData,
1505 (UINTN) 64
1506 );
1507 }
1508 //
1509 // For each new entry do the following:
1510 // 1. Increment current number of BBS entries
1511 // 2. Copy parent entry to new entry.
1512 // 3. Zero out BootHandler Offset & segment
1513 // 4. Set appropriate device type. BEV(0x80) for HDD diagnostics
1514 // and Floppy(0x01) for PARTIES boot.
1515 // 5. Assign new priority.
1516 //
1517 if ((Attributes.ExecuteHddDiagnosticsFlag) != 0) {
1518 EfiToLegacy16BootTable->NumberBbsEntries += 1;
1519
1520 CopyMem (
1521 (VOID *) &BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootPriority,
1522 (VOID *) &BbsTable[BbsEntry].BootPriority,
1523 sizeof (BBS_TABLE)
1524 );
1525
1526 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootHandlerOffset = 0;
1527 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootHandlerSegment = 0;
1528 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].DeviceType = 0x80;
1529
1530 UcdTable->BbsTableEntryNumberForHddDiag = (UINT8) (EfiToLegacy16BootTable->NumberBbsEntries - 1);
1531
1532 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootPriority = BootPriority;
1533 BootPriority += 1;
1534
1535 //
1536 // Set device type as BBS_TYPE_DEV for PARTIES diagnostic
1537 //
1538 mBbsDevicePathNode.DeviceType = BBS_TYPE_BEV;
1539 }
1540
1541 if (((Attributes.DirectoryServiceValidity | Attributes.RabcaUsedFlag)) != 0) {
1542 EfiToLegacy16BootTable->NumberBbsEntries += 1;
1543 CopyMem (
1544 (VOID *) &BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootPriority,
1545 (VOID *) &BbsTable[BbsEntry].BootPriority,
1546 sizeof (BBS_TABLE)
1547 );
1548
1549 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootHandlerOffset = 0;
1550 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootHandlerSegment = 0;
1551 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].DeviceType = 0x01;
1552 UcdTable->BbsTableEntryNumberForBoot = (UINT8) (EfiToLegacy16BootTable->NumberBbsEntries - 1);
1553 BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootPriority = BootPriority;
1554
1555 //
1556 // Set device type as BBS_TYPE_FLOPPY for PARTIES boot as floppy
1557 //
1558 mBbsDevicePathNode.DeviceType = BBS_TYPE_FLOPPY;
1559 }
1560 //
1561 // Build the BBS Device Path for this boot selection
1562 //
1563 mBbsDevicePathNode.Header.Type = BBS_DEVICE_PATH;
1564 mBbsDevicePathNode.Header.SubType = BBS_BBS_DP;
1565 SetDevicePathNodeLength (&mBbsDevicePathNode.Header, sizeof (BBS_BBS_DEVICE_PATH));
1566 mBbsDevicePathNode.StatusFlag = 0;
1567 mBbsDevicePathNode.String[0] = 0;
1568
1569 Status = GenericLegacyBoot (This);
1570 return Status;
1571 }
1572
1573 /**
1574 Attempt to legacy boot the BootOption. If the EFI contexted has been
1575 compromised this function will not return.
1576
1577 @param This Protocol instance pointer.
1578 @param BbsDevicePath EFI Device Path from BootXXXX variable.
1579 @param LoadOptionsSize Size of LoadOption in size.
1580 @param LoadOptions LoadOption from BootXXXX variable
1581
1582 @retval EFI_SUCCESS Removable media not present
1583
1584 **/
1585 EFI_STATUS
1586 EFIAPI
1587 LegacyBiosLegacyBoot (
1588 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1589 IN BBS_BBS_DEVICE_PATH *BbsDevicePath,
1590 IN UINT32 LoadOptionsSize,
1591 IN VOID *LoadOptions
1592 )
1593 {
1594 EFI_STATUS Status;
1595
1596 mBbsDevicePathPtr = BbsDevicePath;
1597 mLoadOptionsSize = LoadOptionsSize;
1598 mLoadOptions = LoadOptions;
1599 mBootMode = BOOT_LEGACY_OS;
1600 Status = GenericLegacyBoot (This);
1601
1602 return Status;
