]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Bus/Pci/PciHostBridgeDxe/PciRootBridgeIo.c
MdeModulePkg: PciHostBridgeDxe: insert horizontal whitespace
[mirror_edk2.git] / MdeModulePkg / Bus / Pci / PciHostBridgeDxe / PciRootBridgeIo.c
1 /** @file
2
3 PCI Root Bridge Io Protocol code.
4
5 Copyright (c) 1999 - 2016, Intel Corporation. All rights reserved.<BR>
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution. The full text of the license may be found at
9 http://opensource.org/licenses/bsd-license.php
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #include "PciHostBridge.h"
17 #include "PciRootBridge.h"
18 #include "PciHostResource.h"
19
20 #define NO_MAPPING (VOID *) (UINTN) -1
21
22 //
23 // Lookup table for increment values based on transfer widths
24 //
25 UINT8 mInStride[] = {
26 1, // EfiPciWidthUint8
27 2, // EfiPciWidthUint16
28 4, // EfiPciWidthUint32
29 8, // EfiPciWidthUint64
30 0, // EfiPciWidthFifoUint8
31 0, // EfiPciWidthFifoUint16
32 0, // EfiPciWidthFifoUint32
33 0, // EfiPciWidthFifoUint64
34 1, // EfiPciWidthFillUint8
35 2, // EfiPciWidthFillUint16
36 4, // EfiPciWidthFillUint32
37 8 // EfiPciWidthFillUint64
38 };
39
40 //
41 // Lookup table for increment values based on transfer widths
42 //
43 UINT8 mOutStride[] = {
44 1, // EfiPciWidthUint8
45 2, // EfiPciWidthUint16
46 4, // EfiPciWidthUint32
47 8, // EfiPciWidthUint64
48 1, // EfiPciWidthFifoUint8
49 2, // EfiPciWidthFifoUint16
50 4, // EfiPciWidthFifoUint32
51 8, // EfiPciWidthFifoUint64
52 0, // EfiPciWidthFillUint8
53 0, // EfiPciWidthFillUint16
54 0, // EfiPciWidthFillUint32
55 0 // EfiPciWidthFillUint64
56 };
57
58 /**
59 Construct the Pci Root Bridge instance.
60
61 @param Bridge The root bridge instance.
62 @param HostBridgeHandle Handle to the HostBridge.
63
64 @return The pointer to PCI_ROOT_BRIDGE_INSTANCE just created
65 or NULL if creation fails.
66 **/
67 PCI_ROOT_BRIDGE_INSTANCE *
68 CreateRootBridge (
69 IN PCI_ROOT_BRIDGE *Bridge,
70 IN EFI_HANDLE HostBridgeHandle
71 )
72 {
73 PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
74 PCI_RESOURCE_TYPE Index;
75 CHAR16 *DevicePathStr;
76
77 DevicePathStr = NULL;
78
79 DEBUG ((EFI_D_INFO, "RootBridge: "));
80 DEBUG ((EFI_D_INFO, "%s\n", DevicePathStr = ConvertDevicePathToText (Bridge->DevicePath, FALSE, FALSE)));
81 DEBUG ((EFI_D_INFO, " Support/Attr: %lx / %lx\n", Bridge->Supports, Bridge->Attributes));
82 DEBUG ((EFI_D_INFO, " DmaAbove4G: %s\n", Bridge->DmaAbove4G ? L"Yes" : L"No"));
83 DEBUG ((EFI_D_INFO, " AllocAttr: %lx (%s%s)\n", Bridge->AllocationAttributes,
84 (Bridge->AllocationAttributes & EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM) != 0 ? L"CombineMemPMem " : L"",
85 (Bridge->AllocationAttributes & EFI_PCI_HOST_BRIDGE_MEM64_DECODE) != 0 ? L"Mem64Decode" : L""
86 ));
87 DEBUG ((EFI_D_INFO, " Bus: %lx - %lx\n", Bridge->Bus.Base, Bridge->Bus.Limit));
88 DEBUG ((EFI_D_INFO, " Io: %lx - %lx\n", Bridge->Io.Base, Bridge->Io.Limit));
89 DEBUG ((EFI_D_INFO, " Mem: %lx - %lx\n", Bridge->Mem.Base, Bridge->Mem.Limit));
90 DEBUG ((EFI_D_INFO, " MemAbove4G: %lx - %lx\n", Bridge->MemAbove4G.Base, Bridge->MemAbove4G.Limit));
91 DEBUG ((EFI_D_INFO, " PMem: %lx - %lx\n", Bridge->PMem.Base, Bridge->PMem.Limit));
92 DEBUG ((EFI_D_INFO, " PMemAbove4G: %lx - %lx\n", Bridge->PMemAbove4G.Base, Bridge->PMemAbove4G.Limit));
93
94 //
95 // Make sure Mem and MemAbove4G apertures are valid
96 //
97 if (Bridge->Mem.Base < Bridge->Mem.Limit) {
98 ASSERT (Bridge->Mem.Limit < SIZE_4GB);
99 if (Bridge->Mem.Limit >= SIZE_4GB) {
100 return NULL;
101 }
102 }
103 if (Bridge->MemAbove4G.Base < Bridge->MemAbove4G.Limit) {
104 ASSERT (Bridge->MemAbove4G.Base >= SIZE_4GB);
105 if (Bridge->MemAbove4G.Base < SIZE_4GB) {
106 return NULL;
107 }
108 }
109 if (Bridge->PMem.Base < Bridge->PMem.Limit) {
110 ASSERT (Bridge->PMem.Limit < SIZE_4GB);
111 if (Bridge->PMem.Limit >= SIZE_4GB) {
112 return NULL;
113 }
114 }
115 if (Bridge->PMemAbove4G.Base < Bridge->PMemAbove4G.Limit) {
116 ASSERT (Bridge->PMemAbove4G.Base >= SIZE_4GB);
117 if (Bridge->PMemAbove4G.Base < SIZE_4GB) {
118 return NULL;
119 }
120 }
121
122 if ((Bridge->AllocationAttributes & EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM) != 0) {
123 //
124 // If this bit is set, then the PCI Root Bridge does not
125 // support separate windows for Non-prefetchable and Prefetchable
126 // memory.
127 //
128 ASSERT (Bridge->PMem.Base >= Bridge->PMem.Limit);
129 ASSERT (Bridge->PMemAbove4G.Base >= Bridge->PMemAbove4G.Limit);
130 if ((Bridge->PMem.Base < Bridge->PMem.Limit) ||
131 (Bridge->PMemAbove4G.Base < Bridge->PMemAbove4G.Limit)
132 ) {
133 return NULL;
134 }
135 }
136
137 if ((Bridge->AllocationAttributes & EFI_PCI_HOST_BRIDGE_MEM64_DECODE) == 0) {
138 //
139 // If this bit is not set, then the PCI Root Bridge does not support
140 // 64 bit memory windows.
