]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Bus/Pci/NvmExpressDxe/NvmExpressPassthru.c
302cfdcd8d8dfe688c2fd9fd2ad28a690133ea3a
[mirror_edk2.git] / MdeModulePkg / Bus / Pci / NvmExpressDxe / NvmExpressPassthru.c
1 /** @file
2 NvmExpressDxe driver is used to manage non-volatile memory subsystem which follows
3 NVM Express specification.
4
5 (C) Copyright 2014 Hewlett-Packard Development Company, L.P.<BR>
6 Copyright (c) 2013 - 2018, Intel Corporation. All rights reserved.<BR>
7 This program and the accompanying materials
8 are licensed and made available under the terms and conditions of the BSD License
9 which accompanies this distribution. The full text of the license may be found at
10 http://opensource.org/licenses/bsd-license.php.
11
12 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
13 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
14
15 **/
16
17 #include "NvmExpress.h"
18
19 /**
20 Dump the execution status from a given completion queue entry.
21
22 @param[in] Cq A pointer to the NVME_CQ item.
23
24 **/
25 VOID
26 NvmeDumpStatus (
27 IN NVME_CQ *Cq
28 )
29 {
30 DEBUG ((EFI_D_VERBOSE, "Dump NVMe Completion Entry Status from [0x%x]:\n", Cq));
31
32 DEBUG ((EFI_D_VERBOSE, " SQ Identifier : [0x%x], Phase Tag : [%d], Cmd Identifier : [0x%x]\n", Cq->Sqid, Cq->Pt, Cq->Cid));
33
34 DEBUG ((EFI_D_VERBOSE, " NVMe Cmd Execution Result - "));
35
36 switch (Cq->Sct) {
37 case 0x0:
38 switch (Cq->Sc) {
39 case 0x0:
40 DEBUG ((EFI_D_VERBOSE, "Successful Completion\n"));
41 break;
42 case 0x1:
43 DEBUG ((EFI_D_VERBOSE, "Invalid Command Opcode\n"));
44 break;
45 case 0x2:
46 DEBUG ((EFI_D_VERBOSE, "Invalid Field in Command\n"));
47 break;
48 case 0x3:
49 DEBUG ((EFI_D_VERBOSE, "Command ID Conflict\n"));
50 break;
51 case 0x4:
52 DEBUG ((EFI_D_VERBOSE, "Data Transfer Error\n"));
53 break;
54 case 0x5:
55 DEBUG ((EFI_D_VERBOSE, "Commands Aborted due to Power Loss Notification\n"));
56 break;
57 case 0x6:
58 DEBUG ((EFI_D_VERBOSE, "Internal Device Error\n"));
59 break;
60 case 0x7:
61 DEBUG ((EFI_D_VERBOSE, "Command Abort Requested\n"));
62 break;
63 case 0x8:
64 DEBUG ((EFI_D_VERBOSE, "Command Aborted due to SQ Deletion\n"));
65 break;
66 case 0x9:
67 DEBUG ((EFI_D_VERBOSE, "Command Aborted due to Failed Fused Command\n"));
68 break;
69 case 0xA:
70 DEBUG ((EFI_D_VERBOSE, "Command Aborted due to Missing Fused Command\n"));
71 break;
72 case 0xB:
73 DEBUG ((EFI_D_VERBOSE, "Invalid Namespace or Format\n"));
74 break;
75 case 0xC:
76 DEBUG ((EFI_D_VERBOSE, "Command Sequence Error\n"));
77 break;
78 case 0xD:
79 DEBUG ((EFI_D_VERBOSE, "Invalid SGL Last Segment Descriptor\n"));
80 break;
81 case 0xE:
82 DEBUG ((EFI_D_VERBOSE, "Invalid Number of SGL Descriptors\n"));
83 break;
84 case 0xF:
85 DEBUG ((EFI_D_VERBOSE, "Data SGL Length Invalid\n"));
86 break;
87 case 0x10:
88 DEBUG ((EFI_D_VERBOSE, "Metadata SGL Length Invalid\n"));
89 break;
90 case 0x11:
91 DEBUG ((EFI_D_VERBOSE, "SGL Descriptor Type Invalid\n"));
92 break;
93 case 0x80:
94 DEBUG ((EFI_D_VERBOSE, "LBA Out of Range\n"));
95 break;
96 case 0x81:
97 DEBUG ((EFI_D_VERBOSE, "Capacity Exceeded\n"));
98 break;
99 case 0x82:
100 DEBUG ((EFI_D_VERBOSE, "Namespace Not Ready\n"));
101 break;
102 case 0x83:
103 DEBUG ((EFI_D_VERBOSE, "Reservation Conflict\n"));
104 break;
105 }
106 break;
107
108 case 0x1:
109 switch (Cq->Sc) {
110 case 0x0:
111 DEBUG ((EFI_D_VERBOSE, "Completion Queue Invalid\n"));
112 break;
113 case 0x1:
114 DEBUG ((EFI_D_VERBOSE, "Invalid Queue Identifier\n"));
115 break;
116 case 0x2:
117 DEBUG ((EFI_D_VERBOSE, "Maximum Queue Size Exceeded\n"));
118 break;
119 case 0x3:
120 DEBUG ((EFI_D_VERBOSE, "Abort Command Limit Exceeded\n"));
121 break;
122 case 0x5:
123 DEBUG ((EFI_D_VERBOSE, "Asynchronous Event Request Limit Exceeded\n"));
124 break;
125 case 0x6:
126 DEBUG ((EFI_D_VERBOSE, "Invalid Firmware Slot\n"));
127 break;
128 case 0x7:
129 DEBUG ((EFI_D_VERBOSE, "Invalid Firmware Image\n"));
130 break;
131 case 0x8:
132 DEBUG ((EFI_D_VERBOSE, "Invalid Interrupt Vector\n"));
133 break;
134 case 0x9:
135 DEBUG ((EFI_D_VERBOSE, "Invalid Log Page\n"));
136 break;
137 case 0xA:
138 DEBUG ((EFI_D_VERBOSE, "Invalid Format\n"));
139 break;
140 case 0xB:
141 DEBUG ((EFI_D_VERBOSE, "Firmware Application Requires Conventional Reset\n"));
