]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Core/Dxe/Misc/MemoryProtection.c
MdeModulePkg/Core: fix feature conflict between NX and NULL detection
[mirror_edk2.git] / MdeModulePkg / Core / Dxe / Misc / MemoryProtection.c
1 /** @file
2 UEFI Memory Protection support.
3
4 If the UEFI image is page aligned, the image code section is set to read only
5 and the image data section is set to non-executable.
6
7 1) This policy is applied for all UEFI image including boot service driver,
8 runtime driver or application.
9 2) This policy is applied only if the UEFI image meets the page alignment
10 requirement.
11 3) This policy is applied only if the Source UEFI image matches the
12 PcdImageProtectionPolicy definition.
13 4) This policy is not applied to the non-PE image region.
14
15 The DxeCore calls CpuArchProtocol->SetMemoryAttributes() to protect
16 the image. If the CpuArch protocol is not installed yet, the DxeCore
17 enqueues the protection request. Once the CpuArch is installed, the
18 DxeCore dequeues the protection request and applies policy.
19
20 Once the image is unloaded, the protection is removed automatically.
21
22 Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
23 This program and the accompanying materials
24 are licensed and made available under the terms and conditions of the BSD License
25 which accompanies this distribution. The full text of the license may be found at
26 http://opensource.org/licenses/bsd-license.php
27
28 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
29 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
30
31 **/
32
33 #include <PiDxe.h>
34 #include <Library/BaseLib.h>
35 #include <Library/BaseMemoryLib.h>
36 #include <Library/MemoryAllocationLib.h>
37 #include <Library/UefiBootServicesTableLib.h>
38 #include <Library/DxeServicesTableLib.h>
39 #include <Library/DebugLib.h>
40 #include <Library/UefiLib.h>
41
42 #include <Guid/EventGroup.h>
43 #include <Guid/MemoryAttributesTable.h>
44 #include <Guid/PropertiesTable.h>
45
46 #include <Protocol/FirmwareVolume2.h>
47 #include <Protocol/BlockIo.h>
48 #include <Protocol/SimpleFileSystem.h>
49
50 #include "DxeMain.h"
51
52 #define CACHE_ATTRIBUTE_MASK (EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT | EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_WP)
53 #define MEMORY_ATTRIBUTE_MASK (EFI_MEMORY_RP | EFI_MEMORY_XP | EFI_MEMORY_RO)
54
55 //
56 // Image type definitions
57 //
58 #define IMAGE_UNKNOWN 0x00000001
59 #define IMAGE_FROM_FV 0x00000002
60
61 //
62 // Protection policy bit definition
63 //
64 #define DO_NOT_PROTECT 0x00000000
65 #define PROTECT_IF_ALIGNED_ELSE_ALLOW 0x00000001
66
67 #define MEMORY_TYPE_OS_RESERVED_MIN 0x80000000
68 #define MEMORY_TYPE_OEM_RESERVED_MIN 0x70000000
69
70 #define PREVIOUS_MEMORY_DESCRIPTOR(MemoryDescriptor, Size) \
71 ((EFI_MEMORY_DESCRIPTOR *)((UINT8 *)(MemoryDescriptor) - (Size)))
72
73 UINT32 mImageProtectionPolicy;
74
75 extern LIST_ENTRY mGcdMemorySpaceMap;
76
77 STATIC LIST_ENTRY mProtectedImageRecordList;
78
79 /**
80 Sort code section in image record, based upon CodeSegmentBase from low to high.
81
82 @param ImageRecord image record to be sorted
83 **/
84 VOID
85 SortImageRecordCodeSection (
86 IN IMAGE_PROPERTIES_RECORD *ImageRecord
87 );
88
89 /**
90 Check if code section in image record is valid.
91
92 @param ImageRecord image record to be checked
93
94 @retval TRUE image record is valid
95 @retval FALSE image record is invalid
96 **/
97 BOOLEAN
98 IsImageRecordCodeSectionValid (
99 IN IMAGE_PROPERTIES_RECORD *ImageRecord
100 );
101
102 /**
103 Get the image type.
104
105 @param[in] File This is a pointer to the device path of the file that is
106 being dispatched.
107
108 @return UINT32 Image Type
109 **/
110 UINT32
111 GetImageType (
112 IN CONST EFI_DEVICE_PATH_PROTOCOL *File
113 )
114 {
115 EFI_STATUS Status;
116 EFI_HANDLE DeviceHandle;
117 EFI_DEVICE_PATH_PROTOCOL *TempDevicePath;
118
119 if (File == NULL) {
120 return IMAGE_UNKNOWN;
121 }
122
123 //
124 // First check to see if File is from a Firmware Volume
125 //
126 DeviceHandle = NULL;
127 TempDevicePath = (EFI_DEVICE_PATH_PROTOCOL *) File;
128 Status = gBS->LocateDevicePath (
129 &gEfiFirmwareVolume2ProtocolGuid,
130 &TempDevicePath,
131 &DeviceHandle
132 );
133 if (!EFI_ERROR (Status)) {
134 Status = gBS->OpenProtocol (
135 DeviceHandle,
136 &gEfiFirmwareVolume2ProtocolGuid,
137 NULL,
138 NULL,
139 NULL,
140 EFI_OPEN_PROTOCOL_TEST_PROTOCOL
141 );
142 if (!EFI_ERROR (Status)) {
143 return IMAGE_FROM_FV;
144 }
145 }
146 return IMAGE_UNKNOWN;
147 }
148
149 /**
150 Get UEFI image protection policy based upon image type.
151
152 @param[in] ImageType The UEFI image type
153
154 @return UEFI image protection policy
155 **/
156 UINT32
157 GetProtectionPolicyFromImageType (
158 IN UINT32 ImageType
159 )
160 {
161 if ((ImageType & mImageProtectionPolicy) == 0) {
162 return DO_NOT_PROTECT;
163 } else {
164 return PROTECT_IF_ALIGNED_ELSE_ALLOW;