141 //
142 ASSERT (Bridge->MemAbove4G.Base >= Bridge->MemAbove4G.Limit);
143 ASSERT (Bridge->PMemAbove4G.Base >= Bridge->PMemAbove4G.Limit);
144 if ((Bridge->MemAbove4G.Base < Bridge->MemAbove4G.Limit) ||
145 (Bridge->PMemAbove4G.Base < Bridge->PMemAbove4G.Limit)
146 ) {
147 return NULL;
148 }
149 }
150
151 RootBridge = AllocateZeroPool (sizeof (PCI_ROOT_BRIDGE_INSTANCE));
152 ASSERT (RootBridge != NULL);
153
154 RootBridge->Signature = PCI_ROOT_BRIDGE_SIGNATURE;
155 RootBridge->Supports = Bridge->Supports;
156 RootBridge->Attributes = Bridge->Attributes;
157 RootBridge->DmaAbove4G = Bridge->DmaAbove4G;
158 RootBridge->AllocationAttributes = Bridge->AllocationAttributes;
159 RootBridge->DevicePath = DuplicateDevicePath (Bridge->DevicePath);
160 RootBridge->DevicePathStr = DevicePathStr;
161 RootBridge->ConfigBuffer = AllocatePool (
162 TypeMax * sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) + sizeof (EFI_ACPI_END_TAG_DESCRIPTOR)
163 );
164 ASSERT (RootBridge->ConfigBuffer != NULL);
165 InitializeListHead (&RootBridge->Maps);
166
167 CopyMem (&RootBridge->Bus, &Bridge->Bus, sizeof (PCI_ROOT_BRIDGE_APERTURE));
168 CopyMem (&RootBridge->Io, &Bridge->Io, sizeof (PCI_ROOT_BRIDGE_APERTURE));
169 CopyMem (&RootBridge->Mem, &Bridge->Mem, sizeof (PCI_ROOT_BRIDGE_APERTURE));
170 CopyMem (&RootBridge->MemAbove4G, &Bridge->MemAbove4G, sizeof (PCI_ROOT_BRIDGE_APERTURE));
171
172
173 for (Index = TypeIo; Index < TypeMax; Index++) {
174 RootBridge->ResAllocNode[Index].Type = Index;
175 RootBridge->ResAllocNode[Index].Base = 0;
176 RootBridge->ResAllocNode[Index].Length = 0;
177 RootBridge->ResAllocNode[Index].Status = ResNone;
178 }
179
180 RootBridge->RootBridgeIo.SegmentNumber = Bridge->Segment;
181 RootBridge->RootBridgeIo.ParentHandle = HostBridgeHandle;
182 RootBridge->RootBridgeIo.PollMem = RootBridgeIoPollMem;
183 RootBridge->RootBridgeIo.PollIo = RootBridgeIoPollIo;
184 RootBridge->RootBridgeIo.Mem.Read = RootBridgeIoMemRead;
185 RootBridge->RootBridgeIo.Mem.Write = RootBridgeIoMemWrite;
186 RootBridge->RootBridgeIo.Io.Read = RootBridgeIoIoRead;
187 RootBridge->RootBridgeIo.Io.Write = RootBridgeIoIoWrite;
188 RootBridge->RootBridgeIo.CopyMem = RootBridgeIoCopyMem;
189 RootBridge->RootBridgeIo.Pci.Read = RootBridgeIoPciRead;
190 RootBridge->RootBridgeIo.Pci.Write = RootBridgeIoPciWrite;
191 RootBridge->RootBridgeIo.Map = RootBridgeIoMap;
192 RootBridge->RootBridgeIo.Unmap = RootBridgeIoUnmap;
193 RootBridge->RootBridgeIo.AllocateBuffer = RootBridgeIoAllocateBuffer;
194 RootBridge->RootBridgeIo.FreeBuffer = RootBridgeIoFreeBuffer;
195 RootBridge->RootBridgeIo.Flush = RootBridgeIoFlush;
196 RootBridge->RootBridgeIo.GetAttributes = RootBridgeIoGetAttributes;
197 RootBridge->RootBridgeIo.SetAttributes = RootBridgeIoSetAttributes;
198 RootBridge->RootBridgeIo.Configuration = RootBridgeIoConfiguration;
199
200 return RootBridge;
201 }
202
203 /**
204 Check parameters for IO,MMIO,PCI read/write services of PCI Root Bridge IO.
205
206 The I/O operations are carried out exactly as requested. The caller is
207 responsible for satisfying any alignment and I/O width restrictions that a PI
208 System on a platform might require. For example on some platforms, width
209 requests of EfiCpuIoWidthUint64 do not work. Misaligned buffers, on the other
210 hand, will be handled by the driver.
211
212 @param[in] This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
213
214 @param[in] OperationType I/O operation type: IO/MMIO/PCI.
215
216 @param[in] Width Signifies the width of the I/O or Memory operation.
217
218 @param[in] Address The base address of the I/O operation.
219
220 @param[in] Count The number of I/O operations to perform. The number
221 of bytes moved is Width size * Count, starting at
222 Address.
223
224 @param[in] Buffer For read operations, the destination buffer to
225 store the results. For write operations, the source
226 buffer from which to write data.
227
228 @retval EFI_SUCCESS The parameters for this request pass the
229 checks.
230
231 @retval EFI_INVALID_PARAMETER Width is invalid for this PI system.
232
233 @retval EFI_INVALID_PARAMETER Buffer is NULL.
234
235 @retval EFI_UNSUPPORTED The Buffer is not aligned for the given Width.
236
237 @retval EFI_UNSUPPORTED The address range specified by Address, Width,
238 and Count is not valid for this PI system.
239 **/
240 EFI_STATUS
241 RootBridgeIoCheckParameter (
242 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
243 IN OPERATION_TYPE OperationType,
244 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
245 IN UINT64 Address,
246 IN UINTN Count,
247 IN VOID *Buffer
248 )
249 {
250 PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
251 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS *PciRbAddr;
252 UINT64 Base;
253 UINT64 Limit;
254 UINT32 Size;
255
256 //
257 // Check to see if Buffer is NULL
258 //
259 if (Buffer == NULL) {
260 return EFI_INVALID_PARAMETER;
261 }
262
263 //
264 // Check to see if Width is in the valid range
265 //
266 if ((UINT32) Width >= EfiPciWidthMaximum) {
267 return EFI_INVALID_PARAMETER;
268 }
269
270 //
271 // For FIFO type, the target address won't increase during the access,
272 // so treat Count as 1
273 //
274 if (Width >= EfiPciWidthFifoUint8 && Width <= EfiPciWidthFifoUint64) {
275 Count = 1;
276 }
277
278 Width = (EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH) (Width & 0x03);
279 Size = 1 << Width;
280
281 //
282 // Check to see if Address is aligned
283 //
284 if ((Address & (Size - 1)) != 0) {
285 return EFI_UNSUPPORTED;
286 }
287
288 RootBridge = ROOT_BRIDGE_FROM_THIS (This);
289
290 //
291 // Check to see if any address associated with this transfer exceeds the
292 // maximum allowed address. The maximum address implied by the parameters
293 // passed in is Address + Size * Count. If the following condition is met,
294 // then the transfer is not supported.
295 //
296 // Address + Size * Count > Limit + 1
297 //
298 // Since Limit can be the maximum integer value supported by the CPU and
299 // Count can also be the maximum integer value supported by the CPU, this
300 // range check must be adjusted to avoid all oveflow conditions.
