]> git.proxmox.com Git - mirror_edk2.git/blob - IntelSiliconPkg/IntelVTdDxe/VtdReg.c
IntelSiliconPkg/VTd: improve debug message.
[mirror_edk2.git] / IntelSiliconPkg / IntelVTdDxe / VtdReg.c
1 /** @file
2
3 Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
4 This program and the accompanying materials
5 are licensed and made available under the terms and conditions of the BSD License
6 which accompanies this distribution. The full text of the license may be found at
7 http://opensource.org/licenses/bsd-license.php.
8
9 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
10 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
11
12 **/
13
14 #include "DmaProtection.h"
15
16 UINT64 mVtdHostAddressWidthMask;
17 UINTN mVtdUnitNumber;
18 VTD_UNIT_INFORMATION *mVtdUnitInformation;
19
20 BOOLEAN mVtdEnabled;
21
22 /**
23 Flush VTD page table and context table memory.
24
25 This action is to make sure the IOMMU engine can get final data in memory.
26
27 @param[in] VtdIndex The index used to identify a VTd engine.
28 @param[in] Base The base address of memory to be flushed.
29 @param[in] Size The size of memory in bytes to be flushed.
30 **/
31 VOID
32 FlushPageTableMemory (
33 IN UINTN VtdIndex,
34 IN UINTN Base,
35 IN UINTN Size
36 )
37 {
38 if (mVtdUnitInformation[VtdIndex].ECapReg.Bits.C == 0) {
39 WriteBackDataCacheRange ((VOID *)Base, Size);
40 }
41 }
42
43 /**
44 Flush VTd engine write buffer.
45
46 @param[in] VtdIndex The index used to identify a VTd engine.
47 **/
48 VOID
49 FlushWriteBuffer (
50 IN UINTN VtdIndex
51 )
52 {
53 UINT32 Reg32;
54
55 if (mVtdUnitInformation[VtdIndex].CapReg.Bits.RWBF != 0) {
56 Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_GSTS_REG);
57 MmioWrite32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_GCMD_REG, Reg32 | B_GMCD_REG_WBF);
58 do {
59 Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_GSTS_REG);
60 } while ((Reg32 & B_GSTS_REG_WBF) != 0);
61 }
62 }
63
64 /**
65 Invalidate VTd context cache.
66
67 @param[in] VtdIndex The index used to identify a VTd engine.
68 **/
69 EFI_STATUS
70 InvalidateContextCache (
71 IN UINTN VtdIndex
72 )
73 {
74 UINT64 Reg64;
75
76 Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG);
77 if ((Reg64 & B_CCMD_REG_ICC) != 0) {
78 DEBUG ((DEBUG_ERROR,"ERROR: InvalidateContextCache: B_CCMD_REG_ICC is set for VTD(%d)\n",VtdIndex));
79 return EFI_DEVICE_ERROR;
80 }
81
82 Reg64 &= ((~B_CCMD_REG_ICC) & (~B_CCMD_REG_CIRG_MASK));
83 Reg64 |= (B_CCMD_REG_ICC | V_CCMD_REG_CIRG_GLOBAL);
84 MmioWrite64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG, Reg64);
85
86 do {
87 Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG);
88 } while ((Reg64 & B_CCMD_REG_ICC) != 0);
89
90 return EFI_SUCCESS;
91 }
92
93 /**
94 Invalidate VTd IOTLB.
95
96 @param[in] VtdIndex The index used to identify a VTd engine.
