]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Core/Dxe/Mem/Pool.c
Fix the issue that GCC treat enum type as unsigned int which incompatible with UEFI...
[mirror_edk2.git] / MdeModulePkg / Core / Dxe / Mem / Pool.c
1 /** @file
2 UEFI Memory pool management functions.
3
4 Copyright (c) 2006 - 2010, Intel Corporation. <BR>
5 All rights reserved. This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "DxeMain.h"
16 #include "Imem.h"
17
18 #define POOL_FREE_SIGNATURE SIGNATURE_32('p','f','r','0')
19 typedef struct {
20 UINT32 Signature;
21 UINT32 Index;
22 LIST_ENTRY Link;
23 } POOL_FREE;
24
25
26 #define POOL_HEAD_SIGNATURE SIGNATURE_32('p','h','d','0')
27 typedef struct {
28 UINT32 Signature;
29 UINT32 Size;
30 EFI_MEMORY_TYPE Type;
31 UINTN Reserved;
32 CHAR8 Data[1];
33 } POOL_HEAD;
34
35 #define SIZE_OF_POOL_HEAD OFFSET_OF(POOL_HEAD,Data)
36
37 #define POOL_TAIL_SIGNATURE SIGNATURE_32('p','t','a','l')
38 typedef struct {
39 UINT32 Signature;
40 UINT32 Size;
41 } POOL_TAIL;
42
43
44 #define POOL_SHIFT 7
45
46 #define POOL_OVERHEAD (SIZE_OF_POOL_HEAD + sizeof(POOL_TAIL))
47
48 #define HEAD_TO_TAIL(a) \
49 ((POOL_TAIL *) (((CHAR8 *) (a)) + (a)->Size - sizeof(POOL_TAIL)));
50
51
52 #define SIZE_TO_LIST(a) ((a) >> POOL_SHIFT)
53 #define LIST_TO_SIZE(a) ((a+1) << POOL_SHIFT)
54
55 #define MAX_POOL_LIST SIZE_TO_LIST(DEFAULT_PAGE_ALLOCATION)
56
57 #define MAX_POOL_SIZE (MAX_ADDRESS - POOL_OVERHEAD)
58
59 //
60 // Globals
61 //
62
63 #define POOL_SIGNATURE SIGNATURE_32('p','l','s','t')
64 typedef struct {
65 INTN Signature;
66 UINTN Used;
67 EFI_MEMORY_TYPE MemoryType;
68 LIST_ENTRY FreeList[MAX_POOL_LIST];
69 LIST_ENTRY Link;
70 } POOL;
71
72 //
73 // Pool header for each memory type.
74 //
75 POOL mPoolHead[EfiMaxMemoryType];
76
77 //
78 // List of pool header to search for the appropriate memory type.
79 //
80 LIST_ENTRY mPoolHeadList = INITIALIZE_LIST_HEAD_VARIABLE (mPoolHeadList);
81
82
83 /**
84 Called to initialize the pool.
85
86 **/
87 VOID
88 CoreInitializePool (
89 VOID
90 )
91 {
92 UINTN Type;
93 UINTN Index;
94
95 for (Type=0; Type < EfiMaxMemoryType; Type++) {
96 mPoolHead[Type].Signature = 0;
97 mPoolHead[Type].Used = 0;
98 mPoolHead[Type].MemoryType = (EFI_MEMORY_TYPE) Type;
99 for (Index=0; Index < MAX_POOL_LIST; Index++) {
100 InitializeListHead (&mPoolHead[Type].FreeList[Index]);
101 }
102 }
103 }
104
105
106 /**
107 Look up pool head for specified memory type.
108
109 @param MemoryType Memory type of which pool head is looked for
110
111 @return Pointer of Corresponding pool head.
112
113 **/
114 POOL *
115 LookupPoolHead (
116 IN EFI_MEMORY_TYPE MemoryType
117 )
118 {
119 LIST_ENTRY *Link;
120 POOL *Pool;
121 UINTN Index;
122
123 if (MemoryType >= 0 && MemoryType < EfiMaxMemoryType) {
124 return &mPoolHead[MemoryType];
125 }
126
127 //
128 // MemoryType values in the range 0x80000000..0xFFFFFFFF are reserved for use by UEFI
129 // OS loaders that are provided by operating system vendors
130 //
131 if (MemoryType >= (INT32)0x80000000 && MemoryType <= (INT32)0xffffffff) {
132
133 for (Link = mPoolHeadList.ForwardLink; Link != &mPoolHeadList; Link = Link->ForwardLink) {
134 Pool = CR(Link, POOL, Link, POOL_SIGNATURE);
135 if (Pool->MemoryType == MemoryType) {
136 return Pool;
137 }
138 }
139
140 Pool = CoreAllocatePoolI (EfiBootServicesData, sizeof (POOL));
141 if (Pool == NULL) {
142 return NULL;
143 }
144
145 Pool->Signature = POOL_SIGNATURE;
146 Pool->Used = 0;
147 Pool->MemoryType = MemoryType;
148 for (Index=0; Index < MAX_POOL_LIST; Index++) {
149 InitializeListHead (&Pool->FreeList[Index]);
150 }
151
152 InsertHeadList (&mPoolHeadList, &Pool->Link);
153
154 return Pool;
155 }
156
157 return NULL;
