]> git.proxmox.com Git - mirror_edk2.git/blob - IntelFrameworkPkg/Include/Protocol/LegacyBios.h
Add MP Services Protocol from the UEFI Platform Initialization 1.2 Specification
[mirror_edk2.git] / IntelFrameworkPkg / Include / Protocol / LegacyBios.h
1 /** @file
2 The EFI Legacy BIOS Protocol is used to abstract legacy Option ROM usage
3 under EFI and Legacy OS boot. This file also includes all the related
4 COMPATIBILIY16 structures and defintions.
5
6 Note: The names for EFI_IA32_REGISTER_SET elements were picked to follow
7 well known naming conventions.
8
9 Thunk - A thunk is a transition from one processor mode to another. A Thunk
10 is a transition from native EFI mode to 16-bit mode. A reverse thunk
11 would be a transition from 16-bit mode to native EFI mode.
12
13 You most likely should not use this protocol! Find the EFI way to solve the
14 problem to make your code portable
15
16 Copyright (c) 2007 - 2009, Intel Corporation
17 All rights reserved. This program and the accompanying materials
18 are licensed and made available under the terms and conditions of the BSD License
19 which accompanies this distribution. The full text of the license may be found at
20 http://opensource.org/licenses/bsd-license.php
21
22 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
23 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
24
25 @par Revision Reference:
26 This protocol is defined in Framework for EFI Compatibility Support Module spec
27 Version 0.97.
28
29 **/
30
31 #ifndef _EFI_LEGACY_BIOS_H_
32 #define _EFI_LEGACY_BIOS_H_
33
34 ///
35 ///
36 ///
37 #pragma pack(1)
38
39 typedef UINT8 SERIAL_MODE;
40 typedef UINT8 PARALLEL_MODE;
41
42 #define EFI_COMPATIBILITY16_TABLE_SIGNATURE SIGNATURE_32 ('I', 'F', 'E', '$')
43
44 ///
45 /// There is a table located within the traditional BIOS in either the 0xF000:xxxx or 0xE000:xxxx
46 /// physical address range. It is located on a 16-byte boundary and provides the physical address of the
47 /// entry point for the Compatibility16 functions. These functions provide the platform-specific
48 /// information that is required by the generic EfiCompatibility code. The functions are invoked via
49 /// thunking by using EFI_LEGACY_BIOS_PROTOCOL.FarCall86() with the 32-bit physical
50 /// entry point.
51 ///
52 typedef struct {
53 ///
54 /// The string "$EFI" denotes the start of the EfiCompatibility table. Byte 0 is "I," byte
55 /// 1 is "F," byte 2 is "E," and byte 3 is "$" and is normally accessed as a DWORD or UINT32.
56 ///
57 UINT32 Signature;
58
59 ///
60 /// The value required such that byte checksum of TableLength equals zero.
61 ///
62 UINT8 TableChecksum;
63
64 ///
65 /// The length of this table.
66 ///
67 UINT8 TableLength;
68
69 ///
70 /// The major EFI revision for which this table was generated.
71 ///
72 UINT8 EfiMajorRevision;
73
74 ///
75 /// The minor EFI revision for which this table was generated.
76 ///
77 UINT8 EfiMinorRevision;
78
79 ///
80 /// The major revision of this table.
81 ///
82 UINT8 TableMajorRevision;
83
84 ///
85 /// The minor revision of this table.
86 ///
87 UINT8 TableMinorRevision;
88
89 ///
90 /// Reserved for future usage.
91 ///
92 UINT16 Reserved;
93
94 ///
95 /// The segment of the entry point within the traditional BIOS for Compatibility16 functions.
96 ///
97 UINT16 Compatibility16CallSegment;
98
99 ///
100 /// The offset of the entry point within the traditional BIOS for Compatibility16 functions.
101 ///
102 UINT16 Compatibility16CallOffset;
103
104 ///
105 /// The segment of the entry point within the traditional BIOS for EfiCompatibility to invoke the PnP installation check.
106 ///
107 UINT16 PnPInstallationCheckSegment;
108
109 ///
110 /// The Offset of the entry point within the traditional BIOS for EfiCompatibility to invoke the PnP installation check.
111 ///
112 UINT16 PnPInstallationCheckOffset;
113
114 ///
115 /// EFI system resources table. Type EFI_SYSTEM_TABLE is defined in the IntelPlatform Innovation Framework for EFI
116 /// Driver Execution Environment Core Interface Specification (DXE CIS).
117 ///
118 UINT32 EfiSystemTable;
119
120 ///
121 /// The address of an OEM-provided identifier string. The string is null terminated.
122 ///
123 UINT32 OemIdStringPointer;
124
125 ///
126 /// The 32-bit physical address where ACPI RSD PTR is stored within the traditional
127 /// BIOS. The remained of the ACPI tables are located at their EFI addresses. The size
128 /// reserved is the maximum for ACPI 2.0. The EfiCompatibility will fill in the ACPI
129 /// RSD PTR with either the ACPI 1.0b or 2.0 values.
130 ///
131 UINT32 AcpiRsdPtrPointer;
132
133 ///
134 /// The OEM revision number. Usage is undefined but provided for OEM module usage.
135 ///
136 UINT16 OemRevision;
137
138 ///
139 /// The 32-bit physical address where INT15 E820 data is stored within the traditional
140 /// BIOS. The EfiCompatibility code will fill in the E820Pointer value and copy the
141 /// data to the indicated area.
142 ///
143 UINT32 E820Pointer;
144
145 ///
146 /// The length of the E820 data and is filled in by the EfiCompatibility code.
147 ///
148 UINT32 E820Length;
149
150 ///
151 /// The 32-bit physical address where the $PIR table is stored in the traditional BIOS.
152 /// The EfiCompatibility code will fill in the IrqRoutingTablePointer value and
153 /// copy the data to the indicated area.
154 ///
155 UINT32 IrqRoutingTablePointer;
156
157 ///
158 /// The length of the $PIR table and is filled in by the EfiCompatibility code.
159 ///
160 UINT32 IrqRoutingTableLength;
161
162 ///
163 /// The 32-bit physical address where the MP table is stored in the traditional BIOS.
164 /// The EfiCompatibility code will fill in the MpTablePtr value and copy the data to the indicated area.
165 ///
166 UINT32 MpTablePtr;
167
168 ///
169 /// The length of the MP table and is filled in by the EfiCompatibility code.
170 ///
171 UINT32 MpTableLength;
172
173 ///
174 /// The segment of the OEM-specific INT table/code.
175 ///
176 UINT16 OemIntSegment;
177
178 ///
179 /// The offset of the OEM-specific INT table/code.
180 ///
181 UINT16 OemIntOffset;
182
183 ///
184 /// The segment of the OEM-specific 32-bit table/code.
185 ///
186 UINT16 Oem32Segment;
187
188 ///
189 /// The offset of the OEM-specific 32-bit table/code.
190 ///
191 UINT16 Oem32Offset;
192
193 ///
194 /// The segment of the OEM-specific 16-bit table/code.
195 ///
196 UINT16 Oem16Segment;
197
198 ///
199 /// The offset of the OEM-specific 16-bit table/code.
200 ///
201 UINT16 Oem16Offset;
202
203 ///
204 /// The segment of the TPM binary passed to 16-bit CSM.