97 **/
98 EFI_STATUS
99 InvalidateIOTLB (
100 IN UINTN VtdIndex
101 )
102 {
103 UINT64 Reg64;
104
105 Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG);
106 if ((Reg64 & B_IOTLB_REG_IVT) != 0) {
107 DEBUG ((DEBUG_ERROR,"ERROR: InvalidateIOTLB: B_IOTLB_REG_IVT is set for VTD(%d)\n", VtdIndex));
108 return EFI_DEVICE_ERROR;
109 }
110
111 Reg64 &= ((~B_IOTLB_REG_IVT) & (~B_IOTLB_REG_IIRG_MASK));
112 Reg64 |= (B_IOTLB_REG_IVT | V_IOTLB_REG_IIRG_GLOBAL);
113 MmioWrite64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG, Reg64);
114
115 do {
116 Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG);
117 } while ((Reg64 & B_IOTLB_REG_IVT) != 0);
118
119 return EFI_SUCCESS;
120 }
121
122 /**
123 Invalid VTd global IOTLB.
124
125 @param[in] VtdIndex The index of VTd engine.
126
127 @retval EFI_SUCCESS VTd global IOTLB is invalidated.
128 @retval EFI_DEVICE_ERROR VTd global IOTLB is not invalidated.
129 **/
130 EFI_STATUS
131 InvalidateVtdIOTLBGlobal (
132 IN UINTN VtdIndex
133 )
134 {
135 if (!mVtdEnabled) {
136 return EFI_SUCCESS;
137 }
138
139 DEBUG((DEBUG_VERBOSE, "InvalidateVtdIOTLBGlobal(%d)\n", VtdIndex));
140
141 //
142 // Write Buffer Flush before invalidation
143 //
144 FlushWriteBuffer (VtdIndex);
145
146 //
147 // Invalidate the context cache
148 //
149 if (mVtdUnitInformation[VtdIndex].HasDirtyContext) {
150 InvalidateContextCache (VtdIndex);
151 }
152
153 //
154 // Invalidate the IOTLB cache
155 //
156 if (mVtdUnitInformation[VtdIndex].HasDirtyContext || mVtdUnitInformation[VtdIndex].HasDirtyPages) {
157 InvalidateIOTLB (VtdIndex);
158 }
159
160 return EFI_SUCCESS;
161 }
162
163 /**
164 Prepare VTD configuration.
165 **/
166 VOID
167 PrepareVtdConfig (
168 VOID
169 )
170 {
171 UINTN Index;
172 UINTN DomainNumber;
173
174 for (Index = 0; Index < mVtdUnitNumber; Index++) {
175 DEBUG ((DEBUG_INFO, "Dump VTd Capability (%d)\n", Index));
176 mVtdUnitInformation[Index].CapReg.Uint64 = MmioRead64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_CAP_REG);
177 DumpVtdCapRegs (&mVtdUnitInformation[Index].CapReg);
178 mVtdUnitInformation[Index].ECapReg.Uint64 = MmioRead64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_ECAP_REG);
179 DumpVtdECapRegs (&mVtdUnitInformation[Index].ECapReg);
180
181 if ((mVtdUnitInformation[Index].CapReg.Bits.SLLPS & BIT0) == 0) {
182 DEBUG((DEBUG_WARN, "!!!! 2MB super page is not supported on VTD %d !!!!\n", Index));
183 }
184 if ((mVtdUnitInformation[Index].CapReg.Bits.SAGAW & BIT2) == 0) {
185 DEBUG((DEBUG_ERROR, "!!!! 4-level page-table is not supported on VTD %d !!!!\n", Index));
186 return ;
187 }
188
189 DomainNumber = (UINTN)1 << (UINT8)((UINTN)mVtdUnitInformation[Index].CapReg.Bits.ND * 2 + 4);
190 if (mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceDataNumber >= DomainNumber) {
191 DEBUG((DEBUG_ERROR, "!!!! Pci device Number(0x%x) >= DomainNumber(0x%x) !!!!\n", mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceDataNumber, DomainNumber));
192 return ;
193 }
194 }
195 return ;
196 }
197
198 /**
199 Enable DMAR translation.
200
201 @retval EFI_SUCCESS DMAR translation is enabled.
202 @retval EFI_DEVICE_ERROR DMAR translation is not enabled.