142 break;
143 case 0xC:
144 DEBUG ((EFI_D_VERBOSE, "Invalid Queue Deletion\n"));
145 break;
146 case 0xD:
147 DEBUG ((EFI_D_VERBOSE, "Feature Identifier Not Saveable\n"));
148 break;
149 case 0xE:
150 DEBUG ((EFI_D_VERBOSE, "Feature Not Changeable\n"));
151 break;
152 case 0xF:
153 DEBUG ((EFI_D_VERBOSE, "Feature Not Namespace Specific\n"));
154 break;
155 case 0x10:
156 DEBUG ((EFI_D_VERBOSE, "Firmware Application Requires NVM Subsystem Reset\n"));
157 break;
158 case 0x80:
159 DEBUG ((EFI_D_VERBOSE, "Conflicting Attributes\n"));
160 break;
161 case 0x81:
162 DEBUG ((EFI_D_VERBOSE, "Invalid Protection Information\n"));
163 break;
164 case 0x82:
165 DEBUG ((EFI_D_VERBOSE, "Attempted Write to Read Only Range\n"));
166 break;
167 }
168 break;
169
170 case 0x2:
171 switch (Cq->Sc) {
172 case 0x80:
173 DEBUG ((EFI_D_VERBOSE, "Write Fault\n"));
174 break;
175 case 0x81:
176 DEBUG ((EFI_D_VERBOSE, "Unrecovered Read Error\n"));
177 break;
178 case 0x82:
179 DEBUG ((EFI_D_VERBOSE, "End-to-end Guard Check Error\n"));
180 break;
181 case 0x83:
182 DEBUG ((EFI_D_VERBOSE, "End-to-end Application Tag Check Error\n"));
183 break;
184 case 0x84:
185 DEBUG ((EFI_D_VERBOSE, "End-to-end Reference Tag Check Error\n"));
186 break;
187 case 0x85:
188 DEBUG ((EFI_D_VERBOSE, "Compare Failure\n"));
189 break;
190 case 0x86:
191 DEBUG ((EFI_D_VERBOSE, "Access Denied\n"));
192 break;
193 }
194 break;
195
196 default:
197 break;
198 }
199 }
200
201 /**
202 Create PRP lists for data transfer which is larger than 2 memory pages.
203 Note here we calcuate the number of required PRP lists and allocate them at one time.
204
205 @param[in] PciIo A pointer to the EFI_PCI_IO_PROTOCOL instance.
206 @param[in] PhysicalAddr The physical base address of data buffer.
207 @param[in] Pages The number of pages to be transfered.
208 @param[out] PrpListHost The host base address of PRP lists.
209 @param[in,out] PrpListNo The number of PRP List.
210 @param[out] Mapping The mapping value returned from PciIo.Map().
211
212 @retval The pointer to the first PRP List of the PRP lists.
213
214 **/
215 VOID*
216 NvmeCreatePrpList (
217 IN EFI_PCI_IO_PROTOCOL *PciIo,
218 IN EFI_PHYSICAL_ADDRESS PhysicalAddr,
219 IN UINTN Pages,
220 OUT VOID **PrpListHost,
221 IN OUT UINTN *PrpListNo,
222 OUT VOID **Mapping
223 )
224 {
225 UINTN PrpEntryNo;
226 UINT64 PrpListBase;
227 UINTN PrpListIndex;
228 UINTN PrpEntryIndex;
229 UINT64 Remainder;
230 EFI_PHYSICAL_ADDRESS PrpListPhyAddr;
231 UINTN Bytes;
232 EFI_STATUS Status;
233
234 //
235 // The number of Prp Entry in a memory page.
236 //
237 PrpEntryNo = EFI_PAGE_SIZE / sizeof (UINT64);
238
239 //
240 // Calculate total PrpList number.
241 //
242 *PrpListNo = (UINTN)DivU64x64Remainder ((UINT64)Pages, (UINT64)PrpEntryNo - 1, &Remainder);
243 if (*PrpListNo == 0) {
244 *PrpListNo = 1;
245 } else if ((Remainder != 0) && (Remainder != 1)) {
246 *PrpListNo += 1;
247 } else if (Remainder == 1) {
248 Remainder = PrpEntryNo;
249 } else if (Remainder == 0) {
250 Remainder = PrpEntryNo - 1;
251 }
252
253 Status = PciIo->AllocateBuffer (
254 PciIo,
255 AllocateAnyPages,
256 EfiBootServicesData,
257 *PrpListNo,
258 PrpListHost,
259 0
260 );
261
262 if (EFI_ERROR (Status)) {
263 return NULL;
264 }
265
266 Bytes = EFI_PAGES_TO_SIZE (*PrpListNo);
267 Status = PciIo->Map (
268 PciIo,
269 EfiPciIoOperationBusMasterCommonBuffer,
270 *PrpListHost,
271 &Bytes,
272 &PrpListPhyAddr,
273 Mapping
274 );
275
276 if (EFI_ERROR (Status) || (Bytes != EFI_PAGES_TO_SIZE (*PrpListNo))) {
277 DEBUG ((EFI_D_ERROR, "NvmeCreatePrpList: create PrpList failure!\n"));
278 goto EXIT;
279 }
280 //
281 // Fill all PRP lists except of last one.
282 //
283 ZeroMem (*PrpListHost, Bytes);
284 for (PrpListIndex = 0; PrpListIndex < *PrpListNo - 1; ++PrpListIndex) {
285 PrpListBase = *(UINT64*)PrpListHost + PrpListIndex * EFI_PAGE_SIZE;
286
287 for (PrpEntryIndex = 0; PrpEntryIndex < PrpEntryNo; ++PrpEntryIndex) {
288 if (PrpEntryIndex != PrpEntryNo - 1) {
289 //
290 // Fill all PRP entries except of last one.
291 //
292 *((UINT64*)(UINTN)PrpListBase + PrpEntryIndex) = PhysicalAddr;
293 PhysicalAddr += EFI_PAGE_SIZE;
294 } else {
295 //
296 // Fill last PRP entries with next PRP List pointer.