301 //
302 if (OperationType == IoOperation) {
303 //
304 // Allow Legacy IO access
305 //
306 if (Address + MultU64x32 (Count, Size) <= 0x1000) {
307 if ((RootBridge->Attributes & (
308 EFI_PCI_ATTRIBUTE_ISA_IO | EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO | EFI_PCI_ATTRIBUTE_VGA_IO |
309 EFI_PCI_ATTRIBUTE_IDE_PRIMARY_IO | EFI_PCI_ATTRIBUTE_IDE_SECONDARY_IO |
310 EFI_PCI_ATTRIBUTE_ISA_IO_16 | EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO_16 | EFI_PCI_ATTRIBUTE_VGA_IO_16)) != 0) {
311 return EFI_SUCCESS;
312 }
313 }
314 Base = RootBridge->Io.Base;
315 Limit = RootBridge->Io.Limit;
316 } else if (OperationType == MemOperation) {
317 //
318 // Allow Legacy MMIO access
319 //
320 if ((Address >= 0xA0000) && (Address + MultU64x32 (Count, Size)) <= 0xC0000) {
321 if ((RootBridge->Attributes & EFI_PCI_ATTRIBUTE_VGA_MEMORY) != 0) {
322 return EFI_SUCCESS;
323 }
324 }
325 //
326 // By comparing the Address against Limit we know which range to be used
327 // for checking
328 //
329 if (Address + MultU64x32 (Count, Size) <= RootBridge->Mem.Limit + 1) {
330 Base = RootBridge->Mem.Base;
331 Limit = RootBridge->Mem.Limit;
332 } else {
333 Base = RootBridge->MemAbove4G.Base;
334 Limit = RootBridge->MemAbove4G.Limit;
335 }
336 } else {
337 PciRbAddr = (EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS*) &Address;
338 if (PciRbAddr->Bus < RootBridge->Bus.Base ||
339 PciRbAddr->Bus > RootBridge->Bus.Limit) {
340 return EFI_INVALID_PARAMETER;
341 }
342
343 if (PciRbAddr->Device > PCI_MAX_DEVICE ||
344 PciRbAddr->Function > PCI_MAX_FUNC) {
345 return EFI_INVALID_PARAMETER;
346 }
347
348 if (PciRbAddr->ExtendedRegister != 0) {
349 Address = PciRbAddr->ExtendedRegister;
350 } else {
351 Address = PciRbAddr->Register;
352 }
353 Base = 0;
354 Limit = 0xFFF;
355 }
356
357 if (Address < Base) {
358 return EFI_INVALID_PARAMETER;
359 }
360
361 if (Address + MultU64x32 (Count, Size) > Limit + 1) {
362 return EFI_INVALID_PARAMETER;
363 }
364
365 return EFI_SUCCESS;
366 }
367
368 /**
369 Polls an address in memory mapped I/O space until an exit condition is met,
370 or a timeout occurs.
371
372 This function provides a standard way to poll a PCI memory location. A PCI
373 memory read operation is performed at the PCI memory address specified by
374 Address for the width specified by Width. The result of this PCI memory read
375 operation is stored in Result. This PCI memory read operation is repeated
376 until either a timeout of Delay 100 ns units has expired, or (Result & Mask)
377 is equal to Value.
378
379 @param[in] This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
380 @param[in] Width Signifies the width of the memory operations.
381 @param[in] Address The base address of the memory operations. The caller
382 is responsible for aligning Address if required.
383 @param[in] Mask Mask used for the polling criteria. Bytes above Width
384 in Mask are ignored. The bits in the bytes below Width
385 which are zero in Mask are ignored when polling the
386 memory address.
387 @param[in] Value The comparison value used for the polling exit
388 criteria.
389 @param[in] Delay The number of 100 ns units to poll. Note that timer
390 available may be of poorer granularity.
391 @param[out] Result Pointer to the last value read from the memory
392 location.
393
394 @retval EFI_SUCCESS The last data returned from the access matched
395 the poll exit criteria.
396 @retval EFI_INVALID_PARAMETER Width is invalid.
397 @retval EFI_INVALID_PARAMETER Result is NULL.
398 @retval EFI_TIMEOUT Delay expired before a match occurred.
399 @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a
400 lack of resources.
401 **/
402 EFI_STATUS
403 EFIAPI
404 RootBridgeIoPollMem (
405 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
406 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
407 IN UINT64 Address,
408 IN UINT64 Mask,
409 IN UINT64 Value,
410 IN UINT64 Delay,
411 OUT UINT64 *Result
412 )
413 {
414 EFI_STATUS Status;
415 UINT64 NumberOfTicks;
416 UINT32 Remainder;
417
418 if (Result == NULL) {
419 return EFI_INVALID_PARAMETER;
420 }
421
422 if ((UINT32)Width > EfiPciWidthUint64) {
423 return EFI_INVALID_PARAMETER;
424 }
425
426 //
427 // No matter what, always do a single poll.
428 //
429 Status = This->Mem.Read (This, Width, Address, 1, Result);
430 if (EFI_ERROR (Status)) {
431 return Status;
432 }
433
434 if ((*Result & Mask) == Value) {
435 return EFI_SUCCESS;
436 }
437
438 if (Delay == 0) {
439 return EFI_SUCCESS;
440
441 } else {
442
443 //
444 // Determine the proper # of metronome ticks to wait for polling the
445 // location. The nuber of ticks is Roundup (Delay /
446 // mMetronome->TickPeriod)+1
447 // The "+1" to account for the possibility of the first tick being short
448 // because we started in the middle of a tick.
449 //
450 // BugBug: overriding mMetronome->TickPeriod with UINT32 until Metronome
451 // protocol definition is updated.
452 //
453 NumberOfTicks = DivU64x32Remainder (Delay, (UINT32) mMetronome->TickPeriod,
454 &Remainder);
455 if (Remainder != 0) {
456 NumberOfTicks += 1;
457 }
458 NumberOfTicks += 1;
459
460 while (NumberOfTicks != 0) {
461
462 mMetronome->WaitForTick (mMetronome, 1);
463
464 Status = This->Mem.Read (This, Width, Address, 1, Result);
465 if (EFI_ERROR (Status)) {
466 return Status;
467 }
468
469 if ((*Result & Mask) == Value) {
470 return EFI_SUCCESS;
471 }
472
473 NumberOfTicks -= 1;
474 }
475 }
476 return EFI_TIMEOUT;
477 }
478
479 /**
480 Reads from the I/O space of a PCI Root Bridge. Returns when either the
481 polling exit criteria is satisfied or after a defined duration.
482
483 This function provides a standard way to poll a PCI I/O location. A PCI I/O
484 read operation is performed at the PCI I/O address specified by Address for
485 the width specified by Width.
486 The result of this PCI I/O read operation is stored in Result. This PCI I/O
487 read operation is repeated until either a timeout of Delay 100 ns units has
488 expired, or (Result & Mask) is equal to Value.
489
490 @param[in] This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
491 @param[in] Width Signifies the width of the I/O operations.
492 @param[in] Address The base address of the I/O operations. The caller is
493 responsible for aligning Address if required.
494 @param[in] Mask Mask used for the polling criteria. Bytes above Width in
495 Mask are ignored. The bits in the bytes below Width
496 which are zero in Mask are ignored when polling the I/O
497 address.
498 @param[in] Value The comparison value used for the polling exit criteria.
499 @param[in] Delay The number of 100 ns units to poll. Note that timer
500 available may be of poorer granularity.
501 @param[out] Result Pointer to the last value read from the memory location.
502
503 @retval EFI_SUCCESS The last data returned from the access matched
504 the poll exit criteria.
505 @retval EFI_INVALID_PARAMETER Width is invalid.
506 @retval EFI_INVALID_PARAMETER Result is NULL.
507 @retval EFI_TIMEOUT Delay expired before a match occurred.
508 @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a
509 lack of resources.
510 **/
511 EFI_STATUS
512 EFIAPI
513 RootBridgeIoPollIo (
514 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
515 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
516 IN UINT64 Address,
517 IN UINT64 Mask,
518 IN UINT64 Value,
519 IN UINT64 Delay,
520 OUT UINT64 *Result
521 )
522 {
523 EFI_STATUS Status;
524 UINT64 NumberOfTicks;
525 UINT32 Remainder;
526
527 //
528 // No matter what, always do a single poll.