203 **/
204 EFI_STATUS
205 EnableDmar (
206 VOID
207 )
208 {
209 UINTN Index;
210 UINT32 Reg32;
211
212 for (Index = 0; Index < mVtdUnitNumber; Index++) {
213 DEBUG((DEBUG_INFO, ">>>>>>EnableDmar() for engine [%d] \n", Index));
214
215 if (mVtdUnitInformation[Index].ExtRootEntryTable != NULL) {
216 DEBUG((DEBUG_INFO, "ExtRootEntryTable 0x%x \n", mVtdUnitInformation[Index].ExtRootEntryTable));
217 MmioWrite64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_RTADDR_REG, (UINT64)(UINTN)mVtdUnitInformation[Index].ExtRootEntryTable | BIT11);
218 } else {
219 DEBUG((DEBUG_INFO, "RootEntryTable 0x%x \n", mVtdUnitInformation[Index].RootEntryTable));
220 MmioWrite64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_RTADDR_REG, (UINT64)(UINTN)mVtdUnitInformation[Index].RootEntryTable);
221 }
222
223 MmioWrite32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GCMD_REG, B_GMCD_REG_SRTP);
224
225 DEBUG((DEBUG_INFO, "EnableDmar: waiting for RTPS bit to be set... \n"));
226 do {
227 Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GSTS_REG);
228 } while((Reg32 & B_GSTS_REG_RTPS) == 0);
229
230 //
231 // Init DMAr Fault Event and Data registers
232 //
233 Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_FEDATA_REG);
234
235 //
236 // Write Buffer Flush before invalidation
237 //
238 FlushWriteBuffer (Index);
239
240 //
241 // Invalidate the context cache
242 //
243 InvalidateContextCache (Index);
244
245 //
246 // Invalidate the IOTLB cache
247 //
248 InvalidateIOTLB (Index);
249
250 //
251 // Enable VTd
252 //
253 MmioWrite32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GCMD_REG, B_GMCD_REG_TE);
254 DEBUG((DEBUG_INFO, "EnableDmar: Waiting B_GSTS_REG_TE ...\n"));
255 do {
256 Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GSTS_REG);
257 } while ((Reg32 & B_GSTS_REG_TE) == 0);
258
259 DEBUG ((DEBUG_INFO,"VTD (%d) enabled!<<<<<<\n",Index));
260 }
261
262 mVtdEnabled = TRUE;
263
264 return EFI_SUCCESS;
265 }
266
267 /**
268 Disable DMAR translation.
269
270 @retval EFI_SUCCESS DMAR translation is disabled.
271 @retval EFI_DEVICE_ERROR DMAR translation is not disabled.
272 **/
273 EFI_STATUS
274 DisableDmar (
275 VOID
276 )
277 {
278 UINTN Index;
279 UINTN SubIndex;
280 UINT32 Reg32;
281
282 for (Index = 0; Index < mVtdUnitNumber; Index++) {
283 DEBUG((DEBUG_INFO, ">>>>>>DisableDmar() for engine [%d] \n", Index));
284
285 //
286 // Write Buffer Flush before invalidation
287 //
288 FlushWriteBuffer (Index);
289
290 //
291 // Disable VTd
292 //
293 MmioWrite32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GCMD_REG, B_GMCD_REG_SRTP);
294 do {
295 Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GSTS_REG);
296 } while((Reg32 & B_GSTS_REG_RTPS) == 0);
297
298 Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GSTS_REG);
299 DEBUG((DEBUG_INFO, "DisableDmar: GSTS_REG - 0x%08x\n", Reg32));
300
301 DEBUG ((DEBUG_INFO,"VTD (%d) Disabled!<<<<<<\n",Index));
302 }
303
304 mVtdEnabled = FALSE;
305
306 for (Index = 0; Index < mVtdUnitNumber; Index++) {
307 DEBUG((DEBUG_INFO, "engine [%d] access\n", Index));
308 for (SubIndex = 0; SubIndex < mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceDataNumber; SubIndex++) {
309 DEBUG ((DEBUG_INFO, " PCI S%04X B%02x D%02x F%02x - %d\n",
310 mVtdUnitInformation[Index].Segment,
311 mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceData[Index].PciSourceId.Bits.Bus,
312 mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceData[Index].PciSourceId.Bits.Device,
313 mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceData[Index].PciSourceId.Bits.Function,
314 mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceData[Index].AccessCount
315 ));
316 }
317 }
318
319 return EFI_SUCCESS;