297 //
298 *((UINT64*)(UINTN)PrpListBase + PrpEntryIndex) = PrpListPhyAddr + (PrpListIndex + 1) * EFI_PAGE_SIZE;
299 }
300 }
301 }
302 //
303 // Fill last PRP list.
304 //
305 PrpListBase = *(UINT64*)PrpListHost + PrpListIndex * EFI_PAGE_SIZE;
306 for (PrpEntryIndex = 0; PrpEntryIndex < Remainder; ++PrpEntryIndex) {
307 *((UINT64*)(UINTN)PrpListBase + PrpEntryIndex) = PhysicalAddr;
308 PhysicalAddr += EFI_PAGE_SIZE;
309 }
310
311 return (VOID*)(UINTN)PrpListPhyAddr;
312
313 EXIT:
314 PciIo->FreeBuffer (PciIo, *PrpListNo, *PrpListHost);
315 return NULL;
316 }
317
318
319 /**
320 Aborts the asynchronous PassThru requests.
321
322 @param[in] Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA
323 data structure.
324
325 @retval EFI_SUCCESS The asynchronous PassThru requests have been aborted.
326 @return EFI_DEVICE_ERROR Fail to abort all the asynchronous PassThru requests.
327
328 **/
329 EFI_STATUS
330 AbortAsyncPassThruTasks (
331 IN NVME_CONTROLLER_PRIVATE_DATA *Private
332 )
333 {
334 EFI_PCI_IO_PROTOCOL *PciIo;
335 LIST_ENTRY *Link;
336 LIST_ENTRY *NextLink;
337 NVME_BLKIO2_SUBTASK *Subtask;
338 NVME_BLKIO2_REQUEST *BlkIo2Request;
339 NVME_PASS_THRU_ASYNC_REQ *AsyncRequest;
340 EFI_BLOCK_IO2_TOKEN *Token;
341 EFI_TPL OldTpl;
342 EFI_STATUS Status;
343
344 PciIo = Private->PciIo;
345 OldTpl = gBS->RaiseTPL (TPL_NOTIFY);
346
347 //
348 // Cancel the unsubmitted subtasks.
349 //
350 for (Link = GetFirstNode (&Private->UnsubmittedSubtasks);
351 !IsNull (&Private->UnsubmittedSubtasks, Link);
352 Link = NextLink) {
353 NextLink = GetNextNode (&Private->UnsubmittedSubtasks, Link);
354 Subtask = NVME_BLKIO2_SUBTASK_FROM_LINK (Link);
355 BlkIo2Request = Subtask->BlockIo2Request;
356 Token = BlkIo2Request->Token;
357
358 BlkIo2Request->UnsubmittedSubtaskNum--;
359 if (Subtask->IsLast) {
360 BlkIo2Request->LastSubtaskSubmitted = TRUE;
361 }
362 Token->TransactionStatus = EFI_ABORTED;
363
364 RemoveEntryList (Link);
365 InsertTailList (&BlkIo2Request->SubtasksQueue, Link);
366 gBS->SignalEvent (Subtask->Event);
367 }
368
369 //
370 // Cleanup the resources for the asynchronous PassThru requests.
371 //
372 for (Link = GetFirstNode (&Private->AsyncPassThruQueue);
373 !IsNull (&Private->AsyncPassThruQueue, Link);
374 Link = NextLink) {
375 NextLink = GetNextNode (&Private->AsyncPassThruQueue, Link);
376 AsyncRequest = NVME_PASS_THRU_ASYNC_REQ_FROM_THIS (Link);
377
378 if (AsyncRequest->MapData != NULL) {
379 PciIo->Unmap (PciIo, AsyncRequest->MapData);
380 }
381 if (AsyncRequest->MapMeta != NULL) {
382 PciIo->Unmap (PciIo, AsyncRequest->MapMeta);
383 }
384 if (AsyncRequest->MapPrpList != NULL) {
385 PciIo->Unmap (PciIo, AsyncRequest->MapPrpList);
386 }
387 if (AsyncRequest->PrpListHost != NULL) {
388 PciIo->FreeBuffer (
389 PciIo,
390 AsyncRequest->PrpListNo,
391 AsyncRequest->PrpListHost
392 );
393 }
394
395 RemoveEntryList (Link);
396 gBS->SignalEvent (AsyncRequest->CallerEvent);
397 FreePool (AsyncRequest);
398 }
399
400 if (IsListEmpty (&Private->AsyncPassThruQueue) &&
401 IsListEmpty (&Private->UnsubmittedSubtasks)) {
402 Status = EFI_SUCCESS;
403 } else {
404 Status = EFI_DEVICE_ERROR;
405 }
406
407 gBS->RestoreTPL (OldTpl);
408
409 return Status;
410 }
411
412
413 /**
414 Sends an NVM Express Command Packet to an NVM Express controller or namespace. This function supports
415 both blocking I/O and non-blocking I/O. The blocking I/O functionality is required, and the non-blocking
416 I/O functionality is optional.
417
418
419 @param[in] This A pointer to the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL instance.
420 @param[in] NamespaceId A 32 bit namespace ID as defined in the NVMe specification to which the NVM Express Command
421 Packet will be sent. A value of 0 denotes the NVM Express controller, a value of all 0xFF's
422 (all bytes are 0xFF) in the namespace ID specifies that the command packet should be sent to
423 all valid namespaces.
424 @param[in,out] Packet A pointer to the NVM Express Command Packet.
425 @param[in] Event If non-blocking I/O is not supported then Event is ignored, and blocking I/O is performed.
426 If Event is NULL, then blocking I/O is performed. If Event is not NULL and non-blocking I/O
427 is supported, then non-blocking I/O is performed, and Event will be signaled when the NVM
428 Express Command Packet completes.
429
430 @retval EFI_SUCCESS The NVM Express Command Packet was sent by the host. TransferLength bytes were transferred
431 to, or from DataBuffer.
432 @retval EFI_BAD_BUFFER_SIZE The NVM Express Command Packet was not executed. The number of bytes that could be transferred
433 is returned in TransferLength.