165 }
166 }
167
168 /**
169 Get UEFI image protection policy based upon loaded image device path.
170
171 @param[in] LoadedImage The loaded image protocol
172 @param[in] LoadedImageDevicePath The loaded image device path protocol
173
174 @return UEFI image protection policy
175 **/
176 UINT32
177 GetUefiImageProtectionPolicy (
178 IN EFI_LOADED_IMAGE_PROTOCOL *LoadedImage,
179 IN EFI_DEVICE_PATH_PROTOCOL *LoadedImageDevicePath
180 )
181 {
182 BOOLEAN InSmm;
183 UINT32 ImageType;
184 UINT32 ProtectionPolicy;
185
186 //
187 // Check SMM
188 //
189 InSmm = FALSE;
190 if (gSmmBase2 != NULL) {
191 gSmmBase2->InSmm (gSmmBase2, &InSmm);
192 }
193 if (InSmm) {
194 return FALSE;
195 }
196
197 //
198 // Check DevicePath
199 //
200 if (LoadedImage == gDxeCoreLoadedImage) {
201 ImageType = IMAGE_FROM_FV;
202 } else {
203 ImageType = GetImageType (LoadedImageDevicePath);
204 }
205 ProtectionPolicy = GetProtectionPolicyFromImageType (ImageType);
206 return ProtectionPolicy;
207 }
208
209
210 /**
211 Set UEFI image memory attributes.
212
213 @param[in] BaseAddress Specified start address
214 @param[in] Length Specified length
215 @param[in] Attributes Specified attributes
216 **/
217 VOID
218 SetUefiImageMemoryAttributes (
219 IN UINT64 BaseAddress,
220 IN UINT64 Length,
221 IN UINT64 Attributes
222 )
223 {
224 EFI_STATUS Status;
225 EFI_GCD_MEMORY_SPACE_DESCRIPTOR Descriptor;
226 UINT64 FinalAttributes;
227
228 Status = CoreGetMemorySpaceDescriptor(BaseAddress, &Descriptor);
229 ASSERT_EFI_ERROR(Status);
230
231 FinalAttributes = (Descriptor.Attributes & CACHE_ATTRIBUTE_MASK) | (Attributes & MEMORY_ATTRIBUTE_MASK);
232
233 DEBUG ((DEBUG_INFO, "SetUefiImageMemoryAttributes - 0x%016lx - 0x%016lx (0x%016lx)\n", BaseAddress, Length, FinalAttributes));
234
235 ASSERT(gCpu != NULL);
236 gCpu->SetMemoryAttributes (gCpu, BaseAddress, Length, FinalAttributes);
237 }
238
239 /**
240 Set UEFI image protection attributes.
241
242 @param[in] ImageRecord A UEFI image record
243 **/
244 VOID
245 SetUefiImageProtectionAttributes (
246 IN IMAGE_PROPERTIES_RECORD *ImageRecord
247 )
248 {
249 IMAGE_PROPERTIES_RECORD_CODE_SECTION *ImageRecordCodeSection;
250 LIST_ENTRY *ImageRecordCodeSectionLink;
251 LIST_ENTRY *ImageRecordCodeSectionEndLink;
252 LIST_ENTRY *ImageRecordCodeSectionList;
253 UINT64 CurrentBase;
254 UINT64 ImageEnd;
255
256 ImageRecordCodeSectionList = &ImageRecord->CodeSegmentList;
257
258 CurrentBase = ImageRecord->ImageBase;
259 ImageEnd = ImageRecord->ImageBase + ImageRecord->ImageSize;
260
261 ImageRecordCodeSectionLink = ImageRecordCodeSectionList->ForwardLink;
262 ImageRecordCodeSectionEndLink = ImageRecordCodeSectionList;
263 while (ImageRecordCodeSectionLink != ImageRecordCodeSectionEndLink) {
264 ImageRecordCodeSection = CR (
265 ImageRecordCodeSectionLink,
266 IMAGE_PROPERTIES_RECORD_CODE_SECTION,
267 Link,
268 IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE
269 );
270 ImageRecordCodeSectionLink = ImageRecordCodeSectionLink->ForwardLink;
271
272 ASSERT (CurrentBase <= ImageRecordCodeSection->CodeSegmentBase);
273 if (CurrentBase < ImageRecordCodeSection->CodeSegmentBase) {
274 //
275 // DATA
276 //
277 SetUefiImageMemoryAttributes (
278 CurrentBase,
279 ImageRecordCodeSection->CodeSegmentBase - CurrentBase,
280 EFI_MEMORY_XP
281 );
282 }
283 //
284 // CODE
285 //
286 SetUefiImageMemoryAttributes (
287 ImageRecordCodeSection->CodeSegmentBase,
288 ImageRecordCodeSection->CodeSegmentSize,
289 EFI_MEMORY_RO
290 );
291 CurrentBase = ImageRecordCodeSection->CodeSegmentBase + ImageRecordCodeSection->CodeSegmentSize;
292 }
293 //
294 // Last DATA
295 //
296 ASSERT (CurrentBase <= ImageEnd);
297 if (CurrentBase < ImageEnd) {
298 //
299 // DATA
300 //
301 SetUefiImageMemoryAttributes (
302 CurrentBase,
303 ImageEnd - CurrentBase,
304 EFI_MEMORY_XP
305 );
306 }
307 return ;
308 }
309
310 /**
311 Return if the PE image section is aligned.
312
313 @param[in] SectionAlignment PE/COFF section alignment
314 @param[in] MemoryType PE/COFF image memory type
315
316 @retval TRUE The PE image section is aligned.
317 @retval FALSE The PE image section is not aligned.