1603 }
1604
1605 /**
1606 Convert EFI Memory Type to E820 Memory Type.
1607
1608 @param Type EFI Memory Type
1609
1610 @return ACPI Memory Type for EFI Memory Type
1611
1612 **/
1613 EFI_ACPI_MEMORY_TYPE
1614 EfiMemoryTypeToE820Type (
1615 IN UINT32 Type
1616 )
1617 {
1618 switch (Type) {
1619 case EfiLoaderCode:
1620 case EfiLoaderData:
1621 case EfiBootServicesCode:
1622 case EfiBootServicesData:
1623 case EfiConventionalMemory:
1624 //
1625 // The memory of EfiRuntimeServicesCode and EfiRuntimeServicesData are
1626 // usable memory for legacy OS, because legacy OS is not aware of EFI runtime concept.
1627 // In ACPI specification, EfiRuntimeServiceCode and EfiRuntimeServiceData
1628 // should be mapped to AddressRangeReserved. This statement is for UEFI OS, not for legacy OS.
1629 //
1630 case EfiRuntimeServicesCode:
1631 case EfiRuntimeServicesData:
1632 return EfiAcpiAddressRangeMemory;
1633
1634 case EfiPersistentMemory:
1635 return EfiAddressRangePersistentMemory;
1636
1637 case EfiACPIReclaimMemory:
1638 return EfiAcpiAddressRangeACPI;
1639
1640 case EfiACPIMemoryNVS:
1641 return EfiAcpiAddressRangeNVS;
1642
1643 //
1644 // All other types map to reserved.
1645 // Adding the code just waists FLASH space.
1646 //
1647 // case EfiReservedMemoryType:
1648 // case EfiUnusableMemory:
1649 // case EfiMemoryMappedIO:
1650 // case EfiMemoryMappedIOPortSpace:
1651 // case EfiPalCode:
1652 //
1653 default:
1654 return EfiAcpiAddressRangeReserved;
1655 }
1656 }
1657
1658 /**
1659 Build the E820 table.
1660
1661 @param Private Legacy BIOS Instance data
1662 @param Size Size of E820 Table
1663
1664 @retval EFI_SUCCESS It should always work.
1665
1666 **/
1667 EFI_STATUS
1668 LegacyBiosBuildE820 (
1669 IN LEGACY_BIOS_INSTANCE *Private,
1670 OUT UINTN *Size
1671 )
1672 {
1673 EFI_STATUS Status;
1674 EFI_E820_ENTRY64 *E820Table;
1675 EFI_MEMORY_DESCRIPTOR *EfiMemoryMap;
1676 EFI_MEMORY_DESCRIPTOR *EfiMemoryMapEnd;
1677 EFI_MEMORY_DESCRIPTOR *EfiEntry;
1678 EFI_MEMORY_DESCRIPTOR *NextEfiEntry;
1679 EFI_MEMORY_DESCRIPTOR TempEfiEntry;
1680 UINTN EfiMemoryMapSize;
1681 UINTN EfiMapKey;
1682 UINTN EfiDescriptorSize;
1683 UINT32 EfiDescriptorVersion;
1684 UINTN Index;
1685 EFI_PEI_HOB_POINTERS Hob;
1686 EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob;
1687 UINTN TempIndex;
1688 UINTN IndexSort;
1689 UINTN TempNextIndex;
1690 EFI_E820_ENTRY64 TempE820;
1691 EFI_ACPI_MEMORY_TYPE TempType;
1692 BOOLEAN ChangedFlag;
1693 UINTN Above1MIndex;
1694 UINT64 MemoryBlockLength;
1695
1696 E820Table = (EFI_E820_ENTRY64 *) Private->E820Table;
1697
1698 //
1699 // Get the EFI memory map.
1700 //
1701 EfiMemoryMapSize = 0;
1702 EfiMemoryMap = NULL;
1703 Status = gBS->GetMemoryMap (
1704 &EfiMemoryMapSize,
1705 EfiMemoryMap,
1706 &EfiMapKey,
1707 &EfiDescriptorSize,
1708 &EfiDescriptorVersion
1709 );
1710 ASSERT (Status == EFI_BUFFER_TOO_SMALL);
1711
1712 do {
1713 //
1714 // Use size returned back plus 1 descriptor for the AllocatePool.
