]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Core/Pei/Dispatcher/Dispatcher.c
MdeModulePkg: Update PeiCore consumes PCD to get the init value in temp stack
[mirror_edk2.git] / MdeModulePkg / Core / Pei / Dispatcher / Dispatcher.c
1 /** @file
2 EFI PEI Core dispatch services
3
4 Copyright (c) 2006 - 2017, Intel Corporation. All rights reserved.<BR>
5 (C) Copyright 2016 Hewlett Packard Enterprise Development LP<BR>
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution. The full text of the license may be found at
9 http://opensource.org/licenses/bsd-license.php
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #include "PeiMain.h"
17
18 /**
19
20 Discover all Peims and optional Apriori file in one FV. There is at most one
21 Apriori file in one FV.
22
23
24 @param Private Pointer to the private data passed in from caller
25 @param CoreFileHandle The instance of PEI_CORE_FV_HANDLE.
26
27 **/
28 VOID
29 DiscoverPeimsAndOrderWithApriori (
30 IN PEI_CORE_INSTANCE *Private,
31 IN PEI_CORE_FV_HANDLE *CoreFileHandle
32 )
33 {
34 EFI_STATUS Status;
35 EFI_PEI_FILE_HANDLE FileHandle;
36 EFI_PEI_FILE_HANDLE AprioriFileHandle;
37 EFI_GUID *Apriori;
38 UINTN Index;
39 UINTN Index2;
40 UINTN PeimIndex;
41 UINTN PeimCount;
42 EFI_GUID *Guid;
43 EFI_PEI_FILE_HANDLE *TempFileHandles;
44 EFI_GUID *FileGuid;
45 EFI_PEI_FIRMWARE_VOLUME_PPI *FvPpi;
46 EFI_FV_FILE_INFO FileInfo;
47
48 FvPpi = CoreFileHandle->FvPpi;
49
50 //
51 // Walk the FV and find all the PEIMs and the Apriori file.
52 //
53 AprioriFileHandle = NULL;
54 Private->CurrentFvFileHandles[0] = NULL;
55 Guid = NULL;
56 FileHandle = NULL;
57 TempFileHandles = Private->FileHandles;
58 FileGuid = Private->FileGuid;
59
60 //
61 // If the current Fv has been scanned, directly get its cachable record.
62 //
63 if (Private->Fv[Private->CurrentPeimFvCount].ScanFv) {
64 CopyMem (Private->CurrentFvFileHandles, Private->Fv[Private->CurrentPeimFvCount].FvFileHandles, sizeof (EFI_PEI_FILE_HANDLE) * PcdGet32 (PcdPeiCoreMaxPeimPerFv));
65 return;
66 }
67
68 //
69 // Go ahead to scan this Fv, and cache FileHandles within it.
70 //
71 Status = EFI_NOT_FOUND;
72 for (PeimCount = 0; PeimCount <= PcdGet32 (PcdPeiCoreMaxPeimPerFv); PeimCount++) {
73 Status = FvPpi->FindFileByType (FvPpi, PEI_CORE_INTERNAL_FFS_FILE_DISPATCH_TYPE, CoreFileHandle->FvHandle, &FileHandle);
74 if (Status != EFI_SUCCESS || PeimCount == PcdGet32 (PcdPeiCoreMaxPeimPerFv)) {
75 break;
76 }
77
78 Private->CurrentFvFileHandles[PeimCount] = FileHandle;
79 }
80
81 //
82 // Check whether the count of files exceeds the max support files in a FV image
83 // If more files are required in a FV image, PcdPeiCoreMaxPeimPerFv can be set to a larger value in DSC file.
84 //
85 ASSERT ((Status != EFI_SUCCESS) || (PeimCount < PcdGet32 (PcdPeiCoreMaxPeimPerFv)));
86
87 //
88 // Get Apriori File handle
89 //
90 Private->AprioriCount = 0;
91 Status = FvPpi->FindFileByName (FvPpi, &gPeiAprioriFileNameGuid, &CoreFileHandle->FvHandle, &AprioriFileHandle);
92 if (!EFI_ERROR(Status) && AprioriFileHandle != NULL) {
93 //
94 // Read the Apriori file
95 //
96 Status = FvPpi->FindSectionByType (FvPpi, EFI_SECTION_RAW, AprioriFileHandle, (VOID **) &Apriori);
97 if (!EFI_ERROR (Status)) {
98 //
99 // Calculate the number of PEIMs in the A Priori list
100 //
101 Status = FvPpi->GetFileInfo (FvPpi, AprioriFileHandle, &FileInfo);
102 ASSERT_EFI_ERROR (Status);
103 Private->AprioriCount = FileInfo.BufferSize;
104 if (IS_SECTION2 (FileInfo.Buffer)) {
105 Private->AprioriCount -= sizeof (EFI_COMMON_SECTION_HEADER2);
106 } else {
107 Private->AprioriCount -= sizeof (EFI_COMMON_SECTION_HEADER);
108 }
109 Private->AprioriCount /= sizeof (EFI_GUID);
110
111 for (Index = 0; Index < PeimCount; Index++) {
112 //
113 // Make an array of file name guids that matches the FileHandle array so we can convert
114 // quickly from file name to file handle
115 //
116 Status = FvPpi->GetFileInfo (FvPpi, Private->CurrentFvFileHandles[Index], &FileInfo);
117 CopyMem (&FileGuid[Index], &FileInfo.FileName, sizeof(EFI_GUID));
118 }
119
120 //
121 // Walk through FileGuid array to find out who is invalid PEIM guid in Apriori file.
122 // Add available PEIMs in Apriori file into TempFileHandles array at first.
123 //
124 Index2 = 0;
125 for (Index = 0; Index2 < Private->AprioriCount; Index++) {
126 while (Index2 < Private->AprioriCount) {
127 Guid = ScanGuid (FileGuid, PeimCount * sizeof (EFI_GUID), &Apriori[Index2++]);
128 if (Guid != NULL) {
129 break;
130 }
131 }
132 if (Guid == NULL) {
133 break;
134 }
135 PeimIndex = ((UINTN)Guid - (UINTN)&FileGuid[0])/sizeof (EFI_GUID);
136 TempFileHandles[Index] = Private->CurrentFvFileHandles[PeimIndex];
137
138 //
139 // Since we have copied the file handle we can remove it from this list.
140 //
141 Private->CurrentFvFileHandles[PeimIndex] = NULL;
142 }
143
144 //
145 // Update valid Aprioricount
146 //
147 Private->AprioriCount = Index;
148
149 //
150 // Add in any PEIMs not in the Apriori file
151 //
152 for (;Index < PeimCount; Index++) {
153 for (Index2 = 0; Index2 < PeimCount; Index2++) {
154 if (Private->CurrentFvFileHandles[Index2] != NULL) {
155 TempFileHandles[Index] = Private->CurrentFvFileHandles[Index2];
156 Private->CurrentFvFileHandles[Index2] = NULL;
157 break;
158 }
159 }
160 }
161 //
162 //Index the end of array contains re-range Pei moudle.
163 //
164 TempFileHandles[Index] = NULL;
165
166 //
167 // Private->CurrentFvFileHandles is currently in PEIM in the FV order.
168 // We need to update it to start with files in the A Priori list and
169 // then the remaining files in PEIM order.
170 //
171 CopyMem (Private->CurrentFvFileHandles, TempFileHandles, sizeof (EFI_PEI_FILE_HANDLE) * PcdGet32 (PcdPeiCoreMaxPeimPerFv));
172 }
173 }
174 //
175 // Cache the current Fv File Handle. So that we don't have to scan the Fv again.
176 // Instead, we can retrieve the file handles within this Fv from cachable data.
