]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Core/Pei/Dispatcher/Dispatcher.c
Fix two issues in PeiCore.
[mirror_edk2.git] / MdeModulePkg / Core / Pei / Dispatcher / Dispatcher.c
1 /** @file
2 EFI PEI Core dispatch services
3
4 Copyright (c) 2006 - 2013, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "PeiMain.h"
16
17 ///
18 /// temporary memory is filled with this initial value during SEC phase
19 ///
20 #define INIT_CAR_VALUE 0x5AA55AA5
21
22 typedef struct {
23 EFI_STATUS_CODE_DATA DataHeader;
24 EFI_HANDLE Handle;
25 } PEIM_FILE_HANDLE_EXTENDED_DATA;
26
27 /**
28
29 Discover all Peims and optional Apriori file in one FV. There is at most one
30 Apriori file in one FV.
31
32
33 @param Private Pointer to the private data passed in from caller
34 @param CoreFileHandle The instance of PEI_CORE_FV_HANDLE.
35
36 **/
37 VOID
38 DiscoverPeimsAndOrderWithApriori (
39 IN PEI_CORE_INSTANCE *Private,
40 IN PEI_CORE_FV_HANDLE *CoreFileHandle
41 )
42 {
43 EFI_STATUS Status;
44 EFI_PEI_FILE_HANDLE FileHandle;
45 EFI_PEI_FILE_HANDLE AprioriFileHandle;
46 EFI_GUID *Apriori;
47 UINTN Index;
48 UINTN Index2;
49 UINTN PeimIndex;
50 UINTN PeimCount;
51 EFI_GUID *Guid;
52 EFI_PEI_FILE_HANDLE TempFileHandles[FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv) + 1];
53 EFI_GUID FileGuid[FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv)];
54 EFI_PEI_FIRMWARE_VOLUME_PPI *FvPpi;
55 EFI_FV_FILE_INFO FileInfo;
56
57 FvPpi = CoreFileHandle->FvPpi;
58
59 //
60 // Walk the FV and find all the PEIMs and the Apriori file.
61 //
62 AprioriFileHandle = NULL;
63 Private->CurrentFvFileHandles[0] = NULL;
64 Guid = NULL;
65 FileHandle = NULL;
66
67 //
68 // If the current Fv has been scanned, directly get its cachable record.
69 //
70 if (Private->Fv[Private->CurrentPeimFvCount].ScanFv) {
71 CopyMem (Private->CurrentFvFileHandles, Private->Fv[Private->CurrentPeimFvCount].FvFileHandles, sizeof (Private->CurrentFvFileHandles));
72 return;
73 }
74
75 //
76 // Go ahead to scan this Fv, and cache FileHandles within it.
77 //
78 Status = EFI_NOT_FOUND;
79 for (PeimCount = 0; PeimCount <= FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv); PeimCount++) {
80 Status = FvPpi->FindFileByType (FvPpi, PEI_CORE_INTERNAL_FFS_FILE_DISPATCH_TYPE, CoreFileHandle->FvHandle, &FileHandle);
81 if (Status != EFI_SUCCESS || PeimCount == FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv)) {
82 break;
83 }
84
85 Private->CurrentFvFileHandles[PeimCount] = FileHandle;
86 }
87
88 //
89 // Check whether the count of Peims exceeds the max support PEIMs in a FV image
90 // If more Peims are required in a FV image, PcdPeiCoreMaxPeimPerFv can be set to a larger value in DSC file.
91 //
92 ASSERT ((Status != EFI_SUCCESS) || (PeimCount < FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv)));
93
94 //
95 // Get Apriori File handle
96 //
97 Private->AprioriCount = 0;
98 Status = FvPpi->FindFileByName (FvPpi, &gPeiAprioriFileNameGuid, &CoreFileHandle->FvHandle, &AprioriFileHandle);
99 if (!EFI_ERROR(Status) && AprioriFileHandle != NULL) {
100 //
101 // Read the Apriori file
102 //
103 Status = FvPpi->FindSectionByType (FvPpi, EFI_SECTION_RAW, AprioriFileHandle, (VOID **) &Apriori);
104 if (!EFI_ERROR (Status)) {
105 //
106 // Calculate the number of PEIMs in the A Priori list
107 //
108 Status = FvPpi->GetFileInfo (FvPpi, AprioriFileHandle, &FileInfo);
109 ASSERT_EFI_ERROR (Status);
110 Private->AprioriCount = FileInfo.BufferSize;
111 if (IS_SECTION2 (FileInfo.Buffer)) {
112 Private->AprioriCount -= sizeof (EFI_COMMON_SECTION_HEADER2);
113 } else {
114 Private->AprioriCount -= sizeof (EFI_COMMON_SECTION_HEADER);
115 }
116 Private->AprioriCount /= sizeof (EFI_GUID);
117
118 ZeroMem (FileGuid, sizeof (FileGuid));
119 for (Index = 0; Index < PeimCount; Index++) {
120 //
121 // Make an array of file name guids that matches the FileHandle array so we can convert
122 // quickly from file name to file handle
123 //
124 Status = FvPpi->GetFileInfo (FvPpi, Private->CurrentFvFileHandles[Index], &FileInfo);
125 CopyMem (&FileGuid[Index], &FileInfo.FileName, sizeof(EFI_GUID));
126 }
127
128 //
129 // Walk through FileGuid array to find out who is invalid PEIM guid in Apriori file.
130 // Add available PEIMs in Apriori file into TempFileHandles array at first.
131 //
132 Index2 = 0;
133 for (Index = 0; Index2 < Private->AprioriCount; Index++) {
134 while (Index2 < Private->AprioriCount) {
135 Guid = ScanGuid (FileGuid, PeimCount * sizeof (EFI_GUID), &Apriori[Index2++]);
136 if (Guid != NULL) {
137 break;
138 }
139 }
140 if (Guid == NULL) {
141 break;
142 }
143 PeimIndex = ((UINTN)Guid - (UINTN)&FileGuid[0])/sizeof (EFI_GUID);
144 TempFileHandles[Index] = Private->CurrentFvFileHandles[PeimIndex];
145
146 //
147 // Since we have copied the file handle we can remove it from this list.
148 //
149 Private->CurrentFvFileHandles[PeimIndex] = NULL;
150 }
151
152 //
153 // Update valid Aprioricount
154 //
155 Private->AprioriCount = Index;
156
157 //
158 // Add in any PEIMs not in the Apriori file
159 //
160 for (;Index < PeimCount; Index++) {
161 for (Index2 = 0; Index2 < PeimCount; Index2++) {
162 if (Private->CurrentFvFileHandles[Index2] != NULL) {
163 TempFileHandles[Index] = Private->CurrentFvFileHandles[Index2];
164 Private->CurrentFvFileHandles[Index2] = NULL;
165 break;
166 }
167 }
168 }
169 //
170 //Index the end of array contains re-range Pei moudle.
171 //
172 TempFileHandles[Index] = NULL;
173
174 //
175 // Private->CurrentFvFileHandles is currently in PEIM in the FV order.
176 // We need to update it to start with files in the A Priori list and
177 // then the remaining files in PEIM order.
