]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Bus/Pci/PciHostBridgeDxe/PciRootBridgeIo.c
MdeModulePkg/PciHostBridgeDxe: Fix VS tool chain build failure
[mirror_edk2.git] / MdeModulePkg / Bus / Pci / PciHostBridgeDxe / PciRootBridgeIo.c
1 /** @file
2
3 PCI Root Bridge Io Protocol code.
4
5 Copyright (c) 1999 - 2016, Intel Corporation. All rights reserved.<BR>
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution. The full text of the license may be found at
9 http://opensource.org/licenses/bsd-license.php
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #include "PciHostBridge.h"
17 #include "PciRootBridge.h"
18 #include "PciHostResource.h"
19
20 #define NO_MAPPING (VOID *) (UINTN) -1
21
22 //
23 // Lookup table for increment values based on transfer widths
24 //
25 UINT8 mInStride[] = {
26 1, // EfiPciWidthUint8
27 2, // EfiPciWidthUint16
28 4, // EfiPciWidthUint32
29 8, // EfiPciWidthUint64
30 0, // EfiPciWidthFifoUint8
31 0, // EfiPciWidthFifoUint16
32 0, // EfiPciWidthFifoUint32
33 0, // EfiPciWidthFifoUint64
34 1, // EfiPciWidthFillUint8
35 2, // EfiPciWidthFillUint16
36 4, // EfiPciWidthFillUint32
37 8 // EfiPciWidthFillUint64
38 };
39
40 //
41 // Lookup table for increment values based on transfer widths
42 //
43 UINT8 mOutStride[] = {
44 1, // EfiPciWidthUint8
45 2, // EfiPciWidthUint16
46 4, // EfiPciWidthUint32
47 8, // EfiPciWidthUint64
48 1, // EfiPciWidthFifoUint8
49 2, // EfiPciWidthFifoUint16
50 4, // EfiPciWidthFifoUint32
51 8, // EfiPciWidthFifoUint64
52 0, // EfiPciWidthFillUint8
53 0, // EfiPciWidthFillUint16
54 0, // EfiPciWidthFillUint32
55 0 // EfiPciWidthFillUint64
56 };
57
58 /**
59 Construct the Pci Root Bridge instance.
60
61 @param Bridge The root bridge instance.
62
63 @return The pointer to PCI_ROOT_BRIDGE_INSTANCE just created
64 or NULL if creation fails.
65 **/
66 PCI_ROOT_BRIDGE_INSTANCE *
67 CreateRootBridge (
68 IN PCI_ROOT_BRIDGE *Bridge
69 )
70 {
71 PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
72 PCI_RESOURCE_TYPE Index;
73 CHAR16 *DevicePathStr;
74 PCI_ROOT_BRIDGE_APERTURE *Aperture;
75
76 DevicePathStr = NULL;
77
78 DEBUG ((EFI_D_INFO, "RootBridge: "));
79 DEBUG ((EFI_D_INFO, "%s\n", DevicePathStr = ConvertDevicePathToText (Bridge->DevicePath, FALSE, FALSE)));
80 DEBUG ((EFI_D_INFO, " Support/Attr: %lx / %lx\n", Bridge->Supports, Bridge->Attributes));
81 DEBUG ((EFI_D_INFO, " DmaAbove4G: %s\n", Bridge->DmaAbove4G ? L"Yes" : L"No"));
82 DEBUG ((EFI_D_INFO, "NoExtConfSpace: %s\n", Bridge->NoExtendedConfigSpace ? L"Yes" : L"No"));
83 DEBUG ((EFI_D_INFO, " AllocAttr: %lx (%s%s)\n", Bridge->AllocationAttributes,
84 (Bridge->AllocationAttributes & EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM) != 0 ? L"CombineMemPMem " : L"",
85 (Bridge->AllocationAttributes & EFI_PCI_HOST_BRIDGE_MEM64_DECODE) != 0 ? L"Mem64Decode" : L""
86 ));
87 DEBUG ((EFI_D_INFO, " Bus: %lx - %lx\n", Bridge->Bus.Base, Bridge->Bus.Limit));
88 DEBUG ((EFI_D_INFO, " Io: %lx - %lx\n", Bridge->Io.Base, Bridge->Io.Limit));
89 DEBUG ((EFI_D_INFO, " Mem: %lx - %lx\n", Bridge->Mem.Base, Bridge->Mem.Limit));
90 DEBUG ((EFI_D_INFO, " MemAbove4G: %lx - %lx\n", Bridge->MemAbove4G.Base, Bridge->MemAbove4G.Limit));
91 DEBUG ((EFI_D_INFO, " PMem: %lx - %lx\n", Bridge->PMem.Base, Bridge->PMem.Limit));
92 DEBUG ((EFI_D_INFO, " PMemAbove4G: %lx - %lx\n", Bridge->PMemAbove4G.Base, Bridge->PMemAbove4G.Limit));
93
94 //
95 // Make sure Mem and MemAbove4G apertures are valid
96 //
97 if (Bridge->Mem.Base <= Bridge->Mem.Limit) {
98 ASSERT (Bridge->Mem.Limit < SIZE_4GB);
99 if (Bridge->Mem.Limit >= SIZE_4GB) {
100 return NULL;
101 }
102 }
103 if (Bridge->MemAbove4G.Base <= Bridge->MemAbove4G.Limit) {
104 ASSERT (Bridge->MemAbove4G.Base >= SIZE_4GB);
105 if (Bridge->MemAbove4G.Base < SIZE_4GB) {
106 return NULL;
107 }
108 }
109 if (Bridge->PMem.Base <= Bridge->PMem.Limit) {
110 ASSERT (Bridge->PMem.Limit < SIZE_4GB);
111 if (Bridge->PMem.Limit >= SIZE_4GB) {
112 return NULL;
113 }
114 }
115 if (Bridge->PMemAbove4G.Base <= Bridge->PMemAbove4G.Limit) {
116 ASSERT (Bridge->PMemAbove4G.Base >= SIZE_4GB);
117 if (Bridge->PMemAbove4G.Base < SIZE_4GB) {
118 return NULL;
119 }
120 }
121
122 //
123 // Ignore AllocationAttributes when resources were already assigned.
124 //
125 if (!Bridge->ResourceAssigned) {
126 if ((Bridge->AllocationAttributes & EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM) != 0) {
127 //
128 // If this bit is set, then the PCI Root Bridge does not
129 // support separate windows for Non-prefetchable and Prefetchable
130 // memory.
131 //
132 ASSERT (Bridge->PMem.Base > Bridge->PMem.Limit);
133 ASSERT (Bridge->PMemAbove4G.Base > Bridge->PMemAbove4G.Limit);
134 if ((Bridge->PMem.Base <= Bridge->PMem.Limit) ||
135 (Bridge->PMemAbove4G.Base <= Bridge->PMemAbove4G.Limit)
136 ) {
137 return NULL;
138 }
139 }
140
141 if ((Bridge->AllocationAttributes & EFI_PCI_HOST_BRIDGE_MEM64_DECODE) == 0) {
142 //
143 // If this bit is not set, then the PCI Root Bridge does not support
144 // 64 bit memory windows.
