]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Core/Pei/Dispatcher/Dispatcher.c
MdeModulePkg: Remove variables that are set, but not used
[mirror_edk2.git] / MdeModulePkg / Core / Pei / Dispatcher / Dispatcher.c
1 /** @file
2 EFI PEI Core dispatch services
3
4 Copyright (c) 2006 - 2011, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "PeiMain.h"
16
17 ///
18 /// temporary memory is filled with this initial value during SEC phase
19 ///
20 #define INIT_CAR_VALUE 0x5AA55AA5
21
22 typedef struct {
23 EFI_STATUS_CODE_DATA DataHeader;
24 EFI_HANDLE Handle;
25 } PEIM_FILE_HANDLE_EXTENDED_DATA;
26
27 /**
28
29 Discover all Peims and optional Apriori file in one FV. There is at most one
30 Apriori file in one FV.
31
32
33 @param Private Pointer to the private data passed in from caller
34 @param CoreFileHandle The instance of PEI_CORE_FV_HANDLE.
35
36 **/
37 VOID
38 DiscoverPeimsAndOrderWithApriori (
39 IN PEI_CORE_INSTANCE *Private,
40 IN PEI_CORE_FV_HANDLE *CoreFileHandle
41 )
42 {
43 EFI_STATUS Status;
44 EFI_PEI_FILE_HANDLE FileHandle;
45 EFI_PEI_FILE_HANDLE AprioriFileHandle;
46 EFI_GUID *Apriori;
47 UINTN Index;
48 UINTN Index2;
49 UINTN PeimIndex;
50 UINTN PeimCount;
51 EFI_GUID *Guid;
52 EFI_PEI_FILE_HANDLE TempFileHandles[FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv)];
53 EFI_GUID FileGuid[FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv)];
54 EFI_PEI_FIRMWARE_VOLUME_PPI *FvPpi;
55 EFI_FV_FILE_INFO FileInfo;
56
57 FvPpi = CoreFileHandle->FvPpi;
58
59 //
60 // Walk the FV and find all the PEIMs and the Apriori file.
61 //
62 AprioriFileHandle = NULL;
63 Private->CurrentFvFileHandles[0] = NULL;
64 Guid = NULL;
65 FileHandle = NULL;
66
67 //
68 // If the current Fv has been scanned, directly get its cachable record.
69 //
70 if (Private->Fv[Private->CurrentPeimFvCount].ScanFv) {
71 CopyMem (Private->CurrentFvFileHandles, Private->Fv[Private->CurrentPeimFvCount].FvFileHandles, sizeof (Private->CurrentFvFileHandles));
72 return;
73 }
74
75 //
76 // Go ahead to scan this Fv, and cache FileHandles within it.
77 //
78 for (PeimCount = 0; PeimCount < FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv); PeimCount++) {
79 Status = FvPpi->FindFileByType (FvPpi, PEI_CORE_INTERNAL_FFS_FILE_DISPATCH_TYPE, CoreFileHandle->FvHandle, &FileHandle);
80 if (Status != EFI_SUCCESS) {
81 break;
82 }
83
84 Private->CurrentFvFileHandles[PeimCount] = FileHandle;
85 }
86
87 //
88 // Check whether the count of Peims exceeds the max support PEIMs in a FV image
89 // If more Peims are required in a FV image, PcdPeiCoreMaxPeimPerFv can be set to a larger value in DSC file.
90 //
91 ASSERT (PeimCount < FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv));
92
93 //
94 // Get Apriori File handle
95 //
96 Private->AprioriCount = 0;
97 Status = FvPpi->FindFileByName (FvPpi, &gPeiAprioriFileNameGuid, &CoreFileHandle->FvHandle, &AprioriFileHandle);
98 if (!EFI_ERROR(Status) && AprioriFileHandle != NULL) {
99 //
100 // Read the Apriori file
101 //
102 Status = FvPpi->FindSectionByType (FvPpi, EFI_SECTION_RAW, AprioriFileHandle, (VOID **) &Apriori);
103 if (!EFI_ERROR (Status)) {
104 //
105 // Calculate the number of PEIMs in the A Priori list
106 //
107 Status = FvPpi->GetFileInfo (FvPpi, AprioriFileHandle, &FileInfo);
108 ASSERT_EFI_ERROR (Status);
109 Private->AprioriCount = FileInfo.BufferSize;
110 if (IS_SECTION2 (FileInfo.Buffer)) {
111 Private->AprioriCount -= sizeof (EFI_COMMON_SECTION_HEADER2);
112 } else {
113 Private->AprioriCount -= sizeof (EFI_COMMON_SECTION_HEADER);
114 }
115 Private->AprioriCount /= sizeof (EFI_GUID);
116
117 ZeroMem (FileGuid, sizeof (FileGuid));
118 for (Index = 0; Index < PeimCount; Index++) {
119 //
120 // Make an array of file name guids that matches the FileHandle array so we can convert
121 // quickly from file name to file handle
122 //
123 Status = FvPpi->GetFileInfo (FvPpi, Private->CurrentFvFileHandles[Index], &FileInfo);
124 CopyMem (&FileGuid[Index], &FileInfo.FileName, sizeof(EFI_GUID));
125 }
126
127 //
128 // Walk through FileGuid array to find out who is invalid PEIM guid in Apriori file.
129 // Add available PEIMs in Apriori file into TempFileHandles array at first.
130 //
131 Index2 = 0;
132 for (Index = 0; Index2 < Private->AprioriCount; Index++) {
133 while (Index2 < Private->AprioriCount) {
134 Guid = ScanGuid (FileGuid, PeimCount * sizeof (EFI_GUID), &Apriori[Index2++]);
135 if (Guid != NULL) {
136 break;
137 }
138 }
139 if (Guid == NULL) {
140 break;
141 }
142 PeimIndex = ((UINTN)Guid - (UINTN)&FileGuid[0])/sizeof (EFI_GUID);
143 TempFileHandles[Index] = Private->CurrentFvFileHandles[PeimIndex];
144
145 //
146 // Since we have copied the file handle we can remove it from this list.