178 //
179 CopyMem (Private->CurrentFvFileHandles, TempFileHandles, sizeof (Private->CurrentFvFileHandles));
180 }
181 }
182 //
183 // Cache the current Fv File Handle. So that we don't have to scan the Fv again.
184 // Instead, we can retrieve the file handles within this Fv from cachable data.
185 //
186 Private->Fv[Private->CurrentPeimFvCount].ScanFv = TRUE;
187 CopyMem (Private->Fv[Private->CurrentPeimFvCount].FvFileHandles, Private->CurrentFvFileHandles, sizeof (Private->CurrentFvFileHandles));
188
189 }
190
191 //
192 // This is the minimum memory required by DxeCore initialization. When LMFA feature enabled,
193 // This part of memory still need reserved on the very top of memory so that the DXE Core could
194 // use these memory for data initialization. This macro should be sync with the same marco
195 // defined in DXE Core.
196 //
197 #define MINIMUM_INITIAL_MEMORY_SIZE 0x10000
198 /**
199 This function is to test if the memory range described in resource HOB is available or not.
200
201 This function should only be invoked when Loading Module at Fixed Address(LMFA) feature is enabled. Some platform may allocate the
202 memory before PeiLoadFixAddressHook in invoked. so this function is to test if the memory range described by the input resource HOB is
203 available or not.
204
205 @param PrivateData Pointer to the private data passed in from caller
206 @param ResourceHob Pointer to a resource HOB which described the memory range described by the input resource HOB
207 **/
208 BOOLEAN
209 PeiLoadFixAddressIsMemoryRangeAvailable (
210 IN PEI_CORE_INSTANCE *PrivateData,
211 IN EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob
212 )
213 {
214 EFI_HOB_MEMORY_ALLOCATION *MemoryHob;
215 BOOLEAN IsAvailable;
216 EFI_PEI_HOB_POINTERS Hob;
217
218 IsAvailable = TRUE;
219 if (PrivateData == NULL || ResourceHob == NULL) {
220 return FALSE;
221 }
222 //
223 // test if the memory range describe in the HOB is already allocated.
224 //
225 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
226 //
227 // See if this is a memory allocation HOB
228 //
229 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_MEMORY_ALLOCATION) {
230 MemoryHob = Hob.MemoryAllocation;
231 if(MemoryHob->AllocDescriptor.MemoryBaseAddress == ResourceHob->PhysicalStart &&
232 MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength == ResourceHob->PhysicalStart + ResourceHob->ResourceLength) {
233 IsAvailable = FALSE;
234 break;
235 }
236 }
237 }
238
239 return IsAvailable;
240
241 }
242 /**
243 Hook function for Loading Module at Fixed Address feature
244
245 This function should only be invoked when Loading Module at Fixed Address(LMFA) feature is enabled. When feature is
246 configured as Load Modules at Fix Absolute Address, this function is to validate the top address assigned by user. When
247 feature is configured as Load Modules at Fixed Offset, the functino is to find the top address which is TOLM-TSEG in general.
248 And also the function will re-install PEI memory.
249
250 @param PrivateData Pointer to the private data passed in from caller
251
252 **/
253 VOID
254 PeiLoadFixAddressHook(
255 IN PEI_CORE_INSTANCE *PrivateData
256 )
257 {
258 EFI_PHYSICAL_ADDRESS TopLoadingAddress;
259 UINT64 PeiMemorySize;
260 UINT64 TotalReservedMemorySize;
261 UINT64 MemoryRangeEnd;
262 EFI_PHYSICAL_ADDRESS HighAddress;
263 EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob;
264 EFI_HOB_RESOURCE_DESCRIPTOR *NextResourceHob;
265 EFI_HOB_RESOURCE_DESCRIPTOR *CurrentResourceHob;
266 EFI_PEI_HOB_POINTERS CurrentHob;
267 EFI_PEI_HOB_POINTERS Hob;
268 EFI_PEI_HOB_POINTERS NextHob;
269 EFI_HOB_MEMORY_ALLOCATION *MemoryHob;
270 //
271 // Initialize Local Variables
272 //
273 CurrentResourceHob = NULL;
274 ResourceHob = NULL;
275 NextResourceHob = NULL;
276 HighAddress = 0;
277 TopLoadingAddress = 0;
278 MemoryRangeEnd = 0;
279 CurrentHob.Raw = PrivateData->HobList.Raw;
280 PeiMemorySize = PrivateData->PhysicalMemoryLength;
281 //
282 // The top reserved memory include 3 parts: the topest range is for DXE core initialization with the size MINIMUM_INITIAL_MEMORY_SIZE
283 // then RuntimeCodePage range and Boot time code range.
284 //
285 TotalReservedMemorySize = MINIMUM_INITIAL_MEMORY_SIZE + EFI_PAGES_TO_SIZE(PcdGet32(PcdLoadFixAddressRuntimeCodePageNumber));
286 TotalReservedMemorySize+= EFI_PAGES_TO_SIZE(PcdGet32(PcdLoadFixAddressBootTimeCodePageNumber)) ;
287 //
288 // PEI memory range lies below the top reserved memory
289 //
290 TotalReservedMemorySize += PeiMemorySize;
291
292 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PcdLoadFixAddressRuntimeCodePageNumber= 0x%x.\n", PcdGet32(PcdLoadFixAddressRuntimeCodePageNumber)));
293 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PcdLoadFixAddressBootTimeCodePageNumber= 0x%x.\n", PcdGet32(PcdLoadFixAddressBootTimeCodePageNumber)));
294 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PcdLoadFixAddressPeiCodePageNumber= 0x%x.\n", PcdGet32(PcdLoadFixAddressPeiCodePageNumber)));
295 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: Total Reserved Memory Size = 0x%lx.\n", TotalReservedMemorySize));
296 //
297 // Loop through the system memory typed hob to merge the adjacent memory range
298 //
299 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
300 //
301 // See if this is a resource descriptor HOB
302 //
303 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
304
305 ResourceHob = Hob.ResourceDescriptor;
306 //
307 // If range described in this hob is not system memory or heigher than MAX_ADDRESS, ignored.
308 //
309 if (ResourceHob->ResourceType != EFI_RESOURCE_SYSTEM_MEMORY ||
310 ResourceHob->PhysicalStart + ResourceHob->ResourceLength > MAX_ADDRESS) {
311 continue;
312 }
313
314 for (NextHob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(NextHob); NextHob.Raw = GET_NEXT_HOB(NextHob)) {
315 if (NextHob.Raw == Hob.Raw){
316 continue;
317 }
318 //
319 // See if this is a resource descriptor HOB
320 //
321 if (GET_HOB_TYPE (NextHob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
322
323 NextResourceHob = NextHob.ResourceDescriptor;
324 //
325 // test if range described in this NextResourceHob is system memory and have the same attribute.
326 // Note: Here is a assumption that system memory should always be healthy even without test.
