]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Bus/Pci/NvmExpressDxe/NvmExpressPassthru.c
MdeModulePkg NvmExpressDxe: Refine BuildDevicePath API to follow spec
[mirror_edk2.git] / MdeModulePkg / Bus / Pci / NvmExpressDxe / NvmExpressPassthru.c
1 /** @file
2 NvmExpressDxe driver is used to manage non-volatile memory subsystem which follows
3 NVM Express specification.
4
5 (C) Copyright 2014 Hewlett-Packard Development Company, L.P.<BR>
6 Copyright (c) 2013 - 2016, Intel Corporation. All rights reserved.<BR>
7 This program and the accompanying materials
8 are licensed and made available under the terms and conditions of the BSD License
9 which accompanies this distribution. The full text of the license may be found at
10 http://opensource.org/licenses/bsd-license.php.
11
12 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
13 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
14
15 **/
16
17 #include "NvmExpress.h"
18
19 /**
20 Dump the execution status from a given completion queue entry.
21
22 @param[in] Cq A pointer to the NVME_CQ item.
23
24 **/
25 VOID
26 NvmeDumpStatus (
27 IN NVME_CQ *Cq
28 )
29 {
30 DEBUG ((EFI_D_VERBOSE, "Dump NVMe Completion Entry Status from [0x%x]:\n", Cq));
31
32 DEBUG ((EFI_D_VERBOSE, " SQ Identifier : [0x%x], Phase Tag : [%d], Cmd Identifier : [0x%x]\n", Cq->Sqid, Cq->Pt, Cq->Cid));
33
34 DEBUG ((EFI_D_VERBOSE, " NVMe Cmd Execution Result - "));
35
36 switch (Cq->Sct) {
37 case 0x0:
38 switch (Cq->Sc) {
39 case 0x0:
40 DEBUG ((EFI_D_VERBOSE, "Successful Completion\n"));
41 break;
42 case 0x1:
43 DEBUG ((EFI_D_VERBOSE, "Invalid Command Opcode\n"));
44 break;
45 case 0x2:
46 DEBUG ((EFI_D_VERBOSE, "Invalid Field in Command\n"));
47 break;
48 case 0x3:
49 DEBUG ((EFI_D_VERBOSE, "Command ID Conflict\n"));
50 break;
51 case 0x4:
52 DEBUG ((EFI_D_VERBOSE, "Data Transfer Error\n"));
53 break;
54 case 0x5:
55 DEBUG ((EFI_D_VERBOSE, "Commands Aborted due to Power Loss Notification\n"));
56 break;
57 case 0x6:
58 DEBUG ((EFI_D_VERBOSE, "Internal Device Error\n"));
59 break;
60 case 0x7:
61 DEBUG ((EFI_D_VERBOSE, "Command Abort Requested\n"));
62 break;
63 case 0x8:
64 DEBUG ((EFI_D_VERBOSE, "Command Aborted due to SQ Deletion\n"));
65 break;
66 case 0x9:
67 DEBUG ((EFI_D_VERBOSE, "Command Aborted due to Failed Fused Command\n"));
68 break;
69 case 0xA:
70 DEBUG ((EFI_D_VERBOSE, "Command Aborted due to Missing Fused Command\n"));
71 break;
72 case 0xB:
73 DEBUG ((EFI_D_VERBOSE, "Invalid Namespace or Format\n"));
74 break;
75 case 0xC:
76 DEBUG ((EFI_D_VERBOSE, "Command Sequence Error\n"));
77 break;
78 case 0xD:
79 DEBUG ((EFI_D_VERBOSE, "Invalid SGL Last Segment Descriptor\n"));
80 break;
81 case 0xE:
82 DEBUG ((EFI_D_VERBOSE, "Invalid Number of SGL Descriptors\n"));
83 break;
84 case 0xF:
85 DEBUG ((EFI_D_VERBOSE, "Data SGL Length Invalid\n"));
86 break;
87 case 0x10:
88 DEBUG ((EFI_D_VERBOSE, "Metadata SGL Length Invalid\n"));
89 break;
90 case 0x11:
91 DEBUG ((EFI_D_VERBOSE, "SGL Descriptor Type Invalid\n"));
92 break;
93 case 0x80:
94 DEBUG ((EFI_D_VERBOSE, "LBA Out of Range\n"));
95 break;
96 case 0x81:
97 DEBUG ((EFI_D_VERBOSE, "Capacity Exceeded\n"));
98 break;
99 case 0x82:
100 DEBUG ((EFI_D_VERBOSE, "Namespace Not Ready\n"));
101 break;
102 case 0x83:
103 DEBUG ((EFI_D_VERBOSE, "Reservation Conflict\n"));
104 break;
105 }
106 break;
107
108 case 0x1:
109 switch (Cq->Sc) {
110 case 0x0:
111 DEBUG ((EFI_D_VERBOSE, "Completion Queue Invalid\n"));
112 break;
113 case 0x1:
