]> git.proxmox.com Git - mirror_edk2.git/blob - IntelFrameworkPkg/Include/Protocol/LegacyBios.h
Committing changes to the comments, after review with engineers.
[mirror_edk2.git] / IntelFrameworkPkg / Include / Protocol / LegacyBios.h
1 /** @file
2 The EFI Legacy BIOS Protocol is used to abstract legacy Option ROM usage
3 under EFI and Legacy OS boot. This file also includes all the related
4 COMPATIBILIY16 structures and defintions.
5
6 Note: The names for EFI_IA32_REGISTER_SET elements were picked to follow
7 well known naming conventions.
8
9 Thunk is the code that switches from 32-bit protected environment into the 16-bit real-mode
10 environment. Reverse thunk is the code that does the opposite.
11
12
13 Copyright (c) 2007 - 2009, Intel Corporation
14 All rights reserved. This program and the accompanying materials
15 are licensed and made available under the terms and conditions of the BSD License
16 which accompanies this distribution. The full text of the license may be found at
17 http://opensource.org/licenses/bsd-license.php
18
19 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
20 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
21
22 @par Revision Reference:
23 This protocol is defined in Framework for EFI Compatibility Support Module spec
24 Version 0.97.
25
26 **/
27
28 #ifndef _EFI_LEGACY_BIOS_H_
29 #define _EFI_LEGACY_BIOS_H_
30
31 ///
32 ///
33 ///
34 #pragma pack(1)
35
36 typedef UINT8 SERIAL_MODE;
37 typedef UINT8 PARALLEL_MODE;
38
39 #define EFI_COMPATIBILITY16_TABLE_SIGNATURE SIGNATURE_32 ('I', 'F', 'E', '$')
40
41 ///
42 /// There is a table located within the traditional BIOS in either the 0xF000:xxxx or 0xE000:xxxx
43 /// physical address range. It is located on a 16-byte boundary and provides the physical address of the
44 /// entry point for the Compatibility16 functions. These functions provide the platform-specific
45 /// information that is required by the generic EfiCompatibility code. The functions are invoked via
46 /// thunking by using EFI_LEGACY_BIOS_PROTOCOL.FarCall86() with the 32-bit physical
47 /// entry point.
48 ///
49 typedef struct {
50 ///
51 /// The string "$EFI" denotes the start of the EfiCompatibility table. Byte 0 is "I," byte
52 /// 1 is "F," byte 2 is "E," and byte 3 is "$" and is normally accessed as a DWORD or UINT32.
53 ///
54 UINT32 Signature;
55
56 ///
57 /// The value required such that byte checksum of TableLength equals zero.
58 ///
59 UINT8 TableChecksum;
60
61 ///
62 /// The length of this table.
63 ///
64 UINT8 TableLength;
65
66 ///
67 /// The major EFI revision for which this table was generated.
68 ///
69 UINT8 EfiMajorRevision;
70
71 ///
72 /// The minor EFI revision for which this table was generated.
73 ///
74 UINT8 EfiMinorRevision;
75
76 ///
77 /// The major revision of this table.
78 ///
79 UINT8 TableMajorRevision;
80
81 ///
82 /// The minor revision of this table.
83 ///
84 UINT8 TableMinorRevision;
85
86 ///
87 /// Reserved for future usage.
88 ///
89 UINT16 Reserved;
90
91 ///
92 /// The segment of the entry point within the traditional BIOS for Compatibility16 functions.
93 ///
94 UINT16 Compatibility16CallSegment;
95
96 ///
97 /// The offset of the entry point within the traditional BIOS for Compatibility16 functions.
98 ///
99 UINT16 Compatibility16CallOffset;
100
101 ///
102 /// The segment of the entry point within the traditional BIOS for EfiCompatibility to invoke the PnP installation check.
103 ///
104 UINT16 PnPInstallationCheckSegment;
105
106 ///
107 /// The Offset of the entry point within the traditional BIOS for EfiCompatibility to invoke the PnP installation check.
108 ///
109 UINT16 PnPInstallationCheckOffset;
110
111 ///
112 /// EFI system resources table. Type EFI_SYSTEM_TABLE is defined in the IntelPlatform Innovation Framework for EFI
113 /// Driver Execution Environment Core Interface Specification (DXE CIS).
114 ///
115 UINT32 EfiSystemTable;
116
117 ///
118 /// The address of an OEM-provided identifier string. The string is null terminated.
119 ///
120 UINT32 OemIdStringPointer;
121
122 ///
123 /// The 32-bit physical address where ACPI RSD PTR is stored within the traditional
124 /// BIOS. The remained of the ACPI tables are located at their EFI addresses. The size
125 /// reserved is the maximum for ACPI 2.0. The EfiCompatibility will fill in the ACPI
126 /// RSD PTR with either the ACPI 1.0b or 2.0 values.
127 ///
128 UINT32 AcpiRsdPtrPointer;
129
130 ///
131 /// The OEM revision number. Usage is undefined but provided for OEM module usage.
132 ///
133 UINT16 OemRevision;
134
135 ///
136 /// The 32-bit physical address where INT15 E820 data is stored within the traditional
137 /// BIOS. The EfiCompatibility code will fill in the E820Pointer value and copy the
138 /// data to the indicated area.
139 ///
140 UINT32 E820Pointer;
141
142 ///
143 /// The length of the E820 data and is filled in by the EfiCompatibility code.
144 ///
145 UINT32 E820Length;
146
147 ///
148 /// The 32-bit physical address where the $PIR table is stored in the traditional BIOS.
149 /// The EfiCompatibility code will fill in the IrqRoutingTablePointer value and
150 /// copy the data to the indicated area.
151 ///
152 UINT32 IrqRoutingTablePointer;
153
154 ///
155 /// The length of the $PIR table and is filled in by the EfiCompatibility code.
156 ///
157 UINT32 IrqRoutingTableLength;
158
159 ///
160 /// The 32-bit physical address where the MP table is stored in the traditional BIOS.
161 /// The EfiCompatibility code will fill in the MpTablePtr value and copy the data to the indicated area.
162 ///
163 UINT32 MpTablePtr;
164
165 ///
166 /// The length of the MP table and is filled in by the EfiCompatibility code.
167 ///
168 UINT32 MpTableLength;
169
170 ///
171 /// The segment of the OEM-specific INT table/code.
172 ///
173 UINT16 OemIntSegment;
174
175 ///
176 /// The offset of the OEM-specific INT table/code.
177 ///
178 UINT16 OemIntOffset;
179
180 ///
181 /// The segment of the OEM-specific 32-bit table/code.
182 ///
183 UINT16 Oem32Segment;
184
185 ///
186 /// The offset of the OEM-specific 32-bit table/code.
187 ///
188 UINT16 Oem32Offset;
189
190 ///
191 /// The segment of the OEM-specific 16-bit table/code.
192 ///
193 UINT16 Oem16Segment;
194
195 ///
196 /// The offset of the OEM-specific 16-bit table/code.
197 ///
198 UINT16 Oem16Offset;
199
200 ///
201 /// The segment of the TPM binary passed to 16-bit CSM.
202 ///
203 UINT16 TpmSegment;
204
205 ///
206 /// The offset of the TPM binary passed to 16-bit CSM.