158 }
159
160
161
162 /**
163 Allocate pool of a particular type.
164
165 @param PoolType Type of pool to allocate
166 @param Size The amount of pool to allocate
167 @param Buffer The address to return a pointer to the allocated
168 pool
169
170 @retval EFI_INVALID_PARAMETER PoolType not valid
171 @retval EFI_OUT_OF_RESOURCES Size exceeds max pool size or allocation failed.
172 @retval EFI_SUCCESS Pool successfully allocated.
173
174 **/
175 EFI_STATUS
176 EFIAPI
177 CoreAllocatePool (
178 IN EFI_MEMORY_TYPE PoolType,
179 IN UINTN Size,
180 OUT VOID **Buffer
181 )
182 {
183 EFI_STATUS Status;
184
185 //
186 // If it's not a valid type, fail it
187 //
188 if ((PoolType >= EfiMaxMemoryType && PoolType <= 0x7fffffff) ||
189 PoolType == EfiConventionalMemory) {
190 return EFI_INVALID_PARAMETER;
191 }
192
193 *Buffer = NULL;
194
195 //
196 // If size is too large, fail it
197 // Base on the EFI spec, return status of EFI_OUT_OF_RESOURCES
198 //
199 if (Size > MAX_POOL_SIZE) {
200 return EFI_OUT_OF_RESOURCES;
201 }
202
203 //
204 // Acquire the memory lock and make the allocation
205 //
206 Status = CoreAcquireLockOrFail (&gMemoryLock);
207 if (EFI_ERROR (Status)) {
208 return EFI_OUT_OF_RESOURCES;
209 }
210
211 *Buffer = CoreAllocatePoolI (PoolType, Size);
212 CoreReleaseMemoryLock ();
213 return (*Buffer != NULL) ? EFI_SUCCESS : EFI_OUT_OF_RESOURCES;
214 }
215
216
217
218 /**
219 Internal function to allocate pool of a particular type.
220 Caller must have the memory lock held
221
222 @param PoolType Type of pool to allocate
223 @param Size The amount of pool to allocate
224
225 @return The allocate pool, or NULL
226
227 **/
228 VOID *
229 CoreAllocatePoolI (
230 IN EFI_MEMORY_TYPE PoolType,
231 IN UINTN Size
232 )
233 {
234 POOL *Pool;
235 POOL_FREE *Free;
236 POOL_HEAD *Head;
237 POOL_TAIL *Tail;
238 CHAR8 *NewPage;
239 VOID *Buffer;
240 UINTN Index;
241 UINTN FSize;
242 UINTN Offset;
243 UINTN NoPages;
244
245 ASSERT_LOCKED (&gMemoryLock);
246
247 //
248 // Adjust the size by the pool header & tail overhead
249 //
250
251 //
252 // Adjusting the Size to be of proper alignment so that
253 // we don't get an unaligned access fault later when
254 // pool_Tail is being initialized
255 //
256 Size = ALIGN_VARIABLE (Size);
257
258 Size += POOL_OVERHEAD;
259 Index = SIZE_TO_LIST(Size);
260 Pool = LookupPoolHead (PoolType);
261 if (Pool== NULL) {
262 return NULL;
263 }
264 Head = NULL;
265
266 //
267 // If allocation is over max size, just allocate pages for the request
268 // (slow)
269 //
270 if (Index >= MAX_POOL_LIST) {
271 NoPages = EFI_SIZE_TO_PAGES(Size) + EFI_SIZE_TO_PAGES (DEFAULT_PAGE_ALLOCATION) - 1;
272 NoPages &= ~(EFI_SIZE_TO_PAGES (DEFAULT_PAGE_ALLOCATION) - 1);
273 Head = CoreAllocatePoolPages (PoolType, NoPages, DEFAULT_PAGE_ALLOCATION);