434 @retval EFI_NOT_READY The NVM Express Command Packet could not be sent because the controller is not ready. The caller
435 may retry again later.
436 @retval EFI_DEVICE_ERROR A device error occurred while attempting to send the NVM Express Command Packet.
437 @retval EFI_INVALID_PARAMETER NamespaceId or the contents of EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET are invalid. The NVM
438 Express Command Packet was not sent, so no additional status information is available.
439 @retval EFI_UNSUPPORTED The command described by the NVM Express Command Packet is not supported by the NVM Express
440 controller. The NVM Express Command Packet was not sent so no additional status information
441 is available.
442 @retval EFI_TIMEOUT A timeout occurred while waiting for the NVM Express Command Packet to execute.
443
444 **/
445 EFI_STATUS
446 EFIAPI
447 NvmExpressPassThru (
448 IN EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL *This,
449 IN UINT32 NamespaceId,
450 IN OUT EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET *Packet,
451 IN EFI_EVENT Event OPTIONAL
452 )
453 {
454 NVME_CONTROLLER_PRIVATE_DATA *Private;
455 EFI_STATUS Status;
456 EFI_STATUS PreviousStatus;
457 EFI_PCI_IO_PROTOCOL *PciIo;
458 NVME_SQ *Sq;
459 NVME_CQ *Cq;
460 UINT16 QueueId;
461 UINT32 Bytes;
462 UINT16 Offset;
463 EFI_EVENT TimerEvent;
464 EFI_PCI_IO_PROTOCOL_OPERATION Flag;
465 EFI_PHYSICAL_ADDRESS PhyAddr;
466 VOID *MapData;
467 VOID *MapMeta;
468 VOID *MapPrpList;
469 UINTN MapLength;
470 UINT64 *Prp;
471 VOID *PrpListHost;
472 UINTN PrpListNo;
473 UINT32 Attributes;
474 UINT32 IoAlign;
475 UINT32 MaxTransLen;
476 UINT32 Data;
477 NVME_PASS_THRU_ASYNC_REQ *AsyncRequest;
478 EFI_TPL OldTpl;
479
480 //
481 // check the data fields in Packet parameter.
482 //
483 if ((This == NULL) || (Packet == NULL)) {
484 return EFI_INVALID_PARAMETER;
485 }
486
487 if ((Packet->NvmeCmd == NULL) || (Packet->NvmeCompletion == NULL)) {
488 return EFI_INVALID_PARAMETER;
489 }
490
491 if (Packet->QueueType != NVME_ADMIN_QUEUE && Packet->QueueType != NVME_IO_QUEUE) {
492 return EFI_INVALID_PARAMETER;
493 }
494
495 //
496 // 'Attributes' with neither EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_LOGICAL nor
497 // EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_PHYSICAL set is an illegal
498 // configuration.
499 //
500 Attributes = This->Mode->Attributes;
501 if ((Attributes & (EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_PHYSICAL |
502 EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_LOGICAL)) == 0) {
503 return EFI_INVALID_PARAMETER;
504 }
505
506 //
507 // Buffer alignment check for TransferBuffer & MetadataBuffer.
508 //
509 IoAlign = This->Mode->IoAlign;
510 if (IoAlign > 0 && (((UINTN) Packet->TransferBuffer & (IoAlign - 1)) != 0)) {
511 return EFI_INVALID_PARAMETER;
512 }
513
514 if (IoAlign > 0 && (((UINTN) Packet->MetadataBuffer & (IoAlign - 1)) != 0)) {
515 return EFI_INVALID_PARAMETER;
516 }
517
518 Private = NVME_CONTROLLER_PRIVATE_DATA_FROM_PASS_THRU (This);
519
520 //
521 // Check NamespaceId is valid or not.
522 //
523 if ((NamespaceId > Private->ControllerData->Nn) &&
524 (NamespaceId != (UINT32) -1)) {
525 return EFI_INVALID_PARAMETER;
526 }
527
528 //
529 // Check whether TransferLength exceeds the maximum data transfer size.
530 //
531 if (Private->ControllerData->Mdts != 0) {
532 MaxTransLen = (1 << (Private->ControllerData->Mdts)) *
533 (1 << (Private->Cap.Mpsmin + 12));
534 if (Packet->TransferLength > MaxTransLen) {
535 Packet->TransferLength = MaxTransLen;
536 return EFI_BAD_BUFFER_SIZE;
537 }
538 }
539
540 PciIo = Private->PciIo;
541 MapData = NULL;
542 MapMeta = NULL;
543 MapPrpList = NULL;
544 PrpListHost = NULL;
545 PrpListNo = 0;
546 Prp = NULL;
547 TimerEvent = NULL;
548 Status = EFI_SUCCESS;
549
550 if (Packet->QueueType == NVME_ADMIN_QUEUE) {
551 QueueId = 0;
552 } else {
553 if (Event == NULL) {
554 QueueId = 1;
555 } else {
556 QueueId = 2;
557
558 //
559 // Submission queue full check.
560 //
561 if ((Private->SqTdbl[QueueId].Sqt + 1) % (NVME_ASYNC_CSQ_SIZE + 1) ==
562 Private->AsyncSqHead) {
563 return EFI_NOT_READY;
564 }
565 }
566 }
567 Sq = Private->SqBuffer[QueueId] + Private->SqTdbl[QueueId].Sqt;
568 Cq = Private->CqBuffer[QueueId] + Private->CqHdbl[QueueId].Cqh;
569
570 if (Packet->NvmeCmd->Nsid != NamespaceId) {
571 return EFI_INVALID_PARAMETER;
572 }
573
574 ZeroMem (Sq, sizeof (NVME_SQ));
575 Sq->Opc = (UINT8)Packet->NvmeCmd->Cdw0.Opcode;
576 Sq->Fuse = (UINT8)Packet->NvmeCmd->Cdw0.FusedOperation;
577 Sq->Cid = Private->Cid[QueueId]++;
578 Sq->Nsid = Packet->NvmeCmd->Nsid;
579
580 //
581 // Currently we only support PRP for data transfer, SGL is NOT supported.