207 ///
208 UINT16 TpmOffset;
209
210 ///
211 /// A pointer to a string identifying the independent BIOS vendor.
212 ///
213 UINT32 IbvPointer;
214
215 ///
216 /// This field is NULL for all systems not supporting PCI Express. This field is the base
217 /// value of the start of the PCI Express memory-mapped configuration registers and
218 /// must be filled in prior to EfiCompatibility code issuing the Compatibility16 function
219 /// Compatibility16InitializeYourself().
220 /// Compatibility16InitializeYourself() is defined in Compatability16
221 /// Functions.
222 ///
223 UINT32 PciExpressBase;
224
225 ///
226 /// Maximum PCI bus number assigned.
227 ///
228 UINT8 LastPciBus;
229 } EFI_COMPATIBILITY16_TABLE;
230
231 ///
232 /// Functions provided by the CSM binary which communicate between the EfiCompatibility
233 /// and Compatability16 code.
234 ///
235 /// Inconsistent with specification here:
236 /// The member's name started with "Compatibility16" [defined in Intel Framework Compatibility Support Module Specification / 0.97 version]
237 /// has been changed to "Legacy16" since keeping backward compatible.
238 ///
239 typedef enum {
240 ///
241 /// Causes the Compatibility16 code to do any internal initialization required.
242 /// Input:
243 /// AX = Compatibility16InitializeYourself
244 /// ES:BX = Pointer to EFI_TO_COMPATIBILITY16_INIT_TABLE
245 /// Return:
246 /// AX = Return Status codes
247 ///
248 Legacy16InitializeYourself = 0x0000,
249
250 ///
251 /// Causes the Compatibility16 BIOS to perform any drive number translations to match the boot sequence.
252 /// Input:
253 /// AX = Compatibility16UpdateBbs
254 /// ES:BX = Pointer to EFI_TO_COMPATIBILITY16_BOOT_TABLE
255 /// Return:
256 /// AX = Returned status codes
257 ///
258 Legacy16UpdateBbs = 0x0001,
259
260 ///
261 /// Allows the Compatibility16 code to perform any final actions before booting. The Compatibility16
262 /// code is read/write.
263 /// Input:
264 /// AX = Compatibility16PrepareToBoot
265 /// ES:BX = Pointer to EFI_TO_COMPATIBILITY16_BOOT_TABLE structure
266 /// Return:
267 /// AX = Returned status codes
268 ///
269 Legacy16PrepareToBoot = 0x0002,
270
271 ///
272 /// Causes the Compatibility16 BIOS to boot. The Compatibility16 code is Read/Only.
273 /// Input:
274 /// AX = Compatibility16Boot
275 /// Output:
276 /// AX = Returned status codes
277 ///
278 Legacy16Boot = 0x0003,
279
280 ///
281 /// Allows the Compatibility16 code to get the last device from which a boot was attempted. This is
282 /// stored in CMOS and is the priority number of the last attempted boot device.
283 /// Input:
284 /// AX = Compatibility16RetrieveLastBootDevice
285 /// Output:
286 /// AX = Returned status codes
287 /// BX = Priority number of the boot device.
288 ///
289 Legacy16RetrieveLastBootDevice = 0x0004,
290
291 ///
292 /// Allows the Compatibility16 code rehook INT13, INT18, and/or INT19 after dispatching a legacy OpROM.
293 /// Input:
294 /// AX = Compatibility16DispatchOprom
295 /// ES:BX = Pointer to EFI_DISPATCH_OPROM_TABLE
296 /// Output:
297 /// AX = Returned status codes
298 /// BX = Number of non-BBS-compliant devices found. Equals 0 if BBS compliant.
299 ///
300 Legacy16DispatchOprom = 0x0005,
301
302 ///
303 /// Finds a free area in the 0xFxxxx or 0xExxxx region of the specified length and returns the address
304 /// of that region.
305 /// Input:
306 /// AX = Compatibility16GetTableAddress
307 /// BX = Allocation region
308 /// 00 = Allocate from either 0xE0000 or 0xF0000 64 KB blocks.
309 /// Bit 0 = 1 Allocate from 0xF0000 64 KB block
310 /// Bit 1 = 1 Allocate from 0xE0000 64 KB block
311 /// CX = Requested length in bytes.
312 /// DX = Required address alignment. Bit mapped. First non-zero bit from the right is the alignment.
313 /// Output:
314 /// AX = Returned status codes
315 /// DS:BX = Address of the region
316 ///
317 Legacy16GetTableAddress = 0x0006,
318
319 ///
320 /// Enables the EfiCompatibility module to do any nonstandard processing of keyboard LEDs or state.
321 /// Input:
322 /// AX = Compatibility16SetKeyboardLeds
323 /// CL = LED status.
324 /// Bit 0 Scroll Lock 0 = Off
325 /// Bit 1 NumLock
326 /// Bit 2 Caps Lock
327 /// Output:
328 /// AX = Returned status codes
329 ///
330 Legacy16SetKeyboardLeds = 0x0007,
331
332 ///
333 /// Enables the EfiCompatibility module to install an interrupt handler for PCI mass media devices that
334 /// do not have an OpROM associated with them. An example is SATA.
335 /// Input:
336 /// AX = Compatibility16InstallPciHandler
337 /// ES:BX = Pointer to EFI_LEGACY_INSTALL_PCI_HANDLER structure
338 /// Output:
339 /// AX = Returned status codes
340 ///
341 Legacy16InstallPciHandler = 0x0008
342 } EFI_COMPATIBILITY_FUNCTIONS;
343
344
345 ///
346 /// EFI_DISPATCH_OPROM_TABLE
347 ///
348 typedef struct {
349 UINT16 PnPInstallationCheckSegment; ///< Pointer to the PnpInstallationCheck data structure.
350 UINT16 PnPInstallationCheckOffset; ///< Pointer to the PnpInstallationCheck data structure.
351 UINT16 OpromSegment; ///< The segment where the OpROM was placed. Offset is assumed to be 3.
352 UINT8 PciBus; ///< The PCI bus.
353 UINT8 PciDeviceFunction; ///< The PCI device * 0x08 | PCI function.
354 UINT8 NumberBbsEntries; ///< The number of valid BBS table entries upon entry and exit. The IBV code may
355 ///< increase this number, if BBS-compliant devices also hook INTs in order to force the
356 ///< OpROM BIOS Setup to be executed.
357 VOID *BbsTablePointer; ///< Pointer to the BBS table.
358 UINT16 RuntimeSegment; ///< The segment where the OpROM can be relocated to. If this value is 0x0000, this
359 ///< means that the relocation of this run time code is not supported.
360 ///< Inconsistent with specification here:
361 ///< The member's name "OpromDestinationSegment" [defined in Intel Framework Compatibility Support Module Specification / 0.97 version]
362 ///< has been changed to "RuntimeSegment" since keeping backward compatible.
363
364 } EFI_DISPATCH_OPROM_TABLE;
365
366 ///
367 /// EFI_TO_COMPATIBILITY16_INIT_TABLE
368 ///
369 typedef struct {
370 ///
371 /// Starting address of memory under 1 MB. The ending address is assumed to be 640 KB or 0x9FFFF.