274 goto Done;
275 }
276
277 //
278 // If there's no free pool in the proper list size, go get some more pages
279 //
280 if (IsListEmpty (&Pool->FreeList[Index])) {
281
282 //
283 // Get another page
284 //
285 NewPage = CoreAllocatePoolPages(PoolType, EFI_SIZE_TO_PAGES (DEFAULT_PAGE_ALLOCATION), DEFAULT_PAGE_ALLOCATION);
286 if (NewPage == NULL) {
287 goto Done;
288 }
289
290 //
291 // Carve up new page into free pool blocks
292 //
293 Offset = 0;
294 while (Offset < DEFAULT_PAGE_ALLOCATION) {
295 ASSERT (Index < MAX_POOL_LIST);
296 FSize = LIST_TO_SIZE(Index);
297
298 while (Offset + FSize <= DEFAULT_PAGE_ALLOCATION) {
299 Free = (POOL_FREE *) &NewPage[Offset];
300 Free->Signature = POOL_FREE_SIGNATURE;
301 Free->Index = (UINT32)Index;
302 InsertHeadList (&Pool->FreeList[Index], &Free->Link);
303 Offset += FSize;
304 }
305
306 Index -= 1;
307 }
308
309 ASSERT (Offset == DEFAULT_PAGE_ALLOCATION);
310 Index = SIZE_TO_LIST(Size);
311 }
312
313 //
314 // Remove entry from free pool list
315 //
316 Free = CR (Pool->FreeList[Index].ForwardLink, POOL_FREE, Link, POOL_FREE_SIGNATURE);
317 RemoveEntryList (&Free->Link);
318
319 Head = (POOL_HEAD *) Free;
320
321 Done:
322 Buffer = NULL;
323
324 if (Head != NULL) {
325
326 //
327 // If we have a pool buffer, fill in the header & tail info
328 //
329 Head->Signature = POOL_HEAD_SIGNATURE;
330 Head->Size = (UINT32) Size;
331 Head->Type = (EFI_MEMORY_TYPE) PoolType;
332 Tail = HEAD_TO_TAIL (Head);
333 Tail->Signature = POOL_TAIL_SIGNATURE;
334 Tail->Size = (UINT32) Size;
335 Buffer = Head->Data;
336 DEBUG_CLEAR_MEMORY (Buffer, Size - POOL_OVERHEAD);
337
338 DEBUG ((
339 DEBUG_POOL,
340 "AllocatePoolI: Type %x, Addr %p (len %lx) %,ld\n", PoolType,
341 Buffer,
342 (UINT64)(Size - POOL_OVERHEAD),
343 (UINT64) Pool->Used
344 ));
345
346 //
347 // Account the allocation
348 //
349 Pool->Used += Size;
350
351 } else {
352 DEBUG ((DEBUG_ERROR | DEBUG_POOL, "AllocatePool: failed to allocate %ld bytes\n", (UINT64) Size));
353 }
354
355 return Buffer;
356 }
357
358
359
360 /**
361 Frees pool.
362
363 @param Buffer The allocated pool entry to free
364
365 @retval EFI_INVALID_PARAMETER Buffer is not a valid value.
366 @retval EFI_SUCCESS Pool successfully freed.
367
368 **/
369 EFI_STATUS
370 EFIAPI
371 CoreFreePool (
372 IN VOID *Buffer
373 )
374 {
375 EFI_STATUS Status;
376
377 if (Buffer == NULL) {
378 return EFI_INVALID_PARAMETER;
379 }
380
381 CoreAcquireMemoryLock ();
382 Status = CoreFreePoolI (Buffer);
383 CoreReleaseMemoryLock ();
384 return Status;
385 }
386
387
388
389 /**
390 Internal function to free a pool entry.
391 Caller must have the memory lock held
392
393 @param Buffer The allocated pool entry to free
394
395 @retval EFI_INVALID_PARAMETER Buffer not valid
396 @retval EFI_SUCCESS Buffer successfully freed.