114 DEBUG ((EFI_D_VERBOSE, "Invalid Queue Identifier\n"));
115 break;
116 case 0x2:
117 DEBUG ((EFI_D_VERBOSE, "Maximum Queue Size Exceeded\n"));
118 break;
119 case 0x3:
120 DEBUG ((EFI_D_VERBOSE, "Abort Command Limit Exceeded\n"));
121 break;
122 case 0x5:
123 DEBUG ((EFI_D_VERBOSE, "Asynchronous Event Request Limit Exceeded\n"));
124 break;
125 case 0x6:
126 DEBUG ((EFI_D_VERBOSE, "Invalid Firmware Slot\n"));
127 break;
128 case 0x7:
129 DEBUG ((EFI_D_VERBOSE, "Invalid Firmware Image\n"));
130 break;
131 case 0x8:
132 DEBUG ((EFI_D_VERBOSE, "Invalid Interrupt Vector\n"));
133 break;
134 case 0x9:
135 DEBUG ((EFI_D_VERBOSE, "Invalid Log Page\n"));
136 break;
137 case 0xA:
138 DEBUG ((EFI_D_VERBOSE, "Invalid Format\n"));
139 break;
140 case 0xB:
141 DEBUG ((EFI_D_VERBOSE, "Firmware Application Requires Conventional Reset\n"));
142 break;
143 case 0xC:
144 DEBUG ((EFI_D_VERBOSE, "Invalid Queue Deletion\n"));
145 break;
146 case 0xD:
147 DEBUG ((EFI_D_VERBOSE, "Feature Identifier Not Saveable\n"));
148 break;
149 case 0xE:
150 DEBUG ((EFI_D_VERBOSE, "Feature Not Changeable\n"));
151 break;
152 case 0xF:
153 DEBUG ((EFI_D_VERBOSE, "Feature Not Namespace Specific\n"));
154 break;
155 case 0x10:
156 DEBUG ((EFI_D_VERBOSE, "Firmware Application Requires NVM Subsystem Reset\n"));
157 break;
158 case 0x80:
159 DEBUG ((EFI_D_VERBOSE, "Conflicting Attributes\n"));
160 break;
161 case 0x81:
162 DEBUG ((EFI_D_VERBOSE, "Invalid Protection Information\n"));
163 break;
164 case 0x82:
165 DEBUG ((EFI_D_VERBOSE, "Attempted Write to Read Only Range\n"));
166 break;
167 }
168 break;
169
170 case 0x2:
171 switch (Cq->Sc) {
172 case 0x80:
173 DEBUG ((EFI_D_VERBOSE, "Write Fault\n"));
174 break;
175 case 0x81:
176 DEBUG ((EFI_D_VERBOSE, "Unrecovered Read Error\n"));
177 break;
178 case 0x82:
179 DEBUG ((EFI_D_VERBOSE, "End-to-end Guard Check Error\n"));
180 break;
181 case 0x83:
182 DEBUG ((EFI_D_VERBOSE, "End-to-end Application Tag Check Error\n"));
183 break;
184 case 0x84:
185 DEBUG ((EFI_D_VERBOSE, "End-to-end Reference Tag Check Error\n"));
186 break;
187 case 0x85:
188 DEBUG ((EFI_D_VERBOSE, "Compare Failure\n"));
189 break;
190 case 0x86:
191 DEBUG ((EFI_D_VERBOSE, "Access Denied\n"));
192 break;
193 }
194 break;
195
196 default:
197 break;
198 }
199 }
200
201 /**
202 Create PRP lists for data transfer which is larger than 2 memory pages.
203 Note here we calcuate the number of required PRP lists and allocate them at one time.
204
205 @param[in] PciIo A pointer to the EFI_PCI_IO_PROTOCOL instance.
206 @param[in] PhysicalAddr The physical base address of data buffer.
207 @param[in] Pages The number of pages to be transfered.
208 @param[out] PrpListHost The host base address of PRP lists.
209 @param[in,out] PrpListNo The number of PRP List.
210 @param[out] Mapping The mapping value returned from PciIo.Map().
211
212 @retval The pointer to the first PRP List of the PRP lists.
213
214 **/
215 VOID*
216 NvmeCreatePrpList (
217 IN EFI_PCI_IO_PROTOCOL *PciIo,
218 IN EFI_PHYSICAL_ADDRESS PhysicalAddr,
219 IN UINTN Pages,
220 OUT VOID **PrpListHost,
221 IN OUT UINTN *PrpListNo,
222 OUT VOID **Mapping
223 )
224 {
225 UINTN PrpEntryNo;
226 UINT64 PrpListBase;
227 UINTN PrpListIndex;
228 UINTN PrpEntryIndex;
229 UINT64 Remainder;
230 EFI_PHYSICAL_ADDRESS PrpListPhyAddr;
231 UINTN Bytes;
232 EFI_STATUS Status;
233
234 //
235 // The number of Prp Entry in a memory page.
236 //
237 PrpEntryNo = EFI_PAGE_SIZE / sizeof (UINT64);
238
239 //
240 // Calculate total PrpList number.