318 **/
319 BOOLEAN
320 IsMemoryProtectionSectionAligned (
321 IN UINT32 SectionAlignment,
322 IN EFI_MEMORY_TYPE MemoryType
323 )
324 {
325 UINT32 PageAlignment;
326
327 switch (MemoryType) {
328 case EfiRuntimeServicesCode:
329 case EfiACPIMemoryNVS:
330 PageAlignment = RUNTIME_PAGE_ALLOCATION_GRANULARITY;
331 break;
332 case EfiRuntimeServicesData:
333 case EfiACPIReclaimMemory:
334 ASSERT (FALSE);
335 PageAlignment = RUNTIME_PAGE_ALLOCATION_GRANULARITY;
336 break;
337 case EfiBootServicesCode:
338 case EfiLoaderCode:
339 case EfiReservedMemoryType:
340 PageAlignment = EFI_PAGE_SIZE;
341 break;
342 default:
343 ASSERT (FALSE);
344 PageAlignment = EFI_PAGE_SIZE;
345 break;
346 }
347
348 if ((SectionAlignment & (PageAlignment - 1)) != 0) {
349 return FALSE;
350 } else {
351 return TRUE;
352 }
353 }
354
355 /**
356 Free Image record.
357
358 @param[in] ImageRecord A UEFI image record
359 **/
360 VOID
361 FreeImageRecord (
362 IN IMAGE_PROPERTIES_RECORD *ImageRecord
363 )
364 {
365 LIST_ENTRY *CodeSegmentListHead;
366 IMAGE_PROPERTIES_RECORD_CODE_SECTION *ImageRecordCodeSection;
367
368 CodeSegmentListHead = &ImageRecord->CodeSegmentList;
369 while (!IsListEmpty (CodeSegmentListHead)) {
370 ImageRecordCodeSection = CR (
371 CodeSegmentListHead->ForwardLink,
372 IMAGE_PROPERTIES_RECORD_CODE_SECTION,
373 Link,
374 IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE
375 );
376 RemoveEntryList (&ImageRecordCodeSection->Link);
377 FreePool (ImageRecordCodeSection);
378 }
379
380 if (ImageRecord->Link.ForwardLink != NULL) {
381 RemoveEntryList (&ImageRecord->Link);
382 }
383 FreePool (ImageRecord);
384 }
385
386 /**
387 Protect UEFI PE/COFF image.
388
389 @param[in] LoadedImage The loaded image protocol
390 @param[in] LoadedImageDevicePath The loaded image device path protocol
391 **/
392 VOID
393 ProtectUefiImage (
394 IN EFI_LOADED_IMAGE_PROTOCOL *LoadedImage,
395 IN EFI_DEVICE_PATH_PROTOCOL *LoadedImageDevicePath
396 )
397 {
398 VOID *ImageAddress;
399 EFI_IMAGE_DOS_HEADER *DosHdr;
400 UINT32 PeCoffHeaderOffset;
401 UINT32 SectionAlignment;
402 EFI_IMAGE_SECTION_HEADER *Section;
403 EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr;
404 UINT8 *Name;
405 UINTN Index;
406 IMAGE_PROPERTIES_RECORD *ImageRecord;
407 CHAR8 *PdbPointer;
408 IMAGE_PROPERTIES_RECORD_CODE_SECTION *ImageRecordCodeSection;
409 UINT16 Magic;
410 BOOLEAN IsAligned;
411 UINT32 ProtectionPolicy;
412
413 DEBUG ((DEBUG_INFO, "ProtectUefiImageCommon - 0x%x\n", LoadedImage));
414 DEBUG ((DEBUG_INFO, " - 0x%016lx - 0x%016lx\n", (EFI_PHYSICAL_ADDRESS)(UINTN)LoadedImage->ImageBase, LoadedImage->ImageSize));
415
416 if (gCpu == NULL) {
417 return ;
418 }
419
420 ProtectionPolicy = GetUefiImageProtectionPolicy (LoadedImage, LoadedImageDevicePath);
421 switch (ProtectionPolicy) {
422 case DO_NOT_PROTECT:
423 return ;
424 case PROTECT_IF_ALIGNED_ELSE_ALLOW:
425 break;
426 default:
427 ASSERT(FALSE);
428 return ;
429 }
430
431 ImageRecord = AllocateZeroPool (sizeof(*ImageRecord));
432 if (ImageRecord == NULL) {
433 return ;
434 }
435 ImageRecord->Signature = IMAGE_PROPERTIES_RECORD_SIGNATURE;
436
437 //
438 // Step 1: record whole region
439 //
440 ImageRecord->ImageBase = (EFI_PHYSICAL_ADDRESS)(UINTN)LoadedImage->ImageBase;
441 ImageRecord->ImageSize = LoadedImage->ImageSize;
442
443 ImageAddress = LoadedImage->ImageBase;
444
445 PdbPointer = PeCoffLoaderGetPdbPointer ((VOID*) (UINTN) ImageAddress);
446 if (PdbPointer != NULL) {
447 DEBUG ((DEBUG_VERBOSE, " Image - %a\n", PdbPointer));
448 }
449
450 //
451 // Check PE/COFF image
452 //
453 DosHdr = (EFI_IMAGE_DOS_HEADER *) (UINTN) ImageAddress;
454 PeCoffHeaderOffset = 0;
455 if (DosHdr->e_magic == EFI_IMAGE_DOS_SIGNATURE) {
456 PeCoffHeaderOffset = DosHdr->e_lfanew;
457 }
458
459 Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *)((UINT8 *) (UINTN) ImageAddress + PeCoffHeaderOffset);
460 if (Hdr.Pe32->Signature != EFI_IMAGE_NT_SIGNATURE) {
461 DEBUG ((DEBUG_VERBOSE, "Hdr.Pe32->Signature invalid - 0x%x\n", Hdr.Pe32->Signature));
462 // It might be image in SMM.