147 //
148 Private->CurrentFvFileHandles[PeimIndex] = NULL;
149 }
150
151 //
152 // Update valid Aprioricount
153 //
154 Private->AprioriCount = Index;
155
156 //
157 // Add in any PEIMs not in the Apriori file
158 //
159 for (;Index < PeimCount; Index++) {
160 for (Index2 = 0; Index2 < PeimCount; Index2++) {
161 if (Private->CurrentFvFileHandles[Index2] != NULL) {
162 TempFileHandles[Index] = Private->CurrentFvFileHandles[Index2];
163 Private->CurrentFvFileHandles[Index2] = NULL;
164 break;
165 }
166 }
167 }
168 //
169 //Index the end of array contains re-range Pei moudle.
170 //
171 TempFileHandles[Index] = NULL;
172
173 //
174 // Private->CurrentFvFileHandles is currently in PEIM in the FV order.
175 // We need to update it to start with files in the A Priori list and
176 // then the remaining files in PEIM order.
177 //
178 CopyMem (Private->CurrentFvFileHandles, TempFileHandles, sizeof (Private->CurrentFvFileHandles));
179 }
180 }
181 //
182 // Cache the current Fv File Handle. So that we don't have to scan the Fv again.
183 // Instead, we can retrieve the file handles within this Fv from cachable data.
184 //
185 Private->Fv[Private->CurrentPeimFvCount].ScanFv = TRUE;
186 CopyMem (Private->Fv[Private->CurrentPeimFvCount].FvFileHandles, Private->CurrentFvFileHandles, sizeof (Private->CurrentFvFileHandles));
187
188 }
189
190 //
191 // This is the minimum memory required by DxeCore initialization. When LMFA feature enabled,
192 // This part of memory still need reserved on the very top of memory so that the DXE Core could
193 // use these memory for data initialization. This macro should be sync with the same marco
194 // defined in DXE Core.
195 //
196 #define MINIMUM_INITIAL_MEMORY_SIZE 0x10000
197 /**
198 This function is to test if the memory range described in resource HOB is available or not.
199
200 This function should only be invoked when Loading Module at Fixed Address(LMFA) feature is enabled. Some platform may allocate the
201 memory before PeiLoadFixAddressHook in invoked. so this function is to test if the memory range described by the input resource HOB is
202 available or not.
203
204 @param PrivateData Pointer to the private data passed in from caller
205 @param ResourceHob Pointer to a resource HOB which described the memory range described by the input resource HOB
206 **/
207 BOOLEAN
208 PeiLoadFixAddressIsMemoryRangeAvailable (
209 IN PEI_CORE_INSTANCE *PrivateData,
210 IN EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob
211 )
212 {
213 EFI_HOB_MEMORY_ALLOCATION *MemoryHob;
214 BOOLEAN IsAvailable;
215 EFI_PEI_HOB_POINTERS Hob;
216
217 IsAvailable = TRUE;
218 if (PrivateData == NULL || ResourceHob == NULL) {
219 return FALSE;
220 }
221 //
222 // test if the memory range describe in the HOB is already allocated.
223 //
224 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
225 //
226 // See if this is a memory allocation HOB
227 //
228 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_MEMORY_ALLOCATION) {
229 MemoryHob = Hob.MemoryAllocation;
230 if(MemoryHob->AllocDescriptor.MemoryBaseAddress == ResourceHob->PhysicalStart &&
231 MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength == ResourceHob->PhysicalStart + ResourceHob->ResourceLength) {
232 IsAvailable = FALSE;
233 break;
234 }
235 }
236 }
237
238 return IsAvailable;
239
240 }
241 /**
242 Hook function for Loading Module at Fixed Address feature
243
244 This function should only be invoked when Loading Module at Fixed Address(LMFA) feature is enabled. When feature is
245 configured as Load Modules at Fix Absolute Address, this function is to validate the top address assigned by user. When
246 feature is configured as Load Modules at Fixed Offset, the functino is to find the top address which is TOLM-TSEG in general.
247 And also the function will re-install PEI memory.
248
249 @param PrivateData Pointer to the private data passed in from caller
250
251 **/
252 VOID
253 PeiLoadFixAddressHook(
254 IN PEI_CORE_INSTANCE *PrivateData
255 )
256 {
257 EFI_PHYSICAL_ADDRESS TopLoadingAddress;
258 UINT64 PeiMemorySize;
259 UINT64 TotalReservedMemorySize;
260 UINT64 MemoryRangeEnd;
261 EFI_PHYSICAL_ADDRESS HighAddress;
262 EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob;
263 EFI_HOB_RESOURCE_DESCRIPTOR *NextResourceHob;
264 EFI_HOB_RESOURCE_DESCRIPTOR *CurrentResourceHob;
265 EFI_PEI_HOB_POINTERS CurrentHob;
266 EFI_PEI_HOB_POINTERS Hob;
267 EFI_PEI_HOB_POINTERS NextHob;
268 EFI_HOB_MEMORY_ALLOCATION *MemoryHob;
269 //
270 // Initialize Local Variables
271 //
272 CurrentResourceHob = NULL;
273 ResourceHob = NULL;
274 NextResourceHob = NULL;
275 HighAddress = 0;
276 TopLoadingAddress = 0;
277 MemoryRangeEnd = 0;
278 CurrentHob.Raw = PrivateData->HobList.Raw;
279 PeiMemorySize = PrivateData->PhysicalMemoryLength;
280 //
281 // The top reserved memory include 3 parts: the topest range is for DXE core initialization with the size MINIMUM_INITIAL_MEMORY_SIZE
282 // then RuntimeCodePage range and Boot time code range.
283 //
284 TotalReservedMemorySize = MINIMUM_INITIAL_MEMORY_SIZE + EFI_PAGES_TO_SIZE(PcdGet32(PcdLoadFixAddressRuntimeCodePageNumber));
285 TotalReservedMemorySize+= EFI_PAGES_TO_SIZE(PcdGet32(PcdLoadFixAddressBootTimeCodePageNumber)) ;
286 //
287 // PEI memory range lies below the top reserved memory
288 //
289 TotalReservedMemorySize += PeiMemorySize;
290
291 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PcdLoadFixAddressRuntimeCodePageNumber= 0x%x.\n", PcdGet32(PcdLoadFixAddressRuntimeCodePageNumber)));
292 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PcdLoadFixAddressBootTimeCodePageNumber= 0x%x.\n", PcdGet32(PcdLoadFixAddressBootTimeCodePageNumber)));
293 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PcdLoadFixAddressPeiCodePageNumber= 0x%x.\n", PcdGet32(PcdLoadFixAddressPeiCodePageNumber)));
294 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: Total Reserved Memory Size = 0x%lx.\n", TotalReservedMemorySize));
295 //
296 // Loop through the system memory typed hob to merge the adjacent memory range
297 //
298 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
299 //
300 // See if this is a resource descriptor HOB
301 //
302 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
303
304 ResourceHob = Hob.ResourceDescriptor;
305 //
306 // If range described in this hob is not system memory or heigher than MAX_ADDRESS, ignored.