241 //
242 *PrpListNo = (UINTN)DivU64x64Remainder ((UINT64)Pages, (UINT64)PrpEntryNo - 1, &Remainder);
243 if (*PrpListNo == 0) {
244 *PrpListNo = 1;
245 } else if ((Remainder != 0) && (Remainder != 1)) {
246 *PrpListNo += 1;
247 } else if (Remainder == 1) {
248 Remainder = PrpEntryNo;
249 } else if (Remainder == 0) {
250 Remainder = PrpEntryNo - 1;
251 }
252
253 Status = PciIo->AllocateBuffer (
254 PciIo,
255 AllocateAnyPages,
256 EfiBootServicesData,
257 *PrpListNo,
258 PrpListHost,
259 0
260 );
261
262 if (EFI_ERROR (Status)) {
263 return NULL;
264 }
265
266 Bytes = EFI_PAGES_TO_SIZE (*PrpListNo);
267 Status = PciIo->Map (
268 PciIo,
269 EfiPciIoOperationBusMasterCommonBuffer,
270 *PrpListHost,
271 &Bytes,
272 &PrpListPhyAddr,
273 Mapping
274 );
275
276 if (EFI_ERROR (Status) || (Bytes != EFI_PAGES_TO_SIZE (*PrpListNo))) {
277 DEBUG ((EFI_D_ERROR, "NvmeCreatePrpList: create PrpList failure!\n"));
278 goto EXIT;
279 }
280 //
281 // Fill all PRP lists except of last one.
282 //
283 ZeroMem (*PrpListHost, Bytes);
284 for (PrpListIndex = 0; PrpListIndex < *PrpListNo - 1; ++PrpListIndex) {
285 PrpListBase = *(UINT64*)PrpListHost + PrpListIndex * EFI_PAGE_SIZE;
286
287 for (PrpEntryIndex = 0; PrpEntryIndex < PrpEntryNo; ++PrpEntryIndex) {
288 if (PrpEntryIndex != PrpEntryNo - 1) {
289 //
290 // Fill all PRP entries except of last one.
291 //
292 *((UINT64*)(UINTN)PrpListBase + PrpEntryIndex) = PhysicalAddr;
293 PhysicalAddr += EFI_PAGE_SIZE;
294 } else {
295 //
296 // Fill last PRP entries with next PRP List pointer.
297 //
298 *((UINT64*)(UINTN)PrpListBase + PrpEntryIndex) = PrpListPhyAddr + (PrpListIndex + 1) * EFI_PAGE_SIZE;
299 }
300 }
301 }
302 //
303 // Fill last PRP list.
304 //
305 PrpListBase = *(UINT64*)PrpListHost + PrpListIndex * EFI_PAGE_SIZE;
306 for (PrpEntryIndex = 0; PrpEntryIndex < Remainder; ++PrpEntryIndex) {
307 *((UINT64*)(UINTN)PrpListBase + PrpEntryIndex) = PhysicalAddr;
308 PhysicalAddr += EFI_PAGE_SIZE;
309 }
310
311 return (VOID*)(UINTN)PrpListPhyAddr;
312
313 EXIT:
314 PciIo->FreeBuffer (PciIo, *PrpListNo, *PrpListHost);
315 return NULL;
316 }
317
318
319 /**
320 Sends an NVM Express Command Packet to an NVM Express controller or namespace. This function supports
321 both blocking I/O and non-blocking I/O. The blocking I/O functionality is required, and the non-blocking
322 I/O functionality is optional.
323
324
325 @param[in] This A pointer to the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL instance.
326 @param[in] NamespaceId A 32 bit namespace ID as defined in the NVMe specification to which the NVM Express Command
327 Packet will be sent. A value of 0 denotes the NVM Express controller, a value of all 0xFF's
328 (all bytes are 0xFF) in the namespace ID specifies that the command packet should be sent to
329 all valid namespaces.
330 @param[in,out] Packet A pointer to the NVM Express Command Packet.
331 @param[in] Event If non-blocking I/O is not supported then Event is ignored, and blocking I/O is performed.
332 If Event is NULL, then blocking I/O is performed. If Event is not NULL and non-blocking I/O
333 is supported, then non-blocking I/O is performed, and Event will be signaled when the NVM
334 Express Command Packet completes.
335
336 @retval EFI_SUCCESS The NVM Express Command Packet was sent by the host. TransferLength bytes were transferred
337 to, or from DataBuffer.
338 @retval EFI_BAD_BUFFER_SIZE The NVM Express Command Packet was not executed. The number of bytes that could be transferred
339 is returned in TransferLength.
340 @retval EFI_NOT_READY The NVM Express Command Packet could not be sent because the controller is not ready. The caller
341 may retry again later.
342 @retval EFI_DEVICE_ERROR A device error occurred while attempting to send the NVM Express Command Packet.