372 ///
373 UINT32 BiosLessThan1MB;
374
375 ///
376 /// Starting address of the high memory block.
377 ///
378 UINT32 HiPmmMemory;
379
380 ///
381 /// Length of high memory block.
382 ///
383 UINT32 HiPmmMemorySizeInBytes;
384
385 ///
386 /// The segment of the reverse thunk call code.
387 ///
388 UINT16 ReverseThunkCallSegment;
389
390 ///
391 /// The offset of the reverse thunk call code.
392 ///
393 UINT16 ReverseThunkCallOffset;
394
395 ///
396 /// The number of E820 entries copied to the Compatibility16 BIOS.
397 ///
398 UINT32 NumberE820Entries;
399
400 ///
401 /// The amount of usable memory above 1 MB, e.g., E820 type 1 memory.
402 ///
403 UINT32 OsMemoryAbove1Mb;
404
405 ///
406 /// The start of thunk code in main memory. Memory cannot be used by BIOS or PMM.
407 ///
408 UINT32 ThunkStart;
409
410 ///
411 /// The size of the thunk code.
412 ///
413 UINT32 ThunkSizeInBytes;
414
415 ///
416 /// Starting address of memory under 1 MB.
417 ///
418 UINT32 LowPmmMemory;
419
420 ///
421 /// Length of low Memory block.
422 ///
423 UINT32 LowPmmMemorySizeInBytes;
424 } EFI_TO_COMPATIBILITY16_INIT_TABLE;
425
426 ///
427 /// DEVICE_PRODUCER_SERIAL
428 ///
429 typedef struct {
430 UINT16 Address; ///< I/O address assigned to the serial port
431 UINT8 Irq; ///< IRQ assigned to the serial port.
432 SERIAL_MODE Mode; ///< Mode of serial port. Values are defined below.
433 } DEVICE_PRODUCER_SERIAL;
434
435 ///
436 /// DEVICE_PRODUCER_SERIAL's modes
437 ///@{
438 #define DEVICE_SERIAL_MODE_NORMAL 0x00
439 #define DEVICE_SERIAL_MODE_IRDA 0x01
440 #define DEVICE_SERIAL_MODE_ASK_IR 0x02
441 #define DEVICE_SERIAL_MODE_DUPLEX_HALF 0x00
442 #define DEVICE_SERIAL_MODE_DUPLEX_FULL 0x10
443 ///@)
444
445 ///
446 /// DEVICE_PRODUCER_PARALLEL
447 ///
448 typedef struct {
449 UINT16 Address; ///< I/O address assigned to the parallel port
450 UINT8 Irq; ///< IRQ assigned to the parallel port.
451 UINT8 Dma; ///< DMA assigned to the parallel port.
452 PARALLEL_MODE Mode; ///< Mode of the parallel port. Values are defined below.
453 } DEVICE_PRODUCER_PARALLEL;
454
455 ///
456 /// DEVICE_PRODUCER_PARALLEL's modes
457 ///@{
458 #define DEVICE_PARALLEL_MODE_MODE_OUTPUT_ONLY 0x00
459 #define DEVICE_PARALLEL_MODE_MODE_BIDIRECTIONAL 0x01
460 #define DEVICE_PARALLEL_MODE_MODE_EPP 0x02
461 #define DEVICE_PARALLEL_MODE_MODE_ECP 0x03
462 ///@}
463
464 ///
465 /// DEVICE_PRODUCER_FLOPPY
466 ///
467 typedef struct {
468 UINT16 Address; ///< I/O address assigned to the floppy
469 UINT8 Irq; ///< IRQ assigned to the floppy.
470 UINT8 Dma; ///< DMA assigned to the floppy.
471 UINT8 NumberOfFloppy; ///< Number of floppies in the system.
472 } DEVICE_PRODUCER_FLOPPY;
473
474 ///
475 /// LEGACY_DEVICE_FLAGS
476 ///
477 typedef struct {
478 UINT32 A20Kybd : 1; ///< A20 controller by keyboard controller.
479 UINT32 A20Port90 : 1; ///< A20 controlled by port 0x92.
480 UINT32 Reserved : 30; ///< Reserved for future usage.
481 } LEGACY_DEVICE_FLAGS;
482
483 ///
484 /// DEVICE_PRODUCER_DATA_HEADER
485 ///
486 typedef struct {
487 DEVICE_PRODUCER_SERIAL Serial[4]; ///< Data for serial port x. Type DEVICE_PRODUCER_SERIAL is defined below.
488 DEVICE_PRODUCER_PARALLEL Parallel[3]; ///< Data for parallel port x. Type DEVICE_PRODUCER_PARALLEL is defined below.
489 DEVICE_PRODUCER_FLOPPY Floppy; ///< Data for floppy. Type DEVICE_PRODUCER_FLOPPY is defined below.
490 UINT8 MousePresent; ///< Flag to indicate if mouse is present.
491 LEGACY_DEVICE_FLAGS Flags; ///< Miscellaneous Boolean state information passed to CSM.
492 } DEVICE_PRODUCER_DATA_HEADER;
493
494 ///
495 /// ATAPI_IDENTIFY
496 ///
497 typedef struct {
498 UINT16 Raw[256]; ///< Raw data from the IDE IdentifyDrive command.
499 } ATAPI_IDENTIFY;
500
501 ///
502 /// HDD_INFO
503 ///
504 typedef struct {
505 ///
506 /// Status of IDE device. Values are defined below. There is one HDD_INFO structure
507 /// per IDE controller. The IdentifyDrive is per drive. Index 0 is master and index
508 /// 1 is slave.
509 ///
510 UINT16 Status;
511
512 ///
513 /// PCI bus of IDE controller.
514 ///
515 UINT32 Bus;
516
517 ///
518 /// PCI device of IDE controller.
519 ///
520 UINT32 Device;
521
522 ///
523 /// PCI function of IDE controller.
524 ///
525 UINT32 Function;
526
527 ///
528 /// Command ports base address.
529 ///
530 UINT16 CommandBaseAddress;
531
532 ///
533 /// Control ports base address.
534 ///
535 UINT16 ControlBaseAddress;
536
537 ///
538 /// Bus master address
539 ///
540 UINT16 BusMasterAddress;
541
542 UINT8 HddIrq;
543
544 ///
545 /// Data that identifies the drive data, one per possible attached drive
546 ///
547 ATAPI_IDENTIFY IdentifyDrive[2];
548 } HDD_INFO;
549
550 ///
551 /// HDD_INFO status bits
552 ///
553 #define HDD_PRIMARY 0x01
554 #define HDD_SECONDARY 0x02
555 #define HDD_MASTER_ATAPI_CDROM 0x04
556 #define HDD_SLAVE_ATAPI_CDROM 0x08
557 #define HDD_MASTER_IDE 0x20
558 #define HDD_SLAVE_IDE 0x40
559 #define HDD_MASTER_ATAPI_ZIPDISK 0x10
560 #define HDD_SLAVE_ATAPI_ZIPDISK 0x80
561
562 ///
563 /// BBS_STATUS_FLAGS
564 ///
565 typedef struct {
566 UINT16 OldPosition : 4; ///< Prior priority.
567 UINT16 Reserved1 : 4; ///< Reserved for future use.
568 UINT16 Enabled : 1; ///< If 0, ignore this entry.
569 UINT16 Failed : 1; ///< 0 = Not known if boot failure occurred.
570 ///< 1 = Boot attempted failed.