145 //
146 ASSERT (Bridge->MemAbove4G.Base > Bridge->MemAbove4G.Limit);
147 ASSERT (Bridge->PMemAbove4G.Base > Bridge->PMemAbove4G.Limit);
148 if ((Bridge->MemAbove4G.Base <= Bridge->MemAbove4G.Limit) ||
149 (Bridge->PMemAbove4G.Base <= Bridge->PMemAbove4G.Limit)
150 ) {
151 return NULL;
152 }
153 }
154 }
155
156 RootBridge = AllocateZeroPool (sizeof (PCI_ROOT_BRIDGE_INSTANCE));
157 ASSERT (RootBridge != NULL);
158
159 RootBridge->Signature = PCI_ROOT_BRIDGE_SIGNATURE;
160 RootBridge->Supports = Bridge->Supports;
161 RootBridge->Attributes = Bridge->Attributes;
162 RootBridge->DmaAbove4G = Bridge->DmaAbove4G;
163 RootBridge->NoExtendedConfigSpace = Bridge->NoExtendedConfigSpace;
164 RootBridge->AllocationAttributes = Bridge->AllocationAttributes;
165 RootBridge->DevicePath = DuplicateDevicePath (Bridge->DevicePath);
166 RootBridge->DevicePathStr = DevicePathStr;
167 RootBridge->ConfigBuffer = AllocatePool (
168 TypeMax * sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) + sizeof (EFI_ACPI_END_TAG_DESCRIPTOR)
169 );
170 ASSERT (RootBridge->ConfigBuffer != NULL);
171 InitializeListHead (&RootBridge->Maps);
172
173 CopyMem (&RootBridge->Bus, &Bridge->Bus, sizeof (PCI_ROOT_BRIDGE_APERTURE));
174 CopyMem (&RootBridge->Io, &Bridge->Io, sizeof (PCI_ROOT_BRIDGE_APERTURE));
175 CopyMem (&RootBridge->Mem, &Bridge->Mem, sizeof (PCI_ROOT_BRIDGE_APERTURE));
176 CopyMem (&RootBridge->MemAbove4G, &Bridge->MemAbove4G, sizeof (PCI_ROOT_BRIDGE_APERTURE));
177 CopyMem (&RootBridge->PMem, &Bridge->PMem, sizeof (PCI_ROOT_BRIDGE_APERTURE));
178 CopyMem (&RootBridge->PMemAbove4G, &Bridge->PMemAbove4G, sizeof (PCI_ROOT_BRIDGE_APERTURE));
179
180 for (Index = TypeIo; Index < TypeMax; Index++) {
181 switch (Index) {
182 case TypeBus:
183 Aperture = &RootBridge->Bus;
184 break;
185 case TypeIo:
186 Aperture = &RootBridge->Io;
187 break;
188 case TypeMem32:
189 Aperture = &RootBridge->Mem;
190 break;
191 case TypeMem64:
192 Aperture = &RootBridge->MemAbove4G;
193 break;
194 case TypePMem32:
195 Aperture = &RootBridge->PMem;
196 break;
197 case TypePMem64:
198 Aperture = &RootBridge->PMemAbove4G;
199 break;
200 default:
201 ASSERT (FALSE);
202 Aperture = NULL;
203 break;
204 }
205 RootBridge->ResAllocNode[Index].Type = Index;
206 if (Bridge->ResourceAssigned && (Aperture->Limit >= Aperture->Base)) {
207 RootBridge->ResAllocNode[Index].Base = Aperture->Base;
208 RootBridge->ResAllocNode[Index].Length = Aperture->Limit - Aperture->Base + 1;
209 RootBridge->ResAllocNode[Index].Status = ResAllocated;
210 } else {
211 RootBridge->ResAllocNode[Index].Base = 0;
212 RootBridge->ResAllocNode[Index].Length = 0;
213 RootBridge->ResAllocNode[Index].Status = ResNone;
214 }
215 }
216
217 RootBridge->RootBridgeIo.SegmentNumber = Bridge->Segment;
218 RootBridge->RootBridgeIo.PollMem = RootBridgeIoPollMem;
219 RootBridge->RootBridgeIo.PollIo = RootBridgeIoPollIo;
220 RootBridge->RootBridgeIo.Mem.Read = RootBridgeIoMemRead;
221 RootBridge->RootBridgeIo.Mem.Write = RootBridgeIoMemWrite;
222 RootBridge->RootBridgeIo.Io.Read = RootBridgeIoIoRead;
223 RootBridge->RootBridgeIo.Io.Write = RootBridgeIoIoWrite;
224 RootBridge->RootBridgeIo.CopyMem = RootBridgeIoCopyMem;
225 RootBridge->RootBridgeIo.Pci.Read = RootBridgeIoPciRead;
226 RootBridge->RootBridgeIo.Pci.Write = RootBridgeIoPciWrite;
227 RootBridge->RootBridgeIo.Map = RootBridgeIoMap;
228 RootBridge->RootBridgeIo.Unmap = RootBridgeIoUnmap;
229 RootBridge->RootBridgeIo.AllocateBuffer = RootBridgeIoAllocateBuffer;
230 RootBridge->RootBridgeIo.FreeBuffer = RootBridgeIoFreeBuffer;
231 RootBridge->RootBridgeIo.Flush = RootBridgeIoFlush;
232 RootBridge->RootBridgeIo.GetAttributes = RootBridgeIoGetAttributes;
233 RootBridge->RootBridgeIo.SetAttributes = RootBridgeIoSetAttributes;
234 RootBridge->RootBridgeIo.Configuration = RootBridgeIoConfiguration;
235
236 return RootBridge;
237 }
238
239 /**
240 Check parameters for IO,MMIO,PCI read/write services of PCI Root Bridge IO.
241
242 The I/O operations are carried out exactly as requested. The caller is
243 responsible for satisfying any alignment and I/O width restrictions that a PI
244 System on a platform might require. For example on some platforms, width
245 requests of EfiCpuIoWidthUint64 do not work. Misaligned buffers, on the other
246 hand, will be handled by the driver.
247
248 @param[in] This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
249
250 @param[in] OperationType I/O operation type: IO/MMIO/PCI.
251
252 @param[in] Width Signifies the width of the I/O or Memory operation.
253
254 @param[in] Address The base address of the I/O operation.
255
256 @param[in] Count The number of I/O operations to perform. The number
257 of bytes moved is Width size * Count, starting at
258 Address.
259
260 @param[in] Buffer For read operations, the destination buffer to
261 store the results. For write operations, the source
262 buffer from which to write data.
263
264 @retval EFI_SUCCESS The parameters for this request pass the
265 checks.
266
267 @retval EFI_INVALID_PARAMETER Width is invalid for this PI system.
268
269 @retval EFI_INVALID_PARAMETER Buffer is NULL.
270
271 @retval EFI_UNSUPPORTED The Buffer is not aligned for the given Width.
272
273 @retval EFI_UNSUPPORTED The address range specified by Address, Width,
274 and Count is not valid for this PI system.
275 **/
276 EFI_STATUS
277 RootBridgeIoCheckParameter (
278 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
279 IN OPERATION_TYPE OperationType,
280 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
281 IN UINT64 Address,
282 IN UINTN Count,
283 IN VOID *Buffer
284 )
285 {
286 PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
287 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS *PciRbAddr;
288 UINT64 Base;
289 UINT64 Limit;
290 UINT32 Size;
291
292 //
293 // Check to see if Buffer is NULL
294 //
295 if (Buffer == NULL) {
296 return EFI_INVALID_PARAMETER;
297 }
298
299 //
300 // Check to see if Width is in the valid range
301 //
302 if ((UINT32) Width >= EfiPciWidthMaximum) {
303 return EFI_INVALID_PARAMETER;
304 }
305
306 //
307 // For FIFO type, the target address won't increase during the access,
308 // so treat Count as 1
309 //
310 if (Width >= EfiPciWidthFifoUint8 && Width <= EfiPciWidthFifoUint64) {
311 Count = 1;
312 }
313
314 Width = (EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH) (Width & 0x03);
315 Size = 1 << Width;
316
317 //
318 // Check to see if Address is aligned
319 //
320 if ((Address & (Size - 1)) != 0) {
321 return EFI_UNSUPPORTED;
322 }
323
324 RootBridge = ROOT_BRIDGE_FROM_THIS (This);
325
326 //
327 // Check to see if any address associated with this transfer exceeds the
328 // maximum allowed address. The maximum address implied by the parameters
329 // passed in is Address + Size * Count. If the following condition is met,
330 // then the transfer is not supported.