343 @retval EFI_INVALID_PARAMETER NamespaceId or the contents of EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET are invalid. The NVM
344 Express Command Packet was not sent, so no additional status information is available.
345 @retval EFI_UNSUPPORTED The command described by the NVM Express Command Packet is not supported by the NVM Express
346 controller. The NVM Express Command Packet was not sent so no additional status information
347 is available.
348 @retval EFI_TIMEOUT A timeout occurred while waiting for the NVM Express Command Packet to execute.
349
350 **/
351 EFI_STATUS
352 EFIAPI
353 NvmExpressPassThru (
354 IN EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL *This,
355 IN UINT32 NamespaceId,
356 IN OUT EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET *Packet,
357 IN EFI_EVENT Event OPTIONAL
358 )
359 {
360 NVME_CONTROLLER_PRIVATE_DATA *Private;
361 EFI_STATUS Status;
362 EFI_PCI_IO_PROTOCOL *PciIo;
363 NVME_SQ *Sq;
364 NVME_CQ *Cq;
365 UINT16 QueueId;
366 UINT32 Bytes;
367 UINT16 Offset;
368 EFI_EVENT TimerEvent;
369 EFI_PCI_IO_PROTOCOL_OPERATION Flag;
370 EFI_PHYSICAL_ADDRESS PhyAddr;
371 VOID *MapData;
372 VOID *MapMeta;
373 VOID *MapPrpList;
374 UINTN MapLength;
375 UINT64 *Prp;
376 VOID *PrpListHost;
377 UINTN PrpListNo;
378 UINT32 Data;
379 NVME_PASS_THRU_ASYNC_REQ *AsyncRequest;
380 EFI_TPL OldTpl;
381
382 //
383 // check the data fields in Packet parameter.
384 //
385 if ((This == NULL) || (Packet == NULL)) {
386 return EFI_INVALID_PARAMETER;
387 }
388
389 if ((Packet->NvmeCmd == NULL) || (Packet->NvmeCompletion == NULL)) {
390 return EFI_INVALID_PARAMETER;
391 }
392
393 if (Packet->QueueType != NVME_ADMIN_QUEUE && Packet->QueueType != NVME_IO_QUEUE) {
394 return EFI_INVALID_PARAMETER;
395 }
396
397 Private = NVME_CONTROLLER_PRIVATE_DATA_FROM_PASS_THRU (This);
398 PciIo = Private->PciIo;
399 MapData = NULL;
400 MapMeta = NULL;
401 MapPrpList = NULL;
402 PrpListHost = NULL;
403 PrpListNo = 0;
404 Prp = NULL;
405 TimerEvent = NULL;
406 Status = EFI_SUCCESS;
407
408 if (Packet->QueueType == NVME_ADMIN_QUEUE) {
409 QueueId = 0;
410 } else {
411 if (Event == NULL) {
412 QueueId = 1;
413 } else {
414 QueueId = 2;
415
416 //
417 // Submission queue full check.
418 //
419 if ((Private->SqTdbl[QueueId].Sqt + 1) % (NVME_ASYNC_CSQ_SIZE + 1) ==
420 Private->AsyncSqHead) {
421 return EFI_NOT_READY;
422 }
423 }
424 }
425 Sq = Private->SqBuffer[QueueId] + Private->SqTdbl[QueueId].Sqt;
426 Cq = Private->CqBuffer[QueueId] + Private->CqHdbl[QueueId].Cqh;
427
428 if (Packet->NvmeCmd->Nsid != NamespaceId) {
429 return EFI_INVALID_PARAMETER;
430 }
431
432 ZeroMem (Sq, sizeof (NVME_SQ));
433 Sq->Opc = (UINT8)Packet->NvmeCmd->Cdw0.Opcode;
434 Sq->Fuse = (UINT8)Packet->NvmeCmd->Cdw0.FusedOperation;
435 Sq->Cid = Private->Cid[QueueId]++;
436 Sq->Nsid = Packet->NvmeCmd->Nsid;
437
438 //
439 // Currently we only support PRP for data transfer, SGL is NOT supported.
440 //
441 ASSERT (Sq->Psdt == 0);
442 if (Sq->Psdt != 0) {
443 DEBUG ((EFI_D_ERROR, "NvmExpressPassThru: doesn't support SGL mechanism\n"));
444 return EFI_UNSUPPORTED;
445 }
446
447 Sq->Prp[0] = (UINT64)(UINTN)Packet->TransferBuffer;
448 //
449 // If the NVMe cmd has data in or out, then mapping the user buffer to the PCI controller specific addresses.
450 // Note here we don't handle data buffer for CreateIOSubmitionQueue and CreateIOCompletionQueue cmds because
451 // these two cmds are special which requires their data buffer must support simultaneous access by both the
452 // processor and a PCI Bus Master. It's caller's responsbility to ensure this.