327 //
328 if (NextResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
329 (((NextResourceHob->ResourceAttribute^ResourceHob->ResourceAttribute)&(~EFI_RESOURCE_ATTRIBUTE_TESTED)) == 0)){
330
331 //
332 // See if the memory range described in ResourceHob and NextResourceHob is adjacent
333 //
334 if ((ResourceHob->PhysicalStart <= NextResourceHob->PhysicalStart &&
335 ResourceHob->PhysicalStart + ResourceHob->ResourceLength >= NextResourceHob->PhysicalStart)||
336 (ResourceHob->PhysicalStart >= NextResourceHob->PhysicalStart&&
337 ResourceHob->PhysicalStart <= NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength)) {
338
339 MemoryRangeEnd = ((ResourceHob->PhysicalStart + ResourceHob->ResourceLength)>(NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength)) ?
340 (ResourceHob->PhysicalStart + ResourceHob->ResourceLength):(NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength);
341
342 ResourceHob->PhysicalStart = (ResourceHob->PhysicalStart < NextResourceHob->PhysicalStart) ?
343 ResourceHob->PhysicalStart : NextResourceHob->PhysicalStart;
344
345
346 ResourceHob->ResourceLength = (MemoryRangeEnd - ResourceHob->PhysicalStart);
347
348 ResourceHob->ResourceAttribute = ResourceHob->ResourceAttribute & (~EFI_RESOURCE_ATTRIBUTE_TESTED);
349 //
350 // Delete the NextResourceHob by marking it as unused.
351 //
352 GET_HOB_TYPE (NextHob) = EFI_HOB_TYPE_UNUSED;
353
354 }
355 }
356 }
357 }
358 }
359 }
360 //
361 // Some platform is already allocated pages before the HOB re-org. Here to build dedicated resource HOB to describe
362 // the allocated memory range
363 //
364 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
365 //
366 // See if this is a memory allocation HOB
367 //
368 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_MEMORY_ALLOCATION) {
369 MemoryHob = Hob.MemoryAllocation;
370 for (NextHob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(NextHob); NextHob.Raw = GET_NEXT_HOB(NextHob)) {
371 //
372 // See if this is a resource descriptor HOB
373 //
374 if (GET_HOB_TYPE (NextHob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
375 NextResourceHob = NextHob.ResourceDescriptor;
376 //
377 // If range described in this hob is not system memory or heigher than MAX_ADDRESS, ignored.
378 //
379 if (NextResourceHob->ResourceType != EFI_RESOURCE_SYSTEM_MEMORY || NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength > MAX_ADDRESS) {
380 continue;
381 }
382 //
383 // If the range describe in memory allocation HOB belongs to the memroy range described by the resource hob
384 //
385 if (MemoryHob->AllocDescriptor.MemoryBaseAddress >= NextResourceHob->PhysicalStart &&
386 MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength <= NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength) {
387 //
388 // Build seperate resource hob for this allocated range
389 //
390 if (MemoryHob->AllocDescriptor.MemoryBaseAddress > NextResourceHob->PhysicalStart) {
391 BuildResourceDescriptorHob (
392 EFI_RESOURCE_SYSTEM_MEMORY,
393 NextResourceHob->ResourceAttribute,
394 NextResourceHob->PhysicalStart,
395 (MemoryHob->AllocDescriptor.MemoryBaseAddress - NextResourceHob->PhysicalStart)
396 );
397 }
398 if (MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength < NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength) {
399 BuildResourceDescriptorHob (
400 EFI_RESOURCE_SYSTEM_MEMORY,
401 NextResourceHob->ResourceAttribute,
402 MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength,
403 (NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength -(MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength))
404 );
405 }
406 NextResourceHob->PhysicalStart = MemoryHob->AllocDescriptor.MemoryBaseAddress;
407 NextResourceHob->ResourceLength = MemoryHob->AllocDescriptor.MemoryLength;
408 break;
409 }
410 }
411 }
412 }
413 }
414
415 //
416 // Try to find and validate the TOP address.
417 //
418 if ((INT64)PcdGet64(PcdLoadModuleAtFixAddressEnable) > 0 ) {
419 //
420 // The LMFA feature is enabled as load module at fixed absolute address.
421 //
422 TopLoadingAddress = (EFI_PHYSICAL_ADDRESS)PcdGet64(PcdLoadModuleAtFixAddressEnable);
423 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: Loading module at fixed absolute address.\n"));
424 //
425 // validate the Address. Loop the resource descriptor HOB to make sure the address is in valid memory range
426 //
427 if ((TopLoadingAddress & EFI_PAGE_MASK) != 0) {
428 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:Top Address 0x%lx is invalid since top address should be page align. \n", TopLoadingAddress));
429 ASSERT (FALSE);
430 }
431 //
432 // Search for a memory region that is below MAX_ADDRESS and in which TopLoadingAddress lies
433 //
434 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
435 //
436 // See if this is a resource descriptor HOB
437 //
438 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
439
440 ResourceHob = Hob.ResourceDescriptor;
441 //
442 // See if this resource descrior HOB describes tested system memory below MAX_ADDRESS
443 //
444 if (ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
445 ResourceHob->PhysicalStart + ResourceHob->ResourceLength <= MAX_ADDRESS) {
446 //
447 // See if Top address specified by user is valid.
448 //
449 if (ResourceHob->PhysicalStart + TotalReservedMemorySize < TopLoadingAddress &&
450 (ResourceHob->PhysicalStart + ResourceHob->ResourceLength - MINIMUM_INITIAL_MEMORY_SIZE) >= TopLoadingAddress &&
451 PeiLoadFixAddressIsMemoryRangeAvailable(PrivateData, ResourceHob)) {
452 CurrentResourceHob = ResourceHob;
453 CurrentHob = Hob;
454 break;
455 }
456 }
457 }
458 }
459 if (CurrentResourceHob != NULL) {
460 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO:Top Address 0x%lx is valid \n", TopLoadingAddress));
461 TopLoadingAddress += MINIMUM_INITIAL_MEMORY_SIZE;
462 } else {
463 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:Top Address 0x%lx is invalid \n", TopLoadingAddress));
464 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:The recommended Top Address for the platform is: \n"));
465 //
466 // Print the recomended Top address range.
467 //
468 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
469 //
470 // See if this is a resource descriptor HOB
471 //
472 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
473
474 ResourceHob = Hob.ResourceDescriptor;
475 //
476 // See if this resource descrior HOB describes tested system memory below MAX_ADDRESS
477 //
478 if (ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
479 ResourceHob->PhysicalStart + ResourceHob->ResourceLength <= MAX_ADDRESS) {
480 //
481 // See if Top address specified by user is valid.