331 //
332 // Address + Size * Count > Limit + 1
333 //
334 // Since Limit can be the maximum integer value supported by the CPU and
335 // Count can also be the maximum integer value supported by the CPU, this
336 // range check must be adjusted to avoid all oveflow conditions.
337 //
338 if (OperationType == IoOperation) {
339 //
340 // Allow Legacy IO access
341 //
342 if (Address + MultU64x32 (Count, Size) <= 0x1000) {
343 if ((RootBridge->Attributes & (
344 EFI_PCI_ATTRIBUTE_ISA_IO | EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO | EFI_PCI_ATTRIBUTE_VGA_IO |
345 EFI_PCI_ATTRIBUTE_IDE_PRIMARY_IO | EFI_PCI_ATTRIBUTE_IDE_SECONDARY_IO |
346 EFI_PCI_ATTRIBUTE_ISA_IO_16 | EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO_16 | EFI_PCI_ATTRIBUTE_VGA_IO_16)) != 0) {
347 return EFI_SUCCESS;
348 }
349 }
350 Base = RootBridge->Io.Base;
351 Limit = RootBridge->Io.Limit;
352 } else if (OperationType == MemOperation) {
353 //
354 // Allow Legacy MMIO access
355 //
356 if ((Address >= 0xA0000) && (Address + MultU64x32 (Count, Size)) <= 0xC0000) {
357 if ((RootBridge->Attributes & EFI_PCI_ATTRIBUTE_VGA_MEMORY) != 0) {
358 return EFI_SUCCESS;
359 }
360 }
361 //
362 // By comparing the Address against Limit we know which range to be used
363 // for checking
364 //
365 if (Address + MultU64x32 (Count, Size) <= RootBridge->Mem.Limit + 1) {
366 Base = RootBridge->Mem.Base;
367 Limit = RootBridge->Mem.Limit;
368 } else {
369 Base = RootBridge->MemAbove4G.Base;
370 Limit = RootBridge->MemAbove4G.Limit;
371 }
372 } else {
373 PciRbAddr = (EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS*) &Address;
374 if (PciRbAddr->Bus < RootBridge->Bus.Base ||
375 PciRbAddr->Bus > RootBridge->Bus.Limit) {
376 return EFI_INVALID_PARAMETER;
377 }
378
379 if (PciRbAddr->Device > PCI_MAX_DEVICE ||
380 PciRbAddr->Function > PCI_MAX_FUNC) {
381 return EFI_INVALID_PARAMETER;
382 }
383
384 if (PciRbAddr->ExtendedRegister != 0) {
385 Address = PciRbAddr->ExtendedRegister;
386 } else {
387 Address = PciRbAddr->Register;
388 }
389 Base = 0;
390 Limit = RootBridge->NoExtendedConfigSpace ? 0xFF : 0xFFF;
391 }
392
393 if (Address < Base) {
394 return EFI_INVALID_PARAMETER;
395 }
396
397 if (Address + MultU64x32 (Count, Size) > Limit + 1) {
398 return EFI_INVALID_PARAMETER;
399 }
400
401 return EFI_SUCCESS;
402 }
403
404 /**
405 Polls an address in memory mapped I/O space until an exit condition is met,
406 or a timeout occurs.
407
408 This function provides a standard way to poll a PCI memory location. A PCI
409 memory read operation is performed at the PCI memory address specified by
410 Address for the width specified by Width. The result of this PCI memory read
411 operation is stored in Result. This PCI memory read operation is repeated
412 until either a timeout of Delay 100 ns units has expired, or (Result & Mask)
413 is equal to Value.
414
415 @param[in] This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
416 @param[in] Width Signifies the width of the memory operations.
417 @param[in] Address The base address of the memory operations. The caller
418 is responsible for aligning Address if required.
419 @param[in] Mask Mask used for the polling criteria. Bytes above Width
420 in Mask are ignored. The bits in the bytes below Width
421 which are zero in Mask are ignored when polling the
422 memory address.
423 @param[in] Value The comparison value used for the polling exit
424 criteria.
425 @param[in] Delay The number of 100 ns units to poll. Note that timer
426 available may be of poorer granularity.
427 @param[out] Result Pointer to the last value read from the memory
428 location.
429
430 @retval EFI_SUCCESS The last data returned from the access matched
431 the poll exit criteria.
432 @retval EFI_INVALID_PARAMETER Width is invalid.
433 @retval EFI_INVALID_PARAMETER Result is NULL.
434 @retval EFI_TIMEOUT Delay expired before a match occurred.
435 @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a
436 lack of resources.
437 **/
438 EFI_STATUS
439 EFIAPI
440 RootBridgeIoPollMem (
441 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
442 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
443 IN UINT64 Address,
444 IN UINT64 Mask,
445 IN UINT64 Value,
446 IN UINT64 Delay,
447 OUT UINT64 *Result
448 )
449 {
450 EFI_STATUS Status;
451 UINT64 NumberOfTicks;
452 UINT32 Remainder;
453
454 if (Result == NULL) {
455 return EFI_INVALID_PARAMETER;
456 }
457
458 if ((UINT32)Width > EfiPciWidthUint64) {
459 return EFI_INVALID_PARAMETER;
460 }
461
462 //
463 // No matter what, always do a single poll.
464 //
465 Status = This->Mem.Read (This, Width, Address, 1, Result);
466 if (EFI_ERROR (Status)) {
467 return Status;
468 }
469
470 if ((*Result & Mask) == Value) {
471 return EFI_SUCCESS;
472 }
473
474 if (Delay == 0) {
475 return EFI_SUCCESS;
476
477 } else {
478
479 //
480 // Determine the proper # of metronome ticks to wait for polling the
481 // location. The nuber of ticks is Roundup (Delay /
482 // mMetronome->TickPeriod)+1
483 // The "+1" to account for the possibility of the first tick being short
484 // because we started in the middle of a tick.
485 //
486 // BugBug: overriding mMetronome->TickPeriod with UINT32 until Metronome
487 // protocol definition is updated.
488 //
489 NumberOfTicks = DivU64x32Remainder (Delay, (UINT32) mMetronome->TickPeriod,
490 &Remainder);
491 if (Remainder != 0) {
492 NumberOfTicks += 1;
493 }
494 NumberOfTicks += 1;
495
496 while (NumberOfTicks != 0) {
497
498 mMetronome->WaitForTick (mMetronome, 1);
499
500 Status = This->Mem.Read (This, Width, Address, 1, Result);
501 if (EFI_ERROR (Status)) {
502 return Status;
503 }
504
505 if ((*Result & Mask) == Value) {
506 return EFI_SUCCESS;
507 }
508
509 NumberOfTicks -= 1;
510 }
511 }
512 return EFI_TIMEOUT;
513 }
514
515 /**
516 Reads from the I/O space of a PCI Root Bridge. Returns when either the
517 polling exit criteria is satisfied or after a defined duration.
518
519 This function provides a standard way to poll a PCI I/O location. A PCI I/O
520 read operation is performed at the PCI I/O address specified by Address for
521 the width specified by Width.
522 The result of this PCI I/O read operation is stored in Result. This PCI I/O
523 read operation is repeated until either a timeout of Delay 100 ns units has
524 expired, or (Result & Mask) is equal to Value.
525
526 @param[in] This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
527 @param[in] Width Signifies the width of the I/O operations.
528 @param[in] Address The base address of the I/O operations. The caller is
529 responsible for aligning Address if required.