453 //
454 if (((Sq->Opc & (BIT0 | BIT1)) != 0) && (Sq->Opc != NVME_ADMIN_CRIOCQ_CMD) && (Sq->Opc != NVME_ADMIN_CRIOSQ_CMD)) {
455 if ((Sq->Opc & BIT0) != 0) {
456 Flag = EfiPciIoOperationBusMasterRead;
457 } else {
458 Flag = EfiPciIoOperationBusMasterWrite;
459 }
460
461 MapLength = Packet->TransferLength;
462 Status = PciIo->Map (
463 PciIo,
464 Flag,
465 Packet->TransferBuffer,
466 &MapLength,
467 &PhyAddr,
468 &MapData
469 );
470 if (EFI_ERROR (Status) || (Packet->TransferLength != MapLength)) {
471 return EFI_OUT_OF_RESOURCES;
472 }
473
474 Sq->Prp[0] = PhyAddr;
475 Sq->Prp[1] = 0;
476
477 MapLength = Packet->MetadataLength;
478 if(Packet->MetadataBuffer != NULL) {
479 MapLength = Packet->MetadataLength;
480 Status = PciIo->Map (
481 PciIo,
482 Flag,
483 Packet->MetadataBuffer,
484 &MapLength,
485 &PhyAddr,
486 &MapMeta
487 );
488 if (EFI_ERROR (Status) || (Packet->MetadataLength != MapLength)) {
489 PciIo->Unmap (
490 PciIo,
491 MapData
492 );
493
494 return EFI_OUT_OF_RESOURCES;
495 }
496 Sq->Mptr = PhyAddr;
497 }
498 }
499 //
500 // If the buffer size spans more than two memory pages (page size as defined in CC.Mps),
501 // then build a PRP list in the second PRP submission queue entry.
502 //
503 Offset = ((UINT16)Sq->Prp[0]) & (EFI_PAGE_SIZE - 1);
504 Bytes = Packet->TransferLength;
505
506 if ((Offset + Bytes) > (EFI_PAGE_SIZE * 2)) {
507 //
508 // Create PrpList for remaining data buffer.
509 //
510 PhyAddr = (Sq->Prp[0] + EFI_PAGE_SIZE) & ~(EFI_PAGE_SIZE - 1);
511 Prp = NvmeCreatePrpList (PciIo, PhyAddr, EFI_SIZE_TO_PAGES(Offset + Bytes) - 1, &PrpListHost, &PrpListNo, &MapPrpList);
512 if (Prp == NULL) {
513 goto EXIT;
514 }
515
516 Sq->Prp[1] = (UINT64)(UINTN)Prp;
517 } else if ((Offset + Bytes) > EFI_PAGE_SIZE) {
518 Sq->Prp[1] = (Sq->Prp[0] + EFI_PAGE_SIZE) & ~(EFI_PAGE_SIZE - 1);
519 }
520
521 if(Packet->NvmeCmd->Flags & CDW2_VALID) {
522 Sq->Rsvd2 = (UINT64)Packet->NvmeCmd->Cdw2;
523 }
524 if(Packet->NvmeCmd->Flags & CDW3_VALID) {
525 Sq->Rsvd2 |= LShiftU64 ((UINT64)Packet->NvmeCmd->Cdw3, 32);
526 }
527 if(Packet->NvmeCmd->Flags & CDW10_VALID) {
528 Sq->Payload.Raw.Cdw10 = Packet->NvmeCmd->Cdw10;
529 }
530 if(Packet->NvmeCmd->Flags & CDW11_VALID) {
531 Sq->Payload.Raw.Cdw11 = Packet->NvmeCmd->Cdw11;
532 }
533 if(Packet->NvmeCmd->Flags & CDW12_VALID) {
534 Sq->Payload.Raw.Cdw12 = Packet->NvmeCmd->Cdw12;
535 }
536 if(Packet->NvmeCmd->Flags & CDW13_VALID) {
537 Sq->Payload.Raw.Cdw13 = Packet->NvmeCmd->Cdw13;
538 }
539 if(Packet->NvmeCmd->Flags & CDW14_VALID) {
540 Sq->Payload.Raw.Cdw14 = Packet->NvmeCmd->Cdw14;
541 }
542 if(Packet->NvmeCmd->Flags & CDW15_VALID) {
543 Sq->Payload.Raw.Cdw15 = Packet->NvmeCmd->Cdw15;
544 }
545
546 //
547 // Ring the submission queue doorbell.
548 //
549 if (Event != NULL) {
550 Private->SqTdbl[QueueId].Sqt =
551 (Private->SqTdbl[QueueId].Sqt + 1) % (NVME_ASYNC_CSQ_SIZE + 1);
552 } else {
553 Private->SqTdbl[QueueId].Sqt ^= 1;
554 }
555 Data = ReadUnaligned32 ((UINT32*)&Private->SqTdbl[QueueId]);
556 PciIo->Mem.Write (
557 PciIo,
558 EfiPciIoWidthUint32,
559 NVME_BAR,
560 NVME_SQTDBL_OFFSET(QueueId, Private->Cap.Dstrd),
561 1,
562 &Data
563 );
564
565 //
566 // For non-blocking requests, return directly if the command is placed
567 // in the submission queue.
