]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Core/PiSmmCore/Dispatcher.c
9625eabd9147f29d714ca17f9c69b8e745f9a558
[mirror_edk2.git] / MdeModulePkg / Core / PiSmmCore / Dispatcher.c
1 /** @file
2 SMM Driver Dispatcher.
3
4 Step #1 - When a FV protocol is added to the system every driver in the FV
5 is added to the mDiscoveredList. The SOR, Before, and After Depex are
6 pre-processed as drivers are added to the mDiscoveredList. If an Apriori
7 file exists in the FV those drivers are addeded to the
8 mScheduledQueue. The mFvHandleList is used to make sure a
9 FV is only processed once.
10
11 Step #2 - Dispatch. Remove driver from the mScheduledQueue and load and
12 start it. After mScheduledQueue is drained check the
13 mDiscoveredList to see if any item has a Depex that is ready to
14 be placed on the mScheduledQueue.
15
16 Step #3 - Adding to the mScheduledQueue requires that you process Before
17 and After dependencies. This is done recursively as the call to add
18 to the mScheduledQueue checks for Before and recursively adds
19 all Befores. It then addes the item that was passed in and then
20 processess the After dependecies by recursively calling the routine.
21
22 Dispatcher Rules:
23 The rules for the dispatcher are similar to the DXE dispatcher.
24
25 The rules for DXE dispatcher are in chapter 10 of the DXE CIS. Figure 10-3
26 is the state diagram for the DXE dispatcher
27
28 Depex - Dependency Expresion.
29 SOR - Schedule On Request - Don't schedule if this bit is set.
30
31 Copyright (c) 2009 - 2010, Intel Corporation. All rights reserved.<BR>
32 This program and the accompanying materials are licensed and made available
33 under the terms and conditions of the BSD License which accompanies this
34 distribution. The full text of the license may be found at
35 http://opensource.org/licenses/bsd-license.php
36
37 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
38 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
39
40 **/
41
42 #include "PiSmmCore.h"
43
44 //
45 // SMM Dispatcher Data structures
46 //
47 #define KNOWN_HANDLE_SIGNATURE SIGNATURE_32('k','n','o','w')
48 typedef struct {
49 UINTN Signature;
50 LIST_ENTRY Link; // mFvHandleList
51 EFI_HANDLE Handle;
52 } KNOWN_HANDLE;
53
54 //
55 // Function Prototypes
56 //
57
58 /**
59 Insert InsertedDriverEntry onto the mScheduledQueue. To do this you
60 must add any driver with a before dependency on InsertedDriverEntry first.
61 You do this by recursively calling this routine. After all the Befores are
62 processed you can add InsertedDriverEntry to the mScheduledQueue.
63 Then you can add any driver with an After dependency on InsertedDriverEntry
64 by recursively calling this routine.
65
66 @param InsertedDriverEntry The driver to insert on the ScheduledLink Queue
67
68 **/
69 VOID
70 SmmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (
71 IN EFI_SMM_DRIVER_ENTRY *InsertedDriverEntry
72 );
73
74 //
75 // The Driver List contains one copy of every driver that has been discovered.
76 // Items are never removed from the driver list. List of EFI_SMM_DRIVER_ENTRY
77 //
78 LIST_ENTRY mDiscoveredList = INITIALIZE_LIST_HEAD_VARIABLE (mDiscoveredList);
79
80 //
81 // Queue of drivers that are ready to dispatch. This queue is a subset of the
82 // mDiscoveredList.list of EFI_SMM_DRIVER_ENTRY.
83 //
84 LIST_ENTRY mScheduledQueue = INITIALIZE_LIST_HEAD_VARIABLE (mScheduledQueue);
85
86 //
87 // List of handles who's Fv's have been parsed and added to the mFwDriverList.
88 //
89 LIST_ENTRY mFvHandleList = INITIALIZE_LIST_HEAD_VARIABLE (mFvHandleList);
90
91 //
92 // Flag for the SMM Dispacher. TRUE if dispatcher is execuing.
93 //
94 BOOLEAN gDispatcherRunning = FALSE;
95
96 //
97 // Flag for the SMM Dispacher. TRUE if there is one or more SMM drivers ready to be dispatched
98 //
99 BOOLEAN gRequestDispatch = FALSE;
100
101 //
102 // List of file types supported by dispatcher
103 //
104 EFI_FV_FILETYPE mSmmFileTypes[] = {
105 EFI_FV_FILETYPE_SMM,
106 EFI_FV_FILETYPE_COMBINED_SMM_DXE
107 //
108 // Note: DXE core will process the FV image file, so skip it in SMM core
109 // EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE
110 //
111 };
112
113 typedef struct {
114 MEDIA_FW_VOL_FILEPATH_DEVICE_PATH File;
115 EFI_DEVICE_PATH_PROTOCOL End;
116 } FV_FILEPATH_DEVICE_PATH;
117
118 FV_FILEPATH_DEVICE_PATH mFvDevicePath;
119
120 //
121 // DXE Architecture Protocols
122 //
123 EFI_SECURITY_ARCH_PROTOCOL *mSecurity = NULL;
124
125 //
126 // The global variable is defined for Loading modules at fixed address feature to track the SMM code
127 // memory range usage. It is a bit mapped array in which every bit indicates the correspoding
128 // memory page available or not.