530 @param[in] Mask Mask used for the polling criteria. Bytes above Width in
531 Mask are ignored. The bits in the bytes below Width
532 which are zero in Mask are ignored when polling the I/O
533 address.
534 @param[in] Value The comparison value used for the polling exit criteria.
535 @param[in] Delay The number of 100 ns units to poll. Note that timer
536 available may be of poorer granularity.
537 @param[out] Result Pointer to the last value read from the memory location.
538
539 @retval EFI_SUCCESS The last data returned from the access matched
540 the poll exit criteria.
541 @retval EFI_INVALID_PARAMETER Width is invalid.
542 @retval EFI_INVALID_PARAMETER Result is NULL.
543 @retval EFI_TIMEOUT Delay expired before a match occurred.
544 @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a
545 lack of resources.
546 **/
547 EFI_STATUS
548 EFIAPI
549 RootBridgeIoPollIo (
550 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
551 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
552 IN UINT64 Address,
553 IN UINT64 Mask,
554 IN UINT64 Value,
555 IN UINT64 Delay,
556 OUT UINT64 *Result
557 )
558 {
559 EFI_STATUS Status;
560 UINT64 NumberOfTicks;
561 UINT32 Remainder;
562
563 //
564 // No matter what, always do a single poll.
565 //
566
567 if (Result == NULL) {
568 return EFI_INVALID_PARAMETER;
569 }
570
571 if ((UINT32)Width > EfiPciWidthUint64) {
572 return EFI_INVALID_PARAMETER;
573 }
574
575 Status = This->Io.Read (This, Width, Address, 1, Result);
576 if (EFI_ERROR (Status)) {
577 return Status;
578 }
579 if ((*Result & Mask) == Value) {
580 return EFI_SUCCESS;
581 }
582
583 if (Delay == 0) {
584 return EFI_SUCCESS;
585
586 } else {
587
588 //
589 // Determine the proper # of metronome ticks to wait for polling the
590 // location. The number of ticks is Roundup (Delay /
591 // mMetronome->TickPeriod)+1
592 // The "+1" to account for the possibility of the first tick being short
593 // because we started in the middle of a tick.
594 //
595 NumberOfTicks = DivU64x32Remainder (Delay, (UINT32)mMetronome->TickPeriod,
596 &Remainder);
597 if (Remainder != 0) {
598 NumberOfTicks += 1;
599 }
600 NumberOfTicks += 1;
601
602 while (NumberOfTicks != 0) {
603
604 mMetronome->WaitForTick (mMetronome, 1);
605
606 Status = This->Io.Read (This, Width, Address, 1, Result);
607 if (EFI_ERROR (Status)) {
608 return Status;
609 }
610
611 if ((*Result & Mask) == Value) {
612 return EFI_SUCCESS;
613 }
614
615 NumberOfTicks -= 1;
616 }
617 }
618 return EFI_TIMEOUT;
619 }
620
621 /**
622 Enables a PCI driver to access PCI controller registers in the PCI root
623 bridge memory space.
624
625 The Mem.Read(), and Mem.Write() functions enable a driver to access PCI
626 controller registers in the PCI root bridge memory space.
627 The memory operations are carried out exactly as requested. The caller is
628 responsible for satisfying any alignment and memory width restrictions that a
629 PCI Root Bridge on a platform might require.
630
631 @param[in] This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
632 @param[in] Width Signifies the width of the memory operation.
633 @param[in] Address The base address of the memory operation. The caller
634 is responsible for aligning the Address if required.
635 @param[in] Count The number of memory operations to perform. Bytes
636 moved is Width size * Count, starting at Address.
637 @param[out] Buffer For read operations, the destination buffer to store
638 the results. For write operations, the source buffer
639 to write data from.
640
641 @retval EFI_SUCCESS The data was read from or written to the PCI
642 root bridge.
643 @retval EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.
644 @retval EFI_INVALID_PARAMETER Buffer is NULL.
645 @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a
646 lack of resources.
647 **/
648 EFI_STATUS
649 EFIAPI
650 RootBridgeIoMemRead (
651 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
652 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
653 IN UINT64 Address,
654 IN UINTN Count,
655 OUT VOID *Buffer
656 )
657 {
658 EFI_STATUS Status;
659
660 Status = RootBridgeIoCheckParameter (This, MemOperation, Width, Address,
661 Count, Buffer);
662 if (EFI_ERROR (Status)) {
663 return Status;
664 }
665 return mCpuIo->Mem.Read (mCpuIo, (EFI_CPU_IO_PROTOCOL_WIDTH) Width, Address, Count, Buffer);
666 }
667
668 /**
669 Enables a PCI driver to access PCI controller registers in the PCI root
670 bridge memory space.
671
672 The Mem.Read(), and Mem.Write() functions enable a driver to access PCI
673 controller registers in the PCI root bridge memory space.
674 The memory operations are carried out exactly as requested. The caller is
675 responsible for satisfying any alignment and memory width restrictions that a
676 PCI Root Bridge on a platform might require.
677
678 @param[in] This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
679 @param[in] Width Signifies the width of the memory operation.
680 @param[in] Address The base address of the memory operation. The caller
681 is responsible for aligning the Address if required.
682 @param[in] Count The number of memory operations to perform. Bytes
683 moved is Width size * Count, starting at Address.
684 @param[in] Buffer For read operations, the destination buffer to store
685 the results. For write operations, the source buffer
686 to write data from.
687
688 @retval EFI_SUCCESS The data was read from or written to the PCI
689 root bridge.
690 @retval EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.
691 @retval EFI_INVALID_PARAMETER Buffer is NULL.
692 @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a
693 lack of resources.
694 **/
695 EFI_STATUS
696 EFIAPI
697 RootBridgeIoMemWrite (
698 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
699 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
700 IN UINT64 Address,
701 IN UINTN Count,
702 IN VOID *Buffer
703 )
704 {
705 EFI_STATUS Status;
706
707 Status = RootBridgeIoCheckParameter (This, MemOperation, Width, Address,
708 Count, Buffer);
709 if (EFI_ERROR (Status)) {
710 return Status;
711 }
712 return mCpuIo->Mem.Write (mCpuIo, (EFI_CPU_IO_PROTOCOL_WIDTH) Width, Address, Count, Buffer);
713 }
714
715 /**
716 Enables a PCI driver to access PCI controller registers in the PCI root
717 bridge I/O space.
718
719 @param[in] This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
720 @param[in] Width Signifies the width of the memory operations.
721 @param[in] Address The base address of the I/O operation. The caller is
722 responsible for aligning the Address if required.
723 @param[in] Count The number of I/O operations to perform. Bytes moved
724 is Width size * Count, starting at Address.
725 @param[out] Buffer For read operations, the destination buffer to store
726 the results. For write operations, the source buffer
727 to write data from.
728
729 @retval EFI_SUCCESS The data was read from or written to the PCI
730 root bridge.
731 @retval EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.
732 @retval EFI_INVALID_PARAMETER Buffer is NULL.
733 @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a
734 lack of resources.
735 **/
736 EFI_STATUS
737 EFIAPI
738 RootBridgeIoIoRead (
739 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
740 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
741 IN UINT64 Address,
742 IN UINTN Count,
743 OUT VOID *Buffer
744 )
745 {
746 EFI_STATUS Status;
747 Status = RootBridgeIoCheckParameter (
748 This, IoOperation, Width,
749 Address, Count, Buffer
750 );
751 if (EFI_ERROR (Status)) {
752 return Status;
753 }
754 return mCpuIo->Io.Read (mCpuIo, (EFI_CPU_IO_PROTOCOL_WIDTH) Width, Address, Count, Buffer);
755 }
756
757 /**
758 Enables a PCI driver to access PCI controller registers in the PCI root
759 bridge I/O space.