482 //
483 if (ResourceHob->ResourceLength > TotalReservedMemorySize && PeiLoadFixAddressIsMemoryRangeAvailable(PrivateData, ResourceHob)) {
484 DEBUG ((EFI_D_INFO, "(0x%lx, 0x%lx)\n",
485 (ResourceHob->PhysicalStart + TotalReservedMemorySize -MINIMUM_INITIAL_MEMORY_SIZE),
486 (ResourceHob->PhysicalStart + ResourceHob->ResourceLength -MINIMUM_INITIAL_MEMORY_SIZE)
487 ));
488 }
489 }
490 }
491 }
492 //
493 // Assert here
494 //
495 ASSERT (FALSE);
496 return;
497 }
498 } else {
499 //
500 // The LMFA feature is enabled as load module at fixed offset relative to TOLM
501 // Parse the Hob list to find the topest available memory. Generally it is (TOLM - TSEG)
502 //
503 //
504 // Search for a tested memory region that is below MAX_ADDRESS
505 //
506 for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
507 //
508 // See if this is a resource descriptor HOB
509 //
510 if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
511
512 ResourceHob = Hob.ResourceDescriptor;
513 //
514 // See if this resource descrior HOB describes tested system memory below MAX_ADDRESS
515 //
516 if (ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
517 ResourceHob->PhysicalStart + ResourceHob->ResourceLength <= MAX_ADDRESS &&
518 ResourceHob->ResourceLength > TotalReservedMemorySize && PeiLoadFixAddressIsMemoryRangeAvailable(PrivateData, ResourceHob)) {
519 //
520 // See if this is the highest largest system memory region below MaxAddress
521 //
522 if (ResourceHob->PhysicalStart > HighAddress) {
523 CurrentResourceHob = ResourceHob;
524 CurrentHob = Hob;
525 HighAddress = CurrentResourceHob->PhysicalStart;
526 }
527 }
528 }
529 }
530 if (CurrentResourceHob == NULL) {
531 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:The System Memory is too small\n"));
532 //
533 // Assert here
534 //
535 ASSERT (FALSE);
536 return;
537 } else {
538 TopLoadingAddress = CurrentResourceHob->PhysicalStart + CurrentResourceHob->ResourceLength ;
539 }
540 }
541
542 if (CurrentResourceHob != NULL) {
543 //
544 // rebuild resource HOB for PEI memmory and reserved memory
545 //
546 BuildResourceDescriptorHob (
547 EFI_RESOURCE_SYSTEM_MEMORY,
548 (
549 EFI_RESOURCE_ATTRIBUTE_PRESENT |
550 EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
551 EFI_RESOURCE_ATTRIBUTE_TESTED |
552 EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
553 EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
554 EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
555 EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
556 ),
557 (TopLoadingAddress - TotalReservedMemorySize),
558 TotalReservedMemorySize
559 );
560 //
561 // rebuild resource for the remain memory if necessary
562 //
563 if (CurrentResourceHob->PhysicalStart < TopLoadingAddress - TotalReservedMemorySize) {
564 BuildResourceDescriptorHob (
565 EFI_RESOURCE_SYSTEM_MEMORY,
566 (
567 EFI_RESOURCE_ATTRIBUTE_PRESENT |
568 EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
569 EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
570 EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
571 EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
572 EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
573 ),
574 CurrentResourceHob->PhysicalStart,
575 (TopLoadingAddress - TotalReservedMemorySize - CurrentResourceHob->PhysicalStart)
576 );
577 }
578 if (CurrentResourceHob->PhysicalStart + CurrentResourceHob->ResourceLength > TopLoadingAddress ) {
579 BuildResourceDescriptorHob (
580 EFI_RESOURCE_SYSTEM_MEMORY,
581 (
582 EFI_RESOURCE_ATTRIBUTE_PRESENT |
583 EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
584 EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
585 EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
586 EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
587 EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
588 ),
589 TopLoadingAddress,
590 (CurrentResourceHob->PhysicalStart + CurrentResourceHob->ResourceLength - TopLoadingAddress)
591 );
592 }
593 //
594 // Delete CurrentHob by marking it as unused since the the memory range described by is rebuilt.
595 //
596 GET_HOB_TYPE (CurrentHob) = EFI_HOB_TYPE_UNUSED;
597 }
598
599 //
600 // Cache the top address for Loading Module at Fixed Address feature
601 //
602 PrivateData->LoadModuleAtFixAddressTopAddress = TopLoadingAddress - MINIMUM_INITIAL_MEMORY_SIZE;
603 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: Top address = 0x%lx\n", PrivateData->LoadModuleAtFixAddressTopAddress));
604 //
605 // reinstall the PEI memory relative to TopLoadingAddress
606 //
607 PrivateData->PhysicalMemoryBegin = TopLoadingAddress - TotalReservedMemorySize;
608 PrivateData->FreePhysicalMemoryTop = PrivateData->PhysicalMemoryBegin + PeiMemorySize;
609 }
610
611 /**
612 This routine is invoked in switch stack as PeiCore Entry.
613
614 @param SecCoreData Points to a data structure containing information about the PEI core's operating
615 environment, such as the size and location of temporary RAM, the stack location and
616 the BFV location.
617 @param Private Pointer to old core data that is used to initialize the
618 core's data areas.
619 **/
620 VOID
621 EFIAPI
622 PeiCoreEntry (
623 IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData,
624 IN PEI_CORE_INSTANCE *Private
625 )
626 {
627 //
628 // Entry PEI Phase 2
629 //
630 PeiCore (SecCoreData, NULL, Private);
631 }
632
633 /**
634 Conduct PEIM dispatch.
635
636 @param SecCoreData Points to a data structure containing information about the PEI core's operating
637 environment, such as the size and location of temporary RAM, the stack location and
638 the BFV location.
639 @param Private Pointer to the private data passed in from caller
640
641 **/
642 VOID
643 PeiDispatcher (
644 IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData,
645 IN PEI_CORE_INSTANCE *Private
646 )
647 {
648 EFI_STATUS Status;
649 UINT32 Index1;
650 UINT32 Index2;
651 CONST EFI_PEI_SERVICES **PeiServices;
652 EFI_PEI_FILE_HANDLE PeimFileHandle;
653 UINTN FvCount;
654 UINTN PeimCount;
655 UINT32 AuthenticationState;
656 EFI_PHYSICAL_ADDRESS EntryPoint;
657 EFI_PEIM_ENTRY_POINT2 PeimEntryPoint;
658 UINTN SaveCurrentPeimCount;
659 UINTN SaveCurrentFvCount;
660 EFI_PEI_FILE_HANDLE SaveCurrentFileHandle;
661 PEIM_FILE_HANDLE_EXTENDED_DATA ExtendedData;
662 EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI *TemporaryRamSupportPpi;
663 UINT64 NewStackSize;
664 EFI_PHYSICAL_ADDRESS BaseOfNewHeap;
665 EFI_PHYSICAL_ADDRESS TopOfNewStack;
666 EFI_PHYSICAL_ADDRESS TopOfOldStack;
667 EFI_PHYSICAL_ADDRESS TemporaryRamBase;
668 UINTN TemporaryRamSize;
669 UINTN TemporaryStackSize;
670 VOID *TemporaryStackBase;
671 UINTN PeiTemporaryRamSize;
672 VOID *PeiTemporaryRamBase;
673 UINTN StackOffset;
674 BOOLEAN StackOffsetPositive;
675 EFI_PHYSICAL_ADDRESS HoleMemBase;
676 UINTN HoleMemSize;
677 EFI_FV_FILE_INFO FvFileInfo;
678 PEI_CORE_FV_HANDLE *CoreFvHandle;
679 VOID *LoadFixPeiCodeBegin;
680 EFI_PHYSICAL_ADDRESS TempBase1;
681 UINTN TempSize1;
682 EFI_PHYSICAL_ADDRESS TempBase2;
683 UINTN TempSize2;
684 UINTN Index;
685
686 PeiServices = (CONST EFI_PEI_SERVICES **) &Private->Ps;
687 PeimEntryPoint = NULL;
688 PeimFileHandle = NULL;
689 EntryPoint = 0;
690
691 if ((Private->PeiMemoryInstalled) && (Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME || PcdGetBool (PcdShadowPeimOnS3Boot))) {
692 //
693 // Once real memory is available, shadow the RegisterForShadow modules. And meanwhile
694 // update the modules' status from PEIM_STATE_REGISITER_FOR_SHADOW to PEIM_STATE_DONE.