307 //
308 if (ResourceHob->ResourceType != EFI_RESOURCE_SYSTEM_MEMORY &&
309 ResourceHob->PhysicalStart + ResourceHob->ResourceLength > MAX_ADDRESS) {
310 continue;
311 }
312
313 for (NextHob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(NextHob); NextHob.Raw = GET_NEXT_HOB(NextHob)) {
314 if (NextHob.Raw == Hob.Raw){
315 continue;
316 }
317 //
318 // See if this is a resource descriptor HOB
319 //
320 if (GET_HOB_TYPE (NextHob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
321
322 NextResourceHob = NextHob.ResourceDescriptor;
323 //
324 // test if range described in this NextResourceHob is system memory and have the same attribute.
325 // Note: Here is a assumption that system memory should always be healthy even without test.
326 //
327 if (NextResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
328 (((NextResourceHob->ResourceAttribute^ResourceHob->ResourceAttribute)&(~EFI_RESOURCE_ATTRIBUTE_TESTED)) == 0)){
329
330 //
331 // See if the memory range described in ResourceHob and NextResourceHob is adjacent
332 //
333 if ((ResourceHob->PhysicalStart <= NextResourceHob->PhysicalStart &&
334 ResourceHob->PhysicalStart + ResourceHob->ResourceLength >= NextResourceHob->PhysicalStart)||
335 (ResourceHob->PhysicalStart >= NextResourceHob->PhysicalStart&&
336 ResourceHob->PhysicalStart <= NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength)) {
337
338 MemoryRangeEnd = ((ResourceHob->PhysicalStart + ResourceHob->ResourceLength)>(NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength)) ?
339 (ResourceHob->PhysicalStart + ResourceHob->ResourceLength):(NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength);
340
341 ResourceHob->PhysicalStart = (ResourceHob->PhysicalStart < NextResourceHob->PhysicalStart) ?
342 ResourceHob->PhysicalStart : NextResourceHob->PhysicalStart;
343
344
345 ResourceHob->ResourceLength = (MemoryRangeEnd - ResourceHob->PhysicalStart);
346
347 ResourceHob->ResourceAttribute = ResourceHob->ResourceAttribute & (~EFI_RESOURCE_ATTRIBUTE_TESTED);
348 //
349 // Delete the NextResourceHob by marking it as unused.
350 //
351 GET_HOB_TYPE (NextHob) = EFI_HOB_TYPE_UNUSED;
352
353 }
354 }
355 }
356 }
357 }
358 }
359 //
360 // Some platform is already allocated pages before the HOB re-org. Here to build dedicated resource HOB to describe
361 // the allocated memory range
362 //
363 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
364 //
365 // See if this is a memory allocation HOB
366 //
367 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_MEMORY_ALLOCATION) {
368 MemoryHob = Hob.MemoryAllocation;
369 for (NextHob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(NextHob); NextHob.Raw = GET_NEXT_HOB(NextHob)) {
370 //
371 // See if this is a resource descriptor HOB
372 //
373 if (GET_HOB_TYPE (NextHob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
374 NextResourceHob = NextHob.ResourceDescriptor;
375 //
376 // If range described in this hob is not system memory or heigher than MAX_ADDRESS, ignored.
377 //
378 if (NextResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY && NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength > MAX_ADDRESS) {
379 continue;
380 }
381 //
382 // If the range describe in memory allocation HOB belongs to the memroy range described by the resource hob
383 //
384 if (MemoryHob->AllocDescriptor.MemoryBaseAddress >= NextResourceHob->PhysicalStart &&
385 MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength <= NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength) {
386 //
387 // Build seperate resource hob for this allocated range
388 //
389 if (MemoryHob->AllocDescriptor.MemoryBaseAddress > NextResourceHob->PhysicalStart) {
390 BuildResourceDescriptorHob (
391 EFI_RESOURCE_SYSTEM_MEMORY,
392 NextResourceHob->ResourceAttribute,
393 NextResourceHob->PhysicalStart,
394 (MemoryHob->AllocDescriptor.MemoryBaseAddress - NextResourceHob->PhysicalStart)
395 );
396 }
397 if (MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength < NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength) {
398 BuildResourceDescriptorHob (
399 EFI_RESOURCE_SYSTEM_MEMORY,
400 NextResourceHob->ResourceAttribute,
401 MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength,
402 (NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength -(MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength))
403 );
404 }
405 NextResourceHob->PhysicalStart = MemoryHob->AllocDescriptor.MemoryBaseAddress;
406 NextResourceHob->ResourceLength = MemoryHob->AllocDescriptor.MemoryLength;
407 break;
408 }
409 }
410 }
411 }
412 }
413
414 //
415 // Try to find and validate the TOP address.
416 //
417 if ((INT64)PcdGet64(PcdLoadModuleAtFixAddressEnable) > 0 ) {
418 //
419 // The LMFA feature is enabled as load module at fixed absolute address.
420 //
421 TopLoadingAddress = (EFI_PHYSICAL_ADDRESS)PcdGet64(PcdLoadModuleAtFixAddressEnable);
422 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: Loading module at fixed absolute address.\n"));
423 //
424 // validate the Address. Loop the resource descriptor HOB to make sure the address is in valid memory range
425 //
426 if ((TopLoadingAddress & EFI_PAGE_MASK) != 0) {
427 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:Top Address 0x%lx is invalid since top address should be page align. \n", TopLoadingAddress));
428 ASSERT (FALSE);
429 }
430 //
431 // Search for a memory region that is below MAX_ADDRESS and in which TopLoadingAddress lies
432 //
433 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
434 //
435 // See if this is a resource descriptor HOB
436 //
437 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
438
439 ResourceHob = Hob.ResourceDescriptor;
440 //
441 // See if this resource descrior HOB describes tested system memory below MAX_ADDRESS
442 //
443 if (ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
444 ResourceHob->PhysicalStart + ResourceHob->ResourceLength <= MAX_ADDRESS) {
445 //
446 // See if Top address specified by user is valid.