1715 // We don't just multiply by 2 since the "for" loop below terminates on
1716 // EfiMemoryMapEnd which is dependent upon EfiMemoryMapSize. Otherwize
1717 // we process bogus entries and create bogus E820 entries.
1718 //
1719 EfiMemoryMap = (EFI_MEMORY_DESCRIPTOR *) AllocatePool (EfiMemoryMapSize);
1720 ASSERT (EfiMemoryMap != NULL);
1721 Status = gBS->GetMemoryMap (
1722 &EfiMemoryMapSize,
1723 EfiMemoryMap,
1724 &EfiMapKey,
1725 &EfiDescriptorSize,
1726 &EfiDescriptorVersion
1727 );
1728 if (EFI_ERROR (Status)) {
1729 FreePool (EfiMemoryMap);
1730 }
1731 } while (Status == EFI_BUFFER_TOO_SMALL);
1732
1733 ASSERT_EFI_ERROR (Status);
1734
1735 //
1736 // Punch in the E820 table for memory less than 1 MB.
1737 // Assume ZeroMem () has been done on data structure.
1738 //
1739 //
1740 // First entry is 0 to (640k - EBDA)
1741 //
1742 ACCESS_PAGE0_CODE (
1743 E820Table[0].BaseAddr = 0;
1744 E820Table[0].Length = (UINT64) ((*(UINT16 *) (UINTN)0x40E) << 4);
1745 E820Table[0].Type = EfiAcpiAddressRangeMemory;
1746 );
1747
1748 //
1749 // Second entry is (640k - EBDA) to 640k
1750 //
1751 E820Table[1].BaseAddr = E820Table[0].Length;
1752 E820Table[1].Length = (UINT64) ((640 * 1024) - E820Table[0].Length);
1753 E820Table[1].Type = EfiAcpiAddressRangeReserved;
1754
1755 //
1756 // Third Entry is legacy BIOS
1757 // DO NOT CLAIM region from 0xA0000-0xDFFFF. OS can use free areas
1758 // to page in memory under 1MB.
1759 // Omit region from 0xE0000 to start of BIOS, if any. This can be
1760 // used for a multiple reasons including OPROMS.
1761 //
1762
1763 //
1764 // The CSM binary image size is not the actually size that CSM binary used,
1765 // to avoid memory corrupt, we declare the 0E0000 - 0FFFFF is used by CSM binary.
1766 //
1767 E820Table[2].BaseAddr = 0xE0000;
1768 E820Table[2].Length = 0x20000;
1769 E820Table[2].Type = EfiAcpiAddressRangeReserved;
1770
1771 Above1MIndex = 2;
1772
1773 //
1774 // Process the EFI map to produce E820 map;
1775 //
1776
1777 //
1778 // Sort memory map from low to high
1779 //
1780 EfiEntry = EfiMemoryMap;
1781 NextEfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
1782 EfiMemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) EfiMemoryMap + EfiMemoryMapSize);
1783 while (EfiEntry < EfiMemoryMapEnd) {
1784 while (NextEfiEntry < EfiMemoryMapEnd) {
1785 if (EfiEntry->PhysicalStart > NextEfiEntry->PhysicalStart) {
1786 CopyMem (&TempEfiEntry, EfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
1787 CopyMem (EfiEntry, NextEfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
1788 CopyMem (NextEfiEntry, &TempEfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
1789 }
1790
1791 NextEfiEntry = NEXT_MEMORY_DESCRIPTOR (NextEfiEntry, EfiDescriptorSize);
1792 }
1793
1794 EfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
1795 NextEfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
1796 }
1797
1798 EfiEntry = EfiMemoryMap;
1799 EfiMemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) EfiMemoryMap + EfiMemoryMapSize);