695 //
696 SaveCurrentPeimCount = Private->CurrentPeimCount;
697 SaveCurrentFvCount = Private->CurrentPeimFvCount;
698 SaveCurrentFileHandle = Private->CurrentFileHandle;
699
700 for (Index1 = 0; Index1 <= SaveCurrentFvCount; Index1++) {
701 for (Index2 = 0; (Index2 < FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv)) && (Private->Fv[Index1].FvFileHandles[Index2] != NULL); Index2++) {
702 if (Private->Fv[Index1].PeimState[Index2] == PEIM_STATE_REGISITER_FOR_SHADOW) {
703 PeimFileHandle = Private->Fv[Index1].FvFileHandles[Index2];
704 Status = PeiLoadImage (
705 (CONST EFI_PEI_SERVICES **) &Private->Ps,
706 PeimFileHandle,
707 PEIM_STATE_REGISITER_FOR_SHADOW,
708 &EntryPoint,
709 &AuthenticationState
710 );
711 if (Status == EFI_SUCCESS) {
712 //
713 // PEIM_STATE_REGISITER_FOR_SHADOW move to PEIM_STATE_DONE
714 //
715 Private->Fv[Index1].PeimState[Index2]++;
716 Private->CurrentFileHandle = PeimFileHandle;
717 Private->CurrentPeimFvCount = Index1;
718 Private->CurrentPeimCount = Index2;
719 //
720 // Call the PEIM entry point
721 //
722 PeimEntryPoint = (EFI_PEIM_ENTRY_POINT2)(UINTN)EntryPoint;
723
724 PERF_START (PeimFileHandle, "PEIM", NULL, 0);
725 PeimEntryPoint(PeimFileHandle, (const EFI_PEI_SERVICES **) &Private->Ps);
726 PERF_END (PeimFileHandle, "PEIM", NULL, 0);
727 }
728
729 //
730 // Process the Notify list and dispatch any notifies for
731 // newly installed PPIs.
732 //
733 ProcessNotifyList (Private);
734 }
735 }
736 }
737 Private->CurrentFileHandle = SaveCurrentFileHandle;
738 Private->CurrentPeimFvCount = SaveCurrentFvCount;
739 Private->CurrentPeimCount = SaveCurrentPeimCount;
740 }
741
742 //
743 // This is the main dispatch loop. It will search known FVs for PEIMs and
744 // attempt to dispatch them. If any PEIM gets dispatched through a single
745 // pass of the dispatcher, it will start over from the Bfv again to see
746 // if any new PEIMs dependencies got satisfied. With a well ordered
747 // FV where PEIMs are found in the order their dependencies are also
748 // satisfied, this dipatcher should run only once.
749 //
750 do {
751 //
752 // In case that reenter PeiCore happens, the last pass record is still available.
753 //
754 if (!Private->PeimDispatcherReenter) {
755 Private->PeimNeedingDispatch = FALSE;
756 Private->PeimDispatchOnThisPass = FALSE;
757 } else {
758 Private->PeimDispatcherReenter = FALSE;
759 }
760
761 for (FvCount = Private->CurrentPeimFvCount; FvCount < Private->FvCount; FvCount++) {
762 CoreFvHandle = FindNextCoreFvHandle (Private, FvCount);
763 ASSERT (CoreFvHandle != NULL);
764
765 //
766 // If the FV has corresponding EFI_PEI_FIRMWARE_VOLUME_PPI instance, then dispatch it.
767 //
768 if (CoreFvHandle->FvPpi == NULL) {
769 continue;
770 }
771
772 Private->CurrentPeimFvCount = FvCount;
773
774 if (Private->CurrentPeimCount == 0) {
775 //
776 // When going through each FV, at first, search Apriori file to
777 // reorder all PEIMs to ensure the PEIMs in Apriori file to get
778 // dispatch at first.
779 //
780 DiscoverPeimsAndOrderWithApriori (Private, CoreFvHandle);
781 }
782
783 //
784 // Start to dispatch all modules within the current Fv.
785 //
786 for (PeimCount = Private->CurrentPeimCount;
787 (PeimCount < FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv)) && (Private->CurrentFvFileHandles[PeimCount] != NULL);
788 PeimCount++) {
789 Private->CurrentPeimCount = PeimCount;
790 PeimFileHandle = Private->CurrentFileHandle = Private->CurrentFvFileHandles[PeimCount];
791
792 if (Private->Fv[FvCount].PeimState[PeimCount] == PEIM_STATE_NOT_DISPATCHED) {
793 if (!DepexSatisfied (Private, PeimFileHandle, PeimCount)) {
794 Private->PeimNeedingDispatch = TRUE;
795 } else {
796 Status = CoreFvHandle->FvPpi->GetFileInfo (CoreFvHandle->FvPpi, PeimFileHandle, &FvFileInfo);
797 ASSERT_EFI_ERROR (Status);
798 if (FvFileInfo.FileType == EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE) {
799 //
800 // For Fv type file, Produce new FV PPI and FV hob
801 //
802 Status = ProcessFvFile (Private, &Private->Fv[FvCount], PeimFileHandle);
803 if (Status == EFI_SUCCESS) {
804 //
805 // PEIM_STATE_NOT_DISPATCHED move to PEIM_STATE_DISPATCHED
806 //
807 Private->Fv[FvCount].PeimState[PeimCount]++;
808 Private->PeimDispatchOnThisPass = TRUE;
809 }
810 } else {
811 //
812 // For PEIM driver, Load its entry point
813 //
814 Status = PeiLoadImage (
815 PeiServices,
816 PeimFileHandle,
817 PEIM_STATE_NOT_DISPATCHED,
818 &EntryPoint,
819 &AuthenticationState
820 );
821 if (Status == EFI_SUCCESS) {
822 //
823 // The PEIM has its dependencies satisfied, and its entry point
824 // has been found, so invoke it.