447 //
448 if (ResourceHob->PhysicalStart + TotalReservedMemorySize < TopLoadingAddress &&
449 (ResourceHob->PhysicalStart + ResourceHob->ResourceLength - MINIMUM_INITIAL_MEMORY_SIZE) >= TopLoadingAddress &&
450 PeiLoadFixAddressIsMemoryRangeAvailable(PrivateData, ResourceHob)) {
451 CurrentResourceHob = ResourceHob;
452 CurrentHob = Hob;
453 break;
454 }
455 }
456 }
457 }
458 if (CurrentResourceHob != NULL) {
459 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO:Top Address 0x%lx is valid \n", TopLoadingAddress));
460 TopLoadingAddress += MINIMUM_INITIAL_MEMORY_SIZE;
461 } else {
462 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:Top Address 0x%lx is invalid \n", TopLoadingAddress));
463 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:The recommended Top Address for the platform is: \n"));
464 //
465 // Print the recomended Top address range.
466 //
467 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
468 //
469 // See if this is a resource descriptor HOB
470 //
471 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
472
473 ResourceHob = Hob.ResourceDescriptor;
474 //
475 // See if this resource descrior HOB describes tested system memory below MAX_ADDRESS
476 //
477 if (ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
478 ResourceHob->PhysicalStart + ResourceHob->ResourceLength <= MAX_ADDRESS) {
479 //
480 // See if Top address specified by user is valid.
481 //
482 if (ResourceHob->ResourceLength > TotalReservedMemorySize && PeiLoadFixAddressIsMemoryRangeAvailable(PrivateData, ResourceHob)) {
483 DEBUG ((EFI_D_INFO, "(0x%lx, 0x%lx)\n",
484 (ResourceHob->PhysicalStart + TotalReservedMemorySize -MINIMUM_INITIAL_MEMORY_SIZE),
485 (ResourceHob->PhysicalStart + ResourceHob->ResourceLength -MINIMUM_INITIAL_MEMORY_SIZE)
486 ));
487 }
488 }
489 }
490 }
491 //
492 // Assert here
493 //
494 ASSERT (FALSE);
495 return;
496 }
497 } else {
498 //
499 // The LMFA feature is enabled as load module at fixed offset relative to TOLM
500 // Parse the Hob list to find the topest available memory. Generally it is (TOLM - TSEG)
501 //
502 //
503 // Search for a tested memory region that is below MAX_ADDRESS
504 //
505 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
506 //
507 // See if this is a resource descriptor HOB
508 //
509 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
510
511 ResourceHob = Hob.ResourceDescriptor;
512 //
513 // See if this resource descrior HOB describes tested system memory below MAX_ADDRESS
514 //
515 if (ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
516 ResourceHob->PhysicalStart + ResourceHob->ResourceLength <= MAX_ADDRESS &&
517 ResourceHob->ResourceLength > TotalReservedMemorySize && PeiLoadFixAddressIsMemoryRangeAvailable(PrivateData, ResourceHob)) {
518 //
519 // See if this is the highest largest system memory region below MaxAddress
520 //
521 if (ResourceHob->PhysicalStart > HighAddress) {
522 CurrentResourceHob = ResourceHob;
523 CurrentHob = Hob;
524 HighAddress = CurrentResourceHob->PhysicalStart;
525 }
526 }
527 }
528 }
529 if (CurrentResourceHob == NULL) {
530 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:The System Memory is too small\n"));
531 //
532 // Assert here
533 //
534 ASSERT (FALSE);
535 return;
536 } else {
537 TopLoadingAddress = CurrentResourceHob->PhysicalStart + CurrentResourceHob->ResourceLength ;
538 }
539 }
540
541 if (CurrentResourceHob != NULL) {
542 //
543 // rebuild resource HOB for PEI memmory and reserved memory
544 //
545 BuildResourceDescriptorHob (
546 EFI_RESOURCE_SYSTEM_MEMORY,
547 (
548 EFI_RESOURCE_ATTRIBUTE_PRESENT |
549 EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
550 EFI_RESOURCE_ATTRIBUTE_TESTED |
551 EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
552 EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
553 EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
554 EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
555 ),
556 (TopLoadingAddress - TotalReservedMemorySize),
557 TotalReservedMemorySize
558 );
559 //
560 // rebuild resource for the remain memory if necessary
561 //
562 if (CurrentResourceHob->PhysicalStart < TopLoadingAddress - TotalReservedMemorySize) {
563 BuildResourceDescriptorHob (
564 EFI_RESOURCE_SYSTEM_MEMORY,
565 (
566 EFI_RESOURCE_ATTRIBUTE_PRESENT |
567 EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
568 EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
569 EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
570 EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
571 EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
572 ),
573 CurrentResourceHob->PhysicalStart,
574 (TopLoadingAddress - TotalReservedMemorySize - CurrentResourceHob->PhysicalStart)
575 );
576 }
577 if (CurrentResourceHob->PhysicalStart + CurrentResourceHob->ResourceLength > TopLoadingAddress ) {
578 BuildResourceDescriptorHob (
579 EFI_RESOURCE_SYSTEM_MEMORY,
580 (
581 EFI_RESOURCE_ATTRIBUTE_PRESENT |
582 EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
583 EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
584 EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
585 EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
586 EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
587 ),
588 TopLoadingAddress,
589 (CurrentResourceHob->PhysicalStart + CurrentResourceHob->ResourceLength - TopLoadingAddress)
590 );
591 }
592 //
593 // Delete CurrentHob by marking it as unused since the the memory range described by is rebuilt.
594 //
595 GET_HOB_TYPE (CurrentHob) = EFI_HOB_TYPE_UNUSED;
596 }
597
598 //
599 // Cache the top address for Loading Module at Fixed Address feature
600 //
601 PrivateData->LoadModuleAtFixAddressTopAddress = TopLoadingAddress - MINIMUM_INITIAL_MEMORY_SIZE;
602 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: Top address = 0x%lx\n", PrivateData->LoadModuleAtFixAddressTopAddress));
603 //
604 // reinstall the PEI memory relative to TopLoadingAddress
605 //
606 PrivateData->PhysicalMemoryBegin = TopLoadingAddress - TotalReservedMemorySize;
607 PrivateData->FreePhysicalMemoryTop = PrivateData->PhysicalMemoryBegin + PeiMemorySize;
608 }
609 /**
610 Conduct PEIM dispatch.
611
612 @param SecCoreData Points to a data structure containing information about the PEI core's operating
613 environment, such as the size and location of temporary RAM, the stack location and
614 the BFV location.