320 }
321
322 /**
323 Dump VTd capability registers.
324
325 @param[in] CapReg The capability register.
326 **/
327 VOID
328 DumpVtdCapRegs (
329 IN VTD_CAP_REG *CapReg
330 )
331 {
332 DEBUG((DEBUG_INFO, " CapReg:\n", CapReg->Uint64));
333 DEBUG((DEBUG_INFO, " ND - 0x%x\n", CapReg->Bits.ND));
334 DEBUG((DEBUG_INFO, " AFL - 0x%x\n", CapReg->Bits.AFL));
335 DEBUG((DEBUG_INFO, " RWBF - 0x%x\n", CapReg->Bits.RWBF));
336 DEBUG((DEBUG_INFO, " PLMR - 0x%x\n", CapReg->Bits.PLMR));
337 DEBUG((DEBUG_INFO, " PHMR - 0x%x\n", CapReg->Bits.PHMR));
338 DEBUG((DEBUG_INFO, " CM - 0x%x\n", CapReg->Bits.CM));
339 DEBUG((DEBUG_INFO, " SAGAW - 0x%x\n", CapReg->Bits.SAGAW));
340 DEBUG((DEBUG_INFO, " MGAW - 0x%x\n", CapReg->Bits.MGAW));
341 DEBUG((DEBUG_INFO, " ZLR - 0x%x\n", CapReg->Bits.ZLR));
342 DEBUG((DEBUG_INFO, " FRO - 0x%x\n", CapReg->Bits.FRO));
343 DEBUG((DEBUG_INFO, " SLLPS - 0x%x\n", CapReg->Bits.SLLPS));
344 DEBUG((DEBUG_INFO, " PSI - 0x%x\n", CapReg->Bits.PSI));
345 DEBUG((DEBUG_INFO, " NFR - 0x%x\n", CapReg->Bits.NFR));
346 DEBUG((DEBUG_INFO, " MAMV - 0x%x\n", CapReg->Bits.MAMV));
347 DEBUG((DEBUG_INFO, " DWD - 0x%x\n", CapReg->Bits.DWD));
348 DEBUG((DEBUG_INFO, " DRD - 0x%x\n", CapReg->Bits.DRD));
349 DEBUG((DEBUG_INFO, " FL1GP - 0x%x\n", CapReg->Bits.FL1GP));
350 DEBUG((DEBUG_INFO, " PI - 0x%x\n", CapReg->Bits.PI));
351 }
352
353 /**
354 Dump VTd extended capability registers.
355
356 @param[in] ECapReg The extended capability register.