177 //
178 Private->Fv[Private->CurrentPeimFvCount].ScanFv = TRUE;
179 CopyMem (Private->Fv[Private->CurrentPeimFvCount].FvFileHandles, Private->CurrentFvFileHandles, sizeof (EFI_PEI_FILE_HANDLE) * PcdGet32 (PcdPeiCoreMaxPeimPerFv));
180
181 }
182
183 //
184 // This is the minimum memory required by DxeCore initialization. When LMFA feature enabled,
185 // This part of memory still need reserved on the very top of memory so that the DXE Core could
186 // use these memory for data initialization. This macro should be sync with the same marco
187 // defined in DXE Core.
188 //
189 #define MINIMUM_INITIAL_MEMORY_SIZE 0x10000
190 /**
191 This function is to test if the memory range described in resource HOB is available or not.
192
193 This function should only be invoked when Loading Module at Fixed Address(LMFA) feature is enabled. Some platform may allocate the
194 memory before PeiLoadFixAddressHook in invoked. so this function is to test if the memory range described by the input resource HOB is
195 available or not.
196
197 @param PrivateData Pointer to the private data passed in from caller
198 @param ResourceHob Pointer to a resource HOB which described the memory range described by the input resource HOB
199 **/
200 BOOLEAN
201 PeiLoadFixAddressIsMemoryRangeAvailable (
202 IN PEI_CORE_INSTANCE *PrivateData,
203 IN EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob
204 )
205 {
206 EFI_HOB_MEMORY_ALLOCATION *MemoryHob;
207 BOOLEAN IsAvailable;
208 EFI_PEI_HOB_POINTERS Hob;
209
210 IsAvailable = TRUE;
211 if (PrivateData == NULL || ResourceHob == NULL) {
212 return FALSE;
213 }
214 //
215 // test if the memory range describe in the HOB is already allocated.
216 //
217 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
218 //
219 // See if this is a memory allocation HOB
220 //
221 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_MEMORY_ALLOCATION) {
222 MemoryHob = Hob.MemoryAllocation;
223 if(MemoryHob->AllocDescriptor.MemoryBaseAddress == ResourceHob->PhysicalStart &&
224 MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength == ResourceHob->PhysicalStart + ResourceHob->ResourceLength) {
225 IsAvailable = FALSE;
226 break;
227 }
228 }
229 }
230
231 return IsAvailable;
232
233 }
234 /**
235 Hook function for Loading Module at Fixed Address feature
236
237 This function should only be invoked when Loading Module at Fixed Address(LMFA) feature is enabled. When feature is
238 configured as Load Modules at Fix Absolute Address, this function is to validate the top address assigned by user. When
239 feature is configured as Load Modules at Fixed Offset, the functino is to find the top address which is TOLM-TSEG in general.
240 And also the function will re-install PEI memory.
241
242 @param PrivateData Pointer to the private data passed in from caller
243
244 **/
245 VOID
246 PeiLoadFixAddressHook(
247 IN PEI_CORE_INSTANCE *PrivateData
248 )
249 {
250 EFI_PHYSICAL_ADDRESS TopLoadingAddress;
251 UINT64 PeiMemorySize;
252 UINT64 TotalReservedMemorySize;
253 UINT64 MemoryRangeEnd;
254 EFI_PHYSICAL_ADDRESS HighAddress;
255 EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob;
256 EFI_HOB_RESOURCE_DESCRIPTOR *NextResourceHob;
257 EFI_HOB_RESOURCE_DESCRIPTOR *CurrentResourceHob;
258 EFI_PEI_HOB_POINTERS CurrentHob;
259 EFI_PEI_HOB_POINTERS Hob;
260 EFI_PEI_HOB_POINTERS NextHob;
261 EFI_HOB_MEMORY_ALLOCATION *MemoryHob;
262 //
263 // Initialize Local Variables
264 //
265 CurrentResourceHob = NULL;
266 ResourceHob = NULL;
267 NextResourceHob = NULL;
268 HighAddress = 0;
269 TopLoadingAddress = 0;
270 MemoryRangeEnd = 0;
271 CurrentHob.Raw = PrivateData->HobList.Raw;
272 PeiMemorySize = PrivateData->PhysicalMemoryLength;
273 //
274 // The top reserved memory include 3 parts: the topest range is for DXE core initialization with the size MINIMUM_INITIAL_MEMORY_SIZE
275 // then RuntimeCodePage range and Boot time code range.
276 //
277 TotalReservedMemorySize = MINIMUM_INITIAL_MEMORY_SIZE + EFI_PAGES_TO_SIZE(PcdGet32(PcdLoadFixAddressRuntimeCodePageNumber));
278 TotalReservedMemorySize+= EFI_PAGES_TO_SIZE(PcdGet32(PcdLoadFixAddressBootTimeCodePageNumber)) ;
279 //
280 // PEI memory range lies below the top reserved memory
281 //
282 TotalReservedMemorySize += PeiMemorySize;
283
284 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PcdLoadFixAddressRuntimeCodePageNumber= 0x%x.\n", PcdGet32(PcdLoadFixAddressRuntimeCodePageNumber)));
285 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PcdLoadFixAddressBootTimeCodePageNumber= 0x%x.\n", PcdGet32(PcdLoadFixAddressBootTimeCodePageNumber)));
286 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PcdLoadFixAddressPeiCodePageNumber= 0x%x.\n", PcdGet32(PcdLoadFixAddressPeiCodePageNumber)));
287 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: Total Reserved Memory Size = 0x%lx.\n", TotalReservedMemorySize));
288 //
289 // Loop through the system memory typed hob to merge the adjacent memory range
290 //
291 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
292 //
293 // See if this is a resource descriptor HOB
294 //
295 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
296
297 ResourceHob = Hob.ResourceDescriptor;
298 //
299 // If range described in this hob is not system memory or heigher than MAX_ADDRESS, ignored.
300 //
301 if (ResourceHob->ResourceType != EFI_RESOURCE_SYSTEM_MEMORY ||
302 ResourceHob->PhysicalStart + ResourceHob->ResourceLength > MAX_ADDRESS) {
303 continue;
304 }
305
306 for (NextHob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(NextHob); NextHob.Raw = GET_NEXT_HOB(NextHob)) {
307 if (NextHob.Raw == Hob.Raw){
308 continue;
309 }
310 //
311 // See if this is a resource descriptor HOB
312 //
313 if (GET_HOB_TYPE (NextHob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
314
315 NextResourceHob = NextHob.ResourceDescriptor;
316 //
317 // test if range described in this NextResourceHob is system memory and have the same attribute.
318 // Note: Here is a assumption that system memory should always be healthy even without test.
319 //
320 if (NextResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
321 (((NextResourceHob->ResourceAttribute^ResourceHob->ResourceAttribute)&(~EFI_RESOURCE_ATTRIBUTE_TESTED)) == 0)){
322
323 //
324 // See if the memory range described in ResourceHob and NextResourceHob is adjacent
325 //
326 if ((ResourceHob->PhysicalStart <= NextResourceHob->PhysicalStart &&
327 ResourceHob->PhysicalStart + ResourceHob->ResourceLength >= NextResourceHob->PhysicalStart)||
328 (ResourceHob->PhysicalStart >= NextResourceHob->PhysicalStart&&
329 ResourceHob->PhysicalStart <= NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength)) {
330
331 MemoryRangeEnd = ((ResourceHob->PhysicalStart + ResourceHob->ResourceLength)>(NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength)) ?