1800 for (Index = Above1MIndex; (EfiEntry < EfiMemoryMapEnd) && (Index < EFI_MAX_E820_ENTRY - 1); ) {
1801 MemoryBlockLength = (UINT64) (LShiftU64 (EfiEntry->NumberOfPages, 12));
1802 if ((EfiEntry->PhysicalStart + MemoryBlockLength) < 0x100000) {
1803 //
1804 // Skip the memory block is under 1MB
1805 //
1806 } else {
1807 if (EfiEntry->PhysicalStart < 0x100000) {
1808 //
1809 // When the memory block spans below 1MB, ensure the memory block start address is at least 1MB
1810 //
1811 MemoryBlockLength -= 0x100000 - EfiEntry->PhysicalStart;
1812 EfiEntry->PhysicalStart = 0x100000;
1813 }
1814
1815 //
1816 // Convert memory type to E820 type
1817 //
1818 TempType = EfiMemoryTypeToE820Type (EfiEntry->Type);
1819
1820 if ((E820Table[Index].Type == TempType) && (EfiEntry->PhysicalStart == (E820Table[Index].BaseAddr + E820Table[Index].Length))) {
1821 //
1822 // Grow an existing entry
1823 //
1824 E820Table[Index].Length += MemoryBlockLength;
1825 } else {
1826 //
1827 // Make a new entry
1828 //
1829 ++Index;
1830 E820Table[Index].BaseAddr = EfiEntry->PhysicalStart;
1831 E820Table[Index].Length = MemoryBlockLength;
1832 E820Table[Index].Type = TempType;
1833 }
1834 }
1835 EfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
1836 }
1837
1838 FreePool (EfiMemoryMap);
1839
1840 //
1841 // Process the reserved memory map to produce E820 map ;
1842 //
1843 for (Hob.Raw = GetHobList (); !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) {
1844 if (Hob.Raw != NULL && GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
1845 ResourceHob = Hob.ResourceDescriptor;
1846 if (((ResourceHob->ResourceType == EFI_RESOURCE_MEMORY_MAPPED_IO) ||
1847 (ResourceHob->ResourceType == EFI_RESOURCE_FIRMWARE_DEVICE) ||
1848 (ResourceHob->ResourceType == EFI_RESOURCE_MEMORY_RESERVED) ) &&
1849 (ResourceHob->PhysicalStart > 0x100000) &&
1850 (Index < EFI_MAX_E820_ENTRY - 1)) {
1851 ++Index;
1852 E820Table[Index].BaseAddr = ResourceHob->PhysicalStart;
1853 E820Table[Index].Length = ResourceHob->ResourceLength;
1854 E820Table[Index].Type = EfiAcpiAddressRangeReserved;
1855 }
1856 }
1857 }
1858
1859 Index ++;
1860 Private->IntThunk->EfiToLegacy16InitTable.NumberE820Entries = (UINT32)Index;
1861 Private->IntThunk->EfiToLegacy16BootTable.NumberE820Entries = (UINT32)Index;
1862 Private->NumberE820Entries = (UINT32)Index;
1863 *Size = (UINTN) (Index * sizeof (EFI_E820_ENTRY64));
1864
1865 //
1866 // Sort E820Table from low to high
1867 //
1868 for (TempIndex = 0; TempIndex < Index; TempIndex++) {
1869 ChangedFlag = FALSE;
1870 for (TempNextIndex = 1; TempNextIndex < Index - TempIndex; TempNextIndex++) {
1871 if (E820Table[TempNextIndex - 1].BaseAddr > E820Table[TempNextIndex].BaseAddr) {
1872 ChangedFlag = TRUE;
1873 TempE820.BaseAddr = E820Table[TempNextIndex - 1].BaseAddr;
1874 TempE820.Length = E820Table[TempNextIndex - 1].Length;
1875 TempE820.Type = E820Table[TempNextIndex - 1].Type;
1876
1877 E820Table[TempNextIndex - 1].BaseAddr = E820Table[TempNextIndex].BaseAddr;
1878 E820Table[TempNextIndex - 1].Length = E820Table[TempNextIndex].Length;
1879 E820Table[TempNextIndex - 1].Type = E820Table[TempNextIndex].Type;