463 goto Finish;
464 }
465
466 //
467 // Get SectionAlignment
468 //
469 if (Hdr.Pe32->FileHeader.Machine == IMAGE_FILE_MACHINE_IA64 && Hdr.Pe32->OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
470 //
471 // NOTE: Some versions of Linux ELILO for Itanium have an incorrect magic value
472 // in the PE/COFF Header. If the MachineType is Itanium(IA64) and the
473 // Magic value in the OptionalHeader is EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC
474 // then override the magic value to EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC
475 //
476 Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
477 } else {
478 //
479 // Get the magic value from the PE/COFF Optional Header
480 //
481 Magic = Hdr.Pe32->OptionalHeader.Magic;
482 }
483 if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
484 SectionAlignment = Hdr.Pe32->OptionalHeader.SectionAlignment;
485 } else {
486 SectionAlignment = Hdr.Pe32Plus->OptionalHeader.SectionAlignment;
487 }
488
489 IsAligned = IsMemoryProtectionSectionAligned (SectionAlignment, LoadedImage->ImageCodeType);
490 if (!IsAligned) {
491 DEBUG ((DEBUG_VERBOSE, "!!!!!!!! ProtectUefiImageCommon - Section Alignment(0x%x) is incorrect !!!!!!!!\n",
492 SectionAlignment));
493 PdbPointer = PeCoffLoaderGetPdbPointer ((VOID*) (UINTN) ImageAddress);
494 if (PdbPointer != NULL) {
495 DEBUG ((DEBUG_VERBOSE, "!!!!!!!! Image - %a !!!!!!!!\n", PdbPointer));
496 }
497 goto Finish;
498 }
499
500 Section = (EFI_IMAGE_SECTION_HEADER *) (
501 (UINT8 *) (UINTN) ImageAddress +
502 PeCoffHeaderOffset +
503 sizeof(UINT32) +
504 sizeof(EFI_IMAGE_FILE_HEADER) +
505 Hdr.Pe32->FileHeader.SizeOfOptionalHeader
506 );
507 ImageRecord->CodeSegmentCount = 0;
508 InitializeListHead (&ImageRecord->CodeSegmentList);
509 for (Index = 0; Index < Hdr.Pe32->FileHeader.NumberOfSections; Index++) {
510 Name = Section[Index].Name;
511 DEBUG ((
512 DEBUG_VERBOSE,
513 " Section - '%c%c%c%c%c%c%c%c'\n",
514 Name[0],
515 Name[1],
516 Name[2],
517 Name[3],
518 Name[4],
519 Name[5],
520 Name[6],
521 Name[7]
522 ));
523
524 //
525 // Instead of assuming that a PE/COFF section of type EFI_IMAGE_SCN_CNT_CODE
526 // can always be mapped read-only, classify a section as a code section only
527 // if it has the executable attribute set and the writable attribute cleared.
528 //
529 // This adheres more closely to the PE/COFF spec, and avoids issues with
530 // Linux OS loaders that may consist of a single read/write/execute section.
531 //
532 if ((Section[Index].Characteristics & (EFI_IMAGE_SCN_MEM_WRITE | EFI_IMAGE_SCN_MEM_EXECUTE)) == EFI_IMAGE_SCN_MEM_EXECUTE) {
533 DEBUG ((DEBUG_VERBOSE, " VirtualSize - 0x%08x\n", Section[Index].Misc.VirtualSize));
534 DEBUG ((DEBUG_VERBOSE, " VirtualAddress - 0x%08x\n", Section[Index].VirtualAddress));
535 DEBUG ((DEBUG_VERBOSE, " SizeOfRawData - 0x%08x\n", Section[Index].SizeOfRawData));
536 DEBUG ((DEBUG_VERBOSE, " PointerToRawData - 0x%08x\n", Section[Index].PointerToRawData));
537 DEBUG ((DEBUG_VERBOSE, " PointerToRelocations - 0x%08x\n", Section[Index].PointerToRelocations));
538 DEBUG ((DEBUG_VERBOSE, " PointerToLinenumbers - 0x%08x\n", Section[Index].PointerToLinenumbers));
539 DEBUG ((DEBUG_VERBOSE, " NumberOfRelocations - 0x%08x\n", Section[Index].NumberOfRelocations));
540 DEBUG ((DEBUG_VERBOSE, " NumberOfLinenumbers - 0x%08x\n", Section[Index].NumberOfLinenumbers));
541 DEBUG ((DEBUG_VERBOSE, " Characteristics - 0x%08x\n", Section[Index].Characteristics));
542
543 //
544 // Step 2: record code section
545 //
546 ImageRecordCodeSection = AllocatePool (sizeof(*ImageRecordCodeSection));
547 if (ImageRecordCodeSection == NULL) {
548 return ;
549 }
550 ImageRecordCodeSection->Signature = IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE;
551
552 ImageRecordCodeSection->CodeSegmentBase = (UINTN)ImageAddress + Section[Index].VirtualAddress;
553 ImageRecordCodeSection->CodeSegmentSize = ALIGN_VALUE(Section[Index].SizeOfRawData, SectionAlignment);
554
555 DEBUG ((DEBUG_VERBOSE, "ImageCode: 0x%016lx - 0x%016lx\n", ImageRecordCodeSection->CodeSegmentBase, ImageRecordCodeSection->CodeSegmentSize));
556
557 InsertTailList (&ImageRecord->CodeSegmentList, &ImageRecordCodeSection->Link);
558 ImageRecord->CodeSegmentCount++;
559 }
560 }
561
562 if (ImageRecord->CodeSegmentCount == 0) {
563 //
564 // If a UEFI executable consists of a single read+write+exec PE/COFF
565 // section, that isn't actually an error. The image can be launched
566 // alright, only image protection cannot be applied to it fully.
567 //
568 // One example that elicits this is (some) Linux kernels (with the EFI stub
569 // of course).
570 //
571 DEBUG ((DEBUG_WARN, "!!!!!!!! ProtectUefiImageCommon - CodeSegmentCount is 0 !!!!!!!!\n"));
572 PdbPointer = PeCoffLoaderGetPdbPointer ((VOID*) (UINTN) ImageAddress);
573 if (PdbPointer != NULL) {
574 DEBUG ((DEBUG_WARN, "!!!!!!!! Image - %a !!!!!!!!\n", PdbPointer));
575 }
576 goto Finish;
577 }
578
579 //
580 // Final
581 //
582 SortImageRecordCodeSection (ImageRecord);
583 //
584 // Check overlap all section in ImageBase/Size
585 //
586 if (!IsImageRecordCodeSectionValid (ImageRecord)) {
587 DEBUG ((DEBUG_ERROR, "IsImageRecordCodeSectionValid - FAIL\n"));
588 goto Finish;
589 }
590
591 //
592 // Round up the ImageSize, some CPU arch may return EFI_UNSUPPORTED if ImageSize is not aligned.
593 // Given that the loader always allocates full pages, we know the space after the image is not used.
594 //
595 ImageRecord->ImageSize = ALIGN_VALUE(LoadedImage->ImageSize, EFI_PAGE_SIZE);
596
597 //
598 // CPU ARCH present. Update memory attribute directly.