825 //
826 PERF_START (PeimFileHandle, "PEIM", NULL, 0);
827
828 ExtendedData.Handle = (EFI_HANDLE)PeimFileHandle;
829
830 REPORT_STATUS_CODE_WITH_EXTENDED_DATA (
831 EFI_PROGRESS_CODE,
832 (EFI_SOFTWARE_PEI_CORE | EFI_SW_PC_INIT_BEGIN),
833 (VOID *)(&ExtendedData),
834 sizeof (ExtendedData)
835 );
836
837 Status = VerifyPeim (Private, CoreFvHandle->FvHandle, PeimFileHandle, AuthenticationState);
838 if (Status != EFI_SECURITY_VIOLATION) {
839 //
840 // PEIM_STATE_NOT_DISPATCHED move to PEIM_STATE_DISPATCHED
841 //
842 Private->Fv[FvCount].PeimState[PeimCount]++;
843 //
844 // Call the PEIM entry point for PEIM driver
845 //
846 PeimEntryPoint = (EFI_PEIM_ENTRY_POINT2)(UINTN)EntryPoint;
847 PeimEntryPoint (PeimFileHandle, (const EFI_PEI_SERVICES **) PeiServices);
848 Private->PeimDispatchOnThisPass = TRUE;
849 }
850
851 REPORT_STATUS_CODE_WITH_EXTENDED_DATA (
852 EFI_PROGRESS_CODE,
853 (EFI_SOFTWARE_PEI_CORE | EFI_SW_PC_INIT_END),
854 (VOID *)(&ExtendedData),
855 sizeof (ExtendedData)
856 );
857 PERF_END (PeimFileHandle, "PEIM", NULL, 0);
858
859 }
860 }
861
862 if (Private->SwitchStackSignal) {
863 //
864 // Before switch stack from temporary memory to permenent memory, caculate the heap and stack
865 // usage in temporary memory for debuging.
866 //
867 DEBUG_CODE_BEGIN ();
868 UINT32 *StackPointer;
869
870 for (StackPointer = (UINT32*)SecCoreData->StackBase;
871 (StackPointer < (UINT32*)((UINTN)SecCoreData->StackBase + SecCoreData->StackSize)) \
872 && (*StackPointer == INIT_CAR_VALUE);
873 StackPointer ++);
874
875 DEBUG ((EFI_D_INFO, "Temp Stack : BaseAddress=0x%p Length=0x%X\n", SecCoreData->StackBase, (UINT32)SecCoreData->StackSize));
876 DEBUG ((EFI_D_INFO, "Temp Heap : BaseAddress=0x%p Length=0x%X\n", Private->HobList.Raw, (UINT32)((UINTN) Private->HobList.HandoffInformationTable->EfiFreeMemoryBottom - (UINTN) Private->HobList.Raw)));
877 DEBUG ((EFI_D_INFO, "Total temporary memory: %d bytes.\n", (UINT32)SecCoreData->TemporaryRamSize));
878 DEBUG ((EFI_D_INFO, " temporary memory stack ever used: %d bytes.\n",
879 (UINT32)(SecCoreData->StackSize - ((UINTN) StackPointer - (UINTN)SecCoreData->StackBase))
880 ));
881 DEBUG ((EFI_D_INFO, " temporary memory heap used: %d bytes.\n",
882 (UINT32)((UINTN)Private->HobList.HandoffInformationTable->EfiFreeMemoryBottom - (UINTN)Private->HobList.Raw)
883 ));
884 DEBUG_CODE_END ();
885
886 if (PcdGet64(PcdLoadModuleAtFixAddressEnable) != 0 && (Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME)) {
887 //
888 // Loading Module at Fixed Address is enabled
889 //
890 PeiLoadFixAddressHook (Private);
891
892 //
893 // If Loading Module at Fixed Address is enabled, Allocating memory range for Pei code range.
894 //
895 LoadFixPeiCodeBegin = AllocatePages((UINTN)PcdGet32(PcdLoadFixAddressPeiCodePageNumber));
896 DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PeiCodeBegin = 0x%lX, PeiCodeTop= 0x%lX\n", (UINT64)(UINTN)LoadFixPeiCodeBegin, (UINT64)((UINTN)LoadFixPeiCodeBegin + PcdGet32(PcdLoadFixAddressPeiCodePageNumber) * EFI_PAGE_SIZE)));
897 }
898
899 //
900 // Reserve the size of new stack at bottom of physical memory
901 //
902 // The size of new stack in permenent memory must be the same size
903 // or larger than the size of old stack in temporary memory.
904 // But if new stack is smaller than the size of old stack, we also reserve
905 // the size of old stack at bottom of permenent memory.
906 //
907 NewStackSize = RShiftU64 (Private->PhysicalMemoryLength, 1);
908 NewStackSize = ALIGN_VALUE (NewStackSize, EFI_PAGE_SIZE);
909 NewStackSize = MIN (PcdGet32(PcdPeiCoreMaxPeiStackSize), NewStackSize);
910 DEBUG ((EFI_D_INFO, "Old Stack size %d, New stack size %d\n", (UINT32)SecCoreData->StackSize, (UINT32)NewStackSize));
911 ASSERT (NewStackSize >= SecCoreData->StackSize);
912
913 //
914 // Caculate stack offset and heap offset between temporary memory and new permement
915 // memory seperately.
916 //
917 TopOfOldStack = (UINTN)SecCoreData->StackBase + SecCoreData->StackSize;
918 TopOfNewStack = Private->PhysicalMemoryBegin + NewStackSize;
919 if (TopOfNewStack >= TopOfOldStack) {
920 StackOffsetPositive = TRUE;
921 StackOffset = (UINTN)(TopOfNewStack - TopOfOldStack);
922 } else {
923 StackOffsetPositive = FALSE;
924 StackOffset = (UINTN)(TopOfOldStack - TopOfNewStack);
925 }
926 Private->StackOffsetPositive = StackOffsetPositive;
927 Private->StackOffset = StackOffset;
928
929 DEBUG ((EFI_D_INFO, "Heap Offset = 0x%lX Stack Offset = 0x%lX\n", (UINT64)Private->HeapOffset, (UINT64)(StackOffset)));
930
931 //
932 // Build Stack HOB that describes the permanent memory stack
933 //
934 DEBUG ((EFI_D_INFO, "Stack Hob: BaseAddress=0x%lX Length=0x%lX\n", TopOfNewStack - NewStackSize, NewStackSize));
935 BuildStackHob (TopOfNewStack - NewStackSize, NewStackSize);
936
937 //
938 // Cache information from SecCoreData into locals before SecCoreData is converted to a permanent memory address
939 //
940 TemporaryRamBase = (EFI_PHYSICAL_ADDRESS)(UINTN)SecCoreData->TemporaryRamBase;
941 TemporaryRamSize = SecCoreData->TemporaryRamSize;
942 TemporaryStackSize = SecCoreData->StackSize;
943 TemporaryStackBase = SecCoreData->StackBase;
944 PeiTemporaryRamSize = SecCoreData->PeiTemporaryRamSize;
945 PeiTemporaryRamBase = SecCoreData->PeiTemporaryRamBase;
946
947 //
948 // TemporaryRamSupportPpi is produced by platform's SEC
949 //
950 Status = PeiServicesLocatePpi (
951 &gEfiTemporaryRamSupportPpiGuid,
952 0,
953 NULL,
954 (VOID**)&TemporaryRamSupportPpi
955 );
956 if (!EFI_ERROR (Status)) {
957 //
958 // Heap Offset
959 //
960 BaseOfNewHeap = TopOfNewStack;
961 if (BaseOfNewHeap >= (UINTN)SecCoreData->PeiTemporaryRamBase) {
962 Private->HeapOffsetPositive = TRUE;
963 Private->HeapOffset = (UINTN)(BaseOfNewHeap - (UINTN)SecCoreData->PeiTemporaryRamBase);
964 } else {
965 Private->HeapOffsetPositive = FALSE;
966 Private->HeapOffset = (UINTN)((UINTN)SecCoreData->PeiTemporaryRamBase - BaseOfNewHeap);
967 }
968
969 //
970 // Caculate new HandOffTable and PrivateData address in permanent memory's stack
971 //
972 if (StackOffsetPositive) {
973 SecCoreData = (CONST EFI_SEC_PEI_HAND_OFF *)((UINTN)(VOID *)SecCoreData + StackOffset);
974 Private = (PEI_CORE_INSTANCE *)((UINTN)(VOID *)Private + StackOffset);
975 } else {
976 SecCoreData = (CONST EFI_SEC_PEI_HAND_OFF *)((UINTN)(VOID *)SecCoreData - StackOffset);
977 Private = (PEI_CORE_INSTANCE *)((UINTN)(VOID *)Private - StackOffset);
978 }
979
980 //
981 // Temporary Ram Support PPI is provided by platform, it will copy
982 // temporary memory to permenent memory and do stack switching.