615 @param Private Pointer to the private data passed in from caller
616
617 **/
618 VOID
619 PeiDispatcher (
620 IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData,
621 IN PEI_CORE_INSTANCE *Private
622 )
623 {
624 EFI_STATUS Status;
625 UINT32 Index1;
626 UINT32 Index2;
627 CONST EFI_PEI_SERVICES **PeiServices;
628 EFI_PEI_FILE_HANDLE PeimFileHandle;
629 UINTN FvCount;
630 UINTN PeimCount;
631 UINT32 AuthenticationState;
632 EFI_PHYSICAL_ADDRESS EntryPoint;
633 EFI_PEIM_ENTRY_POINT2 PeimEntryPoint;
634 UINTN SaveCurrentPeimCount;
635 UINTN SaveCurrentFvCount;
636 EFI_PEI_FILE_HANDLE SaveCurrentFileHandle;
637 PEIM_FILE_HANDLE_EXTENDED_DATA ExtendedData;
638 EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI *TemporaryRamSupportPpi;
639 UINT64 NewStackSize;
640 EFI_PHYSICAL_ADDRESS TopOfNewStack;
641 EFI_PHYSICAL_ADDRESS TopOfOldStack;
642 EFI_PHYSICAL_ADDRESS TemporaryRamBase;
643 UINTN TemporaryRamSize;
644 EFI_PHYSICAL_ADDRESS TemporaryStackSize;
645 UINTN StackOffset;
646 BOOLEAN StackOffsetPositive;
647 EFI_FV_FILE_INFO FvFileInfo;
648 PEI_CORE_FV_HANDLE *CoreFvHandle;
649 VOID *LoadFixPeiCodeBegin;
650
651 PeiServices = (CONST EFI_PEI_SERVICES **) &Private->Ps;
652 PeimEntryPoint = NULL;
653 PeimFileHandle = NULL;
654 EntryPoint = 0;
655
656 if ((Private->PeiMemoryInstalled) && (Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME)) {
657 //
658 // Once real memory is available, shadow the RegisterForShadow modules. And meanwhile
659 // update the modules' status from PEIM_STATE_REGISITER_FOR_SHADOW to PEIM_STATE_DONE.
660 //
661 SaveCurrentPeimCount = Private->CurrentPeimCount;
662 SaveCurrentFvCount = Private->CurrentPeimFvCount;
663 SaveCurrentFileHandle = Private->CurrentFileHandle;
664
665 for (Index1 = 0; Index1 <= SaveCurrentFvCount; Index1++) {
666 for (Index2 = 0; (Index2 < FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv)) && (Private->Fv[Index1].FvFileHandles[Index2] != NULL); Index2++) {
667 if (Private->Fv[Index1].PeimState[Index2] == PEIM_STATE_REGISITER_FOR_SHADOW) {
668 PeimFileHandle = Private->Fv[Index1].FvFileHandles[Index2];
669 Status = PeiLoadImage (
670 (CONST EFI_PEI_SERVICES **) &Private->Ps,
671 PeimFileHandle,
672 PEIM_STATE_REGISITER_FOR_SHADOW,
673 &EntryPoint,
674 &AuthenticationState
675 );
676 if (Status == EFI_SUCCESS) {
677 //
678 // PEIM_STATE_REGISITER_FOR_SHADOW move to PEIM_STATE_DONE
679 //
680 Private->Fv[Index1].PeimState[Index2]++;
681 Private->CurrentFileHandle = PeimFileHandle;
682 Private->CurrentPeimFvCount = Index1;
683 Private->CurrentPeimCount = Index2;
684 //
685 // Call the PEIM entry point
686 //
687 PeimEntryPoint = (EFI_PEIM_ENTRY_POINT2)(UINTN)EntryPoint;
688
689 PERF_START (PeimFileHandle, "PEIM", NULL, 0);
690 PeimEntryPoint(PeimFileHandle, (const EFI_PEI_SERVICES **) &Private->Ps);
691 PERF_END (PeimFileHandle, "PEIM", NULL, 0);
692 }
693
694 //
695 // Process the Notify list and dispatch any notifies for
696 // newly installed PPIs.
697 //
698 ProcessNotifyList (Private);
699 }
700 }
701 }
702 Private->CurrentFileHandle = SaveCurrentFileHandle;
703 Private->CurrentPeimFvCount = SaveCurrentFvCount;
704 Private->CurrentPeimCount = SaveCurrentPeimCount;
705 }
706
707 //
708 // This is the main dispatch loop. It will search known FVs for PEIMs and
709 // attempt to dispatch them. If any PEIM gets dispatched through a single
710 // pass of the dispatcher, it will start over from the Bfv again to see
711 // if any new PEIMs dependencies got satisfied. With a well ordered
712 // FV where PEIMs are found in the order their dependencies are also
713 // satisfied, this dipatcher should run only once.
714 //
715 do {
716 //
717 // In case that reenter PeiCore happens, the last pass record is still available.
718 //
719 if (!Private->PeimDispatcherReenter) {
720 Private->PeimNeedingDispatch = FALSE;
721 Private->PeimDispatchOnThisPass = FALSE;
722 } else {
723 Private->PeimDispatcherReenter = FALSE;
724 }
725
726 for (FvCount = Private->CurrentPeimFvCount; FvCount < Private->FvCount; FvCount++) {
727 CoreFvHandle = FindNextCoreFvHandle (Private, FvCount);
728 ASSERT (CoreFvHandle != NULL);
729
730 //
731 // If the FV has corresponding EFI_PEI_FIRMWARE_VOLUME_PPI instance, then dispatch it.
732 //
733 if (CoreFvHandle->FvPpi == NULL) {
734 continue;
735 }
736
737 Private->CurrentPeimFvCount = FvCount;
738
739 if (Private->CurrentPeimCount == 0) {
740 //
741 // When going through each FV, at first, search Apriori file to
742 // reorder all PEIMs to ensure the PEIMs in Apriori file to get
743 // dispatch at first.