571
572 ///
573 /// State of media present.
574 /// 00 = No bootable media is present in the device.
575 /// 01 = Unknown if a bootable media present.
576 /// 10 = Media is present and appears bootable.
577 /// 11 = Reserved.
578 ///
579 UINT16 MediaPresent : 2;
580 UINT16 Reserved2 : 4; ///< Reserved for future use.
581 } BBS_STATUS_FLAGS;
582
583 ///
584 /// BBS_TABLE, device type values & boot priority values
585 ///
586 typedef struct {
587 ///
588 /// The boot priority for this boot device. Values are defined below.
589 ///
590 UINT16 BootPriority;
591
592 ///
593 /// The PCI bus for this boot device.
594 ///
595 UINT32 Bus;
596
597 ///
598 /// The PCI device for this boot device.
599 ///
600 UINT32 Device;
601
602 ///
603 /// The PCI function for the boot device.
604 ///
605 UINT32 Function;
606
607 ///
608 /// The PCI class for this boot device.
609 ///
610 UINT8 Class;
611
612 ///
613 /// The PCI Subclass for this boot device.
614 ///
615 UINT8 SubClass;
616
617 ///
618 /// Segment:offset address of an ASCIIZ description string describing the manufacturer.
619 ///
620 UINT16 MfgStringOffset;
621
622 ///
623 /// Segment:offset address of an ASCIIZ description string describing the manufacturer.
624 ///
625 UINT16 MfgStringSegment;
626
627 ///
628 /// BBS device type. BBS device types are defined below.
629 ///
630 UINT16 DeviceType;
631
632 ///
633 /// Status of this boot device. Type BBS_STATUS_FLAGS is defined below.
634 ///
635 BBS_STATUS_FLAGS StatusFlags;
636
637 ///
638 /// Segment:Offset address of boot loader for IPL devices or install INT13 handler for
639 /// BCV devices.
640 ///
641 UINT16 BootHandlerOffset;
642
643 ///
644 /// Segment:Offset address of boot loader for IPL devices or install INT13 handler for
645 /// BCV devices.
646 ///
647 UINT16 BootHandlerSegment;
648
649 ///
650 /// Segment:offset address of an ASCIIZ description string describing this device.
651 ///
652 UINT16 DescStringOffset;
653
654 ///
655 /// Segment:offset address of an ASCIIZ description string describing this device.
656 ///
657 UINT16 DescStringSegment;
658
659 ///
660 /// Reserved.
661 ///
662 UINT32 InitPerReserved;
663
664 ///
665 /// The use of these fields is IBV dependent. They can be used to flag that an OpROM
666 /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
667 /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
668 ///
669 UINT32 AdditionalIrq13Handler;
670
671 ///
672 /// The use of these fields is IBV dependent. They can be used to flag that an OpROM
673 /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
674 /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
675 ///
676 UINT32 AdditionalIrq18Handler;
677
678 ///
679 /// The use of these fields is IBV dependent. They can be used to flag that an OpROM
680 /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
681 /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
682 ///
683 UINT32 AdditionalIrq19Handler;
684
685 ///
686 /// The use of these fields is IBV dependent. They can be used to flag that an OpROM
687 /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
688 /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
689 ///
690 UINT32 AdditionalIrq40Handler;
691 UINT8 AssignedDriveNumber;
692 UINT32 AdditionalIrq41Handler;
693 UINT32 AdditionalIrq46Handler;
694 UINT32 IBV1;
695 UINT32 IBV2;
696 } BBS_TABLE;
697
698 ///
699 /// BBS device type values
700 ///@{
701 #define BBS_FLOPPY 0x01
702 #define BBS_HARDDISK 0x02
703 #define BBS_CDROM 0x03
704 #define BBS_PCMCIA 0x04
705 #define BBS_USB 0x05
706 #define BBS_EMBED_NETWORK 0x06
707 #define BBS_BEV_DEVICE 0x80
708 #define BBS_UNKNOWN 0xff
709 ///@}
710
711 ///
712 /// BBS boot priority values
713 ///@{
714 #define BBS_DO_NOT_BOOT_FROM 0xFFFC
715 #define BBS_LOWEST_PRIORITY 0xFFFD
716 #define BBS_UNPRIORITIZED_ENTRY 0xFFFE
717 #define BBS_IGNORE_ENTRY 0xFFFF
718 ///@}
719
720 ///
721 /// SMM_ATTRIBUTES
722 ///
723 typedef struct {
724 ///
725 /// Access mechanism used to generate the soft SMI. Defined types are below. The other
726 /// values are reserved for future usage.
727 ///
728 UINT16 Type : 3;
729
730 ///
731 /// Size of "port" in bits. Defined values are below.
732 ///
733 UINT16 PortGranularity : 3;
734
735 ///
736 /// Size of data in bits. Defined values are below.
737 ///
738 UINT16 DataGranularity : 3;
739
740 ///
741 /// Reserved for future use.
742 ///
743 UINT16 Reserved : 7;
744 } SMM_ATTRIBUTES;
745
746 ///
747 /// SMM_ATTRIBUTES type values
748 ///@{
749 #define STANDARD_IO 0x00
750 #define STANDARD_MEMORY 0x01
751 ///@}
752
753 ///
754 /// SMM_ATTRIBUTES port size constants
755 ///@{
756 #define PORT_SIZE_8 0x00
757 #define PORT_SIZE_16 0x01
758 #define PORT_SIZE_32 0x02
759 #define PORT_SIZE_64 0x03
760 ///@}
761
762 ///
763 /// SMM_ATTRIBUTES data size constants
764 ///@{
765 #define DATA_SIZE_8 0x00
766 #define DATA_SIZE_16 0x01
767 #define DATA_SIZE_32 0x02
768 #define DATA_SIZE_64 0x03
769 ///@}
770
771 ///
772 /// SMM_FUNCTION & relating constants
773 ///
774 typedef struct {
775 UINT16 Function : 15;
776 UINT16 Owner : 1;
777 } SMM_FUNCTION;
778
779 ///
780 /// SMM_FUNCTION Function constants
781 ///@{
782 #define INT15_D042 0x0000
783 #define GET_USB_BOOT_INFO 0x0001
784 #define DMI_PNP_50_57 0x0002
785 ///@}
786
787 ///
788 /// SMM_FUNCTION Owner constants
789 ///@{
790 #define STANDARD_OWNER 0x0
791 #define OEM_OWNER 0x1
792 ///@}
793
794 ///
795 /// This structure assumes both port and data sizes are 1. SmmAttribute must be
796 /// properly to reflect that assumption.
797 ///
798 typedef struct {
799 ///
800 /// Describes the access mechanism, SmmPort, and SmmData sizes. Type
801 /// SMM_ATTRIBUTES is defined below.
802 ///
803 SMM_ATTRIBUTES SmmAttributes;
804
805 ///
806 /// Function Soft SMI is to perform. Type SMM_FUNCTION is defined below.