568 //
569 if (Event != NULL) {
570 AsyncRequest = AllocateZeroPool (sizeof (NVME_PASS_THRU_ASYNC_REQ));
571 if (AsyncRequest == NULL) {
572 Status = EFI_DEVICE_ERROR;
573 goto EXIT;
574 }
575
576 AsyncRequest->Signature = NVME_PASS_THRU_ASYNC_REQ_SIG;
577 AsyncRequest->Packet = Packet;
578 AsyncRequest->CommandId = Sq->Cid;
579 AsyncRequest->CallerEvent = Event;
580
581 OldTpl = gBS->RaiseTPL (TPL_NOTIFY);
582 InsertTailList (&Private->AsyncPassThruQueue, &AsyncRequest->Link);
583 gBS->RestoreTPL (OldTpl);
584
585 return EFI_SUCCESS;
586 }
587
588 Status = gBS->CreateEvent (
589 EVT_TIMER,
590 TPL_CALLBACK,
591 NULL,
592 NULL,
593 &TimerEvent
594 );
595 if (EFI_ERROR (Status)) {
596 goto EXIT;
597 }
598
599 Status = gBS->SetTimer(TimerEvent, TimerRelative, Packet->CommandTimeout);
600
601 if (EFI_ERROR(Status)) {
602 goto EXIT;
603 }
604
605 //
606 // Wait for completion queue to get filled in.
607 //
608 Status = EFI_TIMEOUT;
609 while (EFI_ERROR (gBS->CheckEvent (TimerEvent))) {
610 if (Cq->Pt != Private->Pt[QueueId]) {
611 Status = EFI_SUCCESS;
612 break;
613 }
614 }
615
616 //
617 // Check the NVMe cmd execution result
618 //
619 if (Status != EFI_TIMEOUT) {
620 if ((Cq->Sct == 0) && (Cq->Sc == 0)) {
621 Status = EFI_SUCCESS;
622 } else {
623 Status = EFI_DEVICE_ERROR;
624 //
625 // Copy the Respose Queue entry for this command to the callers response buffer
626 //
627 CopyMem(Packet->NvmeCompletion, Cq, sizeof(EFI_NVM_EXPRESS_COMPLETION));
628
629 //
630 // Dump every completion entry status for debugging.
631 //
632 DEBUG_CODE_BEGIN();
633 NvmeDumpStatus(Cq);
634 DEBUG_CODE_END();
635 }
636 }
637
638 if ((Private->CqHdbl[QueueId].Cqh ^= 1) == 0) {
639 Private->Pt[QueueId] ^= 1;
640 }
641
642 Data = ReadUnaligned32 ((UINT32*)&Private->CqHdbl[QueueId]);
643 PciIo->Mem.Write (
644 PciIo,
645 EfiPciIoWidthUint32,
646 NVME_BAR,
647 NVME_CQHDBL_OFFSET(QueueId, Private->Cap.Dstrd),
648 1,
649 &Data
650 );
651
652 EXIT:
653 if (MapData != NULL) {
654 PciIo->Unmap (
655 PciIo,
656 MapData
657 );
658 }
659
660 if (MapMeta != NULL) {
661 PciIo->Unmap (
662 PciIo,
663 MapMeta
664 );
665 }
666
667 if (MapPrpList != NULL) {
668 PciIo->Unmap (
669 PciIo,
670 MapPrpList
671 );
672 }
673
674 if (Prp != NULL) {
675 PciIo->FreeBuffer (PciIo, PrpListNo, PrpListHost);
676 }
677
678 if (TimerEvent != NULL) {
679 gBS->CloseEvent (TimerEvent);
680 }
681 return Status;
682 }
683
684 /**
685 Used to retrieve the next namespace ID for this NVM Express controller.
686
687 The EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNextNamespace() function retrieves the next valid
688 namespace ID on this NVM Express controller.
689
690 If on input the value pointed to by NamespaceId is 0xFFFFFFFF, then the first valid namespace
691 ID defined on the NVM Express controller is returned in the location pointed to by NamespaceId
692 and a status of EFI_SUCCESS is returned.
693
694 If on input the value pointed to by NamespaceId is an invalid namespace ID other than 0xFFFFFFFF,
695 then EFI_INVALID_PARAMETER is returned.
696
697 If on input the value pointed to by NamespaceId is a valid namespace ID, then the next valid
698 namespace ID on the NVM Express controller is returned in the location pointed to by NamespaceId,
699 and EFI_SUCCESS is returned.
700
701 If the value pointed to by NamespaceId is the namespace ID of the last namespace on the NVM
702 Express controller, then EFI_NOT_FOUND is returned.
703
704 @param[in] This A pointer to the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL instance.
705 @param[in,out] NamespaceId On input, a pointer to a legal NamespaceId for an NVM Express
706 namespace present on the NVM Express controller. On output, a
707 pointer to the next NamespaceId of an NVM Express namespace on
708 an NVM Express controller. An input value of 0xFFFFFFFF retrieves
709 the first NamespaceId for an NVM Express namespace present on an
710 NVM Express controller.
711
712 @retval EFI_SUCCESS The Namespace ID of the next Namespace was returned.