129 //
130 GLOBAL_REMOVE_IF_UNREFERENCED UINT64 *mSmmCodeMemoryRangeUsageBitMap=NULL;
131
132 /**
133 To check memory usage bit map array to figure out if the memory range in which the image will be loaded is available or not. If
134 memory range is avaliable, the function will mark the correponding bits to 1 which indicates the memory range is used.
135 The function is only invoked when load modules at fixed address feature is enabled.
136
137 @param ImageBase The base addres the image will be loaded at.
138 @param ImageSize The size of the image
139
140 @retval EFI_SUCCESS The memory range the image will be loaded in is available
141 @retval EFI_NOT_FOUND The memory range the image will be loaded in is not available
142 **/
143 EFI_STATUS
144 CheckAndMarkFixLoadingMemoryUsageBitMap (
145 IN EFI_PHYSICAL_ADDRESS ImageBase,
146 IN UINTN ImageSize
147 )
148 {
149 UINT32 SmmCodePageNumber;
150 UINT64 SmmCodeSize;
151 EFI_PHYSICAL_ADDRESS SmmCodeBase;
152 UINTN BaseOffsetPageNumber;
153 UINTN TopOffsetPageNumber;
154 UINTN Index;
155 //
156 // Build tool will calculate the smm code size and then patch the PcdLoadFixAddressSmmCodePageNumber
157 //
158 SmmCodePageNumber = PcdGet32(PcdLoadFixAddressSmmCodePageNumber);
159 SmmCodeSize = EFI_PAGES_TO_SIZE (SmmCodePageNumber);
160 SmmCodeBase = gLoadModuleAtFixAddressSmramBase;
161
162 //
163 // If the memory usage bit map is not initialized, do it. Every bit in the array
164 // indicate the status of the corresponding memory page, available or not
165 //
166 if (mSmmCodeMemoryRangeUsageBitMap == NULL) {
167 mSmmCodeMemoryRangeUsageBitMap = AllocateZeroPool(((SmmCodePageNumber / 64) + 1)*sizeof(UINT64));
168 }
169 //
170 // If the Dxe code memory range is not allocated or the bit map array allocation failed, return EFI_NOT_FOUND
171 //
172 if (mSmmCodeMemoryRangeUsageBitMap == NULL) {
173 return EFI_NOT_FOUND;
174 }
175 //
176 // see if the memory range for loading the image is in the SMM code range.
177 //
178 if (SmmCodeBase + SmmCodeSize < ImageBase + ImageSize || SmmCodeBase > ImageBase) {
179 return EFI_NOT_FOUND;
180 }
181 //
182 // Test if the memory is avalaible or not.
183 //
184 BaseOffsetPageNumber = (UINTN)EFI_SIZE_TO_PAGES((UINT32)(ImageBase - SmmCodeBase));
185 TopOffsetPageNumber = (UINTN)EFI_SIZE_TO_PAGES((UINT32)(ImageBase + ImageSize - SmmCodeBase));
186 for (Index = BaseOffsetPageNumber; Index < TopOffsetPageNumber; Index ++) {
187 if ((mSmmCodeMemoryRangeUsageBitMap[Index / 64] & LShiftU64(1, (Index % 64))) != 0) {
188 //
189 // This page is already used.
190 //
191 return EFI_NOT_FOUND;
192 }
193 }
194
195 //
196 // Being here means the memory range is available. So mark the bits for the memory range
197 //
198 for (Index = BaseOffsetPageNumber; Index < TopOffsetPageNumber; Index ++) {
199 mSmmCodeMemoryRangeUsageBitMap[Index / 64] |= LShiftU64(1, (Index % 64));
200 }
201 return EFI_SUCCESS;
202 }
203 /**
204 Get the fixed loadding address from image header assigned by build tool. This function only be called
205 when Loading module at Fixed address feature enabled.
206
207 @param ImageContext Pointer to the image context structure that describes the PE/COFF
208 image that needs to be examined by this function.
209 @retval EFI_SUCCESS An fixed loading address is assigned to this image by build tools .
210 @retval EFI_NOT_FOUND The image has no assigned fixed loadding address.