599 //
600 SetUefiImageProtectionAttributes (ImageRecord);
601
602 //
603 // Record the image record in the list so we can undo the protections later
604 //
605 InsertTailList (&mProtectedImageRecordList, &ImageRecord->Link);
606
607 Finish:
608 return ;
609 }
610
611 /**
612 Unprotect UEFI image.
613
614 @param[in] LoadedImage The loaded image protocol
615 @param[in] LoadedImageDevicePath The loaded image device path protocol
616 **/
617 VOID
618 UnprotectUefiImage (
619 IN EFI_LOADED_IMAGE_PROTOCOL *LoadedImage,
620 IN EFI_DEVICE_PATH_PROTOCOL *LoadedImageDevicePath
621 )
622 {
623 IMAGE_PROPERTIES_RECORD *ImageRecord;
624 LIST_ENTRY *ImageRecordLink;
625
626 if (PcdGet32(PcdImageProtectionPolicy) != 0) {
627 for (ImageRecordLink = mProtectedImageRecordList.ForwardLink;
628 ImageRecordLink != &mProtectedImageRecordList;
629 ImageRecordLink = ImageRecordLink->ForwardLink) {
630 ImageRecord = CR (
631 ImageRecordLink,
632 IMAGE_PROPERTIES_RECORD,
633 Link,
634 IMAGE_PROPERTIES_RECORD_SIGNATURE
635 );
636
637 if (ImageRecord->ImageBase == (EFI_PHYSICAL_ADDRESS)(UINTN)LoadedImage->ImageBase) {
638 SetUefiImageMemoryAttributes (ImageRecord->ImageBase,
639 ImageRecord->ImageSize,
640 0);
641 FreeImageRecord (ImageRecord);
642 return;
643 }
644 }
645 }
646 }
647
648 /**
649 Return the EFI memory permission attribute associated with memory
650 type 'MemoryType' under the configured DXE memory protection policy.
651
652 @param MemoryType Memory type.
653 **/
654 STATIC
655 UINT64
656 GetPermissionAttributeForMemoryType (
657 IN EFI_MEMORY_TYPE MemoryType
658 )
659 {
660 UINT64 TestBit;
661
662 if ((UINT32)MemoryType >= MEMORY_TYPE_OS_RESERVED_MIN) {
663 TestBit = BIT63;
664 } else if ((UINT32)MemoryType >= MEMORY_TYPE_OEM_RESERVED_MIN) {
665 TestBit = BIT62;
666 } else {
667 TestBit = LShiftU64 (1, MemoryType);
668 }
669
670 if ((PcdGet64 (PcdDxeNxMemoryProtectionPolicy) & TestBit) != 0) {
671 return EFI_MEMORY_XP;
672 } else {
673 return 0;
674 }
675 }
676
677 /**
678 Sort memory map entries based upon PhysicalStart, from low to high.
679
680 @param MemoryMap A pointer to the buffer in which firmware places
681 the current memory map.
682 @param MemoryMapSize Size, in bytes, of the MemoryMap buffer.
683 @param DescriptorSize Size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR.
684 **/
685 STATIC
686 VOID
687 SortMemoryMap (
688 IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,
689 IN UINTN MemoryMapSize,
690 IN UINTN DescriptorSize
691 )
692 {
693 EFI_MEMORY_DESCRIPTOR *MemoryMapEntry;
694 EFI_MEMORY_DESCRIPTOR *NextMemoryMapEntry;
695 EFI_MEMORY_DESCRIPTOR *MemoryMapEnd;
696 EFI_MEMORY_DESCRIPTOR TempMemoryMap;
697
698 MemoryMapEntry = MemoryMap;
699 NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize);
700 MemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) MemoryMap + MemoryMapSize);
701 while (MemoryMapEntry < MemoryMapEnd) {
702 while (NextMemoryMapEntry < MemoryMapEnd) {
703 if (MemoryMapEntry->PhysicalStart > NextMemoryMapEntry->PhysicalStart) {
704 CopyMem (&TempMemoryMap, MemoryMapEntry, sizeof(EFI_MEMORY_DESCRIPTOR));
705 CopyMem (MemoryMapEntry, NextMemoryMapEntry, sizeof(EFI_MEMORY_DESCRIPTOR));
706 CopyMem (NextMemoryMapEntry, &TempMemoryMap, sizeof(EFI_MEMORY_DESCRIPTOR));
707 }
708
709 NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (NextMemoryMapEntry, DescriptorSize);
710 }
711
712 MemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize);
713 NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize);
714 }
715 }
716
717 /**
718 Merge adjacent memory map entries if they use the same memory protection policy
719
720 @param[in, out] MemoryMap A pointer to the buffer in which firmware places
721 the current memory map.
722 @param[in, out] MemoryMapSize A pointer to the size, in bytes, of the
723 MemoryMap buffer. On input, this is the size of
724 the current memory map. On output,
725 it is the size of new memory map after merge.
726 @param[in] DescriptorSize Size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR.