205 ///
206 UINT16 TpmSegment;
207
208 ///
209 /// The offset of the TPM binary passed to 16-bit CSM.
210 ///
211 UINT16 TpmOffset;
212
213 ///
214 /// A pointer to a string identifying the independent BIOS vendor.
215 ///
216 UINT32 IbvPointer;
217
218 ///
219 /// This field is NULL for all systems not supporting PCI Express. This field is the base
220 /// value of the start of the PCI Express memory-mapped configuration registers and
221 /// must be filled in prior to EfiCompatibility code issuing the Compatibility16 function
222 /// Compatibility16InitializeYourself().
223 /// Compatibility16InitializeYourself() is defined in Compatability16
224 /// Functions.
225 ///
226 UINT32 PciExpressBase;
227
228 ///
229 /// Maximum PCI bus number assigned.
230 ///
231 UINT8 LastPciBus;
232 } EFI_COMPATIBILITY16_TABLE;
233
234 ///
235 /// Functions provided by the CSM binary which communicate between the EfiCompatibility
236 /// and Compatability16 code.
237 ///
238 /// Inconsistent with specification here:
239 /// The member's name started with "Compatibility16" [defined in Intel Framework Compatibility Support Module Specification / 0.97 version]
240 /// has been changed to "Legacy16" since keeping backward compatible.
241 ///
242 typedef enum {
243 ///
244 /// Causes the Compatibility16 code to do any internal initialization required.
245 /// Input:
246 /// AX = Compatibility16InitializeYourself
247 /// ES:BX = Pointer to EFI_TO_COMPATIBILITY16_INIT_TABLE
248 /// Return:
249 /// AX = Return Status codes
250 ///
251 Legacy16InitializeYourself = 0x0000,
252
253 ///
254 /// Causes the Compatibility16 BIOS to perform any drive number translations to match the boot sequence.
255 /// Input:
256 /// AX = Compatibility16UpdateBbs
257 /// ES:BX = Pointer to EFI_TO_COMPATIBILITY16_BOOT_TABLE
258 /// Return:
259 /// AX = Returned status codes
260 ///
261 Legacy16UpdateBbs = 0x0001,
262
263 ///
264 /// Allows the Compatibility16 code to perform any final actions before booting. The Compatibility16
265 /// code is read/write.
266 /// Input:
267 /// AX = Compatibility16PrepareToBoot
268 /// ES:BX = Pointer to EFI_TO_COMPATIBILITY16_BOOT_TABLE structure
269 /// Return:
270 /// AX = Returned status codes
271 ///
272 Legacy16PrepareToBoot = 0x0002,
273
274 ///
275 /// Causes the Compatibility16 BIOS to boot. The Compatibility16 code is Read/Only.
276 /// Input:
277 /// AX = Compatibility16Boot
278 /// Output:
279 /// AX = Returned status codes
280 ///
281 Legacy16Boot = 0x0003,
282
283 ///
284 /// Allows the Compatibility16 code to get the last device from which a boot was attempted. This is
285 /// stored in CMOS and is the priority number of the last attempted boot device.
286 /// Input:
287 /// AX = Compatibility16RetrieveLastBootDevice
288 /// Output:
289 /// AX = Returned status codes
290 /// BX = Priority number of the boot device.
291 ///
292 Legacy16RetrieveLastBootDevice = 0x0004,
293
294 ///
295 /// Allows the Compatibility16 code rehook INT13, INT18, and/or INT19 after dispatching a legacy OpROM.
296 /// Input:
297 /// AX = Compatibility16DispatchOprom
298 /// ES:BX = Pointer to EFI_DISPATCH_OPROM_TABLE
299 /// Output:
300 /// AX = Returned status codes
301 /// BX = Number of non-BBS-compliant devices found. Equals 0 if BBS compliant.
302 ///
303 Legacy16DispatchOprom = 0x0005,
304
305 ///
306 /// Finds a free area in the 0xFxxxx or 0xExxxx region of the specified length and returns the address
307 /// of that region.
308 /// Input:
309 /// AX = Compatibility16GetTableAddress
310 /// BX = Allocation region
311 /// 00 = Allocate from either 0xE0000 or 0xF0000 64 KB blocks.
312 /// Bit 0 = 1 Allocate from 0xF0000 64 KB block
313 /// Bit 1 = 1 Allocate from 0xE0000 64 KB block
314 /// CX = Requested length in bytes.
315 /// DX = Required address alignment. Bit mapped. First non-zero bit from the right is the alignment.
316 /// Output:
317 /// AX = Returned status codes
318 /// DS:BX = Address of the region
319 ///
320 Legacy16GetTableAddress = 0x0006,
321
322 ///
323 /// Enables the EfiCompatibility module to do any nonstandard processing of keyboard LEDs or state.
324 /// Input:
325 /// AX = Compatibility16SetKeyboardLeds
326 /// CL = LED status.
327 /// Bit 0 Scroll Lock 0 = Off
328 /// Bit 1 NumLock
329 /// Bit 2 Caps Lock
330 /// Output:
331 /// AX = Returned status codes
332 ///
333 Legacy16SetKeyboardLeds = 0x0007,
334
335 ///
336 /// Enables the EfiCompatibility module to install an interrupt handler for PCI mass media devices that
337 /// do not have an OpROM associated with them. An example is SATA.
338 /// Input:
339 /// AX = Compatibility16InstallPciHandler
340 /// ES:BX = Pointer to EFI_LEGACY_INSTALL_PCI_HANDLER structure
341 /// Output:
342 /// AX = Returned status codes
343 ///
344 Legacy16InstallPciHandler = 0x0008
345 } EFI_COMPATIBILITY_FUNCTIONS;
346
347
348 ///
349 /// EFI_DISPATCH_OPROM_TABLE
350 ///
351 typedef struct {
352 UINT16 PnPInstallationCheckSegment; ///< Pointer to the PnpInstallationCheck data structure.
353 UINT16 PnPInstallationCheckOffset; ///< Pointer to the PnpInstallationCheck data structure.
354 UINT16 OpromSegment; ///< The segment where the OpROM was placed. Offset is assumed to be 3.
355 UINT8 PciBus; ///< The PCI bus.
356 UINT8 PciDeviceFunction; ///< The PCI device * 0x08 | PCI function.
357 UINT8 NumberBbsEntries; ///< The number of valid BBS table entries upon entry and exit. The IBV code may
358 ///< increase this number, if BBS-compliant devices also hook INTs in order to force the
359 ///< OpROM BIOS Setup to be executed.
360 VOID *BbsTablePointer; ///< Pointer to the BBS table.
361 UINT16 RuntimeSegment; ///< The segment where the OpROM can be relocated to. If this value is 0x0000, this
362 ///< means that the relocation of this run time code is not supported.
363 ///< Inconsistent with specification here:
364 ///< The member's name "OpromDestinationSegment" [defined in Intel Framework Compatibility Support Module Specification / 0.97 version]
365 ///< has been changed to "RuntimeSegment" since keeping backward compatible.
366
367 } EFI_DISPATCH_OPROM_TABLE;
368
369 ///
370 /// EFI_TO_COMPATIBILITY16_INIT_TABLE
371 ///
372 typedef struct {
373 ///
374 /// Starting address of memory under 1 MB. The ending address is assumed to be 640 KB or 0x9FFFF.