807 ///
808 SMM_FUNCTION SmmFunction;
809
810 ///
811 /// SmmPort size depends upon SmmAttributes and ranges from2 bytes to 16 bytes
812 ///
813 UINT8 SmmPort;
814
815 ///
816 /// SmmData size depends upon SmmAttributes and ranges from2 bytes to 16 bytes
817 ///
818 UINT8 SmmData;
819 } SMM_ENTRY;
820
821 ///
822 /// SMM_TABLE
823 ///
824 typedef struct {
825 UINT16 NumSmmEntries; ///< Number of entries represented by SmmEntry.
826 SMM_ENTRY SmmEntry; ///< One entry per function. Type SMM_ENTRY is defined below.
827 } SMM_TABLE;
828
829 ///
830 /// UDC_ATTRIBUTES
831 ///
832 typedef struct {
833 ///
834 /// This bit set indicates that the ServiceAreaData is valid.
835 ///
836 UINT8 DirectoryServiceValidity : 1;
837
838 ///
839 /// This bit set indicates to use the Reserve Area Boot Code Address (RACBA) only if
840 /// DirectoryServiceValidity is 0.
841 ///
842 UINT8 RabcaUsedFlag : 1;
843
844 ///
845 /// This bit set indicates to execute hard disk diagnostics.
846 ///
847 UINT8 ExecuteHddDiagnosticsFlag : 1;
848
849 ///
850 /// Reserved for future use. Set to 0.
851 ///
852 UINT8 Reserved : 5;
853 } UDC_ATTRIBUTES;
854
855 ///
856 /// UD_TABLE
857 ///
858 typedef struct {
859 ///
860 /// This field contains the bit-mapped attributes of the PARTIES information. Type
861 /// UDC_ATTRIBUTES is defined below.
862 ///
863 UDC_ATTRIBUTES Attributes;
864
865 ///
866 /// This field contains the zero-based device on which the selected
867 /// ServiceDataArea is present. It is 0 for master and 1 for the slave device.
868 ///
869 UINT8 DeviceNumber;
870
871 ///
872 /// This field contains the zero-based index into the BbsTable for the parent device.
873 /// This index allows the user to reference the parent device information such as PCI
874 /// bus, device function.
875 ///
876 UINT8 BbsTableEntryNumberForParentDevice;
877
878 ///
879 /// This field contains the zero-based index into the BbsTable for the boot entry.
880 ///
881 UINT8 BbsTableEntryNumberForBoot;
882
883 ///
884 /// This field contains the zero-based index into the BbsTable for the HDD diagnostics entry.
885 ///
886 UINT8 BbsTableEntryNumberForHddDiag;
887
888 ///
889 /// The raw Beer data.
890 ///
891 UINT8 BeerData[128];
892
893 ///
894 /// The raw data of selected service area.
895 ///
896 UINT8 ServiceAreaData[64];
897 } UD_TABLE;
898
899 #define EFI_TO_LEGACY_MAJOR_VERSION 0x02
900 #define EFI_TO_LEGACY_MINOR_VERSION 0x00
901 #define MAX_IDE_CONTROLLER 8
902
903 ///
904 /// EFI_TO_COMPATIBILITY16_BOOT_TABLE
905 ///
906 typedef struct {
907 UINT16 MajorVersion; ///< The EfiCompatibility major version number.
908 UINT16 MinorVersion; ///< The EfiCompatibility minor version number.
909 UINT32 AcpiTable; ///< Location of the RSDT ACPI table. < 4G range
910 UINT32 SmbiosTable; ///< Location of the SMBIOS table in EFI memory. < 4G range
911 UINT32 SmbiosTableLength;
912 //
913 // Legacy SIO state
914 //
915 DEVICE_PRODUCER_DATA_HEADER SioData; ///< Standard traditional device information.
916 UINT16 DevicePathType; ///< The default boot type.
917 UINT16 PciIrqMask; ///< Mask of which IRQs have been assigned to PCI.
918 UINT32 NumberE820Entries; ///< Number of E820 entries. The number can change from the
919 ///< Compatibility16InitializeYourself() function.
920 //
921 // Controller & Drive Identify[2] per controller information
922 //
923 HDD_INFO HddInfo[MAX_IDE_CONTROLLER]; ///< Hard disk drive information, including raw Identify Drive data.
924 UINT32 NumberBbsEntries; ///< Number of entries in the BBS table
925 UINT32 BbsTable; ///< Pointer to the BBS table. Type BBS_TABLE is defined below.
926 UINT32 SmmTable; ///< Pointer to the SMM table. Type SMM_TABLE is defined below.
927 UINT32 OsMemoryAbove1Mb; ///< The amount of usable memory above 1 MB, i.e. E820 type 1 memory. This value can
928 ///< differ from the value in EFI_TO_COMPATIBILITY16_INIT_TABLE as more
929 ///< memory may have been discovered.
930 UINT32 UnconventionalDeviceTable; ///< Information to boot off an unconventional device like a PARTIES partition. Type
931 ///< UD_TABLE is defined below.
932 } EFI_TO_COMPATIBILITY16_BOOT_TABLE;
933
934 ///
935 /// EFI_LEGACY_INSTALL_PCI_HANDLER
936 ///
937 typedef struct {
938 UINT8 PciBus; ///< The PCI bus of the device.
939 UINT8 PciDeviceFun; ///< The PCI device in bits 7:3 and function in bits 2:0.
940 UINT8 PciSegment; ///< The PCI segment of the device.
941 UINT8 PciClass; ///< The PCI class code of the device.
942 UINT8 PciSubclass; ///< The PCI subclass code of the device.
943 UINT8 PciInterface; ///< The PCI interface code of the device.
944 //
945 // Primary section
946 //
947 UINT8 PrimaryIrq; ///< The primary device IRQ.
948 UINT8 PrimaryReserved; ///< Reserved.
949 UINT16 PrimaryControl; ///< The primary device control I/O base.
950 UINT16 PrimaryBase; ///< The primary device I/O base.
951 UINT16 PrimaryBusMaster; ///< The primary device bus master I/O base.
952 //
953 // Secondary Section
954 //
955 UINT8 SecondaryIrq; ///< The secondary device IRQ.
956 UINT8 SecondaryReserved; ///< Reserved.
957 UINT16 SecondaryControl; ///< The secondary device control I/O base.
958 UINT16 SecondaryBase; ///< The secondary device I/O base.
959 UINT16 SecondaryBusMaster; ///< The secondary device bus master I/O base.
960 } EFI_LEGACY_INSTALL_PCI_HANDLER;
961
962 //
963 // Restore default pack value
964 //
965 #pragma pack()
966
967 #define EFI_LEGACY_BIOS_PROTOCOL_GUID \
968 { \
969 0xdb9a1e3d, 0x45cb, 0x4abb, {0x85, 0x3b, 0xe5, 0x38, 0x7f, 0xdb, 0x2e, 0x2d } \
970 }
971
972 typedef struct _EFI_LEGACY_BIOS_PROTOCOL EFI_LEGACY_BIOS_PROTOCOL;
973
974 ///
975 /// Flags returned by CheckPciRom()
976 ///
977 #define NO_ROM 0x00
978 #define ROM_FOUND 0x01
979 #define VALID_LEGACY_ROM 0x02
980 #define ROM_WITH_CONFIG 0x04 ///< Not defined in the Framework CSM Specification
981
982 ///
983 /// The following macros do not appear in the Framework CSM Specification and
984 /// are kept for backward compatibility only. They convert 32-bit address (_Adr)
985 /// to Segment:Offset 16-bit form.