332 (ResourceHob->PhysicalStart + ResourceHob->ResourceLength):(NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength);
333
334 ResourceHob->PhysicalStart = (ResourceHob->PhysicalStart < NextResourceHob->PhysicalStart) ?
335 ResourceHob->PhysicalStart : NextResourceHob->PhysicalStart;
336
337
338 ResourceHob->ResourceLength = (MemoryRangeEnd - ResourceHob->PhysicalStart);
339
340 ResourceHob->ResourceAttribute = ResourceHob->ResourceAttribute & (~EFI_RESOURCE_ATTRIBUTE_TESTED);
341 //
342 // Delete the NextResourceHob by marking it as unused.
343 //
344 GET_HOB_TYPE (NextHob) = EFI_HOB_TYPE_UNUSED;
345
346 }
347 }
348 }
349 }
350 }
351 }
352 //
353 // Some platform is already allocated pages before the HOB re-org. Here to build dedicated resource HOB to describe
354 // the allocated memory range
355 //
356 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
357 //
358 // See if this is a memory allocation HOB
359 //
360 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_MEMORY_ALLOCATION) {
361 MemoryHob = Hob.MemoryAllocation;
362 for (NextHob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(NextHob); NextHob.Raw = GET_NEXT_HOB(NextHob)) {
363 //
364 // See if this is a resource descriptor HOB
365 //
366 if (GET_HOB_TYPE (NextHob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
367 NextResourceHob = NextHob.ResourceDescriptor;
368 //
369 // If range described in this hob is not system memory or heigher than MAX_ADDRESS, ignored.
370 //
371 if (NextResourceHob->ResourceType != EFI_RESOURCE_SYSTEM_MEMORY || NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength > MAX_ADDRESS) {
372 continue;
373 }
374 //
375 // If the range describe in memory allocation HOB belongs to the memroy range described by the resource hob
376 //
377 if (MemoryHob->AllocDescriptor.MemoryBaseAddress >= NextResourceHob->PhysicalStart &&
378 MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength <= NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength) {
379 //
380 // Build seperate resource hob for this allocated range
381 //
382 if (MemoryHob->AllocDescriptor.MemoryBaseAddress > NextResourceHob->PhysicalStart) {
383 BuildResourceDescriptorHob (
384 EFI_RESOURCE_SYSTEM_MEMORY,
385 NextResourceHob->ResourceAttribute,
386 NextResourceHob->PhysicalStart,
387 (MemoryHob->AllocDescriptor.MemoryBaseAddress - NextResourceHob->PhysicalStart)
388 );
389 }
390 if (MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength < NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength) {
391 BuildResourceDescriptorHob (
392 EFI_RESOURCE_SYSTEM_MEMORY,
393 NextResourceHob->ResourceAttribute,
394 MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength,
395 (NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength -(MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength))
396 );
397 }
398 NextResourceHob->PhysicalStart = MemoryHob->AllocDescriptor.MemoryBaseAddress;
399 NextResourceHob->ResourceLength = MemoryHob->AllocDescriptor.MemoryLength;
400 break;
401 }
402 }
403 }
404 }
405 }
406
407 //
408 // Try to find and validate the TOP address.
409 //
410 if ((INT64)PcdGet64(PcdLoadModuleAtFixAddressEnable) > 0 ) {
411 //
412 // The LMFA feature is enabled as load module at fixed absolute address.
413 //
414 TopLoadingAddress = (EFI_PHYSICAL_ADDRESS)PcdGet64(PcdLoadModuleAtFixAddressEnable);
415 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: Loading module at fixed absolute address.\n"));
416 //
417 // validate the Address. Loop the resource descriptor HOB to make sure the address is in valid memory range
418 //
419 if ((TopLoadingAddress & EFI_PAGE_MASK) != 0) {
420 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:Top Address 0x%lx is invalid since top address should be page align. \n", TopLoadingAddress));
421 ASSERT (FALSE);
422 }
423 //
424 // Search for a memory region that is below MAX_ADDRESS and in which TopLoadingAddress lies
425 //
426 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
427 //
428 // See if this is a resource descriptor HOB
429 //
430 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
431
432 ResourceHob = Hob.ResourceDescriptor;
433 //
434 // See if this resource descrior HOB describes tested system memory below MAX_ADDRESS
435 //
436 if (ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
437 ResourceHob->PhysicalStart + ResourceHob->ResourceLength <= MAX_ADDRESS) {
438 //
439 // See if Top address specified by user is valid.
440 //
441 if (ResourceHob->PhysicalStart + TotalReservedMemorySize < TopLoadingAddress &&
442 (ResourceHob->PhysicalStart + ResourceHob->ResourceLength - MINIMUM_INITIAL_MEMORY_SIZE) >= TopLoadingAddress &&
443 PeiLoadFixAddressIsMemoryRangeAvailable(PrivateData, ResourceHob)) {
444 CurrentResourceHob = ResourceHob;
445 CurrentHob = Hob;
446 break;
447 }
448 }
449 }
450 }
451 if (CurrentResourceHob != NULL) {
452 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO:Top Address 0x%lx is valid \n", TopLoadingAddress));
453 TopLoadingAddress += MINIMUM_INITIAL_MEMORY_SIZE;
454 } else {
455 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:Top Address 0x%lx is invalid \n", TopLoadingAddress));
456 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:The recommended Top Address for the platform is: \n"));
457 //
458 // Print the recomended Top address range.
459 //
460 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
461 //
462 // See if this is a resource descriptor HOB
463 //
464 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
465
466 ResourceHob = Hob.ResourceDescriptor;
467 //
468 // See if this resource descrior HOB describes tested system memory below MAX_ADDRESS
469 //
470 if (ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
471 ResourceHob->PhysicalStart + ResourceHob->ResourceLength <= MAX_ADDRESS) {
472 //
473 // See if Top address specified by user is valid.
474 //
475 if (ResourceHob->ResourceLength > TotalReservedMemorySize && PeiLoadFixAddressIsMemoryRangeAvailable(PrivateData, ResourceHob)) {
476 DEBUG ((EFI_D_INFO, "(0x%lx, 0x%lx)\n",
477 (ResourceHob->PhysicalStart + TotalReservedMemorySize -MINIMUM_INITIAL_MEMORY_SIZE),
478 (ResourceHob->PhysicalStart + ResourceHob->ResourceLength -MINIMUM_INITIAL_MEMORY_SIZE)
479 ));
480 }
481 }
482 }
483 }
484 //
485 // Assert here
486 //
487 ASSERT (FALSE);
488 return;
489 }
490 } else {
491 //
492 // The LMFA feature is enabled as load module at fixed offset relative to TOLM
493 // Parse the Hob list to find the topest available memory. Generally it is (TOLM - TSEG)
494 //
495 //
496 // Search for a tested memory region that is below MAX_ADDRESS
497 //
498 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
499 //
500 // See if this is a resource descriptor HOB
501 //
502 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
503
504 ResourceHob = Hob.ResourceDescriptor;
505 //
506 // See if this resource descrior HOB describes tested system memory below MAX_ADDRESS
507 //
508 if (ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
509 ResourceHob->PhysicalStart + ResourceHob->ResourceLength <= MAX_ADDRESS &&
510 ResourceHob->ResourceLength > TotalReservedMemorySize && PeiLoadFixAddressIsMemoryRangeAvailable(PrivateData, ResourceHob)) {
511 //
512 // See if this is the highest largest system memory region below MaxAddress
513 //
514 if (ResourceHob->PhysicalStart > HighAddress) {
515 CurrentResourceHob = ResourceHob;
516 CurrentHob = Hob;
517 HighAddress = CurrentResourceHob->PhysicalStart;
518 }
519 }
520 }
521 }
522 if (CurrentResourceHob == NULL) {
523 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:The System Memory is too small\n"));
524 //
525 // Assert here
526 //
527 ASSERT (FALSE);
528 return;
529 } else {
530 TopLoadingAddress = CurrentResourceHob->PhysicalStart + CurrentResourceHob->ResourceLength ;
531 }
532 }
533
534 if (CurrentResourceHob != NULL) {
535 //
536 // rebuild resource HOB for PEI memmory and reserved memory
537 //
538 BuildResourceDescriptorHob (
539 EFI_RESOURCE_SYSTEM_MEMORY,
540 (
541 EFI_RESOURCE_ATTRIBUTE_PRESENT |
542 EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
543 EFI_RESOURCE_ATTRIBUTE_TESTED |
544 EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
545 EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
546 EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
547 EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
548 ),
549 (TopLoadingAddress - TotalReservedMemorySize),
550 TotalReservedMemorySize
551 );
552 //
553 // rebuild resource for the remain memory if necessary
554 //
555 if (CurrentResourceHob->PhysicalStart < TopLoadingAddress - TotalReservedMemorySize) {
556 BuildResourceDescriptorHob (
557 EFI_RESOURCE_SYSTEM_MEMORY,
558 (
559 EFI_RESOURCE_ATTRIBUTE_PRESENT |
560 EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
561 EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
562 EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
563 EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
564 EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
565 ),
566 CurrentResourceHob->PhysicalStart,
567 (TopLoadingAddress - TotalReservedMemorySize - CurrentResourceHob->PhysicalStart)
568 );
569 }
570 if (CurrentResourceHob->PhysicalStart + CurrentResourceHob->ResourceLength > TopLoadingAddress ) {
571 BuildResourceDescriptorHob (
572 EFI_RESOURCE_SYSTEM_MEMORY,
573 (
574 EFI_RESOURCE_ATTRIBUTE_PRESENT |
575 EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
576 EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
577 EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
578 EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
579 EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
580 ),
581 TopLoadingAddress,
582 (CurrentResourceHob->PhysicalStart + CurrentResourceHob->ResourceLength - TopLoadingAddress)
583 );
584 }
585 //
586 // Delete CurrentHob by marking it as unused since the the memory range described by is rebuilt.