582 //
583 ASSERT (Sq->Psdt == 0);
584 if (Sq->Psdt != 0) {
585 DEBUG ((EFI_D_ERROR, "NvmExpressPassThru: doesn't support SGL mechanism\n"));
586 return EFI_UNSUPPORTED;
587 }
588
589 Sq->Prp[0] = (UINT64)(UINTN)Packet->TransferBuffer;
590 //
591 // If the NVMe cmd has data in or out, then mapping the user buffer to the PCI controller specific addresses.
592 // Note here we don't handle data buffer for CreateIOSubmitionQueue and CreateIOCompletionQueue cmds because
593 // these two cmds are special which requires their data buffer must support simultaneous access by both the
594 // processor and a PCI Bus Master. It's caller's responsbility to ensure this.
595 //
596 if (((Sq->Opc & (BIT0 | BIT1)) != 0) &&
597 !((Packet->QueueType == NVME_ADMIN_QUEUE) && ((Sq->Opc == NVME_ADMIN_CRIOCQ_CMD) || (Sq->Opc == NVME_ADMIN_CRIOSQ_CMD)))) {
598 if ((Packet->TransferLength == 0) || (Packet->TransferBuffer == NULL)) {
599 return EFI_INVALID_PARAMETER;
600 }
601
602 if ((Sq->Opc & BIT0) != 0) {
603 Flag = EfiPciIoOperationBusMasterRead;
604 } else {
605 Flag = EfiPciIoOperationBusMasterWrite;
606 }
607
608 MapLength = Packet->TransferLength;
609 Status = PciIo->Map (
610 PciIo,
611 Flag,
612 Packet->TransferBuffer,
613 &MapLength,
614 &PhyAddr,
615 &MapData
616 );
617 if (EFI_ERROR (Status) || (Packet->TransferLength != MapLength)) {
618 return EFI_OUT_OF_RESOURCES;
619 }
620
621 Sq->Prp[0] = PhyAddr;
622 Sq->Prp[1] = 0;
623
624 if((Packet->MetadataLength != 0) && (Packet->MetadataBuffer != NULL)) {
625 MapLength = Packet->MetadataLength;
626 Status = PciIo->Map (
627 PciIo,
628 Flag,
629 Packet->MetadataBuffer,
630 &MapLength,
631 &PhyAddr,
632 &MapMeta
633 );
634 if (EFI_ERROR (Status) || (Packet->MetadataLength != MapLength)) {
635 PciIo->Unmap (
636 PciIo,
637 MapData
638 );
639
640 return EFI_OUT_OF_RESOURCES;
641 }
642 Sq->Mptr = PhyAddr;
643 }
644 }
645 //
646 // If the buffer size spans more than two memory pages (page size as defined in CC.Mps),
647 // then build a PRP list in the second PRP submission queue entry.
648 //
649 Offset = ((UINT16)Sq->Prp[0]) & (EFI_PAGE_SIZE - 1);
650 Bytes = Packet->TransferLength;
651
652 if ((Offset + Bytes) > (EFI_PAGE_SIZE * 2)) {
653 //
654 // Create PrpList for remaining data buffer.
655 //
656 PhyAddr = (Sq->Prp[0] + EFI_PAGE_SIZE) & ~(EFI_PAGE_SIZE - 1);
657 Prp = NvmeCreatePrpList (PciIo, PhyAddr, EFI_SIZE_TO_PAGES(Offset + Bytes) - 1, &PrpListHost, &PrpListNo, &MapPrpList);
658 if (Prp == NULL) {
659 goto EXIT;
660 }
661
662 Sq->Prp[1] = (UINT64)(UINTN)Prp;
663 } else if ((Offset + Bytes) > EFI_PAGE_SIZE) {
664 Sq->Prp[1] = (Sq->Prp[0] + EFI_PAGE_SIZE) & ~(EFI_PAGE_SIZE - 1);
665 }
666
667 if(Packet->NvmeCmd->Flags & CDW2_VALID) {
668 Sq->Rsvd2 = (UINT64)Packet->NvmeCmd->Cdw2;
669 }
670 if(Packet->NvmeCmd->Flags & CDW3_VALID) {
671 Sq->Rsvd2 |= LShiftU64 ((UINT64)Packet->NvmeCmd->Cdw3, 32);
672 }
673 if(Packet->NvmeCmd->Flags & CDW10_VALID) {
674 Sq->Payload.Raw.Cdw10 = Packet->NvmeCmd->Cdw10;
675 }
676 if(Packet->NvmeCmd->Flags & CDW11_VALID) {
677 Sq->Payload.Raw.Cdw11 = Packet->NvmeCmd->Cdw11;
678 }
679 if(Packet->NvmeCmd->Flags & CDW12_VALID) {
680 Sq->Payload.Raw.Cdw12 = Packet->NvmeCmd->Cdw12;
681 }
682 if(Packet->NvmeCmd->Flags & CDW13_VALID) {
683 Sq->Payload.Raw.Cdw13 = Packet->NvmeCmd->Cdw13;
684 }
685 if(Packet->NvmeCmd->Flags & CDW14_VALID) {
686 Sq->Payload.Raw.Cdw14 = Packet->NvmeCmd->Cdw14;
687 }
688 if(Packet->NvmeCmd->Flags & CDW15_VALID) {
689 Sq->Payload.Raw.Cdw15 = Packet->NvmeCmd->Cdw15;
690 }
691
692 //
693 // Ring the submission queue doorbell.
694 //
695 if ((Event != NULL) && (QueueId != 0)) {
696 Private->SqTdbl[QueueId].Sqt =
697 (Private->SqTdbl[QueueId].Sqt + 1) % (NVME_ASYNC_CSQ_SIZE + 1);
698 } else {
699 Private->SqTdbl[QueueId].Sqt ^= 1;
700 }
701 Data = ReadUnaligned32 ((UINT32*)&Private->SqTdbl[QueueId]);
702 Status = PciIo->Mem.Write (
703 PciIo,
704 EfiPciIoWidthUint32,
705 NVME_BAR,
706 NVME_SQTDBL_OFFSET(QueueId, Private->Cap.Dstrd),
707 1,
708 &Data
709 );
710
711 if (EFI_ERROR (Status)) {
712 goto EXIT;
713 }
714
715 //
716 // For non-blocking requests, return directly if the command is placed
717 // in the submission queue.