211
212 **/
213 EFI_STATUS
214 GetPeCoffImageFixLoadingAssignedAddress(
215 IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
216 )
217 {
218 UINTN SectionHeaderOffset;
219 EFI_STATUS Status;
220 EFI_IMAGE_SECTION_HEADER SectionHeader;
221 EFI_IMAGE_OPTIONAL_HEADER_UNION *ImgHdr;
222 EFI_PHYSICAL_ADDRESS FixLoaddingAddress;
223 UINT16 Index;
224 UINTN Size;
225 UINT16 NumberOfSections;
226 UINT64 ValueInSectionHeader;
227
228 FixLoaddingAddress = 0;
229 Status = EFI_NOT_FOUND;
230
231 //
232 // Get PeHeader pointer
233 //
234 ImgHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)((CHAR8* )ImageContext->Handle + ImageContext->PeCoffHeaderOffset);
235 SectionHeaderOffset = (UINTN)(
236 ImageContext->PeCoffHeaderOffset +
237 sizeof (UINT32) +
238 sizeof (EFI_IMAGE_FILE_HEADER) +
239 ImgHdr->Pe32.FileHeader.SizeOfOptionalHeader
240 );
241 NumberOfSections = ImgHdr->Pe32.FileHeader.NumberOfSections;
242
243 //
244 // Get base address from the first section header that doesn't point to code section.
245 //
246 for (Index = 0; Index < NumberOfSections; Index++) {
247 //
248 // Read section header from file
249 //
250 Size = sizeof (EFI_IMAGE_SECTION_HEADER);
251 Status = ImageContext->ImageRead (
252 ImageContext->Handle,
253 SectionHeaderOffset,
254 &Size,
255 &SectionHeader
256 );
257 if (EFI_ERROR (Status)) {
258 return Status;
259 }
260
261 Status = EFI_NOT_FOUND;
262
263 if ((SectionHeader.Characteristics & EFI_IMAGE_SCN_CNT_CODE) == 0) {
264 //
265 // Build tool will save the address in PointerToRelocations & PointerToLineNumbers fields in the first section header
266 // that doesn't point to code section in image header.So there is an assumption that when the feature is enabled,
267 // if a module with a loading address assigned by tools, the PointerToRelocations & PointerToLineNumbers fields
268 // should not be Zero, or else, these 2 fileds should be set to Zero
269 //
270 ValueInSectionHeader = ReadUnaligned64((UINT64*)&SectionHeader.PointerToRelocations);
271 if (ValueInSectionHeader != 0) {
272 //
273 // Found first section header that doesn't point to code section in which uild tool saves the
274 // offset to SMRAM base as image base in PointerToRelocations & PointerToLineNumbers fields
275 //
276 FixLoaddingAddress = (EFI_PHYSICAL_ADDRESS)(gLoadModuleAtFixAddressSmramBase + (INT64)ValueInSectionHeader);
277 //
278 // Check if the memory range is avaliable.
279 //
280 Status = CheckAndMarkFixLoadingMemoryUsageBitMap (FixLoaddingAddress, (UINTN)(ImageContext->ImageSize + ImageContext->SectionAlignment));
281 if (!EFI_ERROR(Status)) {
282 //
283 // The assigned address is valid. Return the specified loadding address
284 //
285 ImageContext->ImageAddress = FixLoaddingAddress;
286 }
287 }
288 break;
289 }
290 SectionHeaderOffset += sizeof (EFI_IMAGE_SECTION_HEADER);
291 }
292 DEBUG ((EFI_D_INFO|EFI_D_LOAD, "LOADING MODULE FIXED INFO: Loading module at fixed address %x, Status = %r\n", FixLoaddingAddress, Status));
293 return Status;
294 }
295 /**
296 Loads an EFI image into SMRAM.
297
298 @param DriverEntry EFI_SMM_DRIVER_ENTRY instance
299
300 @return EFI_STATUS
301
302 **/
303 EFI_STATUS
304 EFIAPI
305 SmmLoadImage (
306 IN OUT EFI_SMM_DRIVER_ENTRY *DriverEntry
307 )
308 {
309 UINT32 AuthenticationStatus;
310 UINTN FilePathSize;
311 VOID *Buffer;
312 UINTN Size;
313 UINTN PageCount;
314 EFI_GUID *NameGuid;
315 EFI_STATUS Status;
316 EFI_STATUS SecurityStatus;
317 EFI_HANDLE DeviceHandle;
318 EFI_PHYSICAL_ADDRESS DstBuffer;
319 EFI_DEVICE_PATH_PROTOCOL *FilePath;
320 EFI_DEVICE_PATH_PROTOCOL *OriginalFilePath;
321 EFI_DEVICE_PATH_PROTOCOL *HandleFilePath;
322 EFI_FIRMWARE_VOLUME2_PROTOCOL *Fv;
323 PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
324
325 Buffer = NULL;
326 Size = 0;
327 Fv = DriverEntry->Fv;
328 NameGuid = &DriverEntry->FileName;
329 FilePath = DriverEntry->FvFileDevicePath;
330
331 OriginalFilePath = FilePath;
332 HandleFilePath = FilePath;
333 DeviceHandle = NULL;
334 SecurityStatus = EFI_SUCCESS;
335 Status = EFI_SUCCESS;
336 AuthenticationStatus = 0;
337
338 //
339 // Try to get the image device handle by checking the match protocol.