375 ///
376 UINT32 BiosLessThan1MB;
377
378 ///
379 /// Starting address of the high memory block.
380 ///
381 UINT32 HiPmmMemory;
382
383 ///
384 /// Length of high memory block.
385 ///
386 UINT32 HiPmmMemorySizeInBytes;
387
388 ///
389 /// The segment of the reverse thunk call code.
390 ///
391 UINT16 ReverseThunkCallSegment;
392
393 ///
394 /// The offset of the reverse thunk call code.
395 ///
396 UINT16 ReverseThunkCallOffset;
397
398 ///
399 /// The number of E820 entries copied to the Compatibility16 BIOS.
400 ///
401 UINT32 NumberE820Entries;
402
403 ///
404 /// The amount of usable memory above 1 MB, e.g., E820 type 1 memory.
405 ///
406 UINT32 OsMemoryAbove1Mb;
407
408 ///
409 /// The start of thunk code in main memory. Memory cannot be used by BIOS or PMM.
410 ///
411 UINT32 ThunkStart;
412
413 ///
414 /// The size of the thunk code.
415 ///
416 UINT32 ThunkSizeInBytes;
417
418 ///
419 /// Starting address of memory under 1 MB.
420 ///
421 UINT32 LowPmmMemory;
422
423 ///
424 /// Length of low Memory block.
425 ///
426 UINT32 LowPmmMemorySizeInBytes;
427 } EFI_TO_COMPATIBILITY16_INIT_TABLE;
428
429 ///
430 /// DEVICE_PRODUCER_SERIAL
431 ///
432 typedef struct {
433 UINT16 Address; ///< I/O address assigned to the serial port
434 UINT8 Irq; ///< IRQ assigned to the serial port.
435 SERIAL_MODE Mode; ///< Mode of serial port. Values are defined below.
436 } DEVICE_PRODUCER_SERIAL;
437
438 ///
439 /// DEVICE_PRODUCER_SERIAL's modes
440 ///@{
441 #define DEVICE_SERIAL_MODE_NORMAL 0x00
442 #define DEVICE_SERIAL_MODE_IRDA 0x01
443 #define DEVICE_SERIAL_MODE_ASK_IR 0x02
444 #define DEVICE_SERIAL_MODE_DUPLEX_HALF 0x00
445 #define DEVICE_SERIAL_MODE_DUPLEX_FULL 0x10
446 ///@)
447
448 ///
449 /// DEVICE_PRODUCER_PARALLEL
450 ///
451 typedef struct {
452 UINT16 Address; ///< I/O address assigned to the parallel port
453 UINT8 Irq; ///< IRQ assigned to the parallel port.
454 UINT8 Dma; ///< DMA assigned to the parallel port.
455 PARALLEL_MODE Mode; ///< Mode of the parallel port. Values are defined below.
456 } DEVICE_PRODUCER_PARALLEL;
457
458 ///
459 /// DEVICE_PRODUCER_PARALLEL's modes
460 ///@{
461 #define DEVICE_PARALLEL_MODE_MODE_OUTPUT_ONLY 0x00
462 #define DEVICE_PARALLEL_MODE_MODE_BIDIRECTIONAL 0x01
463 #define DEVICE_PARALLEL_MODE_MODE_EPP 0x02
464 #define DEVICE_PARALLEL_MODE_MODE_ECP 0x03
465 ///@}
466
467 ///
468 /// DEVICE_PRODUCER_FLOPPY
469 ///
470 typedef struct {
471 UINT16 Address; ///< I/O address assigned to the floppy
472 UINT8 Irq; ///< IRQ assigned to the floppy.
473 UINT8 Dma; ///< DMA assigned to the floppy.
474 UINT8 NumberOfFloppy; ///< Number of floppies in the system.
475 } DEVICE_PRODUCER_FLOPPY;
476
477 ///
478 /// LEGACY_DEVICE_FLAGS
479 ///
480 typedef struct {
481 UINT32 A20Kybd : 1; ///< A20 controller by keyboard controller.
482 UINT32 A20Port90 : 1; ///< A20 controlled by port 0x92.
483 UINT32 Reserved : 30; ///< Reserved for future usage.
484 } LEGACY_DEVICE_FLAGS;
485
486 ///
487 /// DEVICE_PRODUCER_DATA_HEADER
488 ///
489 typedef struct {
490 DEVICE_PRODUCER_SERIAL Serial[4]; ///< Data for serial port x. Type DEVICE_PRODUCER_SERIAL is defined below.
491 DEVICE_PRODUCER_PARALLEL Parallel[3]; ///< Data for parallel port x. Type DEVICE_PRODUCER_PARALLEL is defined below.
492 DEVICE_PRODUCER_FLOPPY Floppy; ///< Data for floppy. Type DEVICE_PRODUCER_FLOPPY is defined below.
493 UINT8 MousePresent; ///< Flag to indicate if mouse is present.
494 LEGACY_DEVICE_FLAGS Flags; ///< Miscellaneous Boolean state information passed to CSM.
495 } DEVICE_PRODUCER_DATA_HEADER;
496
497 ///
498 /// ATAPI_IDENTIFY
499 ///
500 typedef struct {
501 UINT16 Raw[256]; ///< Raw data from the IDE IdentifyDrive command.
502 } ATAPI_IDENTIFY;
503
504 ///
505 /// HDD_INFO
506 ///
507 typedef struct {
508 ///
509 /// Status of IDE device. Values are defined below. There is one HDD_INFO structure
510 /// per IDE controller. The IdentifyDrive is per drive. Index 0 is master and index
511 /// 1 is slave.
512 ///
513 UINT16 Status;
514
515 ///
516 /// PCI bus of IDE controller.
517 ///
518 UINT32 Bus;
519
520 ///
521 /// PCI device of IDE controller.
522 ///
523 UINT32 Device;
524
525 ///
526 /// PCI function of IDE controller.
527 ///
528 UINT32 Function;
529
530 ///
531 /// Command ports base address.
532 ///
533 UINT16 CommandBaseAddress;
534
535 ///
536 /// Control ports base address.
537 ///
538 UINT16 ControlBaseAddress;
539
540 ///
541 /// Bus master address
542 ///
543 UINT16 BusMasterAddress;
544
545 UINT8 HddIrq;
546
547 ///
548 /// Data that identifies the drive data, one per possible attached drive
549 ///
550 ATAPI_IDENTIFY IdentifyDrive[2];
551 } HDD_INFO;
552
553 ///
554 /// HDD_INFO status bits
555 ///
556 #define HDD_PRIMARY 0x01
557 #define HDD_SECONDARY 0x02
558 #define HDD_MASTER_ATAPI_CDROM 0x04
559 #define HDD_SLAVE_ATAPI_CDROM 0x08
560 #define HDD_MASTER_IDE 0x20
561 #define HDD_SLAVE_IDE 0x40
562 #define HDD_MASTER_ATAPI_ZIPDISK 0x10
563 #define HDD_SLAVE_ATAPI_ZIPDISK 0x80
564
565 ///
566 /// BBS_STATUS_FLAGS
567 ///
568 typedef struct {
569 UINT16 OldPosition : 4; ///< Prior priority.
570 UINT16 Reserved1 : 4; ///< Reserved for future use.
571 UINT16 Enabled : 1; ///< If 0, ignore this entry.
572 UINT16 Failed : 1; ///< 0 = Not known if boot failure occurred.
573 ///< 1 = Boot attempted failed.