983 // After invoking Temporary Ram Support PPI, the following code's
984 // stack is in permanent memory.
985 //
986 TemporaryRamSupportPpi->TemporaryRamMigration (
987 PeiServices,
988 TemporaryRamBase,
989 (EFI_PHYSICAL_ADDRESS)(UINTN)(TopOfNewStack - TemporaryStackSize),
990 TemporaryRamSize
991 );
992
993 //
994 // Entry PEI Phase 2
995 //
996 PeiCore (SecCoreData, NULL, Private);
997 } else {
998 //
999 // Heap Offset
1000 //
1001 BaseOfNewHeap = TopOfNewStack;
1002 HoleMemBase = TopOfNewStack;
1003 HoleMemSize = TemporaryRamSize - PeiTemporaryRamSize - TemporaryStackSize;
1004 if (HoleMemSize != 0) {
1005 //
1006 // Make sure HOB List start address is 8 byte alignment.
1007 //
1008 BaseOfNewHeap = ALIGN_VALUE (BaseOfNewHeap + HoleMemSize, 8);
1009 }
1010 if (BaseOfNewHeap >= (UINTN)SecCoreData->PeiTemporaryRamBase) {
1011 Private->HeapOffsetPositive = TRUE;
1012 Private->HeapOffset = (UINTN)(BaseOfNewHeap - (UINTN)SecCoreData->PeiTemporaryRamBase);
1013 } else {
1014 Private->HeapOffsetPositive = FALSE;
1015 Private->HeapOffset = (UINTN)((UINTN)SecCoreData->PeiTemporaryRamBase - BaseOfNewHeap);
1016 }
1017
1018 //
1019 // Migrate Heap
1020 //
1021 CopyMem ((UINT8 *) (UINTN) BaseOfNewHeap, (UINT8 *) PeiTemporaryRamBase, PeiTemporaryRamSize);
1022
1023 //
1024 // Migrate Stack
1025 //
1026 CopyMem ((UINT8 *) (UINTN) (TopOfNewStack - TemporaryStackSize), TemporaryStackBase, TemporaryStackSize);
1027
1028 //
1029 // Copy Hole Range Data
1030 // Convert PPI from Hole.
1031 //
1032 if (HoleMemSize != 0) {
1033 //
1034 // Prepare Hole
1035 //
1036 if (PeiTemporaryRamBase < TemporaryStackBase) {
1037 TempBase1 = (EFI_PHYSICAL_ADDRESS) (UINTN) PeiTemporaryRamBase;
1038 TempSize1 = PeiTemporaryRamSize;
1039 TempBase2 = (EFI_PHYSICAL_ADDRESS) (UINTN) TemporaryStackBase;
1040 TempSize2 = TemporaryStackSize;
1041 } else {
1042 TempBase1 = (EFI_PHYSICAL_ADDRESS) (UINTN) TemporaryStackBase;
1043 TempSize1 = TemporaryStackSize;
1044 TempBase2 =(EFI_PHYSICAL_ADDRESS) (UINTN) PeiTemporaryRamBase;
1045 TempSize2 = PeiTemporaryRamSize;
1046 }
1047 if (TemporaryRamBase < TempBase1) {
1048 Private->HoleData[0].Base = TemporaryRamBase;
1049 Private->HoleData[0].Size = (UINTN) (TempBase1 - TemporaryRamBase);
1050 }
1051 if (TempBase1 + TempSize1 < TempBase2) {
1052 Private->HoleData[1].Base = TempBase1 + TempSize1;
1053 Private->HoleData[1].Size = (UINTN) (TempBase2 - TempBase1 - TempSize1);
1054 }
1055 if (TempBase2 + TempSize2 < TemporaryRamBase + TemporaryRamSize) {
1056 Private->HoleData[2].Base = TempBase2 + TempSize2;
1057 Private->HoleData[2].Size = (UINTN) (TemporaryRamBase + TemporaryRamSize - TempBase2 - TempSize2);
1058 }
1059
1060 //
1061 // Copy Hole Range data.
1062 //
1063 for (Index = 0; Index < HOLE_MAX_NUMBER; Index ++) {
1064 if (Private->HoleData[Index].Size > 0) {
1065 if (HoleMemBase > Private->HoleData[Index].Base) {
1066 Private->HoleData[Index].OffsetPositive = TRUE;
1067 Private->HoleData[Index].Offset = (UINTN) (HoleMemBase - Private->HoleData[Index].Base);
1068 } else {
1069 Private->HoleData[Index].OffsetPositive = FALSE;
1070 Private->HoleData[Index].Offset = (UINTN) (Private->HoleData[Index].Base - HoleMemBase);
1071 }
1072 CopyMem ((VOID *) (UINTN) HoleMemBase, (VOID *) (UINTN) Private->HoleData[Index].Base, Private->HoleData[Index].Size);
1073 HoleMemBase = HoleMemBase + Private->HoleData[Index].Size;
1074 }
1075 }
1076 }
1077
1078 //
1079 // Switch new stack
1080 //
1081 SwitchStack (
1082 (SWITCH_STACK_ENTRY_POINT)(UINTN)PeiCoreEntry,
1083 (VOID *) SecCoreData,
1084 (VOID *) Private,
1085 (VOID *) (UINTN) TopOfNewStack
1086 );
1087 }
1088
1089 //
1090 // Code should not come here
1091 //
1092 ASSERT (FALSE);
1093 }
1094
1095 //
1096 // Process the Notify list and dispatch any notifies for
1097 // newly installed PPIs.
1098 //
1099 ProcessNotifyList (Private);
1100
1101 if ((Private->PeiMemoryInstalled) && (Private->Fv[FvCount].PeimState[PeimCount] == PEIM_STATE_REGISITER_FOR_SHADOW) && \
1102 (Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME || PcdGetBool (PcdShadowPeimOnS3Boot))) {
1103 //
1104 // If memory is availble we shadow images by default for performance reasons.