529 //
530
531 if (Result == NULL) {
532 return EFI_INVALID_PARAMETER;
533 }
534
535 if ((UINT32)Width > EfiPciWidthUint64) {
536 return EFI_INVALID_PARAMETER;
537 }
538
539 Status = This->Io.Read (This, Width, Address, 1, Result);
540 if (EFI_ERROR (Status)) {
541 return Status;
542 }
543 if ((*Result & Mask) == Value) {
544 return EFI_SUCCESS;
545 }
546
547 if (Delay == 0) {
548 return EFI_SUCCESS;
549
550 } else {
551
552 //
553 // Determine the proper # of metronome ticks to wait for polling the
554 // location. The number of ticks is Roundup (Delay /
555 // mMetronome->TickPeriod)+1
556 // The "+1" to account for the possibility of the first tick being short
557 // because we started in the middle of a tick.
558 //
559 NumberOfTicks = DivU64x32Remainder (Delay, (UINT32)mMetronome->TickPeriod,
560 &Remainder);
561 if (Remainder != 0) {
562 NumberOfTicks += 1;
563 }
564 NumberOfTicks += 1;
565
566 while (NumberOfTicks != 0) {
567
568 mMetronome->WaitForTick (mMetronome, 1);
569
570 Status = This->Io.Read (This, Width, Address, 1, Result);
571 if (EFI_ERROR (Status)) {
572 return Status;
573 }
574
575 if ((*Result & Mask) == Value) {
576 return EFI_SUCCESS;
577 }
578
579 NumberOfTicks -= 1;
580 }
581 }
582 return EFI_TIMEOUT;
583 }
584
585 /**
586 Enables a PCI driver to access PCI controller registers in the PCI root
587 bridge memory space.
588
589 The Mem.Read(), and Mem.Write() functions enable a driver to access PCI
590 controller registers in the PCI root bridge memory space.
591 The memory operations are carried out exactly as requested. The caller is
592 responsible for satisfying any alignment and memory width restrictions that a
593 PCI Root Bridge on a platform might require.
594
595 @param[in] This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
596 @param[in] Width Signifies the width of the memory operation.
597 @param[in] Address The base address of the memory operation. The caller
598 is responsible for aligning the Address if required.
599 @param[in] Count The number of memory operations to perform. Bytes
600 moved is Width size * Count, starting at Address.
601 @param[out] Buffer For read operations, the destination buffer to store
602 the results. For write operations, the source buffer
603 to write data from.
604
605 @retval EFI_SUCCESS The data was read from or written to the PCI
606 root bridge.
607 @retval EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.
608 @retval EFI_INVALID_PARAMETER Buffer is NULL.
609 @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a
610 lack of resources.
611 **/
612 EFI_STATUS
613 EFIAPI
614 RootBridgeIoMemRead (
615 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
616 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
617 IN UINT64 Address,
618 IN UINTN Count,
619 OUT VOID *Buffer
620 )
621 {
622 EFI_STATUS Status;
623
624 Status = RootBridgeIoCheckParameter (This, MemOperation, Width, Address,
625 Count, Buffer);
626 if (EFI_ERROR (Status)) {
627 return Status;
628 }
629 return mCpuIo->Mem.Read (mCpuIo, (EFI_CPU_IO_PROTOCOL_WIDTH) Width, Address, Count, Buffer);
630 }
631
632 /**
633 Enables a PCI driver to access PCI controller registers in the PCI root
634 bridge memory space.
635
636 The Mem.Read(), and Mem.Write() functions enable a driver to access PCI
637 controller registers in the PCI root bridge memory space.
638 The memory operations are carried out exactly as requested. The caller is
639 responsible for satisfying any alignment and memory width restrictions that a
640 PCI Root Bridge on a platform might require.
641
642 @param[in] This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
643 @param[in] Width Signifies the width of the memory operation.
644 @param[in] Address The base address of the memory operation. The caller
645 is responsible for aligning the Address if required.
646 @param[in] Count The number of memory operations to perform. Bytes
647 moved is Width size * Count, starting at Address.
648 @param[in] Buffer For read operations, the destination buffer to store
649 the results. For write operations, the source buffer
650 to write data from.
651
652 @retval EFI_SUCCESS The data was read from or written to the PCI
653 root bridge.
654 @retval EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.
655 @retval EFI_INVALID_PARAMETER Buffer is NULL.
656 @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a
657 lack of resources.
658 **/
659 EFI_STATUS
660 EFIAPI
661 RootBridgeIoMemWrite (
662 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
663 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
664 IN UINT64 Address,
665 IN UINTN Count,
666 IN VOID *Buffer
667 )
668 {
669 EFI_STATUS Status;
670
671 Status = RootBridgeIoCheckParameter (This, MemOperation, Width, Address,
672 Count, Buffer);
673 if (EFI_ERROR (Status)) {
674 return Status;
675 }
676 return mCpuIo->Mem.Write (mCpuIo, (EFI_CPU_IO_PROTOCOL_WIDTH) Width, Address, Count, Buffer);
677 }
678
679 /**
680 Enables a PCI driver to access PCI controller registers in the PCI root
681 bridge I/O space.
682
683 @param[in] This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
684 @param[in] Width Signifies the width of the memory operations.
685 @param[in] Address The base address of the I/O operation. The caller is
686 responsible for aligning the Address if required.
687 @param[in] Count The number of I/O operations to perform. Bytes moved
688 is Width size * Count, starting at Address.
689 @param[out] Buffer For read operations, the destination buffer to store
690 the results. For write operations, the source buffer
691 to write data from.
692
693 @retval EFI_SUCCESS The data was read from or written to the PCI
694 root bridge.
695 @retval EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.
696 @retval EFI_INVALID_PARAMETER Buffer is NULL.
697 @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a
698 lack of resources.
699 **/
700 EFI_STATUS
701 EFIAPI
702 RootBridgeIoIoRead (
703 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
704 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
705 IN UINT64 Address,
706 IN UINTN Count,
707 OUT VOID *Buffer
708 )
709 {
710 EFI_STATUS Status;
711 Status = RootBridgeIoCheckParameter (
712 This, IoOperation, Width,
713 Address, Count, Buffer
714 );
715 if (EFI_ERROR (Status)) {
716 return Status;
717 }
718 return mCpuIo->Io.Read (mCpuIo, (EFI_CPU_IO_PROTOCOL_WIDTH) Width, Address, Count, Buffer);
719 }
720
721 /**
722 Enables a PCI driver to access PCI controller registers in the PCI root
723 bridge I/O space.
724
725 @param[in] This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
726 @param[in] Width Signifies the width of the memory operations.
727 @param[in] Address The base address of the I/O operation. The caller is
728 responsible for aligning the Address if required.
729 @param[in] Count The number of I/O operations to perform. Bytes moved
730 is Width size * Count, starting at Address.
731 @param[in] Buffer For read operations, the destination buffer to store
732 the results. For write operations, the source buffer
733 to write data from.
734
735 @retval EFI_SUCCESS The data was read from or written to the PCI
736 root bridge.
737 @retval EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.
738 @retval EFI_INVALID_PARAMETER Buffer is NULL.
739 @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a
740 lack of resources.