574
575 ///
576 /// State of media present.
577 /// 00 = No bootable media is present in the device.
578 /// 01 = Unknown if a bootable media present.
579 /// 10 = Media is present and appears bootable.
580 /// 11 = Reserved.
581 ///
582 UINT16 MediaPresent : 2;
583 UINT16 Reserved2 : 4; ///< Reserved for future use.
584 } BBS_STATUS_FLAGS;
585
586 ///
587 /// BBS_TABLE, device type values & boot priority values
588 ///
589 typedef struct {
590 ///
591 /// The boot priority for this boot device. Values are defined below.
592 ///
593 UINT16 BootPriority;
594
595 ///
596 /// The PCI bus for this boot device.
597 ///
598 UINT32 Bus;
599
600 ///
601 /// The PCI device for this boot device.
602 ///
603 UINT32 Device;
604
605 ///
606 /// The PCI function for the boot device.
607 ///
608 UINT32 Function;
609
610 ///
611 /// The PCI class for this boot device.
612 ///
613 UINT8 Class;
614
615 ///
616 /// The PCI Subclass for this boot device.
617 ///
618 UINT8 SubClass;
619
620 ///
621 /// Segment:offset address of an ASCIIZ description string describing the manufacturer.
622 ///
623 UINT16 MfgStringOffset;
624
625 ///
626 /// Segment:offset address of an ASCIIZ description string describing the manufacturer.
627 ///
628 UINT16 MfgStringSegment;
629
630 ///
631 /// BBS device type. BBS device types are defined below.
632 ///
633 UINT16 DeviceType;
634
635 ///
636 /// Status of this boot device. Type BBS_STATUS_FLAGS is defined below.
637 ///
638 BBS_STATUS_FLAGS StatusFlags;
639
640 ///
641 /// Segment:Offset address of boot loader for IPL devices or install INT13 handler for
642 /// BCV devices.
643 ///
644 UINT16 BootHandlerOffset;
645
646 ///
647 /// Segment:Offset address of boot loader for IPL devices or install INT13 handler for
648 /// BCV devices.
649 ///
650 UINT16 BootHandlerSegment;
651
652 ///
653 /// Segment:offset address of an ASCIIZ description string describing this device.
654 ///
655 UINT16 DescStringOffset;
656
657 ///
658 /// Segment:offset address of an ASCIIZ description string describing this device.
659 ///
660 UINT16 DescStringSegment;
661
662 ///
663 /// Reserved.
664 ///
665 UINT32 InitPerReserved;
666
667 ///
668 /// The use of these fields is IBV dependent. They can be used to flag that an OpROM
669 /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
670 /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
671 ///
672 UINT32 AdditionalIrq13Handler;
673
674 ///
675 /// The use of these fields is IBV dependent. They can be used to flag that an OpROM
676 /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
677 /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
678 ///
679 UINT32 AdditionalIrq18Handler;
680
681 ///
682 /// The use of these fields is IBV dependent. They can be used to flag that an OpROM
683 /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
684 /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
685 ///
686 UINT32 AdditionalIrq19Handler;
687
688 ///
689 /// The use of these fields is IBV dependent. They can be used to flag that an OpROM
690 /// has hooked the specified IRQ. The OpROM may be BBS compliant as some SCSI
691 /// BBS-compliant OpROMs also hook IRQ vectors in order to run their BIOS Setup
692 ///
693 UINT32 AdditionalIrq40Handler;
694 UINT8 AssignedDriveNumber;
695 UINT32 AdditionalIrq41Handler;
696 UINT32 AdditionalIrq46Handler;
697 UINT32 IBV1;
698 UINT32 IBV2;
699 } BBS_TABLE;
700
701 ///
702 /// BBS device type values
703 ///@{
704 #define BBS_FLOPPY 0x01
705 #define BBS_HARDDISK 0x02
706 #define BBS_CDROM 0x03
707 #define BBS_PCMCIA 0x04
708 #define BBS_USB 0x05
709 #define BBS_EMBED_NETWORK 0x06
710 #define BBS_BEV_DEVICE 0x80
711 #define BBS_UNKNOWN 0xff
712 ///@}
713
714 ///
715 /// BBS boot priority values
716 ///@{
717 #define BBS_DO_NOT_BOOT_FROM 0xFFFC
718 #define BBS_LOWEST_PRIORITY 0xFFFD
719 #define BBS_UNPRIORITIZED_ENTRY 0xFFFE
720 #define BBS_IGNORE_ENTRY 0xFFFF
721 ///@}
722
723 ///
724 /// SMM_ATTRIBUTES
725 ///
726 typedef struct {
727 ///
728 /// Access mechanism used to generate the soft SMI. Defined types are below. The other
729 /// values are reserved for future usage.
730 ///
731 UINT16 Type : 3;
732
733 ///
734 /// Size of "port" in bits. Defined values are below.
735 ///
736 UINT16 PortGranularity : 3;
737
738 ///
739 /// Size of data in bits. Defined values are below.
740 ///
741 UINT16 DataGranularity : 3;
742
743 ///
744 /// Reserved for future use.
745 ///
746 UINT16 Reserved : 7;
747 } SMM_ATTRIBUTES;
748
749 ///
750 /// SMM_ATTRIBUTES type values
751 ///@{
752 #define STANDARD_IO 0x00
753 #define STANDARD_MEMORY 0x01
754 ///@}
755
756 ///
757 /// SMM_ATTRIBUTES port size constants
758 ///@{
759 #define PORT_SIZE_8 0x00
760 #define PORT_SIZE_16 0x01
761 #define PORT_SIZE_32 0x02
762 #define PORT_SIZE_64 0x03
763 ///@}
764
765 ///
766 /// SMM_ATTRIBUTES data size constants
767 ///@{
768 #define DATA_SIZE_8 0x00
769 #define DATA_SIZE_16 0x01
770 #define DATA_SIZE_32 0x02
771 #define DATA_SIZE_64 0x03
772 ///@}
773
774 ///
775 /// SMM_FUNCTION & relating constants
776 ///
777 typedef struct {
778 UINT16 Function : 15;
779 UINT16 Owner : 1;
780 } SMM_FUNCTION;
781
782 ///
783 /// SMM_FUNCTION Function constants
784 ///@{
785 #define INT15_D042 0x0000
786 #define GET_USB_BOOT_INFO 0x0001
787 #define DMI_PNP_50_57 0x0002
788 ///@}
789
790 ///
791 /// SMM_FUNCTION Owner constants
792 ///@{
793 #define STANDARD_OWNER 0x0
794 #define OEM_OWNER 0x1
795 ///@}
796
797 /**
798 * SMM_ENTRY
799 *
800 * This structure assumes both port and data sizes are 1. SmmAttribute must be
801 * properly to reflect that assumption.
802 **/
803 typedef struct {
804 ///
805 /// Describes the access mechanism, SmmPort, and SmmData sizes. Type
806 /// SMM_ATTRIBUTES is defined below.