718 //
719 if ((Event != NULL) && (QueueId != 0)) {
720 AsyncRequest = AllocateZeroPool (sizeof (NVME_PASS_THRU_ASYNC_REQ));
721 if (AsyncRequest == NULL) {
722 Status = EFI_DEVICE_ERROR;
723 goto EXIT;
724 }
725
726 AsyncRequest->Signature = NVME_PASS_THRU_ASYNC_REQ_SIG;
727 AsyncRequest->Packet = Packet;
728 AsyncRequest->CommandId = Sq->Cid;
729 AsyncRequest->CallerEvent = Event;
730 AsyncRequest->MapData = MapData;
731 AsyncRequest->MapMeta = MapMeta;
732 AsyncRequest->MapPrpList = MapPrpList;
733 AsyncRequest->PrpListNo = PrpListNo;
734 AsyncRequest->PrpListHost = PrpListHost;
735
736 OldTpl = gBS->RaiseTPL (TPL_NOTIFY);
737 InsertTailList (&Private->AsyncPassThruQueue, &AsyncRequest->Link);
738 gBS->RestoreTPL (OldTpl);
739
740 return EFI_SUCCESS;
741 }
742
743 Status = gBS->CreateEvent (
744 EVT_TIMER,
745 TPL_CALLBACK,
746 NULL,
747 NULL,
748 &TimerEvent
749 );
750 if (EFI_ERROR (Status)) {
751 goto EXIT;
752 }
753
754 Status = gBS->SetTimer(TimerEvent, TimerRelative, Packet->CommandTimeout);
755
756 if (EFI_ERROR(Status)) {
757 goto EXIT;
758 }
759
760 //
761 // Wait for completion queue to get filled in.
762 //
763 Status = EFI_TIMEOUT;
764 while (EFI_ERROR (gBS->CheckEvent (TimerEvent))) {
765 if (Cq->Pt != Private->Pt[QueueId]) {
766 Status = EFI_SUCCESS;
767 break;
768 }
769 }
770
771 //
772 // Check the NVMe cmd execution result
773 //
774 if (Status != EFI_TIMEOUT) {
775 if ((Cq->Sct == 0) && (Cq->Sc == 0)) {
776 Status = EFI_SUCCESS;
777 } else {
778 Status = EFI_DEVICE_ERROR;
779 //
780 // Copy the Respose Queue entry for this command to the callers response buffer
781 //
782 CopyMem(Packet->NvmeCompletion, Cq, sizeof(EFI_NVM_EXPRESS_COMPLETION));
783
784 //
785 // Dump every completion entry status for debugging.
786 //
787 DEBUG_CODE_BEGIN();
788 NvmeDumpStatus(Cq);
789 DEBUG_CODE_END();
790 }
791 } else {
792 //
793 // Timeout occurs for an NVMe command. Reset the controller to abort the
794 // outstanding commands.
795 //
796 DEBUG ((DEBUG_ERROR, "NvmExpressPassThru: Timeout occurs for an NVMe command.\n"));
797
798 //
799 // Disable the timer to trigger the process of async transfers temporarily.
800 //
801 Status = gBS->SetTimer (Private->TimerEvent, TimerCancel, 0);
802 if (EFI_ERROR (Status)) {
803 goto EXIT;
804 }
805
806 //
807 // Reset the NVMe controller.
808 //
809 Status = NvmeControllerInit (Private);
810 if (!EFI_ERROR (Status)) {
811 Status = AbortAsyncPassThruTasks (Private);
812 if (!EFI_ERROR (Status)) {
813 //
814 // Re-enable the timer to trigger the process of async transfers.
815 //
816 Status = gBS->SetTimer (Private->TimerEvent, TimerPeriodic, NVME_HC_ASYNC_TIMER);
817 if (!EFI_ERROR (Status)) {
818 //
819 // Return EFI_TIMEOUT to indicate a timeout occurs for NVMe PassThru command.
820 //
821 Status = EFI_TIMEOUT;
822 }
823 }
824 } else {
825 Status = EFI_DEVICE_ERROR;
826 }
827
828 goto EXIT;
829 }
830
831 if ((Private->CqHdbl[QueueId].Cqh ^= 1) == 0) {
832 Private->Pt[QueueId] ^= 1;
833 }
834
835 Data = ReadUnaligned32 ((UINT32*)&Private->CqHdbl[QueueId]);
836 PreviousStatus = Status;
837 Status = PciIo->Mem.Write (
838 PciIo,
839 EfiPciIoWidthUint32,
840 NVME_BAR,
841 NVME_CQHDBL_OFFSET(QueueId, Private->Cap.Dstrd),
842 1,
843 &Data
844 );
845 // The return status of PciIo->Mem.Write should not override
846 // previous status if previous status contains error.
847 Status = EFI_ERROR (PreviousStatus) ? PreviousStatus : Status;
848
849 //
850 // For now, the code does not support the non-blocking feature for admin queue.
851 // If Event is not NULL for admin queue, signal the caller's event here.
852 //
853 if (Event != NULL) {
854 ASSERT (QueueId == 0);
855 gBS->SignalEvent (Event);
856 }
857
858 EXIT:
859 if (MapData != NULL) {
860 PciIo->Unmap (
861 PciIo,
862 MapData
863 );
864 }
865
866 if (MapMeta != NULL) {
867 PciIo->Unmap (
868 PciIo,
869 MapMeta
870 );
871 }
872
873 if (MapPrpList != NULL) {
874 PciIo->Unmap (
875 PciIo,
876 MapPrpList
877 );
878 }
879
880 if (Prp != NULL) {
881 PciIo->FreeBuffer (PciIo, PrpListNo, PrpListHost);
882 }
883
884 if (TimerEvent != NULL) {
885 gBS->CloseEvent (TimerEvent);
886 }
887 return Status;
888 }
889
890 /**
891 Used to retrieve the next namespace ID for this NVM Express controller.
892
893 The EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNextNamespace() function retrieves the next valid
894 namespace ID on this NVM Express controller.