986 ///
987 /// @{
988 #define EFI_SEGMENT(_Adr) (UINT16) ((UINT16) (((UINTN) (_Adr)) >> 4) & 0xf000)
989 #define EFI_OFFSET(_Adr) (UINT16) (((UINT16) ((UINTN) (_Adr))) & 0xffff)
990 /// @}
991
992 #define CARRY_FLAG 0x01
993
994 ///
995 /// EFI_EFLAGS_REG
996 ///
997 typedef struct {
998 UINT32 CF:1;
999 UINT32 Reserved1:1;
1000 UINT32 PF:1;
1001 UINT32 Reserved2:1;
1002 UINT32 AF:1;
1003 UINT32 Reserved3:1;
1004 UINT32 ZF:1;
1005 UINT32 SF:1;
1006 UINT32 TF:1;
1007 UINT32 IF:1;
1008 UINT32 DF:1;
1009 UINT32 OF:1;
1010 UINT32 IOPL:2;
1011 UINT32 NT:1;
1012 UINT32 Reserved4:2;
1013 UINT32 VM:1;
1014 UINT32 Reserved5:14;
1015 } EFI_EFLAGS_REG;
1016
1017 ///
1018 /// EFI_DWORD_REGS
1019 ///
1020 typedef struct {
1021 UINT32 EAX;
1022 UINT32 EBX;
1023 UINT32 ECX;
1024 UINT32 EDX;
1025 UINT32 ESI;
1026 UINT32 EDI;
1027 EFI_EFLAGS_REG EFlags;
1028 UINT16 ES;
1029 UINT16 CS;
1030 UINT16 SS;
1031 UINT16 DS;
1032 UINT16 FS;
1033 UINT16 GS;
1034 UINT32 EBP;
1035 UINT32 ESP;
1036 } EFI_DWORD_REGS;
1037
1038 ///
1039 /// EFI_FLAGS_REG
1040 ///
1041 typedef struct {
1042 UINT16 CF:1;
1043 UINT16 Reserved1:1;
1044 UINT16 PF:1;
1045 UINT16 Reserved2:1;
1046 UINT16 AF:1;
1047 UINT16 Reserved3:1;
1048 UINT16 ZF:1;
1049 UINT16 SF:1;
1050 UINT16 TF:1;
1051 UINT16 IF:1;
1052 UINT16 DF:1;
1053 UINT16 OF:1;
1054 UINT16 IOPL:2;
1055 UINT16 NT:1;
1056 UINT16 Reserved4:1;
1057 } EFI_FLAGS_REG;
1058
1059 ///
1060 /// EFI_WORD_REGS
1061 ///
1062 typedef struct {
1063 UINT16 AX;
1064 UINT16 ReservedAX;
1065 UINT16 BX;
1066 UINT16 ReservedBX;
1067 UINT16 CX;
1068 UINT16 ReservedCX;
1069 UINT16 DX;
1070 UINT16 ReservedDX;
1071 UINT16 SI;
1072 UINT16 ReservedSI;
1073 UINT16 DI;
1074 UINT16 ReservedDI;
1075 EFI_FLAGS_REG Flags;
1076 UINT16 ReservedFlags;
1077 UINT16 ES;
1078 UINT16 CS;
1079 UINT16 SS;
1080 UINT16 DS;
1081 UINT16 FS;
1082 UINT16 GS;
1083 UINT16 BP;
1084 UINT16 ReservedBP;
1085 UINT16 SP;
1086 UINT16 ReservedSP;
1087 } EFI_WORD_REGS;
1088
1089 ///
1090 /// EFI_BYTE_REGS
1091 ///
1092 typedef struct {
1093 UINT8 AL, AH;
1094 UINT16 ReservedAX;
1095 UINT8 BL, BH;
1096 UINT16 ReservedBX;
1097 UINT8 CL, CH;
1098 UINT16 ReservedCX;
1099 UINT8 DL, DH;
1100 UINT16 ReservedDX;
1101 } EFI_BYTE_REGS;
1102
1103 ///
1104 /// EFI_IA32_REGISTER_SET
1105 ///
1106 typedef union {
1107 EFI_DWORD_REGS E;
1108 EFI_WORD_REGS X;
1109 EFI_BYTE_REGS H;
1110 } EFI_IA32_REGISTER_SET;
1111
1112 /**
1113 Thunk to 16-bit real mode and execute a software interrupt with a vector
1114 of BiosInt. Regs will contain the 16-bit register context on entry and
1115 exit.
1116
1117 @param[in] This Protocol instance pointer.
1118 @param[in] BiosInt Processor interrupt vector to invoke
1119 @param[in,out] Reg Register contexted passed into (and returned) from thunk to
1120 16-bit mode
1121
1122 @retval TRUE Thunk completed with no BIOS errors in the target code. See Regs for status.
1123 @retval FALSE There was a BIOS error in the target code.
1124 **/
1125 typedef
1126 BOOLEAN
1127 (EFIAPI *EFI_LEGACY_BIOS_INT86)(
1128 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1129 IN UINT8 BiosInt,
1130 IN OUT EFI_IA32_REGISTER_SET *Regs
1131 );
1132
1133 /**
1134 Thunk to 16-bit real mode and call Segment:Offset. Regs will contain the
1135 16-bit register context on entry and exit. Arguments can be passed on
1136 the Stack argument
1137
1138 @param[in] This Protocol instance pointer.
1139 @param[in] Segment Segemnt of 16-bit mode call
1140 @param[in] Offset Offset of 16-bit mdoe call
1141 @param[in] Reg Register contexted passed into (and returned) from thunk to
1142 16-bit mode
1143 @param[in] Stack Caller allocated stack used to pass arguments
1144 @param[in] StackSize Size of Stack in bytes
1145
1146 @retval FALSE Thunk completed with no BIOS errors in the target code. See Regs for status. @retval TRUE There was a BIOS error in the target code.
1147 **/
1148 typedef
1149 BOOLEAN
1150 (EFIAPI *EFI_LEGACY_BIOS_FARCALL86)(
1151 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1152 IN UINT16 Segment,
1153 IN UINT16 Offset,
1154 IN EFI_IA32_REGISTER_SET *Regs,
1155 IN VOID *Stack,
1156 IN UINTN StackSize
1157 );
1158
1159 /**
1160 Test to see if a legacy PCI ROM exists for this device. Optionally return
1161 the Legacy ROM instance for this PCI device.
1162
1163 @param[in] This Protocol instance pointer.
1164 @param[in] PciHandle The PCI PC-AT OPROM from this devices ROM BAR will be loaded
1165 @param[out] RomImage Return the legacy PCI ROM for this device
1166 @param[out] RomSize Size of ROM Image
1167 @param[out] Flags Indicates if ROM found and if PC-AT. Multiple bits can be set as follows:
1168 - 00 = No ROM
1169 - 01 = ROM Found
1170 - 02 = ROM is a valid legacy ROM
1171
1172 @retval EFI_SUCCESS Legacy Option ROM availible for this device
1173 @retval EFI_UNSUPPORTED Legacy Option ROM not supported.