587 //
588 GET_HOB_TYPE (CurrentHob) = EFI_HOB_TYPE_UNUSED;
589 }
590
591 //
592 // Cache the top address for Loading Module at Fixed Address feature
593 //
594 PrivateData->LoadModuleAtFixAddressTopAddress = TopLoadingAddress - MINIMUM_INITIAL_MEMORY_SIZE;
595 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: Top address = 0x%lx\n", PrivateData->LoadModuleAtFixAddressTopAddress));
596 //
597 // reinstall the PEI memory relative to TopLoadingAddress
598 //
599 PrivateData->PhysicalMemoryBegin = TopLoadingAddress - TotalReservedMemorySize;
600 PrivateData->FreePhysicalMemoryTop = PrivateData->PhysicalMemoryBegin + PeiMemorySize;
601 }
602
603 /**
604 This routine is invoked in switch stack as PeiCore Entry.
605
606 @param SecCoreData Points to a data structure containing information about the PEI core's operating
607 environment, such as the size and location of temporary RAM, the stack location and
608 the BFV location.
609 @param Private Pointer to old core data that is used to initialize the
610 core's data areas.
611 **/
612 VOID
613 EFIAPI
614 PeiCoreEntry (
615 IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData,
616 IN PEI_CORE_INSTANCE *Private
617 )
618 {
619 //
620 // Entry PEI Phase 2
621 //
622 PeiCore (SecCoreData, NULL, Private);
623 }
624
625 /**
626 Check SwitchStackSignal and switch stack if SwitchStackSignal is TRUE.
627
628 @param[in] SecCoreData Points to a data structure containing information about the PEI core's operating
629 environment, such as the size and location of temporary RAM, the stack location and
630 the BFV location.
631 @param[in] Private Pointer to the private data passed in from caller.
632
633 **/
634 VOID
635 PeiCheckAndSwitchStack (
636 IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData,
637 IN PEI_CORE_INSTANCE *Private
638 )
639 {
640 VOID *LoadFixPeiCodeBegin;
641 EFI_STATUS Status;
642 CONST EFI_PEI_SERVICES **PeiServices;
643 UINT64 NewStackSize;
644 EFI_PHYSICAL_ADDRESS TopOfOldStack;
645 EFI_PHYSICAL_ADDRESS TopOfNewStack;
646 UINTN StackOffset;
647 BOOLEAN StackOffsetPositive;
648 EFI_PHYSICAL_ADDRESS TemporaryRamBase;
649 UINTN TemporaryRamSize;
650 UINTN TemporaryStackSize;
651 VOID *TemporaryStackBase;
652 UINTN PeiTemporaryRamSize;
653 VOID *PeiTemporaryRamBase;
654 EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI *TemporaryRamSupportPpi;
655 EFI_PHYSICAL_ADDRESS BaseOfNewHeap;
656 EFI_PHYSICAL_ADDRESS HoleMemBase;
657 UINTN HoleMemSize;
658 UINTN HeapTemporaryRamSize;
659 EFI_PHYSICAL_ADDRESS TempBase1;
660 UINTN TempSize1;
661 EFI_PHYSICAL_ADDRESS TempBase2;
662 UINTN TempSize2;
663 UINTN Index;
664
665 PeiServices = (CONST EFI_PEI_SERVICES **) &Private->Ps;
666
667 if (Private->SwitchStackSignal) {
668 //
669 // Before switch stack from temporary memory to permanent memory, calculate the heap and stack
670 // usage in temporary memory for debugging.
671 //
672 DEBUG_CODE_BEGIN ();
673 UINT32 *StackPointer;
674 EFI_PEI_HOB_POINTERS Hob;
675
676 for (StackPointer = (UINT32*)SecCoreData->StackBase;
677 (StackPointer < (UINT32*)((UINTN)SecCoreData->StackBase + SecCoreData->StackSize)) \
678 && (*StackPointer == PcdGet32 (PcdInitValueInTempStack));
679 StackPointer ++);
680
681 DEBUG ((DEBUG_INFO, "Temp Stack : BaseAddress=0x%p Length=0x%X\n", SecCoreData->StackBase, (UINT32)SecCoreData->StackSize));
682 DEBUG ((DEBUG_INFO, "Temp Heap : BaseAddress=0x%p Length=0x%X\n", SecCoreData->PeiTemporaryRamBase, (UINT32)SecCoreData->PeiTemporaryRamSize));
683 DEBUG ((DEBUG_INFO, "Total temporary memory: %d bytes.\n", (UINT32)SecCoreData->TemporaryRamSize));
684 DEBUG ((DEBUG_INFO, " temporary memory stack ever used: %d bytes.\n",
685 (UINT32)(SecCoreData->StackSize - ((UINTN) StackPointer - (UINTN)SecCoreData->StackBase))
686 ));
687 DEBUG ((DEBUG_INFO, " temporary memory heap used for HobList: %d bytes.\n",
688 (UINT32)((UINTN)Private->HobList.HandoffInformationTable->EfiFreeMemoryBottom - (UINTN)Private->HobList.Raw)
689 ));
690 DEBUG ((DEBUG_INFO, " temporary memory heap occupied by memory pages: %d bytes.\n",
691 (UINT32)(UINTN)(Private->HobList.HandoffInformationTable->EfiMemoryTop - Private->HobList.HandoffInformationTable->EfiFreeMemoryTop)
692 ));
693 for (Hob.Raw = Private->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
694 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_MEMORY_ALLOCATION) {
695 DEBUG ((DEBUG_INFO, "Memory Allocation 0x%08x 0x%0lx - 0x%0lx\n", \
696 Hob.MemoryAllocation->AllocDescriptor.MemoryType, \
697 Hob.MemoryAllocation->AllocDescriptor.MemoryBaseAddress, \
698 Hob.MemoryAllocation->AllocDescriptor.MemoryBaseAddress + Hob.MemoryAllocation->AllocDescriptor.MemoryLength - 1));
699 }
700 }
701 DEBUG_CODE_END ();
702
703 if (PcdGet64(PcdLoadModuleAtFixAddressEnable) != 0 && (Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME)) {
704 //
705 // Loading Module at Fixed Address is enabled
706 //
707 PeiLoadFixAddressHook (Private);
708
709 //
710 // If Loading Module at Fixed Address is enabled, Allocating memory range for Pei code range.