895
896 If on input the value pointed to by NamespaceId is 0xFFFFFFFF, then the first valid namespace
897 ID defined on the NVM Express controller is returned in the location pointed to by NamespaceId
898 and a status of EFI_SUCCESS is returned.
899
900 If on input the value pointed to by NamespaceId is an invalid namespace ID other than 0xFFFFFFFF,
901 then EFI_INVALID_PARAMETER is returned.
902
903 If on input the value pointed to by NamespaceId is a valid namespace ID, then the next valid
904 namespace ID on the NVM Express controller is returned in the location pointed to by NamespaceId,
905 and EFI_SUCCESS is returned.
906
907 If the value pointed to by NamespaceId is the namespace ID of the last namespace on the NVM
908 Express controller, then EFI_NOT_FOUND is returned.
909
910 @param[in] This A pointer to the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL instance.
911 @param[in,out] NamespaceId On input, a pointer to a legal NamespaceId for an NVM Express
912 namespace present on the NVM Express controller. On output, a
913 pointer to the next NamespaceId of an NVM Express namespace on
914 an NVM Express controller. An input value of 0xFFFFFFFF retrieves
915 the first NamespaceId for an NVM Express namespace present on an
916 NVM Express controller.
917
918 @retval EFI_SUCCESS The Namespace ID of the next Namespace was returned.
919 @retval EFI_NOT_FOUND There are no more namespaces defined on this controller.
920 @retval EFI_INVALID_PARAMETER NamespaceId is an invalid value other than 0xFFFFFFFF.
921
922 **/
923 EFI_STATUS
924 EFIAPI
925 NvmExpressGetNextNamespace (
926 IN EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL *This,
927 IN OUT UINT32 *NamespaceId
928 )
929 {
930 NVME_CONTROLLER_PRIVATE_DATA *Private;
931 NVME_ADMIN_NAMESPACE_DATA *NamespaceData;
932 UINT32 NextNamespaceId;
933 EFI_STATUS Status;
934
935 if ((This == NULL) || (NamespaceId == NULL)) {
936 return EFI_INVALID_PARAMETER;
937 }
938
939 NamespaceData = NULL;
940 Status = EFI_NOT_FOUND;
941
942 Private = NVME_CONTROLLER_PRIVATE_DATA_FROM_PASS_THRU (This);
943 //
944 // If the NamespaceId input value is 0xFFFFFFFF, then get the first valid namespace ID
945 //
946 if (*NamespaceId == 0xFFFFFFFF) {
947 //
948 // Start with the first namespace ID
949 //
950 NextNamespaceId = 1;
951 //
952 // Allocate buffer for Identify Namespace data.
953 //
954 NamespaceData = (NVME_ADMIN_NAMESPACE_DATA *)AllocateZeroPool (sizeof (NVME_ADMIN_NAMESPACE_DATA));
955
956 if (NamespaceData == NULL) {
957 return EFI_NOT_FOUND;
958 }
959
960 Status = NvmeIdentifyNamespace (Private, NextNamespaceId, NamespaceData);
961 if (EFI_ERROR(Status)) {
962 goto Done;
963 }
964
965 *NamespaceId = NextNamespaceId;
966 } else {
967 if (*NamespaceId > Private->ControllerData->Nn) {
968 return EFI_INVALID_PARAMETER;
969 }
970
971 NextNamespaceId = *NamespaceId + 1;
972 if (NextNamespaceId > Private->ControllerData->Nn) {
973 return EFI_NOT_FOUND;
974 }
975
976 //
977 // Allocate buffer for Identify Namespace data.
978 //
979 NamespaceData = (NVME_ADMIN_NAMESPACE_DATA *)AllocateZeroPool (sizeof (NVME_ADMIN_NAMESPACE_DATA));
980 if (NamespaceData == NULL) {
981 return EFI_NOT_FOUND;
982 }
983
984 Status = NvmeIdentifyNamespace (Private, NextNamespaceId, NamespaceData);
985 if (EFI_ERROR(Status)) {
986 goto Done;
987 }
988
989 *NamespaceId = NextNamespaceId;
990 }
991
992 Done:
993 if (NamespaceData != NULL) {
994 FreePool(NamespaceData);
995 }
996
997 return Status;
998 }
999
1000 /**
1001 Used to translate a device path node to a namespace ID.
1002
1003 The EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNamespace() function determines the namespace ID associated with the
1004 namespace described by DevicePath.
1005
1006 If DevicePath is a device path node type that the NVM Express Pass Thru driver supports, then the NVM Express
1007 Pass Thru driver will attempt to translate the contents DevicePath into a namespace ID.
1008
1009 If this translation is successful, then that namespace ID is returned in NamespaceId, and EFI_SUCCESS is returned
1010
1011 @param[in] This A pointer to the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL instance.
1012 @param[in] DevicePath A pointer to the device path node that describes an NVM Express namespace on
1013 the NVM Express controller.
1014 @param[out] NamespaceId The NVM Express namespace ID contained in the device path node.
1015
1016 @retval EFI_SUCCESS DevicePath was successfully translated to NamespaceId.
1017 @retval EFI_INVALID_PARAMETER If DevicePath or NamespaceId are NULL, then EFI_INVALID_PARAMETER is returned.
1018 @retval EFI_UNSUPPORTED If DevicePath is not a device path node type that the NVM Express Pass Thru driver
1019 supports, then EFI_UNSUPPORTED is returned.
1020 @retval EFI_NOT_FOUND If DevicePath is a device path node type that the NVM Express Pass Thru driver
1021 supports, but there is not a valid translation from DevicePath to a namespace ID,
1022 then EFI_NOT_FOUND is returned.