744 //
745 DiscoverPeimsAndOrderWithApriori (Private, CoreFvHandle);
746 }
747
748 //
749 // Start to dispatch all modules within the current Fv.
750 //
751 for (PeimCount = Private->CurrentPeimCount;
752 (PeimCount < FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv)) && (Private->CurrentFvFileHandles[PeimCount] != NULL);
753 PeimCount++) {
754 Private->CurrentPeimCount = PeimCount;
755 PeimFileHandle = Private->CurrentFileHandle = Private->CurrentFvFileHandles[PeimCount];
756
757 if (Private->Fv[FvCount].PeimState[PeimCount] == PEIM_STATE_NOT_DISPATCHED) {
758 if (!DepexSatisfied (Private, PeimFileHandle, PeimCount)) {
759 Private->PeimNeedingDispatch = TRUE;
760 } else {
761 Status = CoreFvHandle->FvPpi->GetFileInfo (CoreFvHandle->FvPpi, PeimFileHandle, &FvFileInfo);
762 ASSERT_EFI_ERROR (Status);
763 if (FvFileInfo.FileType == EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE) {
764 //
765 // For Fv type file, Produce new FV PPI and FV hob
766 //
767 Status = ProcessFvFile (&Private->Fv[FvCount], PeimFileHandle);
768 AuthenticationState = 0;
769 } else {
770 //
771 // For PEIM driver, Load its entry point
772 //
773 Status = PeiLoadImage (
774 PeiServices,
775 PeimFileHandle,
776 PEIM_STATE_NOT_DISPATCHED,
777 &EntryPoint,
778 &AuthenticationState
779 );
780 }
781
782 if (Status == EFI_SUCCESS) {
783 //
784 // The PEIM has its dependencies satisfied, and its entry point
785 // has been found, so invoke it.
786 //
787 PERF_START (PeimFileHandle, "PEIM", NULL, 0);
788
789 ExtendedData.Handle = (EFI_HANDLE)PeimFileHandle;
790
791 REPORT_STATUS_CODE_WITH_EXTENDED_DATA (
792 EFI_PROGRESS_CODE,
793 (EFI_SOFTWARE_PEI_CORE | EFI_SW_PC_INIT_BEGIN),
794 (VOID *)(&ExtendedData),
795 sizeof (ExtendedData)
796 );
797
798 Status = VerifyPeim (Private, CoreFvHandle->FvHandle, PeimFileHandle);
799 if (Status != EFI_SECURITY_VIOLATION && (AuthenticationState == 0)) {
800 //
801 // PEIM_STATE_NOT_DISPATCHED move to PEIM_STATE_DISPATCHED
802 //
803 Private->Fv[FvCount].PeimState[PeimCount]++;
804
805 if (FvFileInfo.FileType != EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE) {
806 //
807 // Call the PEIM entry point for PEIM driver
808 //
809 PeimEntryPoint = (EFI_PEIM_ENTRY_POINT2)(UINTN)EntryPoint;
810 PeimEntryPoint (PeimFileHandle, (const EFI_PEI_SERVICES **) PeiServices);
811 }
812
813 Private->PeimDispatchOnThisPass = TRUE;
814 }
815
816 REPORT_STATUS_CODE_WITH_EXTENDED_DATA (
817 EFI_PROGRESS_CODE,
818 (EFI_SOFTWARE_PEI_CORE | EFI_SW_PC_INIT_END),
819 (VOID *)(&ExtendedData),
820 sizeof (ExtendedData)
821 );
822 PERF_END (PeimFileHandle, "PEIM", NULL, 0);
823
824 }
825
826 if (Private->SwitchStackSignal) {
827 //
828 // Before switch stack from temporary memory to permenent memory, caculate the heap and stack
829 // usage in temporary memory for debuging.
830 //
831 DEBUG_CODE_BEGIN ();
832 UINT32 *StackPointer;
833
834 for (StackPointer = (UINT32*)SecCoreData->StackBase;
835 (StackPointer < (UINT32*)((UINTN)SecCoreData->StackBase + SecCoreData->StackSize)) \
836 && (*StackPointer == INIT_CAR_VALUE);
837 StackPointer ++);
838
839 DEBUG ((EFI_D_INFO, "Temp Stack : BaseAddress=0x%p Length=0x%X\n", SecCoreData->StackBase, (UINT32)SecCoreData->StackSize));
840 DEBUG ((EFI_D_INFO, "Temp Heap : BaseAddress=0x%p Length=0x%X\n", Private->HobList.Raw, (UINT32)((UINTN) Private->HobList.HandoffInformationTable->EfiFreeMemoryBottom - (UINTN) Private->HobList.Raw)));
841 DEBUG ((EFI_D_INFO, "Total temporary memory: %d bytes.\n", (UINT32)SecCoreData->TemporaryRamSize));
842 DEBUG ((EFI_D_INFO, " temporary memory stack ever used: %d bytes.\n",
843 (UINT32)(SecCoreData->StackSize - ((UINTN) StackPointer - (UINTN)SecCoreData->StackBase))
844 ));
845 DEBUG ((EFI_D_INFO, " temporary memory heap used: %d bytes.\n",
846 (UINT32)((UINTN)Private->HobList.HandoffInformationTable->EfiFreeMemoryBottom - (UINTN)Private->HobList.Raw)
847 ));
848 DEBUG_CODE_END ();
849
850 if (PcdGet64(PcdLoadModuleAtFixAddressEnable) != 0 && (Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME)) {
851 //
852 // Loading Module at Fixed Address is enabled
853 //
854 PeiLoadFixAddressHook (Private);
855
856 //
857 // If Loading Module at Fixed Address is enabled, Allocating memory range for Pei code range.
858 //
859 LoadFixPeiCodeBegin = AllocatePages((UINTN)PcdGet32(PcdLoadFixAddressPeiCodePageNumber));
860 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PeiCodeBegin = 0x%lX, PeiCodeTop= 0x%lX\n", (UINT64)(UINTN)LoadFixPeiCodeBegin, (UINT64)((UINTN)LoadFixPeiCodeBegin + PcdGet32(PcdLoadFixAddressPeiCodePageNumber) * EFI_PAGE_SIZE)));
861 }
862
863 //
864 // Reserve the size of new stack at bottom of physical memory
865 //
866 // The size of new stack in permenent memory must be the same size
867 // or larger than the size of old stack in temporary memory.