713 @retval EFI_NOT_FOUND There are no more namespaces defined on this controller.
714 @retval EFI_INVALID_PARAMETER NamespaceId is an invalid value other than 0xFFFFFFFF.
715
716 **/
717 EFI_STATUS
718 EFIAPI
719 NvmExpressGetNextNamespace (
720 IN EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL *This,
721 IN OUT UINT32 *NamespaceId
722 )
723 {
724 NVME_CONTROLLER_PRIVATE_DATA *Private;
725 NVME_ADMIN_NAMESPACE_DATA *NamespaceData;
726 UINT32 NextNamespaceId;
727 EFI_STATUS Status;
728
729 if ((This == NULL) || (NamespaceId == NULL)) {
730 return EFI_INVALID_PARAMETER;
731 }
732
733 NamespaceData = NULL;
734 Status = EFI_NOT_FOUND;
735
736 Private = NVME_CONTROLLER_PRIVATE_DATA_FROM_PASS_THRU (This);
737 //
738 // If the NamespaceId input value is 0xFFFFFFFF, then get the first valid namespace ID
739 //
740 if (*NamespaceId == 0xFFFFFFFF) {
741 //
742 // Start with the first namespace ID
743 //
744 NextNamespaceId = 1;
745 //
746 // Allocate buffer for Identify Namespace data.
747 //
748 NamespaceData = (NVME_ADMIN_NAMESPACE_DATA *)AllocateZeroPool (sizeof (NVME_ADMIN_NAMESPACE_DATA));
749
750 if (NamespaceData == NULL) {
751 return EFI_NOT_FOUND;
752 }
753
754 Status = NvmeIdentifyNamespace (Private, NextNamespaceId, NamespaceData);
755 if (EFI_ERROR(Status)) {
756 goto Done;
757 }
758
759 *NamespaceId = NextNamespaceId;
760 } else {
761 if (*NamespaceId >= Private->ControllerData->Nn) {
762 return EFI_INVALID_PARAMETER;
763 }
764
765 NextNamespaceId = *NamespaceId + 1;
766 //
767 // Allocate buffer for Identify Namespace data.
768 //
769 NamespaceData = (NVME_ADMIN_NAMESPACE_DATA *)AllocateZeroPool (sizeof (NVME_ADMIN_NAMESPACE_DATA));
770 if (NamespaceData == NULL) {
771 return EFI_NOT_FOUND;
772 }
773
774 Status = NvmeIdentifyNamespace (Private, NextNamespaceId, NamespaceData);
775 if (EFI_ERROR(Status)) {
776 goto Done;
777 }
778
779 *NamespaceId = NextNamespaceId;
780 }
781
782 Done:
783 if (NamespaceData != NULL) {
784 FreePool(NamespaceData);
785 }
786
787 return Status;
788 }
789
790 /**
791 Used to translate a device path node to a namespace ID.
792
793 The EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNamespace() function determines the namespace ID associated with the
794 namespace described by DevicePath.
795
796 If DevicePath is a device path node type that the NVM Express Pass Thru driver supports, then the NVM Express
797 Pass Thru driver will attempt to translate the contents DevicePath into a namespace ID.
798
799 If this translation is successful, then that namespace ID is returned in NamespaceId, and EFI_SUCCESS is returned
800
801 @param[in] This A pointer to the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL instance.
802 @param[in] DevicePath A pointer to the device path node that describes an NVM Express namespace on
803 the NVM Express controller.
804 @param[out] NamespaceId The NVM Express namespace ID contained in the device path node.
805
806 @retval EFI_SUCCESS DevicePath was successfully translated to NamespaceId.
807 @retval EFI_INVALID_PARAMETER If DevicePath or NamespaceId are NULL, then EFI_INVALID_PARAMETER is returned.
808 @retval EFI_UNSUPPORTED If DevicePath is not a device path node type that the NVM Express Pass Thru driver
809 supports, then EFI_UNSUPPORTED is returned.
810 @retval EFI_NOT_FOUND If DevicePath is a device path node type that the NVM Express Pass Thru driver
811 supports, but there is not a valid translation from DevicePath to a namespace ID,
812 then EFI_NOT_FOUND is returned.