727 **/
728 STATIC
729 VOID
730 MergeMemoryMapForProtectionPolicy (
731 IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,
732 IN OUT UINTN *MemoryMapSize,
733 IN UINTN DescriptorSize
734 )
735 {
736 EFI_MEMORY_DESCRIPTOR *MemoryMapEntry;
737 EFI_MEMORY_DESCRIPTOR *MemoryMapEnd;
738 UINT64 MemoryBlockLength;
739 EFI_MEMORY_DESCRIPTOR *NewMemoryMapEntry;
740 EFI_MEMORY_DESCRIPTOR *NextMemoryMapEntry;
741 UINT64 Attributes;
742
743 SortMemoryMap (MemoryMap, *MemoryMapSize, DescriptorSize);
744
745 MemoryMapEntry = MemoryMap;
746 NewMemoryMapEntry = MemoryMap;
747 MemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) MemoryMap + *MemoryMapSize);
748 while ((UINTN)MemoryMapEntry < (UINTN)MemoryMapEnd) {
749 CopyMem (NewMemoryMapEntry, MemoryMapEntry, sizeof(EFI_MEMORY_DESCRIPTOR));
750 NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize);
751
752 do {
753 MemoryBlockLength = (UINT64) (EFI_PAGES_TO_SIZE((UINTN)MemoryMapEntry->NumberOfPages));
754 Attributes = GetPermissionAttributeForMemoryType (MemoryMapEntry->Type);
755
756 if (((UINTN)NextMemoryMapEntry < (UINTN)MemoryMapEnd) &&
757 Attributes == GetPermissionAttributeForMemoryType (NextMemoryMapEntry->Type) &&
758 ((MemoryMapEntry->PhysicalStart + MemoryBlockLength) == NextMemoryMapEntry->PhysicalStart)) {
759 MemoryMapEntry->NumberOfPages += NextMemoryMapEntry->NumberOfPages;
760 if (NewMemoryMapEntry != MemoryMapEntry) {
761 NewMemoryMapEntry->NumberOfPages += NextMemoryMapEntry->NumberOfPages;
762 }
763
764 NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (NextMemoryMapEntry, DescriptorSize);
765 continue;
766 } else {
767 MemoryMapEntry = PREVIOUS_MEMORY_DESCRIPTOR (NextMemoryMapEntry, DescriptorSize);
768 break;
769 }
770 } while (TRUE);
771
772 MemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize);
773 NewMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (NewMemoryMapEntry, DescriptorSize);
774 }
775
776 *MemoryMapSize = (UINTN)NewMemoryMapEntry - (UINTN)MemoryMap;
777
778 return ;
779 }
780
781
782 /**
783 Remove exec permissions from all regions whose type is identified by
784 PcdDxeNxMemoryProtectionPolicy.
785 **/
786 STATIC
787 VOID
788 InitializeDxeNxMemoryProtectionPolicy (
789 VOID
790 )
791 {
792 UINTN MemoryMapSize;
793 UINTN MapKey;
794 UINTN DescriptorSize;
795 UINT32 DescriptorVersion;
796 EFI_MEMORY_DESCRIPTOR *MemoryMap;
797 EFI_MEMORY_DESCRIPTOR *MemoryMapEntry;
798 EFI_MEMORY_DESCRIPTOR *MemoryMapEnd;
799 EFI_STATUS Status;
800 UINT64 Attributes;
801 LIST_ENTRY *Link;
802 EFI_GCD_MAP_ENTRY *Entry;
803
804 //
805 // Get the EFI memory map.
806 //
807 MemoryMapSize = 0;
808 MemoryMap = NULL;
809
810 Status = gBS->GetMemoryMap (
811 &MemoryMapSize,
812 MemoryMap,
813 &MapKey,
814 &DescriptorSize,
815 &DescriptorVersion
816 );
817 ASSERT (Status == EFI_BUFFER_TOO_SMALL);
818 do {
819 MemoryMap = (EFI_MEMORY_DESCRIPTOR *) AllocatePool (MemoryMapSize);
820 ASSERT (MemoryMap != NULL);
821 Status = gBS->GetMemoryMap (
822 &MemoryMapSize,
823 MemoryMap,
824 &MapKey,
825 &DescriptorSize,
826 &DescriptorVersion
827 );
828 if (EFI_ERROR (Status)) {
829 FreePool (MemoryMap);
830 }
831 } while (Status == EFI_BUFFER_TOO_SMALL);
832 ASSERT_EFI_ERROR (Status);
833
834 DEBUG ((
835 DEBUG_INFO,
836 "%a: applying strict permissions to active memory regions\n",
837 __FUNCTION__
838 ));
839
840 MergeMemoryMapForProtectionPolicy (MemoryMap, &MemoryMapSize, DescriptorSize);
841
842 MemoryMapEntry = MemoryMap;
843 MemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) MemoryMap + MemoryMapSize);
844 while ((UINTN) MemoryMapEntry < (UINTN) MemoryMapEnd) {
845
846 Attributes = GetPermissionAttributeForMemoryType (MemoryMapEntry->Type);
847 if (Attributes != 0) {
848 if (MemoryMapEntry->PhysicalStart == 0 &&
849 PcdGet8 (PcdNullPointerDetectionPropertyMask) != 0) {
850
851 ASSERT (MemoryMapEntry->NumberOfPages > 0);
852 //
853 // Skip page 0 if NULL pointer detection is enabled to avoid attributes
854 // overwritten.
855 //
856 SetUefiImageMemoryAttributes (
857 MemoryMapEntry->PhysicalStart + EFI_PAGE_SIZE,
858 LShiftU64 (MemoryMapEntry->NumberOfPages - 1, EFI_PAGE_SHIFT),
859 Attributes);
860 } else {
861 SetUefiImageMemoryAttributes (
862 MemoryMapEntry->PhysicalStart,
863 LShiftU64 (MemoryMapEntry->NumberOfPages, EFI_PAGE_SHIFT),
864 Attributes);
865 }
866 }
867 MemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize);
868 }
869 FreePool (MemoryMap);
870
871 //
872 // Apply the policy for RAM regions that we know are present and
873 // accessible, but have not been added to the UEFI memory map (yet).
874 //
875 if (GetPermissionAttributeForMemoryType (EfiConventionalMemory) != 0) {
876 DEBUG ((
877 DEBUG_INFO,
878 "%a: applying strict permissions to inactive memory regions\n",
879 __FUNCTION__
880 ));
881
882 CoreAcquireGcdMemoryLock ();
883
884 Link = mGcdMemorySpaceMap.ForwardLink;
885 while (Link != &mGcdMemorySpaceMap) {
886
887 Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);
888
889 if (Entry->GcdMemoryType == EfiGcdMemoryTypeReserved &&
890 Entry->EndAddress < MAX_ADDRESS &&
891 (Entry->Capabilities & (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED)) ==
892 (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED)) {
893
894 Attributes = GetPermissionAttributeForMemoryType (EfiConventionalMemory) |
895 (Entry->Attributes & CACHE_ATTRIBUTE_MASK);
896
897 DEBUG ((DEBUG_INFO,
898 "Untested GCD memory space region: - 0x%016lx - 0x%016lx (0x%016lx)\n",
899 Entry->BaseAddress, Entry->EndAddress - Entry->BaseAddress + 1,
900 Attributes));
901
902 ASSERT(gCpu != NULL);
903 gCpu->SetMemoryAttributes (gCpu, Entry->BaseAddress,
904 Entry->EndAddress - Entry->BaseAddress + 1, Attributes);
905 }
906
907 Link = Link->ForwardLink;
908 }
909 CoreReleaseGcdMemoryLock ();
910 }
911 }
912
913
914 /**
915 A notification for CPU_ARCH protocol.
916
917 @param[in] Event Event whose notification function is being invoked.