1174
1175 **/
1176 typedef
1177 EFI_STATUS
1178 (EFIAPI *EFI_LEGACY_BIOS_CHECK_ROM)(
1179 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1180 IN EFI_HANDLE PciHandle,
1181 OUT VOID **RomImage, OPTIONAL
1182 OUT UINTN *RomSize, OPTIONAL
1183 OUT UINTN *Flags
1184 );
1185
1186 /**
1187 Load a legacy PC-AT OPROM on the PciHandle device. Return information
1188 about how many disks were added by the OPROM and the shadow address and
1189 size. DiskStart & DiskEnd are INT 13h drive letters. Thus 0x80 is C:
1190
1191 @param[in] This Protocol instance pointer.
1192 @param[in] PciHandle The PCI PC-AT OPROM from this devices ROM BAR will be loaded.
1193 This value is NULL if RomImage is non-NULL. This is the normal
1194 case.
1195 @param[in] RomImage A PCI PC-AT ROM image. This argument is non-NULL if there is
1196 no hardware associated with the ROM and thus no PciHandle,
1197 otherwise is must be NULL.
1198 Example is PXE base code.
1199 @param[out] Flags The type of ROM discovered. Multiple bits can be set, as follows:
1200 - 00 = No ROM.
1201 - 01 = ROM found.
1202 - 02 = ROM is a valid legacy ROM.
1203 @param[out] DiskStart Disk number of first device hooked by the ROM. If DiskStart
1204 is the same as DiskEnd no disked were hooked.
1205 @param[out] DiskEnd disk number of the last device hooked by the ROM.
1206 @param[out] RomShadowAddress Shadow address of PC-AT ROM
1207 @param[out] RomShadowSize Size of RomShadowAddress in bytes
1208
1209 @retval EFI_SUCCESS Thunk completed, see Regs for status.
1210 @retval EFI_INVALID_PARAMETER PciHandle not found
1211
1212 **/
1213 typedef
1214 EFI_STATUS
1215 (EFIAPI *EFI_LEGACY_BIOS_INSTALL_ROM)(
1216 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1217 IN EFI_HANDLE PciHandle,
1218 IN VOID **RomImage,
1219 OUT UINTN *Flags,
1220 OUT UINT8 *DiskStart, OPTIONAL
1221 OUT UINT8 *DiskEnd, OPTIONAL
1222 OUT VOID **RomShadowAddress, OPTIONAL
1223 OUT UINT32 *ShadowedRomSize OPTIONAL
1224 );
1225
1226 /**
1227 This function attempts to traditionally boot the specified BootOption. If the EFI context has
1228 been compromised, this function will not return. This procedure is not used for loading an EFI-aware
1229 OS off a traditional device. The following actions occur:
1230 - Get EFI SMBIOS data structures, convert them to a traditional format, and copy to
1231 Compatibility16.
1232 - Get a pointer to ACPI data structures and copy the Compatibility16 RSD PTR to F0000 block.
1233 - Find the traditional SMI handler from a firmware volume and register the traditional SMI
1234 handler with the EFI SMI handler.
1235 - Build onboard IDE information and pass this information to the Compatibility16 code.
1236 - Make sure all PCI Interrupt Line registers are programmed to match 8259.
1237 - Reconfigure SIO devices from EFI mode (polled) into traditional mode (interrupt driven).
1238 - Shadow all PCI ROMs.
1239 - Set up BDA and EBDA standard areas before the legacy boot.
1240 - Construct the Compatibility16 boot memory map and pass it to the Compatibility16 code.
1241 - Invoke the Compatibility16 table function Compatibility16PrepareToBoot(). This
1242 invocation causes a thunk into the Compatibility16 code, which sets all appropriate internal
1243 data structures. The boot device list is a parameter.
1244 - Invoke the Compatibility16 Table function Compatibility16Boot(). This invocation
1245 causes a thunk into the Compatibility16 code, which does an INT19.
1246 - If the Compatibility16Boot() function returns, then the boot failed in a graceful
1247 manner--meaning that the EFI code is still valid. An ungraceful boot failure causes a reset because the state
1248 of EFI code is unknown.
1249
1250 @param[in] This Protocol instance pointer.
1251 @param[in] BootOption EFI Device Path from BootXXXX variable.
1252 @param[in] LoadOptionSize Size of LoadOption in size.
1253 @param[in] LoadOption LoadOption from BootXXXX variable
1254
1255 @retval EFI_DEVICE_ERROR Failed to boot from any boot device and memory is uncorrupted. Note: This function normally does not returns. It will either boot the OS or reset the system if memory has been "corrupted" by loading a boot sector and passing control to it.
1256 **/
1257 typedef
1258 EFI_STATUS
1259 (EFIAPI *EFI_LEGACY_BIOS_BOOT)(
1260 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1261 IN BBS_BBS_DEVICE_PATH *BootOption,
1262 IN UINT32 LoadOptionsSize,
1263 IN VOID *LoadOptions
1264 );
1265
1266 /**
1267 This function takes the Leds input parameter and sets/resets the BDA accordingly.
1268 Leds is also passed to Compatibility16 code, in case any special processing is required.
1269 This function is normally called from EFI Setup drivers that handle user-selectable
1270 keyboard options such as boot with NUM LOCK on/off. This function does not
1271 touch the keyboard or keyboard LEDs but only the BDA.
1272
1273 @param[in] This Protocol instance pointer.
1274 @param[in] Leds Status of current Scroll, Num & Cap lock LEDS
1275 - Bit 0 is Scroll Lock 0 = Not locked
1276 - Bit 1 is Num Lock
1277 - Bit 2 is Caps Lock
1278
1279 @retval EFI_SUCCESS The BDA was updated successfully.
1280
1281 **/
1282 typedef
1283 EFI_STATUS
1284 (EFIAPI *EFI_LEGACY_BIOS_UPDATE_KEYBOARD_LED_STATUS)(
1285 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1286 IN UINT8 Leds
1287 );
1288
1289 /**
1290 Retrieve legacy BBS info and assign boot priority.
1291
1292 @param[in] This Protocol instance pointer.
1293 @param[out] HddCount Number of HDD_INFO structures
1294 @param[out] HddInfo Onboard IDE controller information
1295 @param[out] BbsCount Number of BBS_TABLE structures
1296 @param[in,out] BbsTable Point to List of BBS_TABLE
1297
1298 @retval EFI_SUCCESS Tables returned
1299
1300 **/
1301 typedef
1302 EFI_STATUS
1303 (EFIAPI *EFI_LEGACY_BIOS_GET_BBS_INFO)(
1304 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1305 OUT UINT16 *HddCount,
1306 OUT HDD_INFO **HddInfo,
1307 OUT UINT16 *BbsCount,
1308 IN OUT BBS_TABLE **BbsTable
1309 );
1310
1311 /**
1312 Assign drive number to legacy HDD drives prior to booting an EFI
1313 aware OS so the OS can access drives without an EFI driver.
1314
1315 @param[in] This Protocol instance pointer.