340 //
341 Status = gBS->LocateDevicePath (&gEfiFirmwareVolume2ProtocolGuid, &HandleFilePath, &DeviceHandle);
342 if (EFI_ERROR(Status)) {
343 return Status;
344 }
345
346 //
347 // If the Security Architectural Protocol has not been located yet, then attempt to locate it
348 //
349 if (mSecurity == NULL) {
350 gBS->LocateProtocol (&gEfiSecurityArchProtocolGuid, NULL, (VOID**)&mSecurity);
351 }
352
353 //
354 // Verify the Authentication Status through the Security Architectural Protocol
355 //
356 if ((mSecurity != NULL) && (OriginalFilePath != NULL)) {
357 SecurityStatus = mSecurity->FileAuthenticationState (
358 mSecurity,
359 AuthenticationStatus,
360 OriginalFilePath
361 );
362 if (EFI_ERROR (SecurityStatus) && SecurityStatus != EFI_SECURITY_VIOLATION) {
363 Status = SecurityStatus;
364 return Status;
365 }
366 }
367
368 //
369 // Pull out just the file portion of the DevicePath for the LoadedImage FilePath
370 //
371 FilePath = OriginalFilePath;
372 Status = gBS->HandleProtocol (DeviceHandle, &gEfiDevicePathProtocolGuid, (VOID **)&HandleFilePath);
373 if (!EFI_ERROR (Status)) {
374 FilePathSize = GetDevicePathSize (HandleFilePath) - sizeof(EFI_DEVICE_PATH_PROTOCOL);
375 FilePath = (EFI_DEVICE_PATH_PROTOCOL *) (((UINT8 *)FilePath) + FilePathSize );
376 }
377
378 //
379 // Try reading PE32 section firstly
380 //
381 Status = Fv->ReadSection (
382 Fv,
383 NameGuid,
384 EFI_SECTION_PE32,
385 0,
386 &Buffer,
387 &Size,
388 &AuthenticationStatus
389 );
390
391 if (EFI_ERROR (Status)) {
392 //
393 // Try reading TE section secondly
394 //
395 Buffer = NULL;
396 Size = 0;
397 Status = Fv->ReadSection (
398 Fv,
399 NameGuid,
400 EFI_SECTION_TE,
401 0,
402 &Buffer,
403 &Size,
404 &AuthenticationStatus
405 );
406 }
407
408 if (EFI_ERROR (Status)) {
409 if (Buffer != NULL) {
410 Status = gBS->FreePool (Buffer);
411 }
412 return Status;
413 }
414
415 //
416 // Initialize ImageContext
417 //
418 ImageContext.Handle = Buffer;
419 ImageContext.ImageRead = PeCoffLoaderImageReadFromMemory;
420
421 //
422 // Get information about the image being loaded
423 //
424 Status = PeCoffLoaderGetImageInfo (&ImageContext);
425 if (EFI_ERROR (Status)) {
426 if (Buffer != NULL) {
427 Status = gBS->FreePool (Buffer);
428 }
429 return Status;
430 }
431 //
432 // if Loading module at Fixed Address feature is enabled, then cut out a memory range started from TESG BASE
433 // to hold the Smm driver code
434 //
435 if (PcdGet64(PcdLoadModuleAtFixAddressEnable) != 0) {
436 //
437 // Get the fixed loading address assigned by Build tool
438 //
439 Status = GetPeCoffImageFixLoadingAssignedAddress (&ImageContext);
440 if (!EFI_ERROR (Status)) {
441 //
442 // Since the memory range to load Smm core alreay been cut out, so no need to allocate and free this range
443 // following statements is to bypass SmmFreePages
444 //
445 PageCount = 0;
446 DstBuffer = (UINTN)gLoadModuleAtFixAddressSmramBase;
447 } else {
448 DEBUG ((EFI_D_INFO|EFI_D_LOAD, "LOADING MODULE FIXED ERROR: Failed to load module at fixed address. \n"));
449 //
450 // allocate the memory to load the SMM driver
451 //
452 PageCount = (UINTN)EFI_SIZE_TO_PAGES(ImageContext.ImageSize + ImageContext.SectionAlignment);
453 DstBuffer = (UINTN)(-1);
454
455 Status = SmmAllocatePages (
456 AllocateMaxAddress,
457 EfiRuntimeServicesCode,
458 PageCount,
459 &DstBuffer
460 );
461 if (EFI_ERROR (Status)) {
462 if (Buffer != NULL) {
463 Status = gBS->FreePool (Buffer);
464 }
465 return Status;
466 }
467 ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)DstBuffer;
468 }
469 } else {
470 PageCount = (UINTN)EFI_SIZE_TO_PAGES(ImageContext.ImageSize + ImageContext.SectionAlignment);
471 DstBuffer = (UINTN)(-1);
472
473 Status = SmmAllocatePages (
474 AllocateMaxAddress,
475 EfiRuntimeServicesCode,