741 **/
742 EFI_STATUS
743 EFIAPI
744 RootBridgeIoIoWrite (
745 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
746 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
747 IN UINT64 Address,
748 IN UINTN Count,
749 IN VOID *Buffer
750 )
751 {
752 EFI_STATUS Status;
753 Status = RootBridgeIoCheckParameter (
754 This, IoOperation, Width,
755 Address, Count, Buffer
756 );
757 if (EFI_ERROR (Status)) {
758 return Status;
759 }
760 return mCpuIo->Io.Write (mCpuIo, (EFI_CPU_IO_PROTOCOL_WIDTH) Width, Address, Count, Buffer);
761 }
762
763 /**
764 Enables a PCI driver to copy one region of PCI root bridge memory space to
765 another region of PCI root bridge memory space.
766
767 The CopyMem() function enables a PCI driver to copy one region of PCI root
768 bridge memory space to another region of PCI root bridge memory space. This
769 is especially useful for video scroll operation on a memory mapped video
770 buffer.
771 The memory operations are carried out exactly as requested. The caller is
772 responsible for satisfying any alignment and memory width restrictions that a
773 PCI root bridge on a platform might require.
774
775 @param[in] This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
776 instance.
777 @param[in] Width Signifies the width of the memory operations.
778 @param[in] DestAddress The destination address of the memory operation. The
779 caller is responsible for aligning the DestAddress if
780 required.
781 @param[in] SrcAddress The source address of the memory operation. The caller
782 is responsible for aligning the SrcAddress if
783 required.
784 @param[in] Count The number of memory operations to perform. Bytes
785 moved is Width size * Count, starting at DestAddress
786 and SrcAddress.
787
788 @retval EFI_SUCCESS The data was copied from one memory region
789 to another memory region.
790 @retval EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.
791 @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a
792 lack of resources.
793 **/
794 EFI_STATUS
795 EFIAPI
796 RootBridgeIoCopyMem (
797 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
798 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
799 IN UINT64 DestAddress,
800 IN UINT64 SrcAddress,
801 IN UINTN Count
802 )
803 {
804 EFI_STATUS Status;
805 BOOLEAN Forward;
806 UINTN Stride;
807 UINTN Index;
808 UINT64 Result;
809
810 if ((UINT32) Width > EfiPciWidthUint64) {
811 return EFI_INVALID_PARAMETER;
812 }
813
814 if (DestAddress == SrcAddress) {
815 return EFI_SUCCESS;
816 }
817
818 Stride = (UINTN) (1 << Width);
819
820 Forward = TRUE;
821 if ((DestAddress > SrcAddress) &&
822 (DestAddress < (SrcAddress + Count * Stride))) {
823 Forward = FALSE;
824 SrcAddress = SrcAddress + (Count - 1) * Stride;
825 DestAddress = DestAddress + (Count - 1) * Stride;
826 }
827
828 for (Index = 0; Index < Count; Index++) {
829 Status = RootBridgeIoMemRead (
830 This,
831 Width,
832 SrcAddress,
833 1,
834 &Result
835 );
836 if (EFI_ERROR (Status)) {
837 return Status;
838 }
839 Status = RootBridgeIoMemWrite (
840 This,
841 Width,
842 DestAddress,
843 1,
844 &Result
845 );
846 if (EFI_ERROR (Status)) {
847 return Status;
848 }
849 if (Forward) {
850 SrcAddress += Stride;
851 DestAddress += Stride;
852 } else {
853 SrcAddress -= Stride;
854 DestAddress -= Stride;
855 }
856 }
857 return EFI_SUCCESS;
858 }
859
860
861 /**
862 PCI configuration space access.
863
864 @param This A pointer to EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
865 @param Read TRUE indicating it's a read operation.
866 @param Width Signifies the width of the memory operation.
867 @param Address The address within the PCI configuration space
868 for the PCI controller.
869 @param Count The number of PCI configuration operations
870 to perform.
871 @param Buffer The destination buffer to store the results.
872
873 @retval EFI_SUCCESS The data was read/written from/to the PCI root bridge.
874 @retval EFI_INVALID_PARAMETER Invalid parameters found.
875 **/
876 EFI_STATUS
877 EFIAPI
878 RootBridgeIoPciAccess (
879 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
880 IN BOOLEAN Read,
881 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
882 IN UINT64 Address,
883 IN UINTN Count,
884 IN OUT VOID *Buffer
885 )
886 {
887 EFI_STATUS Status;
888 PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
889 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS PciAddress;
890 UINT8 *Uint8Buffer;
891 UINT8 InStride;
892 UINT8 OutStride;
893 UINTN Size;
894
895 Status = RootBridgeIoCheckParameter (This, PciOperation, Width, Address, Count, Buffer);
896 if (EFI_ERROR (Status)) {
897 return Status;
898 }
899
900 //
901 // Read Pci configuration space
902 //
903 RootBridge = ROOT_BRIDGE_FROM_THIS (This);
904 CopyMem (&PciAddress, &Address, sizeof (PciAddress));
905
906 if (PciAddress.ExtendedRegister == 0) {
907 PciAddress.ExtendedRegister = PciAddress.Register;
908 }
909
910 Address = PCI_SEGMENT_LIB_ADDRESS (
911 RootBridge->RootBridgeIo.SegmentNumber,
912 PciAddress.Bus,
913 PciAddress.Device,
914 PciAddress.Function,
915 PciAddress.ExtendedRegister
916 );
917
918 //
919 // Select loop based on the width of the transfer
920 //
921 InStride = mInStride[Width];
922 OutStride = mOutStride[Width];
923 Size = (UINTN) (1 << (Width & 0x03));
924 for (Uint8Buffer = Buffer; Count > 0; Address += InStride, Uint8Buffer += OutStride, Count--) {
925 if (Read) {
926 PciSegmentReadBuffer (Address, Size, Uint8Buffer);
927 } else {
928 PciSegmentWriteBuffer (Address, Size, Uint8Buffer);
929 }
930 }
931 return EFI_SUCCESS;
932 }
933
934 /**
935 Allows read from PCI configuration space.
936
937 @param This A pointer to EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
938 @param Width Signifies the width of the memory operation.
939 @param Address The address within the PCI configuration space
940 for the PCI controller.
941 @param Count The number of PCI configuration operations
942 to perform.
943 @param Buffer The destination buffer to store the results.
944
945 @retval EFI_SUCCESS The data was read from the PCI root bridge.
946 @retval EFI_INVALID_PARAMETER Invalid parameters found.
947 **/
948 EFI_STATUS
949 EFIAPI
950 RootBridgeIoPciRead (
951 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
952 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
953 IN UINT64 Address,
954 IN UINTN Count,
955 IN OUT VOID *Buffer
956 )
957 {
958 return RootBridgeIoPciAccess (This, TRUE, Width, Address, Count, Buffer);
959 }
960
961 /**
962 Allows write to PCI configuration space.
963
964 @param This A pointer to EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
965 @param Width Signifies the width of the memory operation.
966 @param Address The address within the PCI configuration space
967 for the PCI controller.
968 @param Count The number of PCI configuration operations
969 to perform.
970 @param Buffer The source buffer to get the results.
971
972 @retval EFI_SUCCESS The data was written to the PCI root bridge.
973 @retval EFI_INVALID_PARAMETER Invalid parameters found.
974 **/
975 EFI_STATUS
976 EFIAPI
977 RootBridgeIoPciWrite (
978 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
979 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
980 IN UINT64 Address,
981 IN UINTN Count,
982 IN OUT VOID *Buffer
983 )
984 {
985 return RootBridgeIoPciAccess (This, FALSE, Width, Address, Count, Buffer);
986 }
987
988 /**
989 Provides the PCI controller-specific address needed to access
990 system memory for DMA.