807 ///
808 SMM_ATTRIBUTES SmmAttributes;
809
810 ///
811 /// Function Soft SMI is to perform. Type SMM_FUNCTION is defined below.
812 ///
813 SMM_FUNCTION SmmFunction;
814
815 ///
816 /// SmmPort size depends upon SmmAttributes and ranges from2 bytes to 16 bytes
817 ///
818 UINT8 SmmPort;
819
820 ///
821 /// SmmData size depends upon SmmAttributes and ranges from2 bytes to 16 bytes
822 ///
823 UINT8 SmmData;
824 } SMM_ENTRY;
825
826 ///
827 /// SMM_TABLE
828 ///
829 typedef struct {
830 UINT16 NumSmmEntries; ///< Number of entries represented by SmmEntry.
831 SMM_ENTRY SmmEntry; ///< One entry per function. Type SMM_ENTRY is defined below.
832 } SMM_TABLE;
833
834 ///
835 /// UDC_ATTRIBUTES
836 ///
837 typedef struct {
838 ///
839 /// This bit set indicates that the ServiceAreaData is valid.
840 ///
841 UINT8 DirectoryServiceValidity : 1;
842
843 ///
844 /// This bit set indicates to use the Reserve Area Boot Code Address (RACBA) only if
845 /// DirectoryServiceValidity is 0.
846 ///
847 UINT8 RabcaUsedFlag : 1;
848
849 ///
850 /// This bit set indicates to execute hard disk diagnostics.
851 ///
852 UINT8 ExecuteHddDiagnosticsFlag : 1;
853
854 ///
855 /// Reserved for future use. Set to 0.
856 ///
857 UINT8 Reserved : 5;
858 } UDC_ATTRIBUTES;
859
860 ///
861 /// UD_TABLE
862 ///
863 typedef struct {
864 ///
865 /// This field contains the bit-mapped attributes of the PARTIES information. Type
866 /// UDC_ATTRIBUTES is defined below.
867 ///
868 UDC_ATTRIBUTES Attributes;
869
870 ///
871 /// This field contains the zero-based device on which the selected
872 /// ServiceDataArea is present. It is 0 for master and 1 for the slave device.
873 ///
874 UINT8 DeviceNumber;
875
876 ///
877 /// This field contains the zero-based index into the BbsTable for the parent device.
878 /// This index allows the user to reference the parent device information such as PCI
879 /// bus, device function.
880 ///
881 UINT8 BbsTableEntryNumberForParentDevice;
882
883 ///
884 /// This field contains the zero-based index into the BbsTable for the boot entry.
885 ///
886 UINT8 BbsTableEntryNumberForBoot;
887
888 ///
889 /// This field contains the zero-based index into the BbsTable for the HDD diagnostics entry.
890 ///
891 UINT8 BbsTableEntryNumberForHddDiag;
892
893 ///
894 /// The raw Beer data.
895 ///
896 UINT8 BeerData[128];
897
898 ///
899 /// The raw data of selected service area.
900 ///
901 UINT8 ServiceAreaData[64];
902 } UD_TABLE;
903
904 #define EFI_TO_LEGACY_MAJOR_VERSION 0x02
905 #define EFI_TO_LEGACY_MINOR_VERSION 0x00
906 #define MAX_IDE_CONTROLLER 8
907
908 ///
909 /// EFI_TO_COMPATIBILITY16_BOOT_TABLE
910 ///
911 typedef struct {
912 UINT16 MajorVersion; ///< The EfiCompatibility major version number.
913 UINT16 MinorVersion; ///< The EfiCompatibility minor version number.
914 UINT32 AcpiTable; ///< Location of the RSDT ACPI table. < 4G range
915 UINT32 SmbiosTable; ///< Location of the SMBIOS table in EFI memory. < 4G range
916 UINT32 SmbiosTableLength;
917 //
918 // Legacy SIO state
919 //
920 DEVICE_PRODUCER_DATA_HEADER SioData; ///< Standard traditional device information.
921 UINT16 DevicePathType; ///< The default boot type.
922 UINT16 PciIrqMask; ///< Mask of which IRQs have been assigned to PCI.
923 UINT32 NumberE820Entries; ///< Number of E820 entries. The number can change from the
924 ///< Compatibility16InitializeYourself() function.
925 //
926 // Controller & Drive Identify[2] per controller information
927 //
928 HDD_INFO HddInfo[MAX_IDE_CONTROLLER]; ///< Hard disk drive information, including raw Identify Drive data.
929 UINT32 NumberBbsEntries; ///< Number of entries in the BBS table
930 UINT32 BbsTable; ///< Pointer to the BBS table. Type BBS_TABLE is defined below.
931 UINT32 SmmTable; ///< Pointer to the SMM table. Type SMM_TABLE is defined below.
932 UINT32 OsMemoryAbove1Mb; ///< The amount of usable memory above 1 MB, i.e. E820 type 1 memory. This value can
933 ///< differ from the value in EFI_TO_COMPATIBILITY16_INIT_TABLE as more
934 ///< memory may have been discovered.
935 UINT32 UnconventionalDeviceTable; ///< Information to boot off an unconventional device like a PARTIES partition. Type
936 ///< UD_TABLE is defined below.
937 } EFI_TO_COMPATIBILITY16_BOOT_TABLE;
938
939 ///
940 /// EFI_LEGACY_INSTALL_PCI_HANDLER
941 ///
942 typedef struct {
943 UINT8 PciBus; ///< The PCI bus of the device.
944 UINT8 PciDeviceFun; ///< The PCI device in bits 7:3 and function in bits 2:0.
945 UINT8 PciSegment; ///< The PCI segment of the device.
946 UINT8 PciClass; ///< The PCI class code of the device.
947 UINT8 PciSubclass; ///< The PCI subclass code of the device.
948 UINT8 PciInterface; ///< The PCI interface code of the device.
949 //
950 // Primary section
951 //
952 UINT8 PrimaryIrq; ///< The primary device IRQ.
953 UINT8 PrimaryReserved; ///< Reserved.
954 UINT16 PrimaryControl; ///< The primary device control I/O base.
955 UINT16 PrimaryBase; ///< The primary device I/O base.
956 UINT16 PrimaryBusMaster; ///< The primary device bus master I/O base.
957 //
958 // Secondary Section
959 //
960 UINT8 SecondaryIrq; ///< The secondary device IRQ.
961 UINT8 SecondaryReserved; ///< Reserved.
962 UINT16 SecondaryControl; ///< The secondary device control I/O base.
963 UINT16 SecondaryBase; ///< The secondary device I/O base.
964 UINT16 SecondaryBusMaster; ///< The secondary device bus master I/O base.
965 } EFI_LEGACY_INSTALL_PCI_HANDLER;
966
967 //
968 // Restore default pack value
969 //
970 #pragma pack()
971
972 #define EFI_LEGACY_BIOS_PROTOCOL_GUID \
973 { \
974 0xdb9a1e3d, 0x45cb, 0x4abb, {0x85, 0x3b, 0xe5, 0x38, 0x7f, 0xdb, 0x2e, 0x2d } \
975 }
976
977 typedef struct _EFI_LEGACY_BIOS_PROTOCOL EFI_LEGACY_BIOS_PROTOCOL;
978
979 //
980 // Flags returned by CheckPciRom()
981 //
982 #define NO_ROM 0x00
983 #define ROM_FOUND 0x01
984 #define VALID_LEGACY_ROM 0x02
985 #define ROM_WITH_CONFIG 0x04 // Not defined in CSM Specification0.96
986
987 //
988 /// @bug These macros appear in no specifications and are kept for backward
989 // compatibility only.