476 PageCount,
477 &DstBuffer
478 );
479 if (EFI_ERROR (Status)) {
480 if (Buffer != NULL) {
481 Status = gBS->FreePool (Buffer);
482 }
483 return Status;
484 }
485
486 ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)DstBuffer;
487 }
488 //
489 // Align buffer on section boundry
490 //
491 ImageContext.ImageAddress += ImageContext.SectionAlignment - 1;
492 ImageContext.ImageAddress &= ~(ImageContext.SectionAlignment - 1);
493
494 //
495 // Load the image to our new buffer
496 //
497 Status = PeCoffLoaderLoadImage (&ImageContext);
498 if (EFI_ERROR (Status)) {
499 if (Buffer != NULL) {
500 Status = gBS->FreePool (Buffer);
501 }
502 SmmFreePages (DstBuffer, PageCount);
503 return Status;
504 }
505
506 //
507 // Relocate the image in our new buffer
508 //
509 Status = PeCoffLoaderRelocateImage (&ImageContext);
510 if (EFI_ERROR (Status)) {
511 if (Buffer != NULL) {
512 Status = gBS->FreePool (Buffer);
513 }
514 SmmFreePages (DstBuffer, PageCount);
515 return Status;
516 }
517
518 //
519 // Flush the instruction cache so the image data are written before we execute it
520 //
521 InvalidateInstructionCacheRange ((VOID *)(UINTN) ImageContext.ImageAddress, (UINTN) ImageContext.ImageSize);
522
523 //
524 // Save Image EntryPoint in DriverEntry
525 //
526 DriverEntry->ImageEntryPoint = ImageContext.EntryPoint;
527 DriverEntry->ImageBuffer = DstBuffer;
528 DriverEntry->NumberOfPage = PageCount;
529
530 //
531 // Allocate a Loaded Image Protocol in EfiBootServicesData
532 //
533 Status = gBS->AllocatePool (EfiBootServicesData, sizeof (EFI_LOADED_IMAGE_PROTOCOL), (VOID **)&DriverEntry->LoadedImage);
534 if (EFI_ERROR (Status)) {
535 if (Buffer != NULL) {
536 Status = gBS->FreePool (Buffer);
537 }
538 SmmFreePages (DstBuffer, PageCount);
539 return Status;
540 }
541
542 //
543 // Fill in the remaining fields of the Loaded Image Protocol instance.
544 // Note: ImageBase is an SMRAM address that can not be accessed outside of SMRAM if SMRAM window is closed.
545 //
546 DriverEntry->LoadedImage->Revision = EFI_LOADED_IMAGE_PROTOCOL_REVISION;
547 DriverEntry->LoadedImage->ParentHandle = gSmmCorePrivate->SmmIplImageHandle;
548 DriverEntry->LoadedImage->SystemTable = gST;
549 DriverEntry->LoadedImage->DeviceHandle = DeviceHandle;
550
551 //
552 // Make an EfiBootServicesData buffer copy of FilePath
553 //
554 Status = gBS->AllocatePool (EfiBootServicesData, GetDevicePathSize (FilePath), (VOID **)&DriverEntry->LoadedImage->FilePath);
555 if (EFI_ERROR (Status)) {
556 if (Buffer != NULL) {
557 Status = gBS->FreePool (Buffer);
558 }
559 SmmFreePages (DstBuffer, PageCount);
560 return Status;
561 }
562 CopyMem (DriverEntry->LoadedImage->FilePath, FilePath, GetDevicePathSize (FilePath));
563
564 DriverEntry->LoadedImage->ImageBase = (VOID *)(UINTN)DriverEntry->ImageBuffer;
565 DriverEntry->LoadedImage->ImageSize = ImageContext.ImageSize;
566 DriverEntry->LoadedImage->ImageCodeType = EfiRuntimeServicesCode;
567 DriverEntry->LoadedImage->ImageDataType = EfiRuntimeServicesData;
568
569 //
570 // Create a new image handle in the UEFI handle database for the SMM Driver
571 //
572 DriverEntry->ImageHandle = NULL;
573 Status = gBS->InstallMultipleProtocolInterfaces (
574 &DriverEntry->ImageHandle,
575 &gEfiLoadedImageProtocolGuid, DriverEntry->LoadedImage,
576 NULL
577 );
578
579 //
580 // Print the load address and the PDB file name if it is available
581 //
582
583 DEBUG_CODE_BEGIN ();
584
585 UINTN Index;
586 UINTN StartIndex;
587 CHAR8 EfiFileName[256];
588
589
590 DEBUG ((DEBUG_INFO | DEBUG_LOAD,
591 "Loading driver at 0x%11p EntryPoint=0x%11p ",
592 (VOID *)(UINTN) ImageContext.ImageAddress,
593 FUNCTION_ENTRY_POINT (ImageContext.EntryPoint)));
594
595
596 //
597 // Print Module Name by Pdb file path.