711 //
712 LoadFixPeiCodeBegin = AllocatePages((UINTN)PcdGet32(PcdLoadFixAddressPeiCodePageNumber));
713 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PeiCodeBegin = 0x%lX, PeiCodeTop= 0x%lX\n", (UINT64)(UINTN)LoadFixPeiCodeBegin, (UINT64)((UINTN)LoadFixPeiCodeBegin + PcdGet32(PcdLoadFixAddressPeiCodePageNumber) * EFI_PAGE_SIZE)));
714 }
715
716 //
717 // Reserve the size of new stack at bottom of physical memory
718 //
719 // The size of new stack in permanent memory must be the same size
720 // or larger than the size of old stack in temporary memory.
721 // But if new stack is smaller than the size of old stack, we also reserve
722 // the size of old stack at bottom of permanent memory.
723 //
724 NewStackSize = RShiftU64 (Private->PhysicalMemoryLength, 1);
725 NewStackSize = ALIGN_VALUE (NewStackSize, EFI_PAGE_SIZE);
726 NewStackSize = MIN (PcdGet32(PcdPeiCoreMaxPeiStackSize), NewStackSize);
727 DEBUG ((EFI_D_INFO, "Old Stack size %d, New stack size %d\n", (UINT32)SecCoreData->StackSize, (UINT32)NewStackSize));
728 ASSERT (NewStackSize >= SecCoreData->StackSize);
729
730 //
731 // Calculate stack offset and heap offset between temporary memory and new permement
732 // memory seperately.
733 //
734 TopOfOldStack = (UINTN)SecCoreData->StackBase + SecCoreData->StackSize;
735 TopOfNewStack = Private->PhysicalMemoryBegin + NewStackSize;
736 if (TopOfNewStack >= TopOfOldStack) {
737 StackOffsetPositive = TRUE;
738 StackOffset = (UINTN)(TopOfNewStack - TopOfOldStack);
739 } else {
740 StackOffsetPositive = FALSE;
741 StackOffset = (UINTN)(TopOfOldStack - TopOfNewStack);
742 }
743 Private->StackOffsetPositive = StackOffsetPositive;
744 Private->StackOffset = StackOffset;
745
746 //
747 // Build Stack HOB that describes the permanent memory stack
748 //
749 DEBUG ((EFI_D_INFO, "Stack Hob: BaseAddress=0x%lX Length=0x%lX\n", TopOfNewStack - NewStackSize, NewStackSize));
750 BuildStackHob (TopOfNewStack - NewStackSize, NewStackSize);
751
752 //
753 // Cache information from SecCoreData into locals before SecCoreData is converted to a permanent memory address
754 //
755 TemporaryRamBase = (EFI_PHYSICAL_ADDRESS)(UINTN)SecCoreData->TemporaryRamBase;
756 TemporaryRamSize = SecCoreData->TemporaryRamSize;
757 TemporaryStackSize = SecCoreData->StackSize;
758 TemporaryStackBase = SecCoreData->StackBase;
759 PeiTemporaryRamSize = SecCoreData->PeiTemporaryRamSize;
760 PeiTemporaryRamBase = SecCoreData->PeiTemporaryRamBase;
761
762 //
763 // TemporaryRamSupportPpi is produced by platform's SEC
764 //
765 Status = PeiServicesLocatePpi (
766 &gEfiTemporaryRamSupportPpiGuid,
767 0,
768 NULL,
769 (VOID**)&TemporaryRamSupportPpi
770 );
771 if (!EFI_ERROR (Status)) {
772 //
773 // Heap Offset
774 //
775 BaseOfNewHeap = TopOfNewStack;
776 if (BaseOfNewHeap >= (UINTN)SecCoreData->PeiTemporaryRamBase) {
777 Private->HeapOffsetPositive = TRUE;
778 Private->HeapOffset = (UINTN)(BaseOfNewHeap - (UINTN)SecCoreData->PeiTemporaryRamBase);
779 } else {
780 Private->HeapOffsetPositive = FALSE;
781 Private->HeapOffset = (UINTN)((UINTN)SecCoreData->PeiTemporaryRamBase - BaseOfNewHeap);
782 }
783
784 DEBUG ((EFI_D_INFO, "Heap Offset = 0x%lX Stack Offset = 0x%lX\n", (UINT64) Private->HeapOffset, (UINT64) Private->StackOffset));
785
786 //
787 // Calculate new HandOffTable and PrivateData address in permanent memory's stack
788 //
789 if (StackOffsetPositive) {
790 SecCoreData = (CONST EFI_SEC_PEI_HAND_OFF *)((UINTN)(VOID *)SecCoreData + StackOffset);
791 Private = (PEI_CORE_INSTANCE *)((UINTN)(VOID *)Private + StackOffset);
792 } else {
793 SecCoreData = (CONST EFI_SEC_PEI_HAND_OFF *)((UINTN)(VOID *)SecCoreData - StackOffset);
794 Private = (PEI_CORE_INSTANCE *)((UINTN)(VOID *)Private - StackOffset);
795 }
796
797 //
798 // Temporary Ram Support PPI is provided by platform, it will copy
799 // temporary memory to permanent memory and do stack switching.
800 // After invoking Temporary Ram Support PPI, the following code's
801 // stack is in permanent memory.
802 //
803 TemporaryRamSupportPpi->TemporaryRamMigration (
804 PeiServices,
805 TemporaryRamBase,
806 (EFI_PHYSICAL_ADDRESS)(UINTN)(TopOfNewStack - TemporaryStackSize),
807 TemporaryRamSize
808 );
809
810 //
811 // Migrate memory pages allocated in pre-memory phase.
812 // It could not be called before calling TemporaryRamSupportPpi->TemporaryRamMigration()
813 // as the migrated memory pages may be overridden by TemporaryRamSupportPpi->TemporaryRamMigration().
814 //
815 MigrateMemoryPages (Private, TRUE);
816
817 //
818 // Entry PEI Phase 2
819 //
820 PeiCore (SecCoreData, NULL, Private);
821 } else {
822 //
823 // Migrate memory pages allocated in pre-memory phase.
824 //
825 MigrateMemoryPages (Private, FALSE);
826
827 //
828 // Migrate the PEI Services Table pointer from temporary RAM to permanent RAM.
829 //
830 MigratePeiServicesTablePointer ();
831
832 //
833 // Heap Offset
834 //
835 BaseOfNewHeap = TopOfNewStack;
836 HoleMemBase = TopOfNewStack;
837 HoleMemSize = TemporaryRamSize - PeiTemporaryRamSize - TemporaryStackSize;
838 if (HoleMemSize != 0) {
839 //
840 // Make sure HOB List start address is 8 byte alignment.