813 **/
814 EFI_STATUS
815 EFIAPI
816 NvmExpressGetNamespace (
817 IN EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL *This,
818 IN EFI_DEVICE_PATH_PROTOCOL *DevicePath,
819 OUT UINT32 *NamespaceId
820 )
821 {
822 NVME_NAMESPACE_DEVICE_PATH *Node;
823
824 if ((This == NULL) || (DevicePath == NULL) || (NamespaceId == NULL)) {
825 return EFI_INVALID_PARAMETER;
826 }
827
828 if (DevicePath->Type != MESSAGING_DEVICE_PATH) {
829 return EFI_UNSUPPORTED;
830 }
831
832 Node = (NVME_NAMESPACE_DEVICE_PATH *)DevicePath;
833
834 if (DevicePath->SubType == MSG_NVME_NAMESPACE_DP) {
835 if (DevicePathNodeLength(DevicePath) != sizeof(NVME_NAMESPACE_DEVICE_PATH)) {
836 return EFI_NOT_FOUND;
837 }
838
839 *NamespaceId = Node->NamespaceId;
840
841 return EFI_SUCCESS;
842 } else {
843 return EFI_UNSUPPORTED;
844 }
845 }
846
847 /**
848 Used to allocate and build a device path node for an NVM Express namespace on an NVM Express controller.
849
850 The EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.BuildDevicePath() function allocates and builds a single device
851 path node for the NVM Express namespace specified by NamespaceId.
852
853 If the NamespaceId is not valid, then EFI_NOT_FOUND is returned.
854
855 If DevicePath is NULL, then EFI_INVALID_PARAMETER is returned.
856
857 If there are not enough resources to allocate the device path node, then EFI_OUT_OF_RESOURCES is returned.
858
859 Otherwise, DevicePath is allocated with the boot service AllocatePool(), the contents of DevicePath are
860 initialized to describe the NVM Express namespace specified by NamespaceId, and EFI_SUCCESS is returned.
861
862 @param[in] This A pointer to the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL instance.
863 @param[in] NamespaceId The NVM Express namespace ID for which a device path node is to be
864 allocated and built. Caller must set the NamespaceId to zero if the
865 device path node will contain a valid UUID.
866 @param[in,out] DevicePath A pointer to a single device path node that describes the NVM Express
867 namespace specified by NamespaceId. This function is responsible for
868 allocating the buffer DevicePath with the boot service AllocatePool().
869 It is the caller's responsibility to free DevicePath when the caller
870 is finished with DevicePath.
871 @retval EFI_SUCCESS The device path node that describes the NVM Express namespace specified
872 by NamespaceId was allocated and returned in DevicePath.
873 @retval EFI_NOT_FOUND The NamespaceId is not valid.
874 @retval EFI_INVALID_PARAMETER DevicePath is NULL.
875 @retval EFI_OUT_OF_RESOURCES There are not enough resources to allocate the DevicePath node.
876
877 **/
878 EFI_STATUS
879 EFIAPI
880 NvmExpressBuildDevicePath (
881 IN EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL *This,
882 IN UINT32 NamespaceId,
883 IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePath
884 )
885 {
886 NVME_NAMESPACE_DEVICE_PATH *Node;
887 NVME_CONTROLLER_PRIVATE_DATA *Private;
888 EFI_STATUS Status;
889 NVME_ADMIN_NAMESPACE_DATA *NamespaceData;
890
891 //
892 // Validate parameters
893 //
894 if ((This == NULL) || (DevicePath == NULL)) {
895 return EFI_INVALID_PARAMETER;
896 }
897
898 Status = EFI_SUCCESS;
899 Private = NVME_CONTROLLER_PRIVATE_DATA_FROM_PASS_THRU (This);
900
901 //
902 // Check NamespaceId is valid or not.
903 //
904 if ((NamespaceId == 0) ||
905 (NamespaceId > Private->ControllerData->Nn)) {
906 return EFI_NOT_FOUND;
907 }
908
909 Node = (NVME_NAMESPACE_DEVICE_PATH *)AllocateZeroPool (sizeof (NVME_NAMESPACE_DEVICE_PATH));
910 if (Node == NULL) {
911 return EFI_OUT_OF_RESOURCES;
912 }
913
914 Node->Header.Type = MESSAGING_DEVICE_PATH;
915 Node->Header.SubType = MSG_NVME_NAMESPACE_DP;
916 SetDevicePathNodeLength (&Node->Header, sizeof (NVME_NAMESPACE_DEVICE_PATH));
917 Node->NamespaceId = NamespaceId;
918
919 //
920 // Allocate a buffer for Identify Namespace data.
921 //
922 NamespaceData = NULL;
923 NamespaceData = AllocateZeroPool(sizeof (NVME_ADMIN_NAMESPACE_DATA));
924 if(NamespaceData == NULL) {
925 Status = EFI_OUT_OF_RESOURCES;
926 goto Exit;
927 }
928
929 //
930 // Get UUID from specified Identify Namespace data.
931 //
932 Status = NvmeIdentifyNamespace (
933 Private,
934 NamespaceId,
935 (VOID *)NamespaceData
936 );
937
938 if (EFI_ERROR(Status)) {
939 goto Exit;
940 }
941
942 Node->NamespaceUuid = NamespaceData->Eui64;
943
944 *DevicePath = (EFI_DEVICE_PATH_PROTOCOL *)Node;
945
946 Exit:
947 if(NamespaceData != NULL) {
948 FreePool (NamespaceData);
949 }
950
951 if (EFI_ERROR (Status)) {
952 FreePool (Node);
953 }
954
955 return Status;
956 }
957