991
992 @param This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
993 @param Operation Indicate if the bus master is going to read or write
994 to system memory.
995 @param HostAddress The system memory address to map on the PCI controller.
996 @param NumberOfBytes On input the number of bytes to map.
997 On output the number of bytes that were mapped.
998 @param DeviceAddress The resulting map address for the bus master PCI
999 controller to use to access the system memory's HostAddress.
1000 @param Mapping The value to pass to Unmap() when the bus master DMA
1001 operation is complete.
1002
1003 @retval EFI_SUCCESS Success.
1004 @retval EFI_INVALID_PARAMETER Invalid parameters found.
1005 @retval EFI_UNSUPPORTED The HostAddress cannot be mapped as a common buffer.
1006 @retval EFI_DEVICE_ERROR The System hardware could not map the requested address.
1007 @retval EFI_OUT_OF_RESOURCES The request could not be completed due to lack of resources.
1008 **/
1009 EFI_STATUS
1010 EFIAPI
1011 RootBridgeIoMap (
1012 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
1013 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION Operation,
1014 IN VOID *HostAddress,
1015 IN OUT UINTN *NumberOfBytes,
1016 OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
1017 OUT VOID **Mapping
1018 )
1019 {
1020 EFI_STATUS Status;
1021 PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
1022 EFI_PHYSICAL_ADDRESS PhysicalAddress;
1023 MAP_INFO *MapInfo;
1024
1025 if (HostAddress == NULL || NumberOfBytes == NULL || DeviceAddress == NULL ||
1026 Mapping == NULL) {
1027 return EFI_INVALID_PARAMETER;
1028 }
1029
1030 //
1031 // Make sure that Operation is valid
1032 //
1033 if ((UINT32) Operation >= EfiPciOperationMaximum) {
1034 return EFI_INVALID_PARAMETER;
1035 }
1036
1037 RootBridge = ROOT_BRIDGE_FROM_THIS (This);
1038
1039 PhysicalAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) HostAddress;
1040 if (!RootBridge->DmaAbove4G && ((PhysicalAddress + *NumberOfBytes) > SIZE_4GB)) {
1041 //
1042 // If the root bridge can not handle performing DMA above 4GB but
1043 // any part of the DMA transfer being mapped is above 4GB, then
1044 // map the DMA transfer to a buffer below 4GB.
1045 //
1046
1047 if (Operation == EfiPciOperationBusMasterCommonBuffer ||
1048 Operation == EfiPciOperationBusMasterCommonBuffer64) {
1049 //
1050 // Common Buffer operations can not be remapped. If the common buffer
1051 // if above 4GB, then it is not possible to generate a mapping, so return
1052 // an error.
1053 //
1054 return EFI_UNSUPPORTED;
1055 }
1056
1057 //
1058 // Allocate a MAP_INFO structure to remember the mapping when Unmap() is
1059 // called later.
1060 //
1061 MapInfo = AllocatePool (sizeof (MAP_INFO));
1062 if (MapInfo == NULL) {
1063 *NumberOfBytes = 0;
1064 return EFI_OUT_OF_RESOURCES;
1065 }
1066
1067 //
1068 // Initialize the MAP_INFO structure
1069 //
1070 MapInfo->Signature = MAP_INFO_SIGNATURE;
1071 MapInfo->Operation = Operation;
1072 MapInfo->NumberOfBytes = *NumberOfBytes;
1073 MapInfo->NumberOfPages = EFI_SIZE_TO_PAGES (MapInfo->NumberOfBytes);
1074 MapInfo->HostAddress = PhysicalAddress;
1075 MapInfo->MappedHostAddress = SIZE_4GB - 1;
1076
1077 //
1078 // Allocate a buffer below 4GB to map the transfer to.
1079 //
1080 Status = gBS->AllocatePages (
1081 AllocateMaxAddress,
1082 EfiBootServicesData,
1083 MapInfo->NumberOfPages,
1084 &MapInfo->MappedHostAddress
1085 );
1086 if (EFI_ERROR (Status)) {
1087 FreePool (MapInfo);
1088 *NumberOfBytes = 0;
1089 return Status;
1090 }
1091
1092 //
1093 // If this is a read operation from the Bus Master's point of view,
1094 // then copy the contents of the real buffer into the mapped buffer
1095 // so the Bus Master can read the contents of the real buffer.
1096 //
1097 if (Operation == EfiPciOperationBusMasterRead ||
1098 Operation == EfiPciOperationBusMasterRead64) {
1099 CopyMem (
1100 (VOID *) (UINTN) MapInfo->MappedHostAddress,
1101 (VOID *) (UINTN) MapInfo->HostAddress,
1102 MapInfo->NumberOfBytes
1103 );
1104 }
1105
1106 InsertTailList (&RootBridge->Maps, &MapInfo->Link);
1107
1108 //
1109 // The DeviceAddress is the address of the maped buffer below 4GB
1110 //
1111 *DeviceAddress = MapInfo->MappedHostAddress;
1112 //
1113 // Return a pointer to the MAP_INFO structure in Mapping
1114 //
1115 *Mapping = MapInfo;
1116 } else {
1117 //
1118 // If the root bridge CAN handle performing DMA above 4GB or
1119 // the transfer is below 4GB, so the DeviceAddress is simply the
1120 // HostAddress
1121 //
1122 *DeviceAddress = PhysicalAddress;
1123 *Mapping = NO_MAPPING;
1124 }
1125
1126 return EFI_SUCCESS;
1127 }
1128
1129 /**
1130 Completes the Map() operation and releases any corresponding resources.
1131
1132 The Unmap() function completes the Map() operation and releases any
1133 corresponding resources.
1134 If the operation was an EfiPciOperationBusMasterWrite or
1135 EfiPciOperationBusMasterWrite64, the data is committed to the target system
1136 memory.
1137 Any resources used for the mapping are freed.
1138
1139 @param[in] This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1140 @param[in] Mapping The mapping value returned from Map().
1141
1142 @retval EFI_SUCCESS The range was unmapped.
1143 @retval EFI_INVALID_PARAMETER Mapping is not a value that was returned by Map().
1144 @retval EFI_DEVICE_ERROR The data was not committed to the target system memory.
1145 **/
1146 EFI_STATUS
1147 EFIAPI
1148 RootBridgeIoUnmap (
1149 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
1150 IN VOID *Mapping
1151 )
1152 {
1153 MAP_INFO *MapInfo;
1154 LIST_ENTRY *Link;
1155 PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
1156
1157 RootBridge = ROOT_BRIDGE_FROM_THIS (This);
1158 //
1159 // See if the Map() operation associated with this Unmap() required a mapping
1160 // buffer. If a mapping buffer was not required, then this function simply
1161 // returns EFI_SUCCESS.
1162 //
1163 if (Mapping == NO_MAPPING) {
1164 return EFI_SUCCESS;
1165 }
1166
1167 MapInfo = NO_MAPPING;
1168 for (Link = GetFirstNode (&RootBridge->Maps)
1169 ; !IsNull (&RootBridge->Maps, Link)
1170 ; Link = GetNextNode (&RootBridge->Maps, Link)
1171 ) {
1172 MapInfo = MAP_INFO_FROM_LINK (Link);
1173 if (MapInfo == Mapping) {
1174 break;
1175 }
1176 }
1177 //
1178 // Mapping is not a valid value returned by Map()
1179 //
1180 if (MapInfo != Mapping) {
1181 return EFI_INVALID_PARAMETER;
1182 }
1183 RemoveEntryList (&MapInfo->Link);
1184
1185 //
1186 // If this is a write operation from the Bus Master's point of view,
1187 // then copy the contents of the mapped buffer into the real buffer
1188 // so the processor can read the contents of the real buffer.