598 // Windows and Unix style file path are all trimmed correctly.
599 //
600 if (ImageContext.PdbPointer != NULL) {
601 StartIndex = 0;
602 for (Index = 0; ImageContext.PdbPointer[Index] != 0; Index++) {
603 if ((ImageContext.PdbPointer[Index] == '\\') || (ImageContext.PdbPointer[Index] == '/')) {
604 StartIndex = Index + 1;
605 }
606 }
607 //
608 // Copy the PDB file name to our temporary string, and replace .pdb with .efi
609 // The PDB file name is limited in the range of 0~255.
610 // If the length is bigger than 255, trim the redudant characters to avoid overflow in array boundary.
611 //
612 for (Index = 0; Index < sizeof (EfiFileName) - 4; Index++) {
613 EfiFileName[Index] = ImageContext.PdbPointer[Index + StartIndex];
614 if (EfiFileName[Index] == 0) {
615 EfiFileName[Index] = '.';
616 }
617 if (EfiFileName[Index] == '.') {
618 EfiFileName[Index + 1] = 'e';
619 EfiFileName[Index + 2] = 'f';
620 EfiFileName[Index + 3] = 'i';
621 EfiFileName[Index + 4] = 0;
622 break;
623 }
624 }
625
626 if (Index == sizeof (EfiFileName) - 4) {
627 EfiFileName[Index] = 0;
628 }
629 DEBUG ((DEBUG_INFO | DEBUG_LOAD, "%a", EfiFileName)); // &Image->ImageContext.PdbPointer[StartIndex]));
630 }
631 DEBUG ((DEBUG_INFO | DEBUG_LOAD, "\n"));
632
633 DEBUG_CODE_END ();
634
635 //
636 // Free buffer allocated by Fv->ReadSection.
637 //
638 // The UEFI Boot Services FreePool() function must be used because Fv->ReadSection
639 // used the UEFI Boot Services AllocatePool() function
640 //
641 Status = gBS->FreePool(Buffer);
642 return Status;
643 }
644
645 /**
646 Preprocess dependency expression and update DriverEntry to reflect the
647 state of Before, After, and SOR dependencies. If DriverEntry->Before
648 or DriverEntry->After is set it will never be cleared. If SOR is set
649 it will be cleared by SmmSchedule(), and then the driver can be
650 dispatched.
651
652 @param DriverEntry DriverEntry element to update .
653
654 @retval EFI_SUCCESS It always works.
655
656 **/
657 EFI_STATUS
658 SmmPreProcessDepex (
659 IN EFI_SMM_DRIVER_ENTRY *DriverEntry
660 )
661 {
662 UINT8 *Iterator;
663
664 Iterator = DriverEntry->Depex;
665 if (*Iterator == EFI_DEP_SOR) {
666 DriverEntry->Unrequested = TRUE;
667 } else {
668 DriverEntry->Dependent = TRUE;
669 }
670
671 if (*Iterator == EFI_DEP_BEFORE) {
672 DriverEntry->Before = TRUE;
673 } else if (*Iterator == EFI_DEP_AFTER) {
674 DriverEntry->After = TRUE;
675 }
676
677 if (DriverEntry->Before || DriverEntry->After) {
678 CopyMem (&DriverEntry->BeforeAfterGuid, Iterator + 1, sizeof (EFI_GUID));
679 }
680
681 return EFI_SUCCESS;
682 }
683
684 /**
685 Read Depex and pre-process the Depex for Before and After. If Section Extraction
686 protocol returns an error via ReadSection defer the reading of the Depex.
687
688 @param DriverEntry Driver to work on.
689
690 @retval EFI_SUCCESS Depex read and preprossesed
691 @retval EFI_PROTOCOL_ERROR The section extraction protocol returned an error
692 and Depex reading needs to be retried.
693 @retval Error DEPEX not found.