760
761 @param[in] This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
762 @param[in] Width Signifies the width of the memory operations.
763 @param[in] Address The base address of the I/O operation. The caller is
764 responsible for aligning the Address if required.
765 @param[in] Count The number of I/O operations to perform. Bytes moved
766 is Width size * Count, starting at Address.
767 @param[in] Buffer For read operations, the destination buffer to store
768 the results. For write operations, the source buffer
769 to write data from.
770
771 @retval EFI_SUCCESS The data was read from or written to the PCI
772 root bridge.
773 @retval EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.
774 @retval EFI_INVALID_PARAMETER Buffer is NULL.
775 @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a
776 lack of resources.
777 **/
778 EFI_STATUS
779 EFIAPI
780 RootBridgeIoIoWrite (
781 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
782 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
783 IN UINT64 Address,
784 IN UINTN Count,
785 IN VOID *Buffer
786 )
787 {
788 EFI_STATUS Status;
789 Status = RootBridgeIoCheckParameter (
790 This, IoOperation, Width,
791 Address, Count, Buffer
792 );
793 if (EFI_ERROR (Status)) {
794 return Status;
795 }
796 return mCpuIo->Io.Write (mCpuIo, (EFI_CPU_IO_PROTOCOL_WIDTH) Width, Address, Count, Buffer);
797 }
798
799 /**
800 Enables a PCI driver to copy one region of PCI root bridge memory space to
801 another region of PCI root bridge memory space.
802
803 The CopyMem() function enables a PCI driver to copy one region of PCI root
804 bridge memory space to another region of PCI root bridge memory space. This
805 is especially useful for video scroll operation on a memory mapped video
806 buffer.
807 The memory operations are carried out exactly as requested. The caller is
808 responsible for satisfying any alignment and memory width restrictions that a
809 PCI root bridge on a platform might require.
810
811 @param[in] This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
812 instance.
813 @param[in] Width Signifies the width of the memory operations.
814 @param[in] DestAddress The destination address of the memory operation. The
815 caller is responsible for aligning the DestAddress if
816 required.
817 @param[in] SrcAddress The source address of the memory operation. The caller
818 is responsible for aligning the SrcAddress if
819 required.
820 @param[in] Count The number of memory operations to perform. Bytes
821 moved is Width size * Count, starting at DestAddress
822 and SrcAddress.
823
824 @retval EFI_SUCCESS The data was copied from one memory region
825 to another memory region.
826 @retval EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.
827 @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a
828 lack of resources.
829 **/
830 EFI_STATUS
831 EFIAPI
832 RootBridgeIoCopyMem (
833 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
834 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
835 IN UINT64 DestAddress,
836 IN UINT64 SrcAddress,
837 IN UINTN Count
838 )
839 {
840 EFI_STATUS Status;
841 BOOLEAN Forward;
842 UINTN Stride;
843 UINTN Index;
844 UINT64 Result;
845
846 if ((UINT32) Width > EfiPciWidthUint64) {
847 return EFI_INVALID_PARAMETER;
848 }
849
850 if (DestAddress == SrcAddress) {
851 return EFI_SUCCESS;
852 }
853
854 Stride = (UINTN) (1 << Width);
855
856 Forward = TRUE;
857 if ((DestAddress > SrcAddress) &&
858 (DestAddress < (SrcAddress + Count * Stride))) {
859 Forward = FALSE;
860 SrcAddress = SrcAddress + (Count - 1) * Stride;
861 DestAddress = DestAddress + (Count - 1) * Stride;
862 }
863
864 for (Index = 0; Index < Count; Index++) {
865 Status = RootBridgeIoMemRead (
866 This,
867 Width,
868 SrcAddress,
869 1,
870 &Result
871 );
872 if (EFI_ERROR (Status)) {
873 return Status;
874 }
875 Status = RootBridgeIoMemWrite (
876 This,
877 Width,
878 DestAddress,
879 1,
880 &Result
881 );
882 if (EFI_ERROR (Status)) {
883 return Status;
884 }
885 if (Forward) {
886 SrcAddress += Stride;
887 DestAddress += Stride;
888 } else {
889 SrcAddress -= Stride;
890 DestAddress -= Stride;
891 }
892 }
893 return EFI_SUCCESS;
894 }
895
896
897 /**
898 PCI configuration space access.
899
900 @param This A pointer to EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
901 @param Read TRUE indicating it's a read operation.
902 @param Width Signifies the width of the memory operation.
903 @param Address The address within the PCI configuration space
904 for the PCI controller.
905 @param Count The number of PCI configuration operations
906 to perform.
907 @param Buffer The destination buffer to store the results.
908
909 @retval EFI_SUCCESS The data was read/written from/to the PCI root bridge.
910 @retval EFI_INVALID_PARAMETER Invalid parameters found.
911 **/
912 EFI_STATUS
913 EFIAPI
914 RootBridgeIoPciAccess (
915 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
916 IN BOOLEAN Read,
917 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
918 IN UINT64 Address,
919 IN UINTN Count,
920 IN OUT VOID *Buffer
921 )
922 {
923 EFI_STATUS Status;
924 PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
925 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS PciAddress;
926 UINT8 *Uint8Buffer;
927 UINT8 InStride;
928 UINT8 OutStride;
929 UINTN Size;
930
931 Status = RootBridgeIoCheckParameter (This, PciOperation, Width, Address, Count, Buffer);
932 if (EFI_ERROR (Status)) {
933 return Status;
934 }
935
936 //
937 // Read Pci configuration space
938 //
939 RootBridge = ROOT_BRIDGE_FROM_THIS (This);
940 CopyMem (&PciAddress, &Address, sizeof (PciAddress));
941
942 if (PciAddress.ExtendedRegister == 0) {
943 PciAddress.ExtendedRegister = PciAddress.Register;
944 }
945
946 Address = PCI_SEGMENT_LIB_ADDRESS (
947 RootBridge->RootBridgeIo.SegmentNumber,
948 PciAddress.Bus,
949 PciAddress.Device,
950 PciAddress.Function,
951 PciAddress.ExtendedRegister
952 );
953
954 //
955 // Select loop based on the width of the transfer
956 //
957 InStride = mInStride[Width];
958 OutStride = mOutStride[Width];
959 Size = (UINTN) (1 << (Width & 0x03));
960 for (Uint8Buffer = Buffer; Count > 0; Address += InStride, Uint8Buffer += OutStride, Count--) {
961 if (Read) {
962 PciSegmentReadBuffer (Address, Size, Uint8Buffer);
963 } else {
964 PciSegmentWriteBuffer (Address, Size, Uint8Buffer);
965 }
966 }
967 return EFI_SUCCESS;
968 }
969
970 /**
971 Allows read from PCI configuration space.
972
973 @param This A pointer to EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
974 @param Width Signifies the width of the memory operation.
975 @param Address The address within the PCI configuration space
976 for the PCI controller.
977 @param Count The number of PCI configuration operations
978 to perform.
979 @param Buffer The destination buffer to store the results.
980
981 @retval EFI_SUCCESS The data was read from the PCI root bridge.
982 @retval EFI_INVALID_PARAMETER Invalid parameters found.
983 **/
984 EFI_STATUS
985 EFIAPI
986 RootBridgeIoPciRead (
987 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
988 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
989 IN UINT64 Address,
990 IN UINTN Count,
991 IN OUT VOID *Buffer
992 )
993 {
994 return RootBridgeIoPciAccess (This, TRUE, Width, Address, Count, Buffer);
995 }
996
997 /**
998 Allows write to PCI configuration space.
999
1000 @param This A pointer to EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
1001 @param Width Signifies the width of the memory operation.
1002 @param Address The address within the PCI configuration space
1003 for the PCI controller.
1004 @param Count The number of PCI configuration operations
1005 to perform.