1316 @param[out] BbsCount Number of BBS_TABLE structures
1317 @param[out] BbsTable List BBS entries
1318
1319 @retval EFI_SUCCESS Drive numbers assigned
1320
1321 **/
1322 typedef
1323 EFI_STATUS
1324 (EFIAPI *EFI_LEGACY_BIOS_PREPARE_TO_BOOT_EFI)(
1325 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1326 OUT UINT16 *BbsCount,
1327 OUT BBS_TABLE **BbsTable
1328 );
1329
1330 /**
1331 To boot from an unconventional device like parties and/or execute
1332 HDD diagnostics.
1333
1334 @param[in] This Protocol instance pointer.
1335 @param[in] Attributes How to interpret the other input parameters
1336 @param[in] BbsEntry The 0-based index into the BbsTable for the parent
1337 device.
1338 @param[in] BeerData Pointer to the 128 bytes of ram BEER data.
1339 @param[in] ServiceAreaData Pointer to the 64 bytes of raw Service Area data. The
1340 caller must provide a pointer to the specific Service
1341 Area and not the start all Service Areas.
1342
1343 @retval EFI_INVALID_PARAMETER If error. Does NOT return if no error.
1344
1345 **/
1346 typedef
1347 EFI_STATUS
1348 (EFIAPI *EFI_LEGACY_BIOS_BOOT_UNCONVENTIONAL_DEVICE)(
1349 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1350 IN UDC_ATTRIBUTES Attributes,
1351 IN UINTN BbsEntry,
1352 IN VOID *BeerData,
1353 IN VOID *ServiceAreaData
1354 );
1355
1356 /**
1357 Shadow all legacy16 OPROMs that haven't been shadowed.
1358 Warning: Use this with caution. This routine disconnects all EFI
1359 drivers. If used externally then caller must re-connect EFI
1360 drivers.
1361
1362 @param[in] This Protocol instance pointer.
1363
1364 @retval EFI_SUCCESS OPROMs shadowed
1365
1366 **/
1367 typedef
1368 EFI_STATUS
1369 (EFIAPI *EFI_LEGACY_BIOS_SHADOW_ALL_LEGACY_OPROMS)(
1370 IN EFI_LEGACY_BIOS_PROTOCOL *This
1371 );
1372
1373 /**
1374 Get a region from the LegacyBios for S3 usage.
1375
1376 @param[in] This Protocol instance pointer.
1377 @param[in] LegacyMemorySize Size of required region
1378 @param[in] Region Region to use.
1379 00 = Either 0xE0000 or 0xF0000 block
1380 - Bit0 = 1 0xF0000 block
1381 - Bit1 = 1 0xE0000 block
1382 @param[in] Alignment Address alignment. Bit mapped. First non-zero
1383 bit from right is alignment.
1384 @param[out] LegacyMemoryAddress Region Assigned
1385
1386 @retval EFI_SUCCESS Region assigned
1387 @retval EFI_ACCESS_DENIED The function was previously invoked.
1388 @retval Other Region not assigned
1389
1390 **/
1391 typedef
1392 EFI_STATUS
1393 (EFIAPI *EFI_LEGACY_BIOS_GET_LEGACY_REGION)(
1394 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1395 IN UINTN LegacyMemorySize,
1396 IN UINTN Region,
1397 IN UINTN Alignment,
1398 OUT VOID **LegacyMemoryAddress
1399 );
1400
1401 /**
1402 Get a region from the LegacyBios for Tiano usage. Can only be invoked once.
1403
1404 @param[in] This Protocol instance pointer.
1405 @param[in] LegacyMemorySize Size of data to copy
1406 @param[in] LegacyMemoryAddress Legacy Region destination address
1407 Note: must be in region assigned by
1408 LegacyBiosGetLegacyRegion
1409 @param[in] LegacyMemorySourceAddress Source of the data to copy.
1410
1411 @retval EFI_SUCCESS Region assigned
1412 @retval EFI_ACCESS_DENIED Destination outside assigned region
1413
1414 **/
1415 typedef
1416 EFI_STATUS
1417 (EFIAPI *EFI_LEGACY_BIOS_COPY_LEGACY_REGION)(
1418 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1419 IN UINTN LegacyMemorySize,
1420 IN VOID *LegacyMemoryAddress,
1421 IN VOID *LegacyMemorySourceAddress
1422 );
1423
1424 ///
1425 /// Abstracts the traditional BIOS from the rest of EFI. The LegacyBoot()
1426 /// member function allows the BDS to support booting a traditional OS.
1427 /// EFI thunks drivers that make EFI bindings for BIOS INT services use
1428 /// all the other member functions.
1429 ///
1430 struct _EFI_LEGACY_BIOS_PROTOCOL {
1431 ///
1432 /// Performs traditional software INT. See the Int86() function description.
1433 ///
1434 EFI_LEGACY_BIOS_INT86 Int86;
1435
1436 ///
1437 /// Performs a far call into Compatibility16 or traditional OpROM code.
1438 ///
1439 EFI_LEGACY_BIOS_FARCALL86 FarCall86;
1440
1441 ///
1442 /// Checks if a traditional OpROM exists for this device.
1443 ///
1444 EFI_LEGACY_BIOS_CHECK_ROM CheckPciRom;
1445
1446 ///
1447 /// Loads a traditional OpROM in traditional OpROM address space.
1448 ///
1449 EFI_LEGACY_BIOS_INSTALL_ROM InstallPciRom;
1450
1451 ///
1452 /// Boots a traditional OS.
1453 ///
1454 EFI_LEGACY_BIOS_BOOT LegacyBoot;
1455
1456 ///
1457 /// Updates BDA to reflect the current EFI keyboard LED status.
1458 ///
1459 EFI_LEGACY_BIOS_UPDATE_KEYBOARD_LED_STATUS UpdateKeyboardLedStatus;
1460
1461 ///
1462 /// Allows an external agent, such as BIOS Setup, to get the BBS data.
1463 ///
1464 EFI_LEGACY_BIOS_GET_BBS_INFO GetBbsInfo;
1465
1466 ///
1467 /// Causes all legacy OpROMs to be shadowed.
1468 ///
1469 EFI_LEGACY_BIOS_SHADOW_ALL_LEGACY_OPROMS ShadowAllLegacyOproms;
1470
1471 ///
1472 /// Performs all actions prior to boot. Used when booting an EFI-aware OS
1473 /// rather than a legacy OS.
1474 ///
1475 EFI_LEGACY_BIOS_PREPARE_TO_BOOT_EFI PrepareToBootEfi;
1476
1477 ///
1478 /// Allows EFI to reserve an area in the 0xE0000 or 0xF0000 block.
1479 ///
1480 EFI_LEGACY_BIOS_GET_LEGACY_REGION GetLegacyRegion;
1481
1482 ///
1483 /// Allows EFI to copy data to the area specified by GetLegacyRegion.
1484 ///
1485 EFI_LEGACY_BIOS_COPY_LEGACY_REGION CopyLegacyRegion;
1486
1487 ///
1488 /// Allows the user to boot off an unconventional device such as a PARTIES partition.
1489 ///
1490 EFI_LEGACY_BIOS_BOOT_UNCONVENTIONAL_DEVICE BootUnconventionalDevice;
1491 };
1492
1493 extern EFI_GUID gEfiLegacyBiosProtocolGuid;
1494
1495 #endif