868 // But if new stack is smaller than the size of old stack, we also reserve
869 // the size of old stack at bottom of permenent memory.
870 //
871 NewStackSize = RShiftU64 (Private->PhysicalMemoryLength, 1);
872 NewStackSize = ALIGN_VALUE (NewStackSize, EFI_PAGE_SIZE);
873 NewStackSize = MIN (PcdGet32(PcdPeiCoreMaxPeiStackSize), NewStackSize);
874 DEBUG ((EFI_D_INFO, "Old Stack size %d, New stack size %d\n", (UINT32)SecCoreData->StackSize, (UINT32)NewStackSize));
875 ASSERT (NewStackSize >= SecCoreData->StackSize);
876
877 //
878 // Caculate stack offset and heap offset between temporary memory and new permement
879 // memory seperately.
880 //
881 TopOfOldStack = (UINTN)SecCoreData->StackBase + SecCoreData->StackSize;
882 TopOfNewStack = Private->PhysicalMemoryBegin + NewStackSize;
883 if (TopOfNewStack >= (UINTN)SecCoreData->PeiTemporaryRamBase) {
884 Private->HeapOffsetPositive = TRUE;
885 Private->HeapOffset = (UINTN)(TopOfNewStack - (UINTN)SecCoreData->PeiTemporaryRamBase);
886 } else {
887 Private->HeapOffsetPositive = FALSE;
888 Private->HeapOffset = (UINTN)((UINTN)SecCoreData->PeiTemporaryRamBase - TopOfNewStack);
889 }
890 if (TopOfNewStack >= TopOfOldStack) {
891 StackOffsetPositive = TRUE;
892 StackOffset = (UINTN)(TopOfNewStack - TopOfOldStack);
893 } else {
894 StackOffsetPositive = FALSE;
895 StackOffset = (UINTN)(TopOfOldStack - TopOfNewStack);
896 }
897 Private->StackOffsetPositive = StackOffsetPositive;
898 Private->StackOffset = StackOffset;
899
900 DEBUG ((EFI_D_INFO, "Heap Offset = 0x%lX Stack Offset = 0x%lX\n", (UINT64)Private->HeapOffset, (UINT64)(StackOffset)));
901
902 //
903 // Build Stack HOB that describes the permanent memory stack
904 //
905 DEBUG ((EFI_D_INFO, "Stack Hob: BaseAddress=0x%lX Length=0x%lX\n", TopOfNewStack - NewStackSize, NewStackSize));
906 BuildStackHob (TopOfNewStack - NewStackSize, NewStackSize);
907
908 //
909 // Cache information from SecCoreData into locals before SecCoreData is converted to a permanent memory address
910 //
911 TemporaryRamBase = (EFI_PHYSICAL_ADDRESS)(UINTN)SecCoreData->TemporaryRamBase;
912 TemporaryRamSize = SecCoreData->TemporaryRamSize;
913 TemporaryStackSize = SecCoreData->StackSize;
914
915 //
916 // Caculate new HandOffTable and PrivateData address in permanent memory's stack
917 //
918 if (StackOffsetPositive) {
919 SecCoreData = (CONST EFI_SEC_PEI_HAND_OFF *)((UINTN)(VOID *)SecCoreData + StackOffset);
920 Private = (PEI_CORE_INSTANCE *)((UINTN)(VOID *)Private + StackOffset);
921 } else {
922 SecCoreData = (CONST EFI_SEC_PEI_HAND_OFF *)((UINTN)(VOID *)SecCoreData - StackOffset);
923 Private = (PEI_CORE_INSTANCE *)((UINTN)(VOID *)Private - StackOffset);
924 }
925
926 //
927 // TemporaryRamSupportPpi is produced by platform's SEC
928 //
929 Status = PeiServicesLocatePpi (
930 &gEfiTemporaryRamSupportPpiGuid,
931 0,
932 NULL,
933 (VOID**)&TemporaryRamSupportPpi
934 );
935 if (!EFI_ERROR (Status)) {
936 //
937 // Temporary Ram Support PPI is provided by platform, it will copy
938 // temporary memory to permenent memory and do stack switching.
939 // After invoking Temporary Ram Support PPI, the following code's
940 // stack is in permanent memory.
941 //
942 TemporaryRamSupportPpi->TemporaryRamMigration (
943 PeiServices,
944 TemporaryRamBase,
945 (EFI_PHYSICAL_ADDRESS)(UINTN)(TopOfNewStack - TemporaryStackSize),
946 TemporaryRamSize
947 );
948
949 } else {
950 //
951 // In IA32/x64/Itanium architecture, we need platform provide
952 // TEMPORARY_RAM_MIGRATION_PPI.
953 //
954 ASSERT (FALSE);
955 }
956
957 //
958 // Entry PEI Phase 2
959 //
960 PeiCore (SecCoreData, NULL, Private);
961
962 //
963 // Code should not come here
964 //
965 ASSERT (FALSE);
966 }
967
968 //
969 // Process the Notify list and dispatch any notifies for
970 // newly installed PPIs.
971 //
972 ProcessNotifyList (Private);
973
974 if ((Private->PeiMemoryInstalled) && (Private->Fv[FvCount].PeimState[PeimCount] == PEIM_STATE_REGISITER_FOR_SHADOW) && \
975 (Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME)) {
976 //
977 // If memory is availble we shadow images by default for performance reasons.
978 // We call the entry point a 2nd time so the module knows it's shadowed.
979 //
980 //PERF_START (PeiServices, L"PEIM", PeimFileHandle, 0);
981 ASSERT (PeimEntryPoint != NULL);
982 PeimEntryPoint (PeimFileHandle, (const EFI_PEI_SERVICES **) PeiServices);
983 //PERF_END (PeiServices, L"PEIM", PeimFileHandle, 0);
984
985 //
986 // PEIM_STATE_REGISITER_FOR_SHADOW move to PEIM_STATE_DONE
987 //
988 Private->Fv[FvCount].PeimState[PeimCount]++;
989
990 //
991 // Process the Notify list and dispatch any notifies for
992 // newly installed PPIs.