990 // Convert from 32-bit address (_Adr) to Segment:Offset 16-bit form
991 //
992 #define EFI_SEGMENT(_Adr) (UINT16) ((UINT16) (((UINTN) (_Adr)) >> 4) & 0xf000)
993 #define EFI_OFFSET(_Adr) (UINT16) (((UINT16) ((UINTN) (_Adr))) & 0xffff)
994 #define BYTE_GRANULARITY 0x01
995 #define WORD_GRANULARITY 0x02
996 #define DWORD_GRANULARITY 0x04
997 #define QWORD_GRANULARITY 0x08
998 #define PARAGRAPH_GRANULARITY 0x10
999
1000 #define CARRY_FLAG 0x01
1001
1002 //*********************************************************
1003 // EFI_EFLAGS_REG
1004 //*********************************************************
1005 typedef struct {
1006 UINT32 CF:1;
1007 UINT32 Reserved1:1;
1008 UINT32 PF:1;
1009 UINT32 Reserved2:1;
1010 UINT32 AF:1;
1011 UINT32 Reserved3:1;
1012 UINT32 ZF:1;
1013 UINT32 SF:1;
1014 UINT32 TF:1;
1015 UINT32 IF:1;
1016 UINT32 DF:1;
1017 UINT32 OF:1;
1018 UINT32 IOPL:2;
1019 UINT32 NT:1;
1020 UINT32 Reserved4:2;
1021 UINT32 VM:1;
1022 UINT32 Reserved5:14;
1023 } EFI_EFLAGS_REG;
1024
1025 //*********************************************************
1026 // EFI_DWORD_REGS
1027 //*********************************************************
1028
1029 typedef struct {
1030 UINT32 EAX;
1031 UINT32 EBX;
1032 UINT32 ECX;
1033 UINT32 EDX;
1034 UINT32 ESI;
1035 UINT32 EDI;
1036 EFI_EFLAGS_REG EFlags;
1037 UINT16 ES;
1038 UINT16 CS;
1039 UINT16 SS;
1040 UINT16 DS;
1041 UINT16 FS;
1042 UINT16 GS;
1043 UINT32 EBP;
1044 UINT32 ESP;
1045 } EFI_DWORD_REGS;
1046
1047 //*******************************************
1048 // EFI_FLAGS_REG
1049 //*******************************************
1050 typedef struct {
1051 UINT16 CF:1;
1052 UINT16 Reserved1:1;
1053 UINT16 PF:1;
1054 UINT16 Reserved2:1;
1055 UINT16 AF:1;
1056 UINT16 Reserved3:1;
1057 UINT16 ZF:1;
1058 UINT16 SF:1;
1059 UINT16 TF:1;
1060 UINT16 IF:1;
1061 UINT16 DF:1;
1062 UINT16 OF:1;
1063 UINT16 IOPL:2;
1064 UINT16 NT:1;
1065 UINT16 Reserved4:1;
1066 } EFI_FLAGS_REG;
1067
1068
1069 //*********************************************************
1070 // EFI_WORD_REGS
1071 //*********************************************************
1072
1073 typedef struct {
1074 UINT16 AX;
1075 UINT16 ReservedAX;
1076 UINT16 BX;
1077 UINT16 ReservedBX;
1078 UINT16 CX;
1079 UINT16 ReservedCX;
1080 UINT16 DX;
1081 UINT16 ReservedDX;
1082 UINT16 SI;
1083 UINT16 ReservedSI;
1084 UINT16 DI;
1085 UINT16 ReservedDI;
1086 EFI_FLAGS_REG Flags;
1087 UINT16 ReservedFlags;
1088 UINT16 ES;
1089 UINT16 CS;
1090 UINT16 SS;
1091 UINT16 DS;
1092 UINT16 FS;
1093 UINT16 GS;
1094 UINT16 BP;
1095 UINT16 ReservedBP;
1096 UINT16 SP;
1097 UINT16 ReservedSP;
1098 } EFI_WORD_REGS;
1099
1100 //*********************************************************
1101 // EFI_BYTE_REGS
1102 //*********************************************************
1103
1104 typedef struct {
1105 UINT8 AL, AH;
1106 UINT16 ReservedAX;
1107 UINT8 BL, BH;
1108 UINT16 ReservedBX;
1109 UINT8 CL, CH;
1110 UINT16 ReservedCX;
1111 UINT8 DL, DH;
1112 UINT16 ReservedDX;
1113 } EFI_BYTE_REGS;
1114
1115 typedef union {
1116 EFI_DWORD_REGS E;
1117 EFI_WORD_REGS X;
1118 EFI_BYTE_REGS H;
1119 } EFI_IA32_REGISTER_SET;
1120
1121 /**
1122 Thunk to 16-bit real mode and execute a software interrupt with a vector
1123 of BiosInt. Regs will contain the 16-bit register context on entry and
1124 exit.
1125
1126 @param This Protocol instance pointer.
1127 @param BiosInt Processor interrupt vector to invoke
1128 @param Reg Register contexted passed into (and returned) from thunk to
1129 16-bit mode
1130
1131 @retval FALSE Thunk completed, and there were no BIOS errors in the target code.
1132 See Regs for status.
1133 @retval TRUE There was a BIOS erro in the target code.
1134
1135 **/
1136 typedef
1137 BOOLEAN
1138 (EFIAPI *EFI_LEGACY_BIOS_INT86)(
1139 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1140 IN UINT8 BiosInt,
1141 IN OUT EFI_IA32_REGISTER_SET *Regs
1142 );
1143
1144 /**
1145 Thunk to 16-bit real mode and call Segment:Offset. Regs will contain the
1146 16-bit register context on entry and exit. Arguments can be passed on
1147 the Stack argument
1148
1149 @param This Protocol instance pointer.
1150 @param Segment Segemnt of 16-bit mode call
1151 @param Offset Offset of 16-bit mdoe call
1152 @param Reg Register contexted passed into (and returned) from thunk to
1153 16-bit mode
1154 @param Stack Caller allocated stack used to pass arguments
1155 @param StackSize Size of Stack in bytes
1156
1157 @retval FALSE Thunk completed, and there were no BIOS errors in the target code.
1158 See Regs for status.
1159 @retval TRUE There was a BIOS erro in the target code.
1160
1161 **/
1162 typedef
1163 BOOLEAN
1164 (EFIAPI *EFI_LEGACY_BIOS_FARCALL86)(
1165 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1166 IN UINT16 Segment,
1167 IN UINT16 Offset,
1168 IN EFI_IA32_REGISTER_SET *Regs,
1169 IN VOID *Stack,
1170 IN UINTN StackSize
1171 );
1172
1173 /**
1174 Test to see if a legacy PCI ROM exists for this device. Optionally return
1175 the Legacy ROM instance for this PCI device.
1176
1177 @param This Protocol instance pointer.