694
695 **/
696 EFI_STATUS
697 SmmGetDepexSectionAndPreProccess (
698 IN EFI_SMM_DRIVER_ENTRY *DriverEntry
699 )
700 {
701 EFI_STATUS Status;
702 EFI_SECTION_TYPE SectionType;
703 UINT32 AuthenticationStatus;
704 EFI_FIRMWARE_VOLUME2_PROTOCOL *Fv;
705
706 Fv = DriverEntry->Fv;
707
708 //
709 // Grab Depex info, it will never be free'ed.
710 // (Note: DriverEntry->Depex is in DXE memory)
711 //
712 SectionType = EFI_SECTION_SMM_DEPEX;
713 Status = Fv->ReadSection (
714 DriverEntry->Fv,
715 &DriverEntry->FileName,
716 SectionType,
717 0,
718 &DriverEntry->Depex,
719 (UINTN *)&DriverEntry->DepexSize,
720 &AuthenticationStatus
721 );
722 if (EFI_ERROR (Status)) {
723 if (Status == EFI_PROTOCOL_ERROR) {
724 //
725 // The section extraction protocol failed so set protocol error flag
726 //
727 DriverEntry->DepexProtocolError = TRUE;
728 } else {
729 //
730 // If no Depex assume depend on all architectural protocols
731 //
732 DriverEntry->Depex = NULL;
733 DriverEntry->Dependent = TRUE;
734 DriverEntry->DepexProtocolError = FALSE;
735 }
736 } else {
737 //
738 // Set Before, After, and Unrequested state information based on Depex
739 // Driver will be put in Dependent or Unrequested state
740 //
741 SmmPreProcessDepex (DriverEntry);
742 DriverEntry->DepexProtocolError = FALSE;
743 }
744
745 return Status;
746 }
747
748 /**
749 Check every driver and locate a matching one. If the driver is found, the Unrequested
750 state flag is cleared.
751
752 @param FirmwareVolumeHandle The handle of the Firmware Volume that contains
753 the firmware file specified by DriverName.
754 @param DriverName The Driver name to put in the Dependent state.
755
756 @retval EFI_SUCCESS The DriverName was found and it's SOR bit was
757 cleared
758 @retval EFI_NOT_FOUND The DriverName does not exist or it's SOR bit was
759 not set.
760
761 **/
762 EFI_STATUS
763 SmmSchedule (
764 IN EFI_HANDLE FirmwareVolumeHandle,
765 IN EFI_GUID *DriverName
766 )
767 {
768 LIST_ENTRY *Link;
769 EFI_SMM_DRIVER_ENTRY *DriverEntry;
770
771 //
772 // Check every driver
773 //
774 for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
775 DriverEntry = CR(Link, EFI_SMM_DRIVER_ENTRY, Link, EFI_SMM_DRIVER_ENTRY_SIGNATURE);
776 if (DriverEntry->FvHandle == FirmwareVolumeHandle &&
777 DriverEntry->Unrequested &&
778 CompareGuid (DriverName, &DriverEntry->FileName)) {
779 //
780 // Move the driver from the Unrequested to the Dependent state
781 //
782 DriverEntry->Unrequested = FALSE;
783 DriverEntry->Dependent = TRUE;
784
785 return EFI_SUCCESS;
786 }
787 }
788 return EFI_NOT_FOUND;
789 }
790
791 /**
792 This is the main Dispatcher for SMM and it exits when there are no more
793 drivers to run. Drain the mScheduledQueue and load and start a PE
794 image for each driver. Search the mDiscoveredList to see if any driver can
795 be placed on the mScheduledQueue. If no drivers are placed on the
796 mScheduledQueue exit the function. On exit it is assumed the Bds()
797 will be called, and when the Bds() exits the Dispatcher will be called
798 again.
799
800 @retval EFI_ALREADY_STARTED The SMM Dispatcher is already running
801 @retval EFI_NOT_FOUND No SMM Drivers were dispatched
802 @retval EFI_SUCCESS One or more SMM Drivers were dispatched
803
804 **/
805 EFI_STATUS
806 SmmDispatcher (
807 VOID
808 )
809 {
810 EFI_STATUS Status;
811 EFI_STATUS ReturnStatus;
812 LIST_ENTRY *Link;
813 EFI_SMM_DRIVER_ENTRY *DriverEntry;
814 BOOLEAN ReadyToRun;
815
816 if (!gRequestDispatch) {
817 return EFI_NOT_FOUND;
818 }
819
820 if (gDispatcherRunning) {
821 //
822 // If the dispatcher is running don't let it be restarted.