1105 // We call the entry point a 2nd time so the module knows it's shadowed.
1106 //
1107 //PERF_START (PeiServices, L"PEIM", PeimFileHandle, 0);
1108 ASSERT (PeimEntryPoint != NULL);
1109 PeimEntryPoint (PeimFileHandle, (const EFI_PEI_SERVICES **) PeiServices);
1110 //PERF_END (PeiServices, L"PEIM", PeimFileHandle, 0);
1111
1112 //
1113 // PEIM_STATE_REGISITER_FOR_SHADOW move to PEIM_STATE_DONE
1114 //
1115 Private->Fv[FvCount].PeimState[PeimCount]++;
1116
1117 //
1118 // Process the Notify list and dispatch any notifies for
1119 // newly installed PPIs.
1120 //
1121 ProcessNotifyList (Private);
1122 }
1123 }
1124 }
1125 }
1126
1127 //
1128 // We set to NULL here to optimize the 2nd entry to this routine after
1129 // memory is found. This reprevents rescanning of the FV. We set to
1130 // NULL here so we start at the begining of the next FV
1131 //
1132 Private->CurrentFileHandle = NULL;
1133 Private->CurrentPeimCount = 0;
1134 //
1135 // Before walking through the next FV,Private->CurrentFvFileHandles[]should set to NULL
1136 //
1137 SetMem (Private->CurrentFvFileHandles, sizeof (Private->CurrentFvFileHandles), 0);
1138 }
1139
1140 //
1141 // Before making another pass, we should set Private->CurrentPeimFvCount =0 to go
1142 // through all the FV.
1143 //
1144 Private->CurrentPeimFvCount = 0;
1145
1146 //
1147 // PeimNeedingDispatch being TRUE means we found a PEIM that did not get
1148 // dispatched. So we need to make another pass
1149 //
1150 // PeimDispatchOnThisPass being TRUE means we dispatched a PEIM on this
1151 // pass. If we did not dispatch a PEIM there is no point in trying again
1152 // as it will fail the next time too (nothing has changed).
1153 //
1154 } while (Private->PeimNeedingDispatch && Private->PeimDispatchOnThisPass);
1155
1156 }
1157
1158 /**
1159 Initialize the Dispatcher's data members
1160
1161 @param PrivateData PeiCore's private data structure
1162 @param OldCoreData Old data from SecCore
1163 NULL if being run in non-permament memory mode.
1164 @param SecCoreData Points to a data structure containing information about the PEI core's operating
1165 environment, such as the size and location of temporary RAM, the stack location and
1166 the BFV location.
1167
1168 @return None.
1169
1170 **/
1171 VOID
1172 InitializeDispatcherData (
1173 IN PEI_CORE_INSTANCE *PrivateData,
1174 IN PEI_CORE_INSTANCE *OldCoreData,
1175 IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData
1176 )
1177 {
1178 if (OldCoreData == NULL) {
1179 PrivateData->PeimDispatcherReenter = FALSE;
1180 PeiInitializeFv (PrivateData, SecCoreData);
1181 } else {
1182 PeiReinitializeFv (PrivateData);
1183 }
1184
1185 return;
1186 }
1187
1188 /**
1189 This routine parses the Dependency Expression, if available, and
1190 decides if the module can be executed.
1191
1192
1193 @param Private PeiCore's private data structure
1194 @param FileHandle PEIM's file handle
1195 @param PeimCount Peim count in all dispatched PEIMs.
1196
1197 @retval TRUE Can be dispatched
1198 @retval FALSE Cannot be dispatched
1199
1200 **/
1201 BOOLEAN
1202 DepexSatisfied (
1203 IN PEI_CORE_INSTANCE *Private,
1204 IN EFI_PEI_FILE_HANDLE FileHandle,
1205 IN UINTN PeimCount
1206 )
1207 {
1208 EFI_STATUS Status;
1209 VOID *DepexData;
1210 EFI_FV_FILE_INFO FileInfo;
1211
1212 Status = PeiServicesFfsGetFileInfo (FileHandle, &FileInfo);
1213 if (EFI_ERROR (Status)) {
1214 DEBUG ((DEBUG_DISPATCH, "Evaluate PEI DEPEX for FFS(Unknown)\n"));
1215 } else {
1216 DEBUG ((DEBUG_DISPATCH, "Evaluate PEI DEPEX for FFS(%g)\n", &FileInfo.FileName));
1217 }
1218
1219 if (PeimCount < Private->AprioriCount) {
1220 //
1221 // If its in the A priori file then we set Depex to TRUE
1222 //
1223 DEBUG ((DEBUG_DISPATCH, " RESULT = TRUE (Apriori)\n"));
1224 return TRUE;
1225 }
1226
1227 //
1228 // Depex section not in the encapsulated section.
1229 //
1230 Status = PeiServicesFfsFindSectionData (
1231 EFI_SECTION_PEI_DEPEX,
1232 FileHandle,
1233 (VOID **)&DepexData
1234 );
1235
1236 if (EFI_ERROR (Status)) {
1237 //
1238 // If there is no DEPEX, assume the module can be executed
1239 //
1240 DEBUG ((DEBUG_DISPATCH, " RESULT = TRUE (No DEPEX)\n"));
1241 return TRUE;
1242 }
1243
1244 //
1245 // Evaluate a given DEPEX
1246 //
1247 return PeimDispatchReadiness (&Private->Ps, DepexData);
1248 }
1249
1250 /**
1251 This routine enable a PEIM to register itself to shadow when PEI Foundation
1252 discovery permanent memory.
1253
1254 @param FileHandle File handle of a PEIM.
1255
1256 @retval EFI_NOT_FOUND The file handle doesn't point to PEIM itself.
1257 @retval EFI_ALREADY_STARTED Indicate that the PEIM has been registered itself.
1258 @retval EFI_SUCCESS Successfully to register itself.
1259
1260 **/
1261 EFI_STATUS
1262 EFIAPI
1263 PeiRegisterForShadow (
1264 IN EFI_PEI_FILE_HANDLE FileHandle
1265 )
1266 {
1267 PEI_CORE_INSTANCE *Private;
1268 Private = PEI_CORE_INSTANCE_FROM_PS_THIS (GetPeiServicesTablePointer ());
1269
1270 if (Private->CurrentFileHandle != FileHandle) {
1271 //
1272 // The FileHandle must be for the current PEIM
1273 //
1274 return EFI_NOT_FOUND;
1275 }
1276
1277 if (Private->Fv[Private->CurrentPeimFvCount].PeimState[Private->CurrentPeimCount] >= PEIM_STATE_REGISITER_FOR_SHADOW) {
1278 //
1279 // If the PEIM has already entered the PEIM_STATE_REGISTER_FOR_SHADOW or PEIM_STATE_DONE then it's already been started
1280 //
1281 return EFI_ALREADY_STARTED;
1282 }
1283
1284 Private->Fv[Private->CurrentPeimFvCount].PeimState[Private->CurrentPeimCount] = PEIM_STATE_REGISITER_FOR_SHADOW;
1285
1286 return EFI_SUCCESS;
1287 }
1288
1289
1290