1023 **/
1024 EFI_STATUS
1025 EFIAPI
1026 NvmExpressGetNamespace (
1027 IN EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL *This,
1028 IN EFI_DEVICE_PATH_PROTOCOL *DevicePath,
1029 OUT UINT32 *NamespaceId
1030 )
1031 {
1032 NVME_NAMESPACE_DEVICE_PATH *Node;
1033 NVME_CONTROLLER_PRIVATE_DATA *Private;
1034
1035 if ((This == NULL) || (DevicePath == NULL) || (NamespaceId == NULL)) {
1036 return EFI_INVALID_PARAMETER;
1037 }
1038
1039 if (DevicePath->Type != MESSAGING_DEVICE_PATH) {
1040 return EFI_UNSUPPORTED;
1041 }
1042
1043 Node = (NVME_NAMESPACE_DEVICE_PATH *)DevicePath;
1044 Private = NVME_CONTROLLER_PRIVATE_DATA_FROM_PASS_THRU (This);
1045
1046 if (DevicePath->SubType == MSG_NVME_NAMESPACE_DP) {
1047 if (DevicePathNodeLength(DevicePath) != sizeof(NVME_NAMESPACE_DEVICE_PATH)) {
1048 return EFI_NOT_FOUND;
1049 }
1050
1051 //
1052 // Check NamespaceId in the device path node is valid or not.
1053 //
1054 if ((Node->NamespaceId == 0) ||
1055 (Node->NamespaceId > Private->ControllerData->Nn)) {
1056 return EFI_NOT_FOUND;
1057 }
1058
1059 *NamespaceId = Node->NamespaceId;
1060
1061 return EFI_SUCCESS;
1062 } else {
1063 return EFI_UNSUPPORTED;
1064 }
1065 }
1066
1067 /**
1068 Used to allocate and build a device path node for an NVM Express namespace on an NVM Express controller.
1069
1070 The EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.BuildDevicePath() function allocates and builds a single device
1071 path node for the NVM Express namespace specified by NamespaceId.
1072
1073 If the NamespaceId is not valid, then EFI_NOT_FOUND is returned.
1074
1075 If DevicePath is NULL, then EFI_INVALID_PARAMETER is returned.
1076
1077 If there are not enough resources to allocate the device path node, then EFI_OUT_OF_RESOURCES is returned.
1078
1079 Otherwise, DevicePath is allocated with the boot service AllocatePool(), the contents of DevicePath are
1080 initialized to describe the NVM Express namespace specified by NamespaceId, and EFI_SUCCESS is returned.
1081
1082 @param[in] This A pointer to the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL instance.
1083 @param[in] NamespaceId The NVM Express namespace ID for which a device path node is to be
1084 allocated and built. Caller must set the NamespaceId to zero if the
1085 device path node will contain a valid UUID.
1086 @param[in,out] DevicePath A pointer to a single device path node that describes the NVM Express
1087 namespace specified by NamespaceId. This function is responsible for
1088 allocating the buffer DevicePath with the boot service AllocatePool().
1089 It is the caller's responsibility to free DevicePath when the caller
1090 is finished with DevicePath.
1091 @retval EFI_SUCCESS The device path node that describes the NVM Express namespace specified
1092 by NamespaceId was allocated and returned in DevicePath.
1093 @retval EFI_NOT_FOUND The NamespaceId is not valid.
1094 @retval EFI_INVALID_PARAMETER DevicePath is NULL.
1095 @retval EFI_OUT_OF_RESOURCES There are not enough resources to allocate the DevicePath node.
1096
1097 **/
1098 EFI_STATUS
1099 EFIAPI
1100 NvmExpressBuildDevicePath (
1101 IN EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL *This,
1102 IN UINT32 NamespaceId,
1103 IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePath
1104 )
1105 {
1106 NVME_NAMESPACE_DEVICE_PATH *Node;
1107 NVME_CONTROLLER_PRIVATE_DATA *Private;
1108 EFI_STATUS Status;
1109 NVME_ADMIN_NAMESPACE_DATA *NamespaceData;
1110
1111 //
1112 // Validate parameters
1113 //
1114 if ((This == NULL) || (DevicePath == NULL)) {
1115 return EFI_INVALID_PARAMETER;
1116 }
1117
1118 Status = EFI_SUCCESS;
1119 Private = NVME_CONTROLLER_PRIVATE_DATA_FROM_PASS_THRU (This);
1120
1121 //
1122 // Check NamespaceId is valid or not.
1123 //
1124 if ((NamespaceId == 0) ||
1125 (NamespaceId > Private->ControllerData->Nn)) {
1126 return EFI_NOT_FOUND;
1127 }
1128
1129 Node = (NVME_NAMESPACE_DEVICE_PATH *)AllocateZeroPool (sizeof (NVME_NAMESPACE_DEVICE_PATH));
1130 if (Node == NULL) {
1131 return EFI_OUT_OF_RESOURCES;
1132 }
1133
1134 Node->Header.Type = MESSAGING_DEVICE_PATH;
1135 Node->Header.SubType = MSG_NVME_NAMESPACE_DP;
1136 SetDevicePathNodeLength (&Node->Header, sizeof (NVME_NAMESPACE_DEVICE_PATH));
1137 Node->NamespaceId = NamespaceId;
1138
1139 //
1140 // Allocate a buffer for Identify Namespace data.
1141 //
1142 NamespaceData = NULL;
1143 NamespaceData = AllocateZeroPool(sizeof (NVME_ADMIN_NAMESPACE_DATA));
1144 if(NamespaceData == NULL) {
1145 Status = EFI_OUT_OF_RESOURCES;
1146 goto Exit;
1147 }
1148
1149 //
1150 // Get UUID from specified Identify Namespace data.
1151 //
1152 Status = NvmeIdentifyNamespace (
1153 Private,
1154 NamespaceId,
1155 (VOID *)NamespaceData
1156 );
1157
1158 if (EFI_ERROR(Status)) {
1159 goto Exit;
1160 }
1161
1162 Node->NamespaceUuid = NamespaceData->Eui64;
1163
1164 *DevicePath = (EFI_DEVICE_PATH_PROTOCOL *)Node;
1165
1166 Exit:
1167 if(NamespaceData != NULL) {
1168 FreePool (NamespaceData);
1169 }
1170
1171 if (EFI_ERROR (Status)) {
1172 FreePool (Node);
1173 }
1174
1175 return Status;
1176 }
1177