918 @param[in] Context Pointer to the notification function's context,
919 which is implementation-dependent.
920
921 **/
922 VOID
923 EFIAPI
924 MemoryProtectionCpuArchProtocolNotify (
925 IN EFI_EVENT Event,
926 IN VOID *Context
927 )
928 {
929 EFI_STATUS Status;
930 EFI_LOADED_IMAGE_PROTOCOL *LoadedImage;
931 EFI_DEVICE_PATH_PROTOCOL *LoadedImageDevicePath;
932 UINTN NoHandles;
933 EFI_HANDLE *HandleBuffer;
934 UINTN Index;
935
936 DEBUG ((DEBUG_INFO, "MemoryProtectionCpuArchProtocolNotify:\n"));
937 Status = CoreLocateProtocol (&gEfiCpuArchProtocolGuid, NULL, (VOID **)&gCpu);
938 if (EFI_ERROR (Status)) {
939 return;
940 }
941
942 //
943 // Apply the memory protection policy on non-BScode/RTcode regions.
944 //
945 if (PcdGet64 (PcdDxeNxMemoryProtectionPolicy) != 0) {
946 InitializeDxeNxMemoryProtectionPolicy ();
947 }
948
949 if (mImageProtectionPolicy == 0) {
950 return;
951 }
952
953 Status = gBS->LocateHandleBuffer (
954 ByProtocol,
955 &gEfiLoadedImageProtocolGuid,
956 NULL,
957 &NoHandles,
958 &HandleBuffer
959 );
960 if (EFI_ERROR (Status) && (NoHandles == 0)) {
961 return ;
962 }
963
964 for (Index = 0; Index < NoHandles; Index++) {
965 Status = gBS->HandleProtocol (
966 HandleBuffer[Index],
967 &gEfiLoadedImageProtocolGuid,
968 (VOID **)&LoadedImage
969 );
970 if (EFI_ERROR(Status)) {
971 continue;
972 }
973 Status = gBS->HandleProtocol (
974 HandleBuffer[Index],
975 &gEfiLoadedImageDevicePathProtocolGuid,
976 (VOID **)&LoadedImageDevicePath
977 );
978 if (EFI_ERROR(Status)) {
979 LoadedImageDevicePath = NULL;
980 }
981
982 ProtectUefiImage (LoadedImage, LoadedImageDevicePath);
983 }
984
985 CoreCloseEvent (Event);
986 return;
987 }
988
989 /**
990 ExitBootServices Callback function for memory protection.
991 **/
992 VOID
993 MemoryProtectionExitBootServicesCallback (
994 VOID
995 )
996 {
997 EFI_RUNTIME_IMAGE_ENTRY *RuntimeImage;
998 LIST_ENTRY *Link;
999
1000 //
1001 // We need remove the RT protection, because RT relocation need write code segment
1002 // at SetVirtualAddressMap(). We cannot assume OS/Loader has taken over page table at that time.
1003 //
1004 // Firmware does not own page tables after ExitBootServices(), so the OS would
1005 // have to relax protection of RT code pages across SetVirtualAddressMap(), or
1006 // delay setting protections on RT code pages until after SetVirtualAddressMap().
1007 // OS may set protection on RT based upon EFI_MEMORY_ATTRIBUTES_TABLE later.
1008 //
1009 if (mImageProtectionPolicy != 0) {
1010 for (Link = gRuntime->ImageHead.ForwardLink; Link != &gRuntime->ImageHead; Link = Link->ForwardLink) {
1011 RuntimeImage = BASE_CR (Link, EFI_RUNTIME_IMAGE_ENTRY, Link);
1012 SetUefiImageMemoryAttributes ((UINT64)(UINTN)RuntimeImage->ImageBase, ALIGN_VALUE(RuntimeImage->ImageSize, EFI_PAGE_SIZE), 0);
1013 }
1014 }
1015 }
1016
1017 /**
1018 Disable NULL pointer detection after EndOfDxe. This is a workaround resort in
1019 order to skip unfixable NULL pointer access issues detected in OptionROM or
1020 boot loaders.
1021
1022 @param[in] Event The Event this notify function registered to.
1023 @param[in] Context Pointer to the context data registered to the Event.
1024 **/
1025 VOID
1026 EFIAPI
1027 DisableNullDetectionAtTheEndOfDxe (
1028 EFI_EVENT Event,
1029 VOID *Context
1030 )
1031 {
1032 EFI_STATUS Status;
1033 EFI_GCD_MEMORY_SPACE_DESCRIPTOR Desc;
1034
1035 DEBUG ((DEBUG_INFO, "DisableNullDetectionAtTheEndOfDxe(): start\r\n"));
1036 //
1037 // Disable NULL pointer detection by enabling first 4K page
1038 //
1039 Status = CoreGetMemorySpaceDescriptor (0, &Desc);
1040 ASSERT_EFI_ERROR (Status);
1041
1042 if ((Desc.Capabilities & EFI_MEMORY_RP) == 0) {
1043 Status = CoreSetMemorySpaceCapabilities (
1044 0,
1045 EFI_PAGE_SIZE,
1046 Desc.Capabilities | EFI_MEMORY_RP
1047 );
1048 ASSERT_EFI_ERROR (Status);
1049 }
1050
1051 Status = CoreSetMemorySpaceAttributes (
1052 0,
1053 EFI_PAGE_SIZE,
1054 Desc.Attributes & ~EFI_MEMORY_RP
1055 );
1056 ASSERT_EFI_ERROR (Status);
1057
1058 CoreCloseEvent (Event);
1059 DEBUG ((DEBUG_INFO, "DisableNullDetectionAtTheEndOfDxe(): end\r\n"));
1060
1061 return;