841 //
842 BaseOfNewHeap = ALIGN_VALUE (BaseOfNewHeap + HoleMemSize, 8);
843 }
844 if (BaseOfNewHeap >= (UINTN)SecCoreData->PeiTemporaryRamBase) {
845 Private->HeapOffsetPositive = TRUE;
846 Private->HeapOffset = (UINTN)(BaseOfNewHeap - (UINTN)SecCoreData->PeiTemporaryRamBase);
847 } else {
848 Private->HeapOffsetPositive = FALSE;
849 Private->HeapOffset = (UINTN)((UINTN)SecCoreData->PeiTemporaryRamBase - BaseOfNewHeap);
850 }
851
852 DEBUG ((EFI_D_INFO, "Heap Offset = 0x%lX Stack Offset = 0x%lX\n", (UINT64) Private->HeapOffset, (UINT64) Private->StackOffset));
853
854 //
855 // Migrate Heap
856 //
857 HeapTemporaryRamSize = (UINTN) (Private->HobList.HandoffInformationTable->EfiFreeMemoryBottom - Private->HobList.HandoffInformationTable->EfiMemoryBottom);
858 ASSERT (BaseOfNewHeap + HeapTemporaryRamSize <= Private->FreePhysicalMemoryTop);
859 CopyMem ((UINT8 *) (UINTN) BaseOfNewHeap, PeiTemporaryRamBase, HeapTemporaryRamSize);
860
861 //
862 // Migrate Stack
863 //
864 CopyMem ((UINT8 *) (UINTN) (TopOfNewStack - TemporaryStackSize), TemporaryStackBase, TemporaryStackSize);
865
866 //
867 // Copy Hole Range Data
868 //
869 if (HoleMemSize != 0) {
870 //
871 // Prepare Hole
872 //
873 if (PeiTemporaryRamBase < TemporaryStackBase) {
874 TempBase1 = (EFI_PHYSICAL_ADDRESS) (UINTN) PeiTemporaryRamBase;
875 TempSize1 = PeiTemporaryRamSize;
876 TempBase2 = (EFI_PHYSICAL_ADDRESS) (UINTN) TemporaryStackBase;
877 TempSize2 = TemporaryStackSize;
878 } else {
879 TempBase1 = (EFI_PHYSICAL_ADDRESS) (UINTN) TemporaryStackBase;
880 TempSize1 = TemporaryStackSize;
881 TempBase2 =(EFI_PHYSICAL_ADDRESS) (UINTN) PeiTemporaryRamBase;
882 TempSize2 = PeiTemporaryRamSize;
883 }
884 if (TemporaryRamBase < TempBase1) {
885 Private->HoleData[0].Base = TemporaryRamBase;
886 Private->HoleData[0].Size = (UINTN) (TempBase1 - TemporaryRamBase);
887 }
888 if (TempBase1 + TempSize1 < TempBase2) {
889 Private->HoleData[1].Base = TempBase1 + TempSize1;
890 Private->HoleData[1].Size = (UINTN) (TempBase2 - TempBase1 - TempSize1);
891 }
892 if (TempBase2 + TempSize2 < TemporaryRamBase + TemporaryRamSize) {
893 Private->HoleData[2].Base = TempBase2 + TempSize2;
894 Private->HoleData[2].Size = (UINTN) (TemporaryRamBase + TemporaryRamSize - TempBase2 - TempSize2);
895 }
896
897 //
898 // Copy Hole Range data.
899 //
900 for (Index = 0; Index < HOLE_MAX_NUMBER; Index ++) {
901 if (Private->HoleData[Index].Size > 0) {
902 if (HoleMemBase > Private->HoleData[Index].Base) {
903 Private->HoleData[Index].OffsetPositive = TRUE;
904 Private->HoleData[Index].Offset = (UINTN) (HoleMemBase - Private->HoleData[Index].Base);
905 } else {
906 Private->HoleData[Index].OffsetPositive = FALSE;
907 Private->HoleData[Index].Offset = (UINTN) (Private->HoleData[Index].Base - HoleMemBase);
908 }
909 CopyMem ((VOID *) (UINTN) HoleMemBase, (VOID *) (UINTN) Private->HoleData[Index].Base, Private->HoleData[Index].Size);
910 HoleMemBase = HoleMemBase + Private->HoleData[Index].Size;
911 }
912 }
913 }
914
915 //
916 // Switch new stack
917 //
918 SwitchStack (
919 (SWITCH_STACK_ENTRY_POINT)(UINTN)PeiCoreEntry,
920 (VOID *) SecCoreData,
921 (VOID *) Private,
922 (VOID *) (UINTN) TopOfNewStack
923 );
924 }
925
926 //
927 // Code should not come here
928 //
929 ASSERT (FALSE);
930 }
931 }
932
933 /**
934 Conduct PEIM dispatch.
935
936 @param SecCoreData Points to a data structure containing information about the PEI core's operating
937 environment, such as the size and location of temporary RAM, the stack location and
938 the BFV location.
939 @param Private Pointer to the private data passed in from caller
940
941 **/
942 VOID
943 PeiDispatcher (
944 IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData,
945 IN PEI_CORE_INSTANCE *Private
946 )
947 {
948 EFI_STATUS Status;
949 UINT32 Index1;
950 UINT32 Index2;
951 CONST EFI_PEI_SERVICES **PeiServices;
952 EFI_PEI_FILE_HANDLE PeimFileHandle;
953 UINTN FvCount;
954 UINTN PeimCount;
955 UINT32 AuthenticationState;
956 EFI_PHYSICAL_ADDRESS EntryPoint;
957 EFI_PEIM_ENTRY_POINT2 PeimEntryPoint;
958 UINTN SaveCurrentPeimCount;
959 UINTN SaveCurrentFvCount;
960 EFI_PEI_FILE_HANDLE SaveCurrentFileHandle;
961 EFI_FV_FILE_INFO FvFileInfo;
962 PEI_CORE_FV_HANDLE *CoreFvHandle;
963
964 PeiServices = (CONST EFI_PEI_SERVICES **) &Private->Ps;
965 PeimEntryPoint = NULL;
966 PeimFileHandle = NULL;
967 EntryPoint = 0;
968
969 if ((Private->PeiMemoryInstalled) && (Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME || PcdGetBool (PcdShadowPeimOnS3Boot))) {
970 //
971 // Once real memory is available, shadow the RegisterForShadow modules. And meanwhile
972 // update the modules' status from PEIM_STATE_REGISITER_FOR_SHADOW to PEIM_STATE_DONE.
973 //
974 SaveCurrentPeimCount = Private->CurrentPeimCount;
975 SaveCurrentFvCount = Private->CurrentPeimFvCount;
976 SaveCurrentFileHandle = Private->CurrentFileHandle;
977
978 for (Index1 = 0; Index1 <= SaveCurrentFvCount; Index1++) {
979 for (Index2 = 0; (Index2 < PcdGet32 (PcdPeiCoreMaxPeimPerFv)) && (Private->Fv[Index1].FvFileHandles[Index2] != NULL); Index2++) {
980 if (Private->Fv[Index1].PeimState[Index2] == PEIM_STATE_REGISITER_FOR_SHADOW) {
981 PeimFileHandle = Private->Fv[Index1].FvFileHandles[Index2];
982 Private->CurrentFileHandle = PeimFileHandle;
983 Private->CurrentPeimFvCount = Index1;
984 Private->CurrentPeimCount = Index2;
985 Status = PeiLoadImage (
986 (CONST EFI_PEI_SERVICES **) &Private->Ps,
987 PeimFileHandle,
988 PEIM_STATE_REGISITER_FOR_SHADOW,
989 &EntryPoint,
990 &AuthenticationState
991 );
992 if (Status == EFI_SUCCESS) {
993 //
994 // PEIM_STATE_REGISITER_FOR_SHADOW move to PEIM_STATE_DONE
995 //
996 Private->Fv[Index1].PeimState[Index2]++;
997 //
998 // Call the PEIM entry point
999 //
1000 PeimEntryPoint = (EFI_PEIM_ENTRY_POINT2)(UINTN)EntryPoint;
1001
1002 PERF_START (PeimFileHandle, "PEIM", NULL, 0);
1003 PeimEntryPoint(PeimFileHandle, (const EFI_PEI_SERVICES **) &Private->Ps);
1004 PERF_END (PeimFileHandle, "PEIM", NULL, 0);
1005 }
1006
1007 //
1008 // Process the Notify list and dispatch any notifies for
1009 // newly installed PPIs.