1880
1881 E820Table[TempNextIndex].BaseAddr = TempE820.BaseAddr;
1882 E820Table[TempNextIndex].Length = TempE820.Length;
1883 E820Table[TempNextIndex].Type = TempE820.Type;
1884 }
1885 }
1886
1887 if (!ChangedFlag) {
1888 break;
1889 }
1890 }
1891
1892 //
1893 // Remove the overlap range
1894 //
1895 for (TempIndex = 1; TempIndex < Index; TempIndex++) {
1896 if (E820Table[TempIndex - 1].BaseAddr <= E820Table[TempIndex].BaseAddr &&
1897 ((E820Table[TempIndex - 1].BaseAddr + E820Table[TempIndex - 1].Length) >=
1898 (E820Table[TempIndex].BaseAddr +E820Table[TempIndex].Length))) {
1899 //
1900 //Overlap range is found
1901 //
1902 ASSERT (E820Table[TempIndex - 1].Type == E820Table[TempIndex].Type);
1903
1904 if (TempIndex == Index - 1) {
1905 E820Table[TempIndex].BaseAddr = 0;
1906 E820Table[TempIndex].Length = 0;
1907 E820Table[TempIndex].Type = (EFI_ACPI_MEMORY_TYPE) 0;
1908 Index--;
1909 break;
1910 } else {
1911 for (IndexSort = TempIndex; IndexSort < Index - 1; IndexSort ++) {
1912 E820Table[IndexSort].BaseAddr = E820Table[IndexSort + 1].BaseAddr;
1913 E820Table[IndexSort].Length = E820Table[IndexSort + 1].Length;
1914 E820Table[IndexSort].Type = E820Table[IndexSort + 1].Type;
1915 }
1916 Index--;
1917 }
1918 }
1919 }
1920
1921
1922
1923 Private->IntThunk->EfiToLegacy16InitTable.NumberE820Entries = (UINT32)Index;
1924 Private->IntThunk->EfiToLegacy16BootTable.NumberE820Entries = (UINT32)Index;
1925 Private->NumberE820Entries = (UINT32)Index;
1926 *Size = (UINTN) (Index * sizeof (EFI_E820_ENTRY64));
1927
1928 //
1929 // Determine OS usable memory above 1Mb
1930 //
1931 Private->IntThunk->EfiToLegacy16BootTable.OsMemoryAbove1Mb = 0x0000;
1932 for (TempIndex = Above1MIndex; TempIndex < Index; TempIndex++) {
1933 if (E820Table[TempIndex].BaseAddr >= 0x100000 && E820Table[TempIndex].BaseAddr < 0x100000000ULL) { // not include above 4G memory
1934 //
1935 // ACPIReclaimMemory is also usable memory for ACPI OS, after OS dumps all ACPI tables.
1936 //
1937 if ((E820Table[TempIndex].Type == EfiAcpiAddressRangeMemory) || (E820Table[TempIndex].Type == EfiAcpiAddressRangeACPI)) {
1938 Private->IntThunk->EfiToLegacy16BootTable.OsMemoryAbove1Mb += (UINT32) (E820Table[TempIndex].Length);
1939 } else {
1940 break; // break at first not normal memory, because SMM may use reserved memory.
1941 }
1942 }
1943 }
1944
1945 Private->IntThunk->EfiToLegacy16InitTable.OsMemoryAbove1Mb = Private->IntThunk->EfiToLegacy16BootTable.OsMemoryAbove1Mb;
1946
1947 //
1948 // Print DEBUG information
1949 //
1950 for (TempIndex = 0; TempIndex < Index; TempIndex++) {
1951 DEBUG((EFI_D_INFO, "E820[%2d]: 0x%16lx ---- 0x%16lx, Type = 0x%x \n",
1952 TempIndex,
1953 E820Table[TempIndex].BaseAddr,
1954 (E820Table[TempIndex].BaseAddr + E820Table[TempIndex].Length),
1955 E820Table[TempIndex].Type
1956 ));
1957 }
1958
1959 return EFI_SUCCESS;
1960 }
1961
1962
1963 /**
1964 Fill in the standard BDA and EBDA stuff prior to legacy Boot
1965
1966 @param Private Legacy BIOS Instance data
1967
1968 @retval EFI_SUCCESS It should always work.