397
398 **/
399 EFI_STATUS
400 CoreFreePoolI (
401 IN VOID *Buffer
402 )
403 {
404 POOL *Pool;
405 POOL_HEAD *Head;
406 POOL_TAIL *Tail;
407 POOL_FREE *Free;
408 UINTN Index;
409 UINTN NoPages;
410 UINTN Size;
411 CHAR8 *NewPage;
412 UINTN FSize;
413 UINTN Offset;
414 BOOLEAN AllFree;
415
416 ASSERT(Buffer != NULL);
417 //
418 // Get the head & tail of the pool entry
419 //
420 Head = CR (Buffer, POOL_HEAD, Data, POOL_HEAD_SIGNATURE);
421 ASSERT(Head != NULL);
422
423 if (Head->Signature != POOL_HEAD_SIGNATURE) {
424 return EFI_INVALID_PARAMETER;
425 }
426
427 Tail = HEAD_TO_TAIL (Head);
428 ASSERT(Tail != NULL);
429
430 //
431 // Debug
432 //
433 ASSERT (Tail->Signature == POOL_TAIL_SIGNATURE);
434 ASSERT (Head->Size == Tail->Size);
435 ASSERT_LOCKED (&gMemoryLock);
436
437 if (Tail->Signature != POOL_TAIL_SIGNATURE) {
438 return EFI_INVALID_PARAMETER;
439 }
440
441 if (Head->Size != Tail->Size) {
442 return EFI_INVALID_PARAMETER;
443 }
444
445 //
446 // Determine the pool type and account for it
447 //
448 Size = Head->Size;
449 Pool = LookupPoolHead (Head->Type);
450 if (Pool == NULL) {
451 return EFI_INVALID_PARAMETER;
452 }
453 Pool->Used -= Size;
454 DEBUG ((DEBUG_POOL, "FreePool: %p (len %lx) %,ld\n", Head->Data, (UINT64)(Head->Size - POOL_OVERHEAD), (UINT64) Pool->Used));
455
456 //
457 // Determine the pool list
458 //
459 Index = SIZE_TO_LIST(Size);
460 DEBUG_CLEAR_MEMORY (Head, Size);
461
462 //
463 // If it's not on the list, it must be pool pages
464 //
465 if (Index >= MAX_POOL_LIST) {
466
467 //
468 // Return the memory pages back to free memory
469 //
470 NoPages = EFI_SIZE_TO_PAGES(Size) + EFI_SIZE_TO_PAGES (DEFAULT_PAGE_ALLOCATION) - 1;
471 NoPages &= ~(EFI_SIZE_TO_PAGES (DEFAULT_PAGE_ALLOCATION) - 1);
472 CoreFreePoolPages ((EFI_PHYSICAL_ADDRESS) (UINTN) Head, NoPages);
473
474 } else {
475
476 //
477 // Put the pool entry onto the free pool list
478 //
479 Free = (POOL_FREE *) Head;
480 ASSERT(Free != NULL);
481 Free->Signature = POOL_FREE_SIGNATURE;
482 Free->Index = (UINT32)Index;
483 InsertHeadList (&Pool->FreeList[Index], &Free->Link);
484
485 //
486 // See if all the pool entries in the same page as Free are freed pool
487 // entries
488 //
489 NewPage = (CHAR8 *)((UINTN)Free & ~((DEFAULT_PAGE_ALLOCATION) -1));
490 Free = (POOL_FREE *) &NewPage[0];
491 ASSERT(Free != NULL);
492
493 if (Free->Signature == POOL_FREE_SIGNATURE) {
494
495 Index = Free->Index;
496
497 AllFree = TRUE;
498 Offset = 0;
499
500 while ((Offset < DEFAULT_PAGE_ALLOCATION) && (AllFree)) {
501 FSize = LIST_TO_SIZE(Index);
502 while (Offset + FSize <= DEFAULT_PAGE_ALLOCATION) {
503 Free = (POOL_FREE *) &NewPage[Offset];
504 ASSERT(Free != NULL);
505 if (Free->Signature != POOL_FREE_SIGNATURE) {
506 AllFree = FALSE;
507 }
508 Offset += FSize;
509 }
510 Index -= 1;
511 }
512
513 if (AllFree) {
514
515 //
516 // All of the pool entries in the same page as Free are free pool
517 // entries
518 // Remove all of these pool entries from the free loop lists.
519 //
520 Free = (POOL_FREE *) &NewPage[0];
521 ASSERT(Free != NULL);
522 Index = Free->Index;
523 Offset = 0;
524
525 while (Offset < DEFAULT_PAGE_ALLOCATION) {
526 FSize = LIST_TO_SIZE(Index);
527 while (Offset + FSize <= DEFAULT_PAGE_ALLOCATION) {
528 Free = (POOL_FREE *) &NewPage[Offset];
529 ASSERT(Free != NULL);
530 RemoveEntryList (&Free->Link);
531 Offset += FSize;
532 }
533 Index -= 1;
534 }
535
536 //
537 // Free the page
538 //
539 CoreFreePoolPages ((EFI_PHYSICAL_ADDRESS) (UINTN)NewPage, EFI_SIZE_TO_PAGES (DEFAULT_PAGE_ALLOCATION));
540 }
541 }
542 }
543
544 //
545 // If this is an OS specific memory type, then check to see if the last
546 // portion of that memory type has been freed. If it has, then free the
547 // list entry for that memory type
548 //
549 if (Pool->MemoryType < 0 && Pool->Used == 0) {
550 RemoveEntryList (&Pool->Link);
551 CoreFreePoolI (Pool);
552 }
553
554 return EFI_SUCCESS;
555 }