1006 @param Buffer The source buffer to get the results.
1007
1008 @retval EFI_SUCCESS The data was written to the PCI root bridge.
1009 @retval EFI_INVALID_PARAMETER Invalid parameters found.
1010 **/
1011 EFI_STATUS
1012 EFIAPI
1013 RootBridgeIoPciWrite (
1014 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
1015 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
1016 IN UINT64 Address,
1017 IN UINTN Count,
1018 IN OUT VOID *Buffer
1019 )
1020 {
1021 return RootBridgeIoPciAccess (This, FALSE, Width, Address, Count, Buffer);
1022 }
1023
1024 /**
1025 Provides the PCI controller-specific address needed to access
1026 system memory for DMA.
1027
1028 @param This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1029 @param Operation Indicate if the bus master is going to read or write
1030 to system memory.
1031 @param HostAddress The system memory address to map on the PCI controller.
1032 @param NumberOfBytes On input the number of bytes to map.
1033 On output the number of bytes that were mapped.
1034 @param DeviceAddress The resulting map address for the bus master PCI
1035 controller to use to access the system memory's HostAddress.
1036 @param Mapping The value to pass to Unmap() when the bus master DMA
1037 operation is complete.
1038
1039 @retval EFI_SUCCESS Success.
1040 @retval EFI_INVALID_PARAMETER Invalid parameters found.
1041 @retval EFI_UNSUPPORTED The HostAddress cannot be mapped as a common buffer.
1042 @retval EFI_DEVICE_ERROR The System hardware could not map the requested address.
1043 @retval EFI_OUT_OF_RESOURCES The request could not be completed due to lack of resources.
1044 **/
1045 EFI_STATUS
1046 EFIAPI
1047 RootBridgeIoMap (
1048 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
1049 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION Operation,
1050 IN VOID *HostAddress,
1051 IN OUT UINTN *NumberOfBytes,
1052 OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
1053 OUT VOID **Mapping
1054 )
1055 {
1056 EFI_STATUS Status;
1057 PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
1058 EFI_PHYSICAL_ADDRESS PhysicalAddress;
1059 MAP_INFO *MapInfo;
1060
1061 if (HostAddress == NULL || NumberOfBytes == NULL || DeviceAddress == NULL ||
1062 Mapping == NULL) {
1063 return EFI_INVALID_PARAMETER;
1064 }
1065
1066 //
1067 // Make sure that Operation is valid
1068 //
1069 if ((UINT32) Operation >= EfiPciOperationMaximum) {
1070 return EFI_INVALID_PARAMETER;
1071 }
1072
1073 RootBridge = ROOT_BRIDGE_FROM_THIS (This);
1074
1075 PhysicalAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) HostAddress;
1076 if (!RootBridge->DmaAbove4G && ((PhysicalAddress + *NumberOfBytes) > SIZE_4GB)) {
1077 //
1078 // If the root bridge can not handle performing DMA above 4GB but
1079 // any part of the DMA transfer being mapped is above 4GB, then
1080 // map the DMA transfer to a buffer below 4GB.
1081 //
1082
1083 if (Operation == EfiPciOperationBusMasterCommonBuffer ||
1084 Operation == EfiPciOperationBusMasterCommonBuffer64) {
1085 //
1086 // Common Buffer operations can not be remapped. If the common buffer
1087 // if above 4GB, then it is not possible to generate a mapping, so return
1088 // an error.
1089 //
1090 return EFI_UNSUPPORTED;
1091 }
1092
1093 //
1094 // Allocate a MAP_INFO structure to remember the mapping when Unmap() is
1095 // called later.
1096 //
1097 MapInfo = AllocatePool (sizeof (MAP_INFO));
1098 if (MapInfo == NULL) {
1099 *NumberOfBytes = 0;
1100 return EFI_OUT_OF_RESOURCES;
1101 }
1102
1103 //
1104 // Initialize the MAP_INFO structure
1105 //
1106 MapInfo->Signature = MAP_INFO_SIGNATURE;
1107 MapInfo->Operation = Operation;
1108 MapInfo->NumberOfBytes = *NumberOfBytes;
1109 MapInfo->NumberOfPages = EFI_SIZE_TO_PAGES (MapInfo->NumberOfBytes);
1110 MapInfo->HostAddress = PhysicalAddress;
1111 MapInfo->MappedHostAddress = SIZE_4GB - 1;
1112
1113 //
1114 // Allocate a buffer below 4GB to map the transfer to.
1115 //
1116 Status = gBS->AllocatePages (
1117 AllocateMaxAddress,
1118 EfiBootServicesData,
1119 MapInfo->NumberOfPages,
1120 &MapInfo->MappedHostAddress
1121 );
1122 if (EFI_ERROR (Status)) {
1123 FreePool (MapInfo);
1124 *NumberOfBytes = 0;
1125 return Status;
1126 }
1127
1128 //
1129 // If this is a read operation from the Bus Master's point of view,
1130 // then copy the contents of the real buffer into the mapped buffer
1131 // so the Bus Master can read the contents of the real buffer.
1132 //
1133 if (Operation == EfiPciOperationBusMasterRead ||
1134 Operation == EfiPciOperationBusMasterRead64) {
1135 CopyMem (
1136 (VOID *) (UINTN) MapInfo->MappedHostAddress,
1137 (VOID *) (UINTN) MapInfo->HostAddress,
1138 MapInfo->NumberOfBytes
1139 );
1140 }
1141
1142 InsertTailList (&RootBridge->Maps, &MapInfo->Link);
1143
1144 //
1145 // The DeviceAddress is the address of the maped buffer below 4GB
1146 //
1147 *DeviceAddress = MapInfo->MappedHostAddress;
1148 //
1149 // Return a pointer to the MAP_INFO structure in Mapping
1150 //
1151 *Mapping = MapInfo;
1152 } else {
1153 //
1154 // If the root bridge CAN handle performing DMA above 4GB or
1155 // the transfer is below 4GB, so the DeviceAddress is simply the
1156 // HostAddress
1157 //
1158 *DeviceAddress = PhysicalAddress;
1159 *Mapping = NO_MAPPING;
1160 }
1161
1162 return EFI_SUCCESS;
1163 }
1164
1165 /**
1166 Completes the Map() operation and releases any corresponding resources.
1167
1168 The Unmap() function completes the Map() operation and releases any
1169 corresponding resources.
1170 If the operation was an EfiPciOperationBusMasterWrite or
1171 EfiPciOperationBusMasterWrite64, the data is committed to the target system
1172 memory.
1173 Any resources used for the mapping are freed.
1174
1175 @param[in] This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1176 @param[in] Mapping The mapping value returned from Map().
1177
1178 @retval EFI_SUCCESS The range was unmapped.
1179 @retval EFI_INVALID_PARAMETER Mapping is not a value that was returned by Map().
1180 @retval EFI_DEVICE_ERROR The data was not committed to the target system memory.
1181 **/
1182 EFI_STATUS
1183 EFIAPI
1184 RootBridgeIoUnmap (
1185 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
1186 IN VOID *Mapping
1187 )
1188 {
1189 MAP_INFO *MapInfo;
1190 LIST_ENTRY *Link;
1191 PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
1192
1193 RootBridge = ROOT_BRIDGE_FROM_THIS (This);
1194 //
1195 // See if the Map() operation associated with this Unmap() required a mapping
1196 // buffer. If a mapping buffer was not required, then this function simply
1197 // returns EFI_SUCCESS.