1010 //
1011 ProcessNotifyList (Private);
1012 }
1013 }
1014 }
1015 Private->CurrentFileHandle = SaveCurrentFileHandle;
1016 Private->CurrentPeimFvCount = SaveCurrentFvCount;
1017 Private->CurrentPeimCount = SaveCurrentPeimCount;
1018 }
1019
1020 //
1021 // This is the main dispatch loop. It will search known FVs for PEIMs and
1022 // attempt to dispatch them. If any PEIM gets dispatched through a single
1023 // pass of the dispatcher, it will start over from the Bfv again to see
1024 // if any new PEIMs dependencies got satisfied. With a well ordered
1025 // FV where PEIMs are found in the order their dependencies are also
1026 // satisfied, this dipatcher should run only once.
1027 //
1028 do {
1029 //
1030 // In case that reenter PeiCore happens, the last pass record is still available.
1031 //
1032 if (!Private->PeimDispatcherReenter) {
1033 Private->PeimNeedingDispatch = FALSE;
1034 Private->PeimDispatchOnThisPass = FALSE;
1035 } else {
1036 Private->PeimDispatcherReenter = FALSE;
1037 }
1038
1039 for (FvCount = Private->CurrentPeimFvCount; FvCount < Private->FvCount; FvCount++) {
1040 CoreFvHandle = FindNextCoreFvHandle (Private, FvCount);
1041 ASSERT (CoreFvHandle != NULL);
1042
1043 //
1044 // If the FV has corresponding EFI_PEI_FIRMWARE_VOLUME_PPI instance, then dispatch it.
1045 //
1046 if (CoreFvHandle->FvPpi == NULL) {
1047 continue;
1048 }
1049
1050 Private->CurrentPeimFvCount = FvCount;
1051
1052 if (Private->CurrentPeimCount == 0) {
1053 //
1054 // When going through each FV, at first, search Apriori file to
1055 // reorder all PEIMs to ensure the PEIMs in Apriori file to get
1056 // dispatch at first.
1057 //
1058 DiscoverPeimsAndOrderWithApriori (Private, CoreFvHandle);
1059 }
1060
1061 //
1062 // Start to dispatch all modules within the current Fv.
1063 //
1064 for (PeimCount = Private->CurrentPeimCount;
1065 (PeimCount < PcdGet32 (PcdPeiCoreMaxPeimPerFv)) && (Private->CurrentFvFileHandles[PeimCount] != NULL);
1066 PeimCount++) {
1067 Private->CurrentPeimCount = PeimCount;
1068 PeimFileHandle = Private->CurrentFileHandle = Private->CurrentFvFileHandles[PeimCount];
1069
1070 if (Private->Fv[FvCount].PeimState[PeimCount] == PEIM_STATE_NOT_DISPATCHED) {
1071 if (!DepexSatisfied (Private, PeimFileHandle, PeimCount)) {
1072 Private->PeimNeedingDispatch = TRUE;
1073 } else {
1074 Status = CoreFvHandle->FvPpi->GetFileInfo (CoreFvHandle->FvPpi, PeimFileHandle, &FvFileInfo);
1075 ASSERT_EFI_ERROR (Status);
1076 if (FvFileInfo.FileType == EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE) {
1077 //
1078 // For Fv type file, Produce new FvInfo PPI and FV hob
1079 //
1080 Status = ProcessFvFile (Private, &Private->Fv[FvCount], PeimFileHandle);
1081 if (Status == EFI_SUCCESS) {
1082 //
1083 // PEIM_STATE_NOT_DISPATCHED move to PEIM_STATE_DISPATCHED
1084 //
1085 Private->Fv[FvCount].PeimState[PeimCount]++;
1086 Private->PeimDispatchOnThisPass = TRUE;
1087 } else {
1088 //
1089 // The related GuidedSectionExtraction/Decompress PPI for the
1090 // encapsulated FV image section may be installed in the rest
1091 // of this do-while loop, so need to make another pass.
1092 //
1093 Private->PeimNeedingDispatch = TRUE;
1094 }
1095 } else {
1096 //
1097 // For PEIM driver, Load its entry point
1098 //
1099 Status = PeiLoadImage (
1100 PeiServices,
1101 PeimFileHandle,
1102 PEIM_STATE_NOT_DISPATCHED,
1103 &EntryPoint,
1104 &AuthenticationState
1105 );
1106 if (Status == EFI_SUCCESS) {
1107 //
1108 // The PEIM has its dependencies satisfied, and its entry point
1109 // has been found, so invoke it.
1110 //
1111 PERF_START (PeimFileHandle, "PEIM", NULL, 0);
1112
1113 REPORT_STATUS_CODE_WITH_EXTENDED_DATA (
1114 EFI_PROGRESS_CODE,
1115 (EFI_SOFTWARE_PEI_CORE | EFI_SW_PC_INIT_BEGIN),
1116 (VOID *)(&PeimFileHandle),
1117 sizeof (PeimFileHandle)
1118 );
1119
1120 Status = VerifyPeim (Private, CoreFvHandle->FvHandle, PeimFileHandle, AuthenticationState);
1121 if (Status != EFI_SECURITY_VIOLATION) {
1122 //
1123 // PEIM_STATE_NOT_DISPATCHED move to PEIM_STATE_DISPATCHED
1124 //
1125 Private->Fv[FvCount].PeimState[PeimCount]++;
1126 //
1127 // Call the PEIM entry point for PEIM driver
1128 //
1129 PeimEntryPoint = (EFI_PEIM_ENTRY_POINT2)(UINTN)EntryPoint;
1130 PeimEntryPoint (PeimFileHandle, (const EFI_PEI_SERVICES **) PeiServices);
1131 Private->PeimDispatchOnThisPass = TRUE;
1132 } else {
1133 //
1134 // The related GuidedSectionExtraction PPI for the
1135 // signed PEIM image section may be installed in the rest
1136 // of this do-while loop, so need to make another pass.
1137 //
1138 Private->PeimNeedingDispatch = TRUE;
1139 }
1140
1141 REPORT_STATUS_CODE_WITH_EXTENDED_DATA (
1142 EFI_PROGRESS_CODE,
1143 (EFI_SOFTWARE_PEI_CORE | EFI_SW_PC_INIT_END),
1144 (VOID *)(&PeimFileHandle),
1145 sizeof (PeimFileHandle)
1146 );
1147 PERF_END (PeimFileHandle, "PEIM", NULL, 0);
1148
1149 }
1150 }
1151
1152 PeiCheckAndSwitchStack (SecCoreData, Private);
1153
1154 //
1155 // Process the Notify list and dispatch any notifies for
1156 // newly installed PPIs.
1157 //
1158 ProcessNotifyList (Private);
1159
1160 //
1161 // Recheck SwitchStackSignal after ProcessNotifyList()
1162 // in case PeiInstallPeiMemory() is done in a callback with
1163 // EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH.
1164 //
1165 PeiCheckAndSwitchStack (SecCoreData, Private);
1166
1167 if ((Private->PeiMemoryInstalled) && (Private->Fv[FvCount].PeimState[PeimCount] == PEIM_STATE_REGISITER_FOR_SHADOW) && \
1168 (Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME || PcdGetBool (PcdShadowPeimOnS3Boot))) {
1169 //
1170 // If memory is available we shadow images by default for performance reasons.
1171 // We call the entry point a 2nd time so the module knows it's shadowed.