1178 @param PciHandle The PCI PC-AT OPROM from this devices ROM BAR will be loaded
1179 @param RomImage Return the legacy PCI ROM for this device
1180 @param RomSize Size of ROM Image
1181 @param Flags Indicates if ROM found and if PC-AT. Multiple bits can be set as follows:
1182 00 = No ROM
1183 01 = ROM Found
1184 02 = ROM is a valid legacy ROM
1185
1186 @retval EFI_SUCCESS Legacy Option ROM availible for this device
1187 @retval EFI_UNSUPPORTED Legacy Option ROM not supported.
1188
1189 **/
1190 typedef
1191 EFI_STATUS
1192 (EFIAPI *EFI_LEGACY_BIOS_CHECK_ROM)(
1193 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1194 IN EFI_HANDLE PciHandle,
1195 OUT VOID **RomImage, OPTIONAL
1196 OUT UINTN *RomSize, OPTIONAL
1197 OUT UINTN *Flags
1198 );
1199
1200 /**
1201 Load a legacy PC-AT OPROM on the PciHandle device. Return information
1202 about how many disks were added by the OPROM and the shadow address and
1203 size. DiskStart & DiskEnd are INT 13h drive letters. Thus 0x80 is C:
1204
1205 @param This Protocol instance pointer.
1206 @param PciHandle The PCI PC-AT OPROM from this devices ROM BAR will be loaded.
1207 This value is NULL if RomImage is non-NULL. This is the normal
1208 case.
1209 @param RomImage A PCI PC-AT ROM image. This argument is non-NULL if there is
1210 no hardware associated with the ROM and thus no PciHandle,
1211 otherwise is must be NULL.
1212 Example is PXE base code.
1213 @param Flags The type of ROM discovered. Multiple bits can be set, as follows:
1214 00 = No ROM.
1215 01 = ROM found.
1216 02 = ROM is a valid legacy ROM.
1217 @param DiskStart Disk number of first device hooked by the ROM. If DiskStart
1218 is the same as DiskEnd no disked were hooked.
1219 @param DiskEnd Disk number of the last device hooked by the ROM.
1220 @param RomShadowAddress Shadow address of PC-AT ROM
1221 @param RomShadowSize Size of RomShadowAddress in bytes
1222
1223 @retval EFI_SUCCESS Thunk completed, see Regs for status.
1224 @retval EFI_INVALID_PARAMETER PciHandle not found
1225
1226 **/
1227 typedef
1228 EFI_STATUS
1229 (EFIAPI *EFI_LEGACY_BIOS_INSTALL_ROM)(
1230 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1231 IN EFI_HANDLE PciHandle,
1232 IN VOID **RomImage,
1233 OUT UINTN *Flags,
1234 OUT UINT8 *DiskStart, OPTIONAL
1235 OUT UINT8 *DiskEnd, OPTIONAL
1236 OUT VOID **RomShadowAddress, OPTIONAL
1237 OUT UINT32 *ShadowedRomSize OPTIONAL
1238 );
1239
1240 /**
1241 This function attempts to traditionally boot the specified BootOption. If the EFI context has
1242 been compromised, this function will not return. This procedure is not used for loading an EFIaware
1243 OS off a traditional device. The following actions occur:
1244 - Get EFI SMBIOS data structures, convert them to a traditional format, and copy to
1245 Compatibility16.
1246 - Get a pointer to ACPI data structures and copy the Compatibility16 RSD PTR to F0000 block.
1247 - Find the traditional SMI handler from a firmware volume and register the traditional SMI
1248 handler with the EFI SMI handler.
1249 - Build onboard IDE information and pass this information to the Compatibility16 code.
1250 - Make sure all PCI Interrupt Line registers are programmed to match 8259.
1251 - Reconfigure SIO devices from EFI mode (polled) into traditional mode (interrupt driven).
1252 - Shadow all PCI ROMs.
1253 - Set up BDA and EBDA standard areas before the legacy boot.
1254 - Construct the Compatibility16 boot memory map and pass it to the Compatibility16 code.
1255 - Invoke the Compatibility16 table function Compatibility16PrepareToBoot(). This
1256 invocation causes a thunk into the Compatibility16 code, which sets all appropriate internal
1257 data structures. The boot device list is a parameter.
1258 - Invoke the Compatibility16 Table function Compatibility16Boot(). This invocation
1259 causes a thunk into the Compatibility16 code, which does an INT19.
1260 - If the Compatibility16Boot() function returns, then the boot failed in a graceful
1261 manner—i.e., EFI code is still valid. An ungraceful boot failure causes a reset because the state
1262 of EFI code is unknown.
1263
1264 @param This Protocol instance pointer.
1265 @param BootOption EFI Device Path from BootXXXX variable.
1266 @param LoadOptionSize Size of LoadOption in size.
1267 @param LoadOption LoadOption from BootXXXX variable
1268
1269 @retval EFI_DEVICE_ERROR Failed to boot from any boot device and memory is uncorrupted.
1270 Note: This function normally never returns. It will either boot the
1271 OS or reset the system if memory has been "corrupted" by loading
1272 a boot sector and passing control to it.
1273
1274 **/
1275 typedef
1276 EFI_STATUS
1277 (EFIAPI *EFI_LEGACY_BIOS_BOOT)(
1278 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1279 IN BBS_BBS_DEVICE_PATH *BootOption,
1280 IN UINT32 LoadOptionsSize,
1281 IN VOID *LoadOptions
1282 );
1283
1284 /**
1285 This function takes the Leds input parameter and sets/resets the BDA accordingly.
1286 Leds is also passed to Compatibility16 code, in case any special processing is required.
1287 This function is normally called from EFI Setup drivers that handle userselectable
1288 keyboard options such as boot with NUM LOCK on/off. This function does not
1289 touch the keyboard or keyboard LEDs but only the BDA.
1290
1291 @param This Protocol instance pointer.
1292 @param Leds Status of current Scroll, Num & Cap lock LEDS
1293 Bit 0 is Scroll Lock 0 = Not locked
1294 Bit 1 is Num Lock
1295 Bit 2 is Caps Lock
1296
1297 @retval EFI_SUCCESS The BDA was updated successfully.
1298
1299 **/
1300 typedef
1301 EFI_STATUS
1302 (EFIAPI *EFI_LEGACY_BIOS_UPDATE_KEYBOARD_LED_STATUS)(
1303 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1304 IN UINT8 Leds
1305 );
1306
1307 /**
1308 Retrieve legacy BBS info and assign boot priority.
1309
1310 @param This Protocol instance pointer.
1311 @param HddCount Number of HDD_INFO structures
1312 @param HddInfo Onboard IDE controller information
1313 @param BbsCount Number of BBS_TABLE structures
1314 @param BbsTable Point to List of BBS_TABLE
1315
1316 @retval EFI_SUCCESS Tables returned
1317
1318 **/
1319 typedef
1320 EFI_STATUS
1321 (EFIAPI *EFI_LEGACY_BIOS_GET_BBS_INFO)(
1322 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1323 OUT UINT16 *HddCount,
1324 OUT HDD_INFO **HddInfo,
1325 OUT UINT16 *BbsCount,
1326 IN OUT BBS_TABLE **BbsTable
1327 );
1328
1329 /**
1330 Assign drive number to legacy HDD drives prior to booting an EFI
1331 aware OS so the OS can access drives without an EFI driver.
1332
1333 @param This Protocol instance pointer.