357 **/
358 VOID
359 DumpVtdECapRegs (
360 IN VTD_ECAP_REG *ECapReg
361 )
362 {
363 DEBUG((DEBUG_INFO, " ECapReg:\n", ECapReg->Uint64));
364 DEBUG((DEBUG_INFO, " C - 0x%x\n", ECapReg->Bits.C));
365 DEBUG((DEBUG_INFO, " QI - 0x%x\n", ECapReg->Bits.QI));
366 DEBUG((DEBUG_INFO, " DT - 0x%x\n", ECapReg->Bits.DT));
367 DEBUG((DEBUG_INFO, " IR - 0x%x\n", ECapReg->Bits.IR));
368 DEBUG((DEBUG_INFO, " EIM - 0x%x\n", ECapReg->Bits.EIM));
369 DEBUG((DEBUG_INFO, " PT - 0x%x\n", ECapReg->Bits.PT));
370 DEBUG((DEBUG_INFO, " SC - 0x%x\n", ECapReg->Bits.SC));
371 DEBUG((DEBUG_INFO, " IRO - 0x%x\n", ECapReg->Bits.IRO));
372 DEBUG((DEBUG_INFO, " MHMV - 0x%x\n", ECapReg->Bits.MHMV));
373 DEBUG((DEBUG_INFO, " ECS - 0x%x\n", ECapReg->Bits.ECS));
374 DEBUG((DEBUG_INFO, " MTS - 0x%x\n", ECapReg->Bits.MTS));
375 DEBUG((DEBUG_INFO, " NEST - 0x%x\n", ECapReg->Bits.NEST));
376 DEBUG((DEBUG_INFO, " DIS - 0x%x\n", ECapReg->Bits.DIS));
377 DEBUG((DEBUG_INFO, " PASID - 0x%x\n", ECapReg->Bits.PASID));
378 DEBUG((DEBUG_INFO, " PRS - 0x%x\n", ECapReg->Bits.PRS));
379 DEBUG((DEBUG_INFO, " ERS - 0x%x\n", ECapReg->Bits.ERS));
380 DEBUG((DEBUG_INFO, " SRS - 0x%x\n", ECapReg->Bits.SRS));
381 DEBUG((DEBUG_INFO, " NWFS - 0x%x\n", ECapReg->Bits.NWFS));
382 DEBUG((DEBUG_INFO, " EAFS - 0x%x\n", ECapReg->Bits.EAFS));
383 DEBUG((DEBUG_INFO, " PSS - 0x%x\n", ECapReg->Bits.PSS));
384 }
385
386 /**
387 Dump VTd registers.
388
389 @param[in] VtdIndex The index of VTd engine.
390 **/
391 VOID
392 DumpVtdRegs (
393 IN UINTN VtdIndex
394 )
395 {
396 UINTN Index;
397 UINT64 Reg64;
398 VTD_FRCD_REG FrcdReg;
399 VTD_CAP_REG CapReg;
400 UINT32 Reg32;
401 VTD_SOURCE_ID SourceId;
402
403 DEBUG((DEBUG_INFO, "#### DumpVtdRegs(%d) Begin ####\n", VtdIndex));
404
405 Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_VER_REG);
406 DEBUG((DEBUG_INFO, " VER_REG - 0x%08x\n", Reg32));
407
408 CapReg.Uint64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CAP_REG);
409 DEBUG((DEBUG_INFO, " CAP_REG - 0x%016lx\n", CapReg.Uint64));
410
411 Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_ECAP_REG);
412 DEBUG((DEBUG_INFO, " ECAP_REG - 0x%016lx\n", Reg64));
413
414 Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_GSTS_REG);
415 DEBUG((DEBUG_INFO, " GSTS_REG - 0x%08x \n", Reg32));
416
417 Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_RTADDR_REG);
418 DEBUG((DEBUG_INFO, " RTADDR_REG - 0x%016lx\n", Reg64));
419
420 Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG);
421 DEBUG((DEBUG_INFO, " CCMD_REG - 0x%016lx\n", Reg64));
422
423 Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FSTS_REG);
424 DEBUG((DEBUG_INFO, " FSTS_REG - 0x%08x\n", Reg32));
425
426 Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FECTL_REG);
427 DEBUG((DEBUG_INFO, " FECTL_REG - 0x%08x\n", Reg32));
428
429 Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FEDATA_REG);
430 DEBUG((DEBUG_INFO, " FEDATA_REG - 0x%08x\n", Reg32));
431