1189 //
1190 if (MapInfo->Operation == EfiPciOperationBusMasterWrite ||
1191 MapInfo->Operation == EfiPciOperationBusMasterWrite64) {
1192 CopyMem (
1193 (VOID *) (UINTN) MapInfo->HostAddress,
1194 (VOID *) (UINTN) MapInfo->MappedHostAddress,
1195 MapInfo->NumberOfBytes
1196 );
1197 }
1198
1199 //
1200 // Free the mapped buffer and the MAP_INFO structure.
1201 //
1202 gBS->FreePages (MapInfo->MappedHostAddress, MapInfo->NumberOfPages);
1203 FreePool (Mapping);
1204 return EFI_SUCCESS;
1205 }
1206
1207 /**
1208 Allocates pages that are suitable for an EfiPciOperationBusMasterCommonBuffer
1209 or EfiPciOperationBusMasterCommonBuffer64 mapping.
1210
1211 @param This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1212 @param Type This parameter is not used and must be ignored.
1213 @param MemoryType The type of memory to allocate, EfiBootServicesData or
1214 EfiRuntimeServicesData.
1215 @param Pages The number of pages to allocate.
1216 @param HostAddress A pointer to store the base system memory address of the
1217 allocated range.
1218 @param Attributes The requested bit mask of attributes for the allocated
1219 range. Only the attributes
1220 EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE,
1221 EFI_PCI_ATTRIBUTE_MEMORY_CACHED, and
1222 EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE may be used with this
1223 function.
1224
1225 @retval EFI_SUCCESS The requested memory pages were allocated.
1226 @retval EFI_INVALID_PARAMETER MemoryType is invalid.
1227 @retval EFI_INVALID_PARAMETER HostAddress is NULL.
1228 @retval EFI_UNSUPPORTED Attributes is unsupported. The only legal
1229 attribute bits are MEMORY_WRITE_COMBINE,
1230 MEMORY_CACHED, and DUAL_ADDRESS_CYCLE.
1231 @retval EFI_OUT_OF_RESOURCES The memory pages could not be allocated.
1232 **/
1233 EFI_STATUS
1234 EFIAPI
1235 RootBridgeIoAllocateBuffer (
1236 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
1237 IN EFI_ALLOCATE_TYPE Type,
1238 IN EFI_MEMORY_TYPE MemoryType,
1239 IN UINTN Pages,
1240 OUT VOID **HostAddress,
1241 IN UINT64 Attributes
1242 )
1243 {
1244 EFI_STATUS Status;
1245 EFI_PHYSICAL_ADDRESS PhysicalAddress;
1246 PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
1247 EFI_ALLOCATE_TYPE AllocateType;
1248
1249 //
1250 // Validate Attributes
1251 //
1252 if ((Attributes & EFI_PCI_ATTRIBUTE_INVALID_FOR_ALLOCATE_BUFFER) != 0) {
1253 return EFI_UNSUPPORTED;
1254 }
1255
1256 //
1257 // Check for invalid inputs
1258 //
1259 if (HostAddress == NULL) {
1260 return EFI_INVALID_PARAMETER;
1261 }
1262
1263 //
1264 // The only valid memory types are EfiBootServicesData and
1265 // EfiRuntimeServicesData
1266 //
1267 if (MemoryType != EfiBootServicesData &&
1268 MemoryType != EfiRuntimeServicesData) {
1269 return EFI_INVALID_PARAMETER;
1270 }
1271
1272 RootBridge = ROOT_BRIDGE_FROM_THIS (This);
1273
1274 AllocateType = AllocateAnyPages;
1275 if (!RootBridge->DmaAbove4G) {
1276 //
1277 // Limit allocations to memory below 4GB
1278 //
1279 AllocateType = AllocateMaxAddress;
1280 PhysicalAddress = (EFI_PHYSICAL_ADDRESS) (SIZE_4GB - 1);
1281 }
1282 Status = gBS->AllocatePages (
1283 AllocateType,
1284 MemoryType,
1285 Pages,
1286 &PhysicalAddress
1287 );
1288 if (!EFI_ERROR (Status)) {
1289 *HostAddress = (VOID *) (UINTN) PhysicalAddress;
1290 }
1291
1292 return Status;
1293 }
1294
1295 /**
1296 Frees memory that was allocated with AllocateBuffer().
1297
1298 The FreeBuffer() function frees memory that was allocated with
1299 AllocateBuffer().
1300
1301 @param This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1302 @param Pages The number of pages to free.
1303 @param HostAddress The base system memory address of the allocated range.
1304
1305 @retval EFI_SUCCESS The requested memory pages were freed.
1306 @retval EFI_INVALID_PARAMETER The memory range specified by HostAddress and
1307 Pages was not allocated with AllocateBuffer().
1308 **/
1309 EFI_STATUS
1310 EFIAPI
1311 RootBridgeIoFreeBuffer (
1312 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
1313 IN UINTN Pages,
1314 OUT VOID *HostAddress
1315 )
1316 {
1317 return gBS->FreePages ((EFI_PHYSICAL_ADDRESS) (UINTN) HostAddress, Pages);
1318 }
1319
1320 /**
1321 Flushes all PCI posted write transactions from a PCI host bridge to system
1322 memory.
1323
1324 The Flush() function flushes any PCI posted write transactions from a PCI
1325 host bridge to system memory. Posted write transactions are generated by PCI
1326 bus masters when they perform write transactions to target addresses in
1327 system memory.
1328 This function does not flush posted write transactions from any PCI bridges.
1329 A PCI controller specific action must be taken to guarantee that the posted
1330 write transactions have been flushed from the PCI controller and from all the
1331 PCI bridges into the PCI host bridge. This is typically done with a PCI read
1332 transaction from the PCI controller prior to calling Flush().
1333
1334 @param This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1335
1336 @retval EFI_SUCCESS The PCI posted write transactions were flushed
1337 from the PCI host bridge to system memory.
1338 @retval EFI_DEVICE_ERROR The PCI posted write transactions were not flushed
1339 from the PCI host bridge due to a hardware error.
1340 **/
1341 EFI_STATUS
1342 EFIAPI
1343 RootBridgeIoFlush (
1344 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This
1345 )
1346 {
1347 return EFI_SUCCESS;
1348 }
1349
1350 /**
1351 Gets the attributes that a PCI root bridge supports setting with
1352 SetAttributes(), and the attributes that a PCI root bridge is currently
1353 using.
1354
1355 The GetAttributes() function returns the mask of attributes that this PCI
1356 root bridge supports and the mask of attributes that the PCI root bridge is
1357 currently using.
1358
1359 @param This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1360 @param Supported A pointer to the mask of attributes that this PCI root
1361 bridge supports setting with SetAttributes().
1362 @param Attributes A pointer to the mask of attributes that this PCI root
1363 bridge is currently using.
1364
1365 @retval EFI_SUCCESS If Supports is not NULL, then the attributes
1366 that the PCI root bridge supports is returned
1367 in Supports. If Attributes is not NULL, then
1368 the attributes that the PCI root bridge is
1369 currently using is returned in Attributes.
1370 @retval EFI_INVALID_PARAMETER Both Supports and Attributes are NULL.