1062 }
1063
1064 /**
1065 Initialize Memory Protection support.
1066 **/
1067 VOID
1068 EFIAPI
1069 CoreInitializeMemoryProtection (
1070 VOID
1071 )
1072 {
1073 EFI_STATUS Status;
1074 EFI_EVENT Event;
1075 EFI_EVENT EndOfDxeEvent;
1076 VOID *Registration;
1077
1078 mImageProtectionPolicy = PcdGet32(PcdImageProtectionPolicy);
1079
1080 InitializeListHead (&mProtectedImageRecordList);
1081
1082 //
1083 // Sanity check the PcdDxeNxMemoryProtectionPolicy setting:
1084 // - code regions should have no EFI_MEMORY_XP attribute
1085 // - EfiConventionalMemory and EfiBootServicesData should use the
1086 // same attribute
1087 //
1088 ASSERT ((GetPermissionAttributeForMemoryType (EfiBootServicesCode) & EFI_MEMORY_XP) == 0);
1089 ASSERT ((GetPermissionAttributeForMemoryType (EfiRuntimeServicesCode) & EFI_MEMORY_XP) == 0);
1090 ASSERT ((GetPermissionAttributeForMemoryType (EfiLoaderCode) & EFI_MEMORY_XP) == 0);
1091 ASSERT (GetPermissionAttributeForMemoryType (EfiBootServicesData) ==
1092 GetPermissionAttributeForMemoryType (EfiConventionalMemory));
1093
1094 if (mImageProtectionPolicy != 0 || PcdGet64 (PcdDxeNxMemoryProtectionPolicy) != 0) {
1095 Status = CoreCreateEvent (
1096 EVT_NOTIFY_SIGNAL,
1097 TPL_CALLBACK,
1098 MemoryProtectionCpuArchProtocolNotify,
1099 NULL,
1100 &Event
1101 );
1102 ASSERT_EFI_ERROR(Status);
1103
1104 //
1105 // Register for protocol notifactions on this event
1106 //
1107 Status = CoreRegisterProtocolNotify (
1108 &gEfiCpuArchProtocolGuid,
1109 Event,
1110 &Registration
1111 );
1112 ASSERT_EFI_ERROR(Status);
1113 }
1114
1115 //
1116 // Register a callback to disable NULL pointer detection at EndOfDxe
1117 //
1118 if ((PcdGet8 (PcdNullPointerDetectionPropertyMask) & (BIT0|BIT7))
1119 == (BIT0|BIT7)) {
1120 Status = CoreCreateEventEx (
1121 EVT_NOTIFY_SIGNAL,
1122 TPL_NOTIFY,
1123 DisableNullDetectionAtTheEndOfDxe,
1124 NULL,
1125 &gEfiEndOfDxeEventGroupGuid,
1126 &EndOfDxeEvent
1127 );
1128 ASSERT_EFI_ERROR (Status);
1129 }
1130
1131 return ;
1132 }
1133
1134 /**
1135 Returns whether we are currently executing in SMM mode.
1136 **/
1137 STATIC
1138 BOOLEAN
1139 IsInSmm (
1140 VOID
1141 )
1142 {
1143 BOOLEAN InSmm;
1144
1145 InSmm = FALSE;
1146 if (gSmmBase2 != NULL) {
1147 gSmmBase2->InSmm (gSmmBase2, &InSmm);
1148 }
1149 return InSmm;
1150 }
1151
1152 /**
1153 Manage memory permission attributes on a memory range, according to the
1154 configured DXE memory protection policy.
1155
1156 @param OldType The old memory type of the range
1157 @param NewType The new memory type of the range
1158 @param Memory The base address of the range
1159 @param Length The size of the range (in bytes)
1160
1161 @return EFI_SUCCESS If we are executing in SMM mode. No permission attributes
1162 are updated in this case
1163 @return EFI_SUCCESS If the the CPU arch protocol is not installed yet
1164 @return EFI_SUCCESS If no DXE memory protection policy has been configured
1165 @return EFI_SUCCESS If OldType and NewType use the same permission attributes
1166 @return other Return value of gCpu->SetMemoryAttributes()
1167
1168 **/
1169 EFI_STATUS
1170 EFIAPI
1171 ApplyMemoryProtectionPolicy (
1172 IN EFI_MEMORY_TYPE OldType,
1173 IN EFI_MEMORY_TYPE NewType,
1174 IN EFI_PHYSICAL_ADDRESS Memory,
1175 IN UINT64 Length
1176 )
1177 {
1178 UINT64 OldAttributes;
1179 UINT64 NewAttributes;
1180
1181 //
1182 // The policy configured in PcdDxeNxMemoryProtectionPolicy
1183 // does not apply to allocations performed in SMM mode.
1184 //
1185 if (IsInSmm ()) {
1186 return EFI_SUCCESS;
1187 }
1188
1189 //
1190 // If the CPU arch protocol is not installed yet, we cannot manage memory
1191 // permission attributes, and it is the job of the driver that installs this
1192 // protocol to set the permissions on existing allocations.
1193 //
1194 if (gCpu == NULL) {
1195 return EFI_SUCCESS;
1196 }
1197
1198 //
1199 // Check if a DXE memory protection policy has been configured
1200 //
1201 if (PcdGet64 (PcdDxeNxMemoryProtectionPolicy) == 0) {
1202 return EFI_SUCCESS;
1203 }
1204
1205 //
1206 // Update the executable permissions according to the DXE memory
1207 // protection policy, but only if
1208 // - the policy is different between the old and the new type, or
1209 // - this is a newly added region (OldType == EfiMaxMemoryType)
1210 //
1211 NewAttributes = GetPermissionAttributeForMemoryType (NewType);
1212
1213 if (OldType != EfiMaxMemoryType) {
1214 OldAttributes = GetPermissionAttributeForMemoryType (OldType);
1215 if (OldAttributes == NewAttributes) {
1216 // policy is the same between OldType and NewType
1217 return EFI_SUCCESS;
1218 }
1219 } else if (NewAttributes == 0) {
1220 // newly added region of a type that does not require protection
1221 return EFI_SUCCESS;
1222 }
1223
1224 return gCpu->SetMemoryAttributes (gCpu, Memory, Length, NewAttributes);
1225 }