432 Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FEADDR_REG);
433 DEBUG((DEBUG_INFO, " FEADDR_REG - 0x%08x\n",Reg32));
434
435 Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FEUADDR_REG);
436 DEBUG((DEBUG_INFO, " FEUADDR_REG - 0x%08x\n",Reg32));
437
438 for (Index = 0; Index < (UINTN)CapReg.Bits.NFR + 1; Index++) {
439 FrcdReg.Uint64[0] = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG));
440 FrcdReg.Uint64[1] = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG + sizeof(UINT64)));
441 DEBUG((DEBUG_INFO, " FRCD_REG[%d] - 0x%016lx %016lx\n", Index, FrcdReg.Uint64[1], FrcdReg.Uint64[0]));
442 if (FrcdReg.Uint64[1] != 0 || FrcdReg.Uint64[0] != 0) {
443 DEBUG((DEBUG_INFO, " Fault Info - 0x%016lx\n", VTD_64BITS_ADDRESS(FrcdReg.Bits.FILo, FrcdReg.Bits.FIHi)));
444 SourceId.Uint16 = (UINT16)FrcdReg.Bits.SID;
445 DEBUG((DEBUG_INFO, " Source - B%02x D%02x F%02x\n", SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function));
446 DEBUG((DEBUG_INFO, " Type - %x (%a)\n", FrcdReg.Bits.T, FrcdReg.Bits.T ? "read" : "write"));
447 DEBUG((DEBUG_INFO, " Reason - %x\n", FrcdReg.Bits.FR));
448 }
449 }
450
451 Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IVA_REG);
452 DEBUG((DEBUG_INFO, " IVA_REG - 0x%016lx\n",Reg64));
453
454 Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG);
455 DEBUG((DEBUG_INFO, " IOTLB_REG - 0x%016lx\n",Reg64));
456
457 DEBUG((DEBUG_INFO, "#### DumpVtdRegs(%d) End ####\n", VtdIndex));
458 }
459
460 /**
461 Dump VTd registers for all VTd engine.
462 **/
463 VOID
464 DumpVtdRegsAll (
465 VOID
466 )
467 {
468 UINTN Num;
469
470 for (Num = 0; Num < mVtdUnitNumber; Num++) {
471 DumpVtdRegs (Num);
472 }
473 }
474
475 /**
476 Dump VTd registers if there is error.
477 **/
478 VOID
479 DumpVtdIfError (
480 VOID
481 )
482 {
483 UINTN Num;
484 UINTN Index;
485 VTD_FRCD_REG FrcdReg;
486 VTD_CAP_REG CapReg;
487 UINT32 Reg32;
488 BOOLEAN HasError;
489
490 for (Num = 0; Num < mVtdUnitNumber; Num++) {
491 HasError = FALSE;
492 Reg32 = MmioRead32 (mVtdUnitInformation[Num].VtdUnitBaseAddress + R_FSTS_REG);
493 if (Reg32 != 0) {
494 HasError = TRUE;
495 }
496 Reg32 = MmioRead32 (mVtdUnitInformation[Num].VtdUnitBaseAddress + R_FECTL_REG);
497 if ((Reg32 & BIT30) != 0) {
498 HasError = TRUE;
499 }
500
501 CapReg.Uint64 = MmioRead64 (mVtdUnitInformation[Num].VtdUnitBaseAddress + R_CAP_REG);
502 for (Index = 0; Index < (UINTN)CapReg.Bits.NFR + 1; Index++) {
503 FrcdReg.Uint64[0] = MmioRead64 (mVtdUnitInformation[Num].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG));
504 FrcdReg.Uint64[1] = MmioRead64 (mVtdUnitInformation[Num].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG + sizeof(UINT64)));
505 if ((FrcdReg.Uint64[0] != 0) || (FrcdReg.Uint64[1] != 0)) {
506 HasError = TRUE;
507 }
508 }
509
510 if (HasError) {
511 DEBUG((DEBUG_INFO, "\n#### ERROR ####\n"));
512 DumpVtdRegs (Num);
513 DEBUG((DEBUG_INFO, "#### ERROR ####\n\n"));
514 }
515 }
516 }