1371 **/
1372 EFI_STATUS
1373 EFIAPI
1374 RootBridgeIoGetAttributes (
1375 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
1376 OUT UINT64 *Supported,
1377 OUT UINT64 *Attributes
1378 )
1379 {
1380 PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
1381
1382 if (Attributes == NULL && Supported == NULL) {
1383 return EFI_INVALID_PARAMETER;
1384 }
1385
1386 RootBridge = ROOT_BRIDGE_FROM_THIS (This);
1387 //
1388 // Set the return value for Supported and Attributes
1389 //
1390 if (Supported != NULL) {
1391 *Supported = RootBridge->Supports;
1392 }
1393
1394 if (Attributes != NULL) {
1395 *Attributes = RootBridge->Attributes;
1396 }
1397
1398 return EFI_SUCCESS;
1399 }
1400
1401 /**
1402 Sets attributes for a resource range on a PCI root bridge.
1403
1404 The SetAttributes() function sets the attributes specified in Attributes for
1405 the PCI root bridge on the resource range specified by ResourceBase and
1406 ResourceLength. Since the granularity of setting these attributes may vary
1407 from resource type to resource type, and from platform to platform, the
1408 actual resource range and the one passed in by the caller may differ. As a
1409 result, this function may set the attributes specified by Attributes on a
1410 larger resource range than the caller requested. The actual range is returned
1411 in ResourceBase and ResourceLength. The caller is responsible for verifying
1412 that the actual range for which the attributes were set is acceptable.
1413
1414 @param This A pointer to the
1415 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1416 @param Attributes The mask of attributes to set. If the
1417 attribute bit MEMORY_WRITE_COMBINE,
1418 MEMORY_CACHED, or MEMORY_DISABLE is set,
1419 then the resource range is specified by
1420 ResourceBase and ResourceLength. If
1421 MEMORY_WRITE_COMBINE, MEMORY_CACHED, and
1422 MEMORY_DISABLE are not set, then
1423 ResourceBase and ResourceLength are ignored,
1424 and may be NULL.
1425 @param ResourceBase A pointer to the base address of the
1426 resource range to be modified by the
1427 attributes specified by Attributes.
1428 @param ResourceLength A pointer to the length of the resource
1429 range to be modified by the attributes
1430 specified by Attributes.
1431
1432 @retval EFI_SUCCESS The current configuration of this PCI root bridge
1433 was returned in Resources.
1434 @retval EFI_UNSUPPORTED The current configuration of this PCI root bridge
1435 could not be retrieved.
1436 **/
1437 EFI_STATUS
1438 EFIAPI
1439 RootBridgeIoSetAttributes (
1440 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
1441 IN UINT64 Attributes,
1442 IN OUT UINT64 *ResourceBase,
1443 IN OUT UINT64 *ResourceLength
1444 )
1445 {
1446 PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
1447
1448 RootBridge = ROOT_BRIDGE_FROM_THIS (This);
1449
1450 if ((Attributes & (~RootBridge->Supports)) != 0) {
1451 return EFI_UNSUPPORTED;
1452 }
1453
1454 RootBridge->Attributes = Attributes;
1455 return EFI_SUCCESS;
1456 }
1457
1458 /**
1459 Retrieves the current resource settings of this PCI root bridge in the form
1460 of a set of ACPI 2.0 resource descriptors.
1461
1462 There are only two resource descriptor types from the ACPI Specification that
1463 may be used to describe the current resources allocated to a PCI root bridge.
1464 These are the QWORD Address Space Descriptor (ACPI 2.0 Section 6.4.3.5.1),
1465 and the End Tag (ACPI 2.0 Section 6.4.2.8). The QWORD Address Space
1466 Descriptor can describe memory, I/O, and bus number ranges for dynamic or
1467 fixed resources. The configuration of a PCI root bridge is described with one
1468 or more QWORD Address Space Descriptors followed by an End Tag.
1469
1470 @param[in] This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
1471 @param[out] Resources A pointer to the ACPI 2.0 resource descriptors that
1472 describe the current configuration of this PCI root
1473 bridge. The storage for the ACPI 2.0 resource
1474 descriptors is allocated by this function. The
1475 caller must treat the return buffer as read-only
1476 data, and the buffer must not be freed by the
1477 caller.
1478
1479 @retval EFI_SUCCESS The current configuration of this PCI root bridge
1480 was returned in Resources.
1481 @retval EFI_UNSUPPORTED The current configuration of this PCI root bridge
1482 could not be retrieved.
1483 **/
1484 EFI_STATUS
1485 EFIAPI
1486 RootBridgeIoConfiguration (
1487 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
1488 OUT VOID **Resources
1489 )
1490 {
1491 PCI_RESOURCE_TYPE Index;
1492 PCI_ROOT_BRIDGE_INSTANCE *RootBridge;
1493 PCI_RES_NODE *ResAllocNode;
1494 EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Descriptor;
1495 EFI_ACPI_END_TAG_DESCRIPTOR *End;
1496
1497 //
1498 // Get this instance of the Root Bridge.
1499 //
1500 RootBridge = ROOT_BRIDGE_FROM_THIS (This);
1501 ZeroMem (
1502 RootBridge->ConfigBuffer,
1503 TypeMax * sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) + sizeof (EFI_ACPI_END_TAG_DESCRIPTOR)
1504 );
1505 Descriptor = RootBridge->ConfigBuffer;
1506 for (Index = TypeIo; Index < TypeMax; Index++) {
1507
1508 ResAllocNode = &RootBridge->ResAllocNode[Index];
1509
1510 if (ResAllocNode->Status != ResAllocated) {
1511 continue;
1512 }
1513
1514 Descriptor->Desc = ACPI_ADDRESS_SPACE_DESCRIPTOR;
1515 Descriptor->Len = sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) - 3;
1516 Descriptor->AddrRangeMin = ResAllocNode->Base;
1517 Descriptor->AddrRangeMax = ResAllocNode->Base + ResAllocNode->Length - 1;
1518 Descriptor->AddrLen = ResAllocNode->Length;
1519 switch (ResAllocNode->Type) {
1520
1521 case TypeIo:
1522 Descriptor->ResType = ACPI_ADDRESS_SPACE_TYPE_IO;
1523 break;
1524
1525 case TypePMem32:
1526 Descriptor->SpecificFlag = EFI_ACPI_MEMORY_RESOURCE_SPECIFIC_FLAG_CACHEABLE_PREFETCHABLE;
1527 case TypeMem32:
1528 Descriptor->ResType = ACPI_ADDRESS_SPACE_TYPE_MEM;
1529 Descriptor->AddrSpaceGranularity = 32;
1530 break;
1531
1532 case TypePMem64:
1533 Descriptor->SpecificFlag = EFI_ACPI_MEMORY_RESOURCE_SPECIFIC_FLAG_CACHEABLE_PREFETCHABLE;
1534 case TypeMem64:
1535 Descriptor->ResType = ACPI_ADDRESS_SPACE_TYPE_MEM;
1536 Descriptor->AddrSpaceGranularity = 64;
1537 break;
1538
1539 case TypeBus:
1540 Descriptor->ResType = ACPI_ADDRESS_SPACE_TYPE_BUS;
1541 break;
1542
1543 default:
1544 break;
1545 }
1546
1547 Descriptor++;
1548 }
1549 //
1550 // Terminate the entries.
1551 //
1552 End = (EFI_ACPI_END_TAG_DESCRIPTOR *) Descriptor;
1553 End->Desc = ACPI_END_TAG_DESCRIPTOR;
1554 End->Checksum = 0x0;
1555
1556 *Resources = RootBridge->ConfigBuffer;
1557 return EFI_SUCCESS;
1558 }