1969
1970 **/
1971 EFI_STATUS
1972 LegacyBiosCompleteBdaBeforeBoot (
1973 IN LEGACY_BIOS_INSTANCE *Private
1974 )
1975 {
1976 BDA_STRUC *Bda;
1977 UINT16 MachineConfig;
1978 DEVICE_PRODUCER_DATA_HEADER *SioPtr;
1979
1980 Bda = (BDA_STRUC *) ((UINTN) 0x400);
1981 MachineConfig = 0;
1982
1983 SioPtr = &(Private->IntThunk->EfiToLegacy16BootTable.SioData);
1984 Bda->Com1 = SioPtr->Serial[0].Address;
1985 Bda->Com2 = SioPtr->Serial[1].Address;
1986 Bda->Com3 = SioPtr->Serial[2].Address;
1987 Bda->Com4 = SioPtr->Serial[3].Address;
1988
1989 if (SioPtr->Serial[0].Address != 0x00) {
1990 MachineConfig += 0x200;
1991 }
1992
1993 if (SioPtr->Serial[1].Address != 0x00) {
1994 MachineConfig += 0x200;
1995 }
1996
1997 if (SioPtr->Serial[2].Address != 0x00) {
1998 MachineConfig += 0x200;
1999 }
2000
2001 if (SioPtr->Serial[3].Address != 0x00) {
2002 MachineConfig += 0x200;
2003 }
2004
2005 Bda->Lpt1 = SioPtr->Parallel[0].Address;
2006 Bda->Lpt2 = SioPtr->Parallel[1].Address;
2007 Bda->Lpt3 = SioPtr->Parallel[2].Address;
2008
2009 if (SioPtr->Parallel[0].Address != 0x00) {
2010 MachineConfig += 0x4000;
2011 }
2012
2013 if (SioPtr->Parallel[1].Address != 0x00) {
2014 MachineConfig += 0x4000;
2015 }
2016
2017 if (SioPtr->Parallel[2].Address != 0x00) {
2018 MachineConfig += 0x4000;
2019 }
2020
2021 Bda->NumberOfDrives = (UINT8) (Bda->NumberOfDrives + Private->IdeDriveCount);
2022 if (SioPtr->Floppy.NumberOfFloppy != 0x00) {
2023 MachineConfig = (UINT16) (MachineConfig + 0x01 + (SioPtr->Floppy.NumberOfFloppy - 1) * 0x40);
2024 Bda->FloppyXRate = 0x07;
2025 }
2026
2027 Bda->Lpt1_2Timeout = 0x1414;
2028 Bda->Lpt3_4Timeout = 0x1414;
2029 Bda->Com1_2Timeout = 0x0101;
2030 Bda->Com3_4Timeout = 0x0101;
2031
2032 //
2033 // Force VGA and Coprocessor, indicate 101/102 keyboard
2034 //
2035 MachineConfig = (UINT16) (MachineConfig + 0x00 + 0x02 + (SioPtr->MousePresent * 0x04));
2036 Bda->MachineConfig = MachineConfig;
2037
2038 return EFI_SUCCESS;
2039 }
2040
2041 /**
2042 Fill in the standard BDA for Keyboard LEDs
2043
2044 @param This Protocol instance pointer.
2045 @param Leds Current LED status
2046
2047 @retval EFI_SUCCESS It should always work.