1172 //
1173 //PERF_START (PeiServices, L"PEIM", PeimFileHandle, 0);
1174 if ((Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME) && !PcdGetBool (PcdShadowPeimOnBoot)) {
1175 //
1176 // Load PEIM into Memory for Register for shadow PEIM.
1177 //
1178 Status = PeiLoadImage (
1179 PeiServices,
1180 PeimFileHandle,
1181 PEIM_STATE_REGISITER_FOR_SHADOW,
1182 &EntryPoint,
1183 &AuthenticationState
1184 );
1185 if (Status == EFI_SUCCESS) {
1186 PeimEntryPoint = (EFI_PEIM_ENTRY_POINT2)(UINTN)EntryPoint;
1187 }
1188 }
1189 ASSERT (PeimEntryPoint != NULL);
1190 PeimEntryPoint (PeimFileHandle, (const EFI_PEI_SERVICES **) PeiServices);
1191 //PERF_END (PeiServices, L"PEIM", PeimFileHandle, 0);
1192
1193 //
1194 // PEIM_STATE_REGISITER_FOR_SHADOW move to PEIM_STATE_DONE
1195 //
1196 Private->Fv[FvCount].PeimState[PeimCount]++;
1197
1198 //
1199 // Process the Notify list and dispatch any notifies for
1200 // newly installed PPIs.
1201 //
1202 ProcessNotifyList (Private);
1203 }
1204 }
1205 }
1206 }
1207
1208 //
1209 // We set to NULL here to optimize the 2nd entry to this routine after
1210 // memory is found. This reprevents rescanning of the FV. We set to
1211 // NULL here so we start at the begining of the next FV
1212 //
1213 Private->CurrentFileHandle = NULL;
1214 Private->CurrentPeimCount = 0;
1215 //
1216 // Before walking through the next FV,Private->CurrentFvFileHandles[]should set to NULL
1217 //
1218 SetMem (Private->CurrentFvFileHandles, sizeof (EFI_PEI_FILE_HANDLE) * PcdGet32 (PcdPeiCoreMaxPeimPerFv), 0);
1219 }
1220
1221 //
1222 // Before making another pass, we should set Private->CurrentPeimFvCount =0 to go
1223 // through all the FV.
1224 //
1225 Private->CurrentPeimFvCount = 0;
1226
1227 //
1228 // PeimNeedingDispatch being TRUE means we found a PEIM/FV that did not get
1229 // dispatched. So we need to make another pass
1230 //
1231 // PeimDispatchOnThisPass being TRUE means we dispatched a PEIM/FV on this
1232 // pass. If we did not dispatch a PEIM/FV there is no point in trying again
1233 // as it will fail the next time too (nothing has changed).
1234 //
1235 } while (Private->PeimNeedingDispatch && Private->PeimDispatchOnThisPass);
1236
1237 }
1238
1239 /**
1240 Initialize the Dispatcher's data members
1241
1242 @param PrivateData PeiCore's private data structure
1243 @param OldCoreData Old data from SecCore
1244 NULL if being run in non-permament memory mode.
1245 @param SecCoreData Points to a data structure containing information about the PEI core's operating
1246 environment, such as the size and location of temporary RAM, the stack location and
1247 the BFV location.
1248
1249 @return None.
1250
1251 **/
1252 VOID
1253 InitializeDispatcherData (
1254 IN PEI_CORE_INSTANCE *PrivateData,
1255 IN PEI_CORE_INSTANCE *OldCoreData,
1256 IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData
1257 )
1258 {
1259 if (OldCoreData == NULL) {
1260 PrivateData->PeimDispatcherReenter = FALSE;
1261 PeiInitializeFv (PrivateData, SecCoreData);
1262 } else {
1263 PeiReinitializeFv (PrivateData);
1264 }
1265
1266 return;
1267 }
1268
1269 /**
1270 This routine parses the Dependency Expression, if available, and
1271 decides if the module can be executed.
1272
1273
1274 @param Private PeiCore's private data structure
1275 @param FileHandle PEIM's file handle
1276 @param PeimCount Peim count in all dispatched PEIMs.
1277
1278 @retval TRUE Can be dispatched
1279 @retval FALSE Cannot be dispatched
1280
1281 **/
1282 BOOLEAN
1283 DepexSatisfied (
1284 IN PEI_CORE_INSTANCE *Private,
1285 IN EFI_PEI_FILE_HANDLE FileHandle,
1286 IN UINTN PeimCount
1287 )
1288 {
1289 EFI_STATUS Status;
1290 VOID *DepexData;
1291 EFI_FV_FILE_INFO FileInfo;
1292
1293 Status = PeiServicesFfsGetFileInfo (FileHandle, &FileInfo);
1294 if (EFI_ERROR (Status)) {
1295 DEBUG ((DEBUG_DISPATCH, "Evaluate PEI DEPEX for FFS(Unknown)\n"));
1296 } else {
1297 DEBUG ((DEBUG_DISPATCH, "Evaluate PEI DEPEX for FFS(%g)\n", &FileInfo.FileName));
1298 }
1299
1300 if (PeimCount < Private->AprioriCount) {
1301 //
1302 // If its in the A priori file then we set Depex to TRUE
1303 //
1304 DEBUG ((DEBUG_DISPATCH, " RESULT = TRUE (Apriori)\n"));
1305 return TRUE;
1306 }
1307
1308 //
1309 // Depex section not in the encapsulated section.
1310 //
1311 Status = PeiServicesFfsFindSectionData (
1312 EFI_SECTION_PEI_DEPEX,
1313 FileHandle,
1314 (VOID **)&DepexData
1315 );
1316
1317 if (EFI_ERROR (Status)) {
1318 //
1319 // If there is no DEPEX, assume the module can be executed
1320 //
1321 DEBUG ((DEBUG_DISPATCH, " RESULT = TRUE (No DEPEX)\n"));
1322 return TRUE;
1323 }
1324
1325 //
1326 // Evaluate a given DEPEX
1327 //
1328 return PeimDispatchReadiness (&Private->Ps, DepexData);
1329 }
1330
1331 /**
1332 This routine enable a PEIM to register itself to shadow when PEI Foundation
1333 discovery permanent memory.
1334
1335 @param FileHandle File handle of a PEIM.
1336
1337 @retval EFI_NOT_FOUND The file handle doesn't point to PEIM itself.
1338 @retval EFI_ALREADY_STARTED Indicate that the PEIM has been registered itself.
1339 @retval EFI_SUCCESS Successfully to register itself.
1340
1341 **/
1342 EFI_STATUS
1343 EFIAPI
1344 PeiRegisterForShadow (
1345 IN EFI_PEI_FILE_HANDLE FileHandle
1346 )
1347 {
1348 PEI_CORE_INSTANCE *Private;
1349 Private = PEI_CORE_INSTANCE_FROM_PS_THIS (GetPeiServicesTablePointer ());
1350
1351 if (Private->CurrentFileHandle != FileHandle) {
1352 //
1353 // The FileHandle must be for the current PEIM
1354 //
1355 return EFI_NOT_FOUND;
1356 }
1357
1358 if (Private->Fv[Private->CurrentPeimFvCount].PeimState[Private->CurrentPeimCount] >= PEIM_STATE_REGISITER_FOR_SHADOW) {
1359 //
1360 // If the PEIM has already entered the PEIM_STATE_REGISTER_FOR_SHADOW or PEIM_STATE_DONE then it's already been started
1361 //
1362 return EFI_ALREADY_STARTED;
1363 }
1364
1365 Private->Fv[Private->CurrentPeimFvCount].PeimState[Private->CurrentPeimCount] = PEIM_STATE_REGISITER_FOR_SHADOW;
1366
1367 return EFI_SUCCESS;
1368 }
1369
1370
1371