993 //
994 ProcessNotifyList (Private);
995 }
996 }
997 }
998 }
999
1000 //
1001 // We set to NULL here to optimize the 2nd entry to this routine after
1002 // memory is found. This reprevents rescanning of the FV. We set to
1003 // NULL here so we start at the begining of the next FV
1004 //
1005 Private->CurrentFileHandle = NULL;
1006 Private->CurrentPeimCount = 0;
1007 //
1008 // Before walking through the next FV,Private->CurrentFvFileHandles[]should set to NULL
1009 //
1010 SetMem (Private->CurrentFvFileHandles, sizeof (Private->CurrentFvFileHandles), 0);
1011 }
1012
1013 //
1014 // Before making another pass, we should set Private->CurrentPeimFvCount =0 to go
1015 // through all the FV.
1016 //
1017 Private->CurrentPeimFvCount = 0;
1018
1019 //
1020 // PeimNeedingDispatch being TRUE means we found a PEIM that did not get
1021 // dispatched. So we need to make another pass
1022 //
1023 // PeimDispatchOnThisPass being TRUE means we dispatched a PEIM on this
1024 // pass. If we did not dispatch a PEIM there is no point in trying again
1025 // as it will fail the next time too (nothing has changed).
1026 //
1027 } while (Private->PeimNeedingDispatch && Private->PeimDispatchOnThisPass);
1028
1029 }
1030
1031 /**
1032 Initialize the Dispatcher's data members
1033
1034 @param PrivateData PeiCore's private data structure
1035 @param OldCoreData Old data from SecCore
1036 NULL if being run in non-permament memory mode.
1037 @param SecCoreData Points to a data structure containing information about the PEI core's operating
1038 environment, such as the size and location of temporary RAM, the stack location and
1039 the BFV location.
1040
1041 @return None.
1042
1043 **/
1044 VOID
1045 InitializeDispatcherData (
1046 IN PEI_CORE_INSTANCE *PrivateData,
1047 IN PEI_CORE_INSTANCE *OldCoreData,
1048 IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData
1049 )
1050 {
1051 if (OldCoreData == NULL) {
1052 PrivateData->PeimDispatcherReenter = FALSE;
1053 PeiInitializeFv (PrivateData, SecCoreData);
1054 } else {
1055 PeiReinitializeFv (PrivateData);
1056 }
1057
1058 return;
1059 }
1060
1061 /**
1062 This routine parses the Dependency Expression, if available, and
1063 decides if the module can be executed.
1064
1065
1066 @param Private PeiCore's private data structure
1067 @param FileHandle PEIM's file handle
1068 @param PeimCount Peim count in all dispatched PEIMs.
1069
1070 @retval TRUE Can be dispatched
1071 @retval FALSE Cannot be dispatched
1072
1073 **/
1074 BOOLEAN
1075 DepexSatisfied (
1076 IN PEI_CORE_INSTANCE *Private,
1077 IN EFI_PEI_FILE_HANDLE FileHandle,
1078 IN UINTN PeimCount
1079 )
1080 {
1081 EFI_STATUS Status;
1082 VOID *DepexData;
1083 EFI_FV_FILE_INFO FileInfo;
1084
1085 Status = PeiServicesFfsGetFileInfo (FileHandle, &FileInfo);
1086 if (EFI_ERROR (Status)) {
1087 DEBUG ((DEBUG_DISPATCH, "Evaluate PEI DEPEX for FFS(Unknown)\n"));
1088 } else {
1089 DEBUG ((DEBUG_DISPATCH, "Evaluate PEI DEPEX for FFS(%g)\n", &FileInfo.FileName));
1090 }
1091
1092 if (PeimCount < Private->AprioriCount) {
1093 //
1094 // If its in the A priori file then we set Depex to TRUE
1095 //
1096 DEBUG ((DEBUG_DISPATCH, " RESULT = TRUE (Apriori)\n"));
1097 return TRUE;
1098 }
1099
1100 //
1101 // Depex section not in the encapsulated section.
1102 //
1103 Status = PeiServicesFfsFindSectionData (
1104 EFI_SECTION_PEI_DEPEX,
1105 FileHandle,
1106 (VOID **)&DepexData
1107 );
1108
1109 if (EFI_ERROR (Status)) {
1110 //
1111 // If there is no DEPEX, assume the module can be executed
1112 //
1113 DEBUG ((DEBUG_DISPATCH, " RESULT = TRUE (No DEPEX)\n"));
1114 return TRUE;
1115 }
1116
1117 //
1118 // Evaluate a given DEPEX
1119 //
1120 return PeimDispatchReadiness (&Private->Ps, DepexData);
1121 }
1122
1123 /**
1124 This routine enable a PEIM to register itself to shadow when PEI Foundation
1125 discovery permanent memory.
1126
1127 @param FileHandle File handle of a PEIM.
1128
1129 @retval EFI_NOT_FOUND The file handle doesn't point to PEIM itself.
1130 @retval EFI_ALREADY_STARTED Indicate that the PEIM has been registered itself.
1131 @retval EFI_SUCCESS Successfully to register itself.
1132
1133 **/
1134 EFI_STATUS
1135 EFIAPI
1136 PeiRegisterForShadow (
1137 IN EFI_PEI_FILE_HANDLE FileHandle
1138 )
1139 {
1140 PEI_CORE_INSTANCE *Private;
1141 Private = PEI_CORE_INSTANCE_FROM_PS_THIS (GetPeiServicesTablePointer ());
1142
1143 if (Private->CurrentFileHandle != FileHandle) {
1144 //
1145 // The FileHandle must be for the current PEIM
1146 //
1147 return EFI_NOT_FOUND;
1148 }
1149
1150 if (Private->Fv[Private->CurrentPeimFvCount].PeimState[Private->CurrentPeimCount] >= PEIM_STATE_REGISITER_FOR_SHADOW) {
1151 //
1152 // If the PEIM has already entered the PEIM_STATE_REGISTER_FOR_SHADOW or PEIM_STATE_DONE then it's already been started
1153 //
1154 return EFI_ALREADY_STARTED;
1155 }
1156
1157 Private->Fv[Private->CurrentPeimFvCount].PeimState[Private->CurrentPeimCount] = PEIM_STATE_REGISITER_FOR_SHADOW;
1158
1159 return EFI_SUCCESS;
1160 }
1161
1162
1163