2048
2049 **/
2050 EFI_STATUS
2051 EFIAPI
2052 LegacyBiosUpdateKeyboardLedStatus (
2053 IN EFI_LEGACY_BIOS_PROTOCOL *This,
2054 IN UINT8 Leds
2055 )
2056 {
2057 LEGACY_BIOS_INSTANCE *Private;
2058 BDA_STRUC *Bda;
2059 UINT8 LocalLeds;
2060 EFI_IA32_REGISTER_SET Regs;
2061
2062 Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
2063
2064 ACCESS_PAGE0_CODE (
2065 Bda = (BDA_STRUC *) ((UINTN) 0x400);
2066 LocalLeds = Leds;
2067 Bda->LedStatus = (UINT8) ((Bda->LedStatus &~0x07) | LocalLeds);
2068 LocalLeds = (UINT8) (LocalLeds << 4);
2069 Bda->ShiftStatus = (UINT8) ((Bda->ShiftStatus &~0x70) | LocalLeds);
2070 LocalLeds = (UINT8) (Leds & 0x20);
2071 Bda->KeyboardStatus = (UINT8) ((Bda->KeyboardStatus &~0x20) | LocalLeds);
2072 );
2073
2074 //
2075 // Call into Legacy16 code to allow it to do any processing
2076 //
2077 ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
2078 Regs.X.AX = Legacy16SetKeyboardLeds;
2079 Regs.H.CL = Leds;
2080
2081 Private->LegacyBios.FarCall86 (
2082 &Private->LegacyBios,
2083 Private->Legacy16Table->Compatibility16CallSegment,
2084 Private->Legacy16Table->Compatibility16CallOffset,
2085 &Regs,
2086 NULL,
2087 0
2088 );
2089
2090 return EFI_SUCCESS;
2091 }
2092
2093
2094 /**
2095 Fill in the standard CMOS stuff prior to legacy Boot
2096
2097 @param Private Legacy BIOS Instance data
2098
2099 @retval EFI_SUCCESS It should always work.
2100
2101 **/
2102 EFI_STATUS
2103 LegacyBiosCompleteStandardCmosBeforeBoot (
2104 IN LEGACY_BIOS_INSTANCE *Private
2105 )
2106 {
2107 UINT8 Bda;
2108 UINT8 Floppy;
2109 UINT32 Size;
2110
2111 //
2112 // Update CMOS locations
2113 // 10 floppy
2114 // 12,19,1A - ignore as OS don't use them and there is no standard due
2115 // to large capacity drives
2116 // CMOS 14 = BDA 40:10 plus bit 3(display enabled)
2117 //
2118 ACCESS_PAGE0_CODE (
2119 Bda = (UINT8)(*((UINT8 *)((UINTN)0x410)) | BIT3);
2120 );
2121
2122 //
2123 // Force display enabled
2124 //
2125 Floppy = 0x00;
2126 if ((Bda & BIT0) != 0) {
2127 Floppy = BIT6;
2128 }
2129
2130 //
2131 // Check if 2.88MB floppy set
2132 //
2133 if ((Bda & (BIT7 | BIT6)) != 0) {
2134 Floppy = (UINT8)(Floppy | BIT1);
2135 }
2136
2137 LegacyWriteStandardCmos (CMOS_10, Floppy);
2138 LegacyWriteStandardCmos (CMOS_14, Bda);
2139
2140 //
2141 // Force Status Register A to set rate selection bits and divider
2142 //
2143 LegacyWriteStandardCmos (CMOS_0A, 0x26);
2144
2145 //
2146 // redo memory size since it can change
2147 //
2148 Size = (15 * SIZE_1MB) >> 10;
2149 if (Private->IntThunk->EfiToLegacy16InitTable.OsMemoryAbove1Mb < (15 * SIZE_1MB)) {
2150 Size = Private->IntThunk->EfiToLegacy16InitTable.OsMemoryAbove1Mb >> 10;
2151 }
2152
2153 LegacyWriteStandardCmos (CMOS_17, (UINT8)(Size & 0xFF));
2154 LegacyWriteStandardCmos (CMOS_30, (UINT8)(Size & 0xFF));
2155 LegacyWriteStandardCmos (CMOS_18, (UINT8)(Size >> 8));
2156 LegacyWriteStandardCmos (CMOS_31, (UINT8)(Size >> 8));
2157
2158 LegacyCalculateWriteStandardCmosChecksum ();
2159
2160 return EFI_SUCCESS;
2161 }
2162
2163 /**
2164 Relocate this image under 4G memory for IPF.
2165
2166 @param ImageHandle Handle of driver image.
2167 @param SystemTable Pointer to system table.
2168
2169 @retval EFI_SUCCESS Image successfully relocated.
2170 @retval EFI_ABORTED Failed to relocate image.
2171
2172 **/
2173 EFI_STATUS
2174 RelocateImageUnder4GIfNeeded (
2175 IN EFI_HANDLE ImageHandle,
2176 IN EFI_SYSTEM_TABLE *SystemTable
2177 )
2178 {
2179 return EFI_SUCCESS;
2180 }