1334 @param BbsCount Number of BBS_TABLE structures
1335 @param BbsTable List BBS entries
1336
1337 @retval EFI_SUCCESS Drive numbers assigned
1338
1339 **/
1340 typedef
1341 EFI_STATUS
1342 (EFIAPI *EFI_LEGACY_BIOS_PREPARE_TO_BOOT_EFI)(
1343 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1344 OUT UINT16 *BbsCount,
1345 OUT BBS_TABLE **BbsTable
1346 );
1347
1348 /**
1349 To boot from an unconventional device like parties and/or execute
1350 HDD diagnostics.
1351
1352 @param This Protocol instance pointer.
1353 @param Attributes How to interpret the other input parameters
1354 @param BbsEntry The 0-based index into the BbsTable for the parent
1355 device.
1356 @param BeerData Pointer to the 128 bytes of ram BEER data.
1357 @param ServiceAreaData Pointer to the 64 bytes of raw Service Area data. The
1358 caller must provide a pointer to the specific Service
1359 Area and not the start all Service Areas.
1360
1361 @retval EFI_INVALID_PARAMETER if error. Does NOT return if no error.
1362
1363 **/
1364 typedef
1365 EFI_STATUS
1366 (EFIAPI *EFI_LEGACY_BIOS_BOOT_UNCONVENTIONAL_DEVICE)(
1367 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1368 IN UDC_ATTRIBUTES Attributes,
1369 IN UINTN BbsEntry,
1370 IN VOID *BeerData,
1371 IN VOID *ServiceAreaData
1372 );
1373
1374 /**
1375 Shadow all legacy16 OPROMs that haven't been shadowed.
1376 Warning: Use this with caution. This routine disconnects all EFI
1377 drivers. If used externally then caller must re-connect EFI
1378 drivers.
1379
1380 @retval EFI_SUCCESS OPROMs shadowed
1381
1382 **/
1383 typedef
1384 EFI_STATUS
1385 (EFIAPI *EFI_LEGACY_BIOS_SHADOW_ALL_LEGACY_OPROMS)(
1386 IN EFI_LEGACY_BIOS_PROTOCOL *This
1387 );
1388
1389 /**
1390 Get a region from the LegacyBios for S3 usage.
1391
1392 @param This Protocol instance pointer.
1393 @param LegacyMemorySize Size of required region
1394 @param Region Region to use.
1395 00 = Either 0xE0000 or 0xF0000 block
1396 Bit0 = 1 0xF0000 block
1397 Bit1 = 1 0xE0000 block
1398 @param Alignment Address alignment. Bit mapped. First non-zero
1399 bit from right is alignment.
1400 @param LegacyMemoryAddress Region Assigned
1401
1402 @retval EFI_SUCCESS Region assigned
1403 @retval EFI_ACCESS_DENIED The function was previously invoked.
1404 @retval Other Region not assigned
1405
1406 **/
1407 typedef
1408 EFI_STATUS
1409 (EFIAPI *EFI_LEGACY_BIOS_GET_LEGACY_REGION)(
1410 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1411 IN UINTN LegacyMemorySize,
1412 IN UINTN Region,
1413 IN UINTN Alignment,
1414 OUT VOID **LegacyMemoryAddress
1415 );
1416
1417 /**
1418 Get a region from the LegacyBios for Tiano usage. Can only be invoked once.
1419
1420 @param This Protocol instance pointer.
1421 @param LegacyMemorySize Size of data to copy
1422 @param LegacyMemoryAddress Legacy Region destination address
1423 Note: must be in region assigned by
1424 LegacyBiosGetLegacyRegion
1425 @param LegacyMemorySourceAddress
1426 Source of the data to copy.
1427
1428 @retval EFI_SUCCESS Region assigned
1429 @retval EFI_ACCESS_DENIED Destination outside assigned region
1430
1431 **/
1432 typedef
1433 EFI_STATUS
1434 (EFIAPI *EFI_LEGACY_BIOS_COPY_LEGACY_REGION)(
1435 IN EFI_LEGACY_BIOS_PROTOCOL *This,
1436 IN UINTN LegacyMemorySize,
1437 IN VOID *LegacyMemoryAddress,
1438 IN VOID *LegacyMemorySourceAddress
1439 );
1440
1441 /**
1442 Abstracts the traditional BIOS from the rest of EFI. The LegacyBoot()
1443 member function allows the BDS to support booting a traditional OS.
1444 EFI thunks drivers that make EFI bindings for BIOS INT services use
1445 all the other member functions.
1446 **/
1447 struct _EFI_LEGACY_BIOS_PROTOCOL {
1448 ///
1449 /// Performs traditional software INT. See the Int86() function description.
1450 ///
1451 EFI_LEGACY_BIOS_INT86 Int86;
1452
1453 ///
1454 /// Performs a far call into Compatibility16 or traditional OpROM code.
1455 ///
1456 EFI_LEGACY_BIOS_FARCALL86 FarCall86;
1457
1458 ///
1459 /// Checks if a traditional OpROM exists for this device.
1460 ///
1461 EFI_LEGACY_BIOS_CHECK_ROM CheckPciRom;
1462
1463 ///
1464 /// Loads a traditional OpROM in traditional OpROM address space.
1465 ///
1466 EFI_LEGACY_BIOS_INSTALL_ROM InstallPciRom;
1467
1468 ///
1469 /// Boots a traditional OS.
1470 ///
1471 EFI_LEGACY_BIOS_BOOT LegacyBoot;
1472
1473 ///
1474 /// Updates BDA to reflect the current EFI keyboard LED status.
1475 ///
1476 EFI_LEGACY_BIOS_UPDATE_KEYBOARD_LED_STATUS UpdateKeyboardLedStatus;
1477
1478 ///
1479 /// Allows an external agent, such as BIOS Setup, to get the BBS data.
1480 ///
1481 EFI_LEGACY_BIOS_GET_BBS_INFO GetBbsInfo;
1482
1483 ///
1484 /// Causes all legacy OpROMs to be shadowed.
1485 ///
1486 EFI_LEGACY_BIOS_SHADOW_ALL_LEGACY_OPROMS ShadowAllLegacyOproms;
1487
1488 ///
1489 /// Performs all actions prior to boot. Used when booting an EFI-aware OS
1490 /// rather than a legacy OS.
1491 ///
1492 EFI_LEGACY_BIOS_PREPARE_TO_BOOT_EFI PrepareToBootEfi;
1493
1494 ///
1495 /// Allows EFI to reserve an area in the 0xE0000 or 0xF0000 block.
1496 ///
1497 EFI_LEGACY_BIOS_GET_LEGACY_REGION GetLegacyRegion;
1498
1499 ///
1500 /// Allows EFI to copy data to the area specified by GetLegacyRegion.
1501 ///
1502 EFI_LEGACY_BIOS_COPY_LEGACY_REGION CopyLegacyRegion;
1503
1504 ///
1505 /// Allows the user to boot off an unconventional device such as a PARTIES partition.
1506 ///
1507 EFI_LEGACY_BIOS_BOOT_UNCONVENTIONAL_DEVICE BootUnconventionalDevice;
1508 };
1509
1510 extern EFI_GUID gEfiLegacyBiosProtocolGuid;
1511
1512 #endif