1198 //
1199 if (Mapping == NO_MAPPING) {
1200 return EFI_SUCCESS;
1201 }
1202
1203 MapInfo = NO_MAPPING;
1204 for (Link = GetFirstNode (&RootBridge->Maps)
1205 ; !IsNull (&RootBridge->Maps, Link)
1206 ; Link = GetNextNode (&RootBridge->Maps, Link)
1207 ) {
1208 MapInfo = MAP_INFO_FROM_LINK (Link);
1209 if (MapInfo == Mapping) {
1210 break;
1211 }
1212 }
1213 //
1214 // Mapping is not a valid value returned by Map()
1215 //
1216 if (MapInfo != Mapping) {
1217 return EFI_INVALID_PARAMETER;
1218 }
1219 RemoveEntryList (&MapInfo->Link);
1220
1221 //
1222 // If this is a write operation from the Bus Master's point of view,
1223 // then copy the contents of the mapped buffer into the real buffer
1224 // so the processor can read the contents of the real buffer.
1225 //
1226 if (MapInfo->Operation == EfiPciOperationBusMasterWrite ||
1227 MapInfo->Operation == EfiPciOperationBusMasterWrite64) {
1228 CopyMem (
1229 (VOID *) (UINTN) MapInfo->HostAddress,
1230 (VOID *) (UINTN) MapInfo->MappedHostAddress,
1231 MapInfo->NumberOfBytes
1232 );
1233 }
1234
1235 //
1236 // Free the mapped buffer and the MAP_INFO structure.
1237 //
1238 gBS->FreePages (MapInfo->MappedHostAddress, MapInfo->NumberOfPages);
1239 FreePool (Mapping);
1240 return EFI_SUCCESS;
1241 }
1242
1243 /**
1244 Allocates pages that are suitable for an EfiPciOperationBusMasterCommonBuffer
1245 or EfiPciOperationBusMasterCommonBuffer64 mapping.
1246
1247 @param This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1248 @param Type This parameter is not used and must be ignored.
1249 @param MemoryType The type of memory to allocate, EfiBootServicesData or
1250 EfiRuntimeServicesData.
1251 @param Pages The number of pages to allocate.
1252 @param HostAddress A pointer to store the base system memory address of the
1253 allocated range.
1254 @param Attributes The requested bit mask of attributes for the allocated
1255 range. Only the attributes
1256 EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE,
1257 EFI_PCI_ATTRIBUTE_MEMORY_CACHED, and
1258 EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE may be used with this
1259 function.
1260
1261 @retval EFI_SUCCESS The requested memory pages were allocated.
1262 @retval EFI_INVALID_PARAMETER MemoryType is invalid.
1263 @retval EFI_INVALID_PARAMETER HostAddress is NULL.
1264 @retval EFI_UNSUPPORTED Attributes is unsupported. The only legal
1265 attribute bits are MEMORY_WRITE_COMBINE,
1266 MEMORY_CACHED, and DUAL_ADDRESS_CYCLE.
1267 @retval EFI_OUT_OF_RESOURCES The memory pages could not be allocated.
1268 **/
1269 EFI_STATUS
1270 EFIAPI
1271 RootBridgeIoAllocateBuffer (
1272 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
1273 IN EFI_ALLOCATE_TYPE Type,
1274 IN EFI_MEMORY_TYPE MemoryType,
1275 IN UINTN Pages,
1276 OUT VOID **HostAddress,
1277 IN UINT64 Attributes
1278 )
1279 {
1280 EFI_STATUS Status;
1281 EFI_PHYSICAL_ADDRESS PhysicalAddress;
1282 PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
1283 EFI_ALLOCATE_TYPE AllocateType;
1284
1285 //
1286 // Validate Attributes
1287 //
1288 if ((Attributes & EFI_PCI_ATTRIBUTE_INVALID_FOR_ALLOCATE_BUFFER) != 0) {
1289 return EFI_UNSUPPORTED;
1290 }
1291
1292 //
1293 // Check for invalid inputs
1294 //
1295 if (HostAddress == NULL) {
1296 return EFI_INVALID_PARAMETER;
1297 }
1298
1299 //
1300 // The only valid memory types are EfiBootServicesData and
1301 // EfiRuntimeServicesData
1302 //
1303 if (MemoryType != EfiBootServicesData &&
1304 MemoryType != EfiRuntimeServicesData) {
1305 return EFI_INVALID_PARAMETER;
1306 }
1307
1308 RootBridge = ROOT_BRIDGE_FROM_THIS (This);
1309
1310 AllocateType = AllocateAnyPages;
1311 if (!RootBridge->DmaAbove4G) {
1312 //
1313 // Limit allocations to memory below 4GB
1314 //
1315 AllocateType = AllocateMaxAddress;
1316 PhysicalAddress = (EFI_PHYSICAL_ADDRESS) (SIZE_4GB - 1);
1317 }
1318 Status = gBS->AllocatePages (
1319 AllocateType,
1320 MemoryType,
1321 Pages,
1322 &PhysicalAddress
1323 );
1324 if (!EFI_ERROR (Status)) {
1325 *HostAddress = (VOID *) (UINTN) PhysicalAddress;
1326 }
1327
1328 return Status;
1329 }
1330
1331 /**
1332 Frees memory that was allocated with AllocateBuffer().
1333
1334 The FreeBuffer() function frees memory that was allocated with
1335 AllocateBuffer().
1336
1337 @param This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1338 @param Pages The number of pages to free.
1339 @param HostAddress The base system memory address of the allocated range.
1340
1341 @retval EFI_SUCCESS The requested memory pages were freed.
1342 @retval EFI_INVALID_PARAMETER The memory range specified by HostAddress and
1343 Pages was not allocated with AllocateBuffer().
1344 **/
1345 EFI_STATUS
1346 EFIAPI
1347 RootBridgeIoFreeBuffer (
1348 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
1349 IN UINTN Pages,
1350 OUT VOID *HostAddress
1351 )
1352 {
1353 return gBS->FreePages ((EFI_PHYSICAL_ADDRESS) (UINTN) HostAddress, Pages);
1354 }
1355
1356 /**
1357 Flushes all PCI posted write transactions from a PCI host bridge to system
1358 memory.
1359
1360 The Flush() function flushes any PCI posted write transactions from a PCI
1361 host bridge to system memory. Posted write transactions are generated by PCI
1362 bus masters when they perform write transactions to target addresses in
1363 system memory.
1364 This function does not flush posted write transactions from any PCI bridges.
1365 A PCI controller specific action must be taken to guarantee that the posted
1366 write transactions have been flushed from the PCI controller and from all the
1367 PCI bridges into the PCI host bridge. This is typically done with a PCI read
1368 transaction from the PCI controller prior to calling Flush().
1369
1370 @param This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1371
1372 @retval EFI_SUCCESS The PCI posted write transactions were flushed
1373 from the PCI host bridge to system memory.
1374 @retval EFI_DEVICE_ERROR The PCI posted write transactions were not flushed
1375 from the PCI host bridge due to a hardware error.
1376 **/
1377 EFI_STATUS
1378 EFIAPI
1379 RootBridgeIoFlush (
1380 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This
1381 )
1382 {
1383 return EFI_SUCCESS;
1384 }
1385
1386 /**
1387 Gets the attributes that a PCI root bridge supports setting with
1388 SetAttributes(), and the attributes that a PCI root bridge is currently
1389 using.
1390
1391 The GetAttributes() function returns the mask of attributes that this PCI
1392 root bridge supports and the mask of attributes that the PCI root bridge is
1393 currently using.
1394
1395 @param This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1396 @param Supported A pointer to the mask of attributes that this PCI root
1397 bridge supports setting with SetAttributes().
1398 @param Attributes A pointer to the mask of attributes that this PCI root
1399 bridge is currently using.
1400
1401 @retval EFI_SUCCESS If Supports is not NULL, then the attributes
1402 that the PCI root bridge supports is returned
1403 in Supports. If Attributes is not NULL, then
1404 the attributes that the PCI root bridge is
1405 currently using is returned in Attributes.