823 //
824 return EFI_ALREADY_STARTED;
825 }
826
827 gDispatcherRunning = TRUE;
828
829 ReturnStatus = EFI_NOT_FOUND;
830 do {
831 //
832 // Drain the Scheduled Queue
833 //
834 while (!IsListEmpty (&mScheduledQueue)) {
835 DriverEntry = CR (
836 mScheduledQueue.ForwardLink,
837 EFI_SMM_DRIVER_ENTRY,
838 ScheduledLink,
839 EFI_SMM_DRIVER_ENTRY_SIGNATURE
840 );
841
842 //
843 // Load the SMM Driver image into memory. If the Driver was transitioned from
844 // Untrused to Scheduled it would have already been loaded so we may need to
845 // skip the LoadImage
846 //
847 if (DriverEntry->ImageHandle == NULL) {
848 Status = SmmLoadImage (DriverEntry);
849
850 //
851 // Update the driver state to reflect that it's been loaded
852 //
853 if (EFI_ERROR (Status)) {
854
855 if (Status == EFI_SECURITY_VIOLATION) {
856 //
857 // Take driver from Scheduled to Untrused state
858 //
859 DriverEntry->Untrusted = TRUE;
860 } else {
861 //
862 // The SMM Driver could not be loaded, and do not attempt to load or start it again.
863 // Take driver from Scheduled to Initialized.
864 //
865 // This case include the Never Trusted state if EFI_ACCESS_DENIED is returned
866 //
867 DriverEntry->Initialized = TRUE;
868 }
869
870 DriverEntry->Scheduled = FALSE;
871 RemoveEntryList (&DriverEntry->ScheduledLink);
872
873 //
874 // If it's an error don't try the StartImage
875 //
876 continue;
877 }
878 }
879
880 DriverEntry->Scheduled = FALSE;
881 DriverEntry->Initialized = TRUE;
882 RemoveEntryList (&DriverEntry->ScheduledLink);
883
884 REPORT_STATUS_CODE_WITH_EXTENDED_DATA (
885 EFI_PROGRESS_CODE,
886 EFI_SOFTWARE_SMM_DRIVER | EFI_SW_PC_INIT_BEGIN,
887 &DriverEntry->ImageHandle,
888 sizeof (DriverEntry->ImageHandle)
889 );
890
891 //
892 // For each SMM driver, pass NULL as ImageHandle
893 //
894 Status = ((EFI_IMAGE_ENTRY_POINT)(UINTN)DriverEntry->ImageEntryPoint)(DriverEntry->ImageHandle, gST);
895 if (EFI_ERROR(Status)){
896 SmmFreePages(DriverEntry->ImageBuffer, DriverEntry->NumberOfPage);
897 }
898
899 REPORT_STATUS_CODE_WITH_EXTENDED_DATA (
900 EFI_PROGRESS_CODE,
901 EFI_SOFTWARE_SMM_DRIVER | EFI_SW_PC_INIT_END,
902 &DriverEntry->ImageHandle,
903 sizeof (DriverEntry->ImageHandle)
904 );
905
906 ReturnStatus = EFI_SUCCESS;
907 }
908
909 //
910 // Search DriverList for items to place on Scheduled Queue
911 //
912 ReadyToRun = FALSE;
913 for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
914 DriverEntry = CR (Link, EFI_SMM_DRIVER_ENTRY, Link, EFI_SMM_DRIVER_ENTRY_SIGNATURE);
915
916 if (DriverEntry->DepexProtocolError){
917 //
918 // If Section Extraction Protocol did not let the Depex be read before retry the read
919 //
920 Status = SmmGetDepexSectionAndPreProccess (DriverEntry);
921 }
922
923 if (DriverEntry->Dependent) {
924 if (SmmIsSchedulable (DriverEntry)) {
925 SmmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
926 ReadyToRun = TRUE;
927 }
928 }
929 }
930 } while (ReadyToRun);
931
932 //
933 // If there is no more SMM driver to dispatch, stop the dispatch request
934 //
935 gRequestDispatch = FALSE;
936 for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
937 DriverEntry = CR (Link, EFI_SMM_DRIVER_ENTRY, Link, EFI_SMM_DRIVER_ENTRY_SIGNATURE);
938
939 if (!DriverEntry->Initialized){
940 //
941 // We have SMM driver pending to dispatch
942 //
943 gRequestDispatch = TRUE;
944 break;
945 }
946 }
947
948 gDispatcherRunning = FALSE;
949
950 return ReturnStatus;
951 }
952
953 /**
954 Insert InsertedDriverEntry onto the mScheduledQueue. To do this you
955 must add any driver with a before dependency on InsertedDriverEntry first.
956 You do this by recursively calling this routine. After all the Befores are
957 processed you can add InsertedDriverEntry to the mScheduledQueue.
958 Then you can add any driver with an After dependency on InsertedDriverEntry
959 by recursively calling this routine.
960
961 