1406 @retval EFI_INVALID_PARAMETER Both Supports and Attributes are NULL.
1407 **/
1408 EFI_STATUS
1409 EFIAPI
1410 RootBridgeIoGetAttributes (
1411 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
1412 OUT UINT64 *Supported,
1413 OUT UINT64 *Attributes
1414 )
1415 {
1416 PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
1417
1418 if (Attributes == NULL && Supported == NULL) {
1419 return EFI_INVALID_PARAMETER;
1420 }
1421
1422 RootBridge = ROOT_BRIDGE_FROM_THIS (This);
1423 //
1424 // Set the return value for Supported and Attributes
1425 //
1426 if (Supported != NULL) {
1427 *Supported = RootBridge->Supports;
1428 }
1429
1430 if (Attributes != NULL) {
1431 *Attributes = RootBridge->Attributes;
1432 }
1433
1434 return EFI_SUCCESS;
1435 }
1436
1437 /**
1438 Sets attributes for a resource range on a PCI root bridge.
1439
1440 The SetAttributes() function sets the attributes specified in Attributes for
1441 the PCI root bridge on the resource range specified by ResourceBase and
1442 ResourceLength. Since the granularity of setting these attributes may vary
1443 from resource type to resource type, and from platform to platform, the
1444 actual resource range and the one passed in by the caller may differ. As a
1445 result, this function may set the attributes specified by Attributes on a
1446 larger resource range than the caller requested. The actual range is returned
1447 in ResourceBase and ResourceLength. The caller is responsible for verifying
1448 that the actual range for which the attributes were set is acceptable.
1449
1450 @param This A pointer to the
1451 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1452 @param Attributes The mask of attributes to set. If the
1453 attribute bit MEMORY_WRITE_COMBINE,
1454 MEMORY_CACHED, or MEMORY_DISABLE is set,
1455 then the resource range is specified by
1456 ResourceBase and ResourceLength. If
1457 MEMORY_WRITE_COMBINE, MEMORY_CACHED, and
1458 MEMORY_DISABLE are not set, then
1459 ResourceBase and ResourceLength are ignored,
1460 and may be NULL.
1461 @param ResourceBase A pointer to the base address of the
1462 resource range to be modified by the
1463 attributes specified by Attributes.
1464 @param ResourceLength A pointer to the length of the resource
1465 range to be modified by the attributes
1466 specified by Attributes.
1467
1468 @retval EFI_SUCCESS The current configuration of this PCI root bridge
1469 was returned in Resources.
1470 @retval EFI_UNSUPPORTED The current configuration of this PCI root bridge
1471 could not be retrieved.
1472 **/
1473 EFI_STATUS
1474 EFIAPI
1475 RootBridgeIoSetAttributes (
1476 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
1477 IN UINT64 Attributes,
1478 IN OUT UINT64 *ResourceBase,
1479 IN OUT UINT64 *ResourceLength
1480 )
1481 {
1482 PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
1483
1484 RootBridge = ROOT_BRIDGE_FROM_THIS (This);
1485
1486 if ((Attributes & (~RootBridge->Supports)) != 0) {
1487 return EFI_UNSUPPORTED;
1488 }
1489
1490 RootBridge->Attributes = Attributes;
1491 return EFI_SUCCESS;
1492 }
1493
1494 /**
1495 Retrieves the current resource settings of this PCI root bridge in the form
1496 of a set of ACPI 2.0 resource descriptors.
1497
1498 There are only two resource descriptor types from the ACPI Specification that
1499 may be used to describe the current resources allocated to a PCI root bridge.
1500 These are the QWORD Address Space Descriptor (ACPI 2.0 Section 6.4.3.5.1),
1501 and the End Tag (ACPI 2.0 Section 6.4.2.8). The QWORD Address Space
1502 Descriptor can describe memory, I/O, and bus number ranges for dynamic or
1503 fixed resources. The configuration of a PCI root bridge is described with one
1504 or more QWORD Address Space Descriptors followed by an End Tag.
1505
1506 @param[in] This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1507 @param[out] Resources A pointer to the ACPI 2.0 resource descriptors that
1508 describe the current configuration of this PCI root
1509 bridge. The storage for the ACPI 2.0 resource
1510 descriptors is allocated by this function. The
1511 caller must treat the return buffer as read-only
1512 data, and the buffer must not be freed by the
1513 caller.
1514
1515 @retval EFI_SUCCESS The current configuration of this PCI root bridge
1516 was returned in Resources.
1517 @retval EFI_UNSUPPORTED The current configuration of this PCI root bridge
1518 could not be retrieved.
1519 **/
1520 EFI_STATUS
1521 EFIAPI
1522 RootBridgeIoConfiguration (
1523 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
1524 OUT VOID **Resources
1525 )
1526 {
1527 PCI_RESOURCE_TYPE Index;
1528 PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
1529 PCI_RES_NODE *ResAllocNode;
1530 EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Descriptor;
1531 EFI_ACPI_END_TAG_DESCRIPTOR *End;
1532
1533 //
1534 // Get this instance of the Root Bridge.
1535 //
1536 RootBridge = ROOT_BRIDGE_FROM_THIS (This);
1537 ZeroMem (
1538 RootBridge->ConfigBuffer,
1539 TypeMax * sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) + sizeof (EFI_ACPI_END_TAG_DESCRIPTOR)
1540 );
1541 Descriptor = RootBridge->ConfigBuffer;
1542 for (Index = TypeIo; Index < TypeMax; Index++) {
1543
1544 ResAllocNode = &RootBridge->ResAllocNode[Index];
1545
1546 if (ResAllocNode->Status != ResAllocated) {
1547 continue;
1548 }
1549
1550 Descriptor->Desc = ACPI_ADDRESS_SPACE_DESCRIPTOR;
1551 Descriptor->Len = sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) - 3;
1552 Descriptor->AddrRangeMin = ResAllocNode->Base;
1553 Descriptor->AddrRangeMax = ResAllocNode->Base + ResAllocNode->Length - 1;
1554 Descriptor->AddrLen = ResAllocNode->Length;
1555 switch (ResAllocNode->Type) {
1556
1557 case TypeIo:
1558 Descriptor->ResType = ACPI_ADDRESS_SPACE_TYPE_IO;
1559 break;
1560
1561 case TypePMem32:
1562 Descriptor->SpecificFlag = EFI_ACPI_MEMORY_RESOURCE_SPECIFIC_FLAG_CACHEABLE_PREFETCHABLE;
1563 case TypeMem32:
1564 Descriptor->ResType = ACPI_ADDRESS_SPACE_TYPE_MEM;
1565 Descriptor->AddrSpaceGranularity = 32;
1566 break;
1567
1568 case TypePMem64:
1569 Descriptor->SpecificFlag = EFI_ACPI_MEMORY_RESOURCE_SPECIFIC_FLAG_CACHEABLE_PREFETCHABLE;
1570 case TypeMem64:
1571 Descriptor->ResType = ACPI_ADDRESS_SPACE_TYPE_MEM;
1572 Descriptor->AddrSpaceGranularity = 64;
1573 break;
1574
1575 case TypeBus:
1576 Descriptor->ResType = ACPI_ADDRESS_SPACE_TYPE_BUS;
1577 break;
1578
1579 default:
1580 break;
1581 }
1582
1583 Descriptor++;
1584 }
1585 //
1586 // Terminate the entries.
1587 //
1588 End = (EFI_ACPI_END_TAG_DESCRIPTOR *) Descriptor;
1589 End->Desc = ACPI_END_TAG_DESCRIPTOR;
1590 End->Checksum = 0x0;
1591
1592 *Resources = RootBridge->ConfigBuffer;
1593 return EFI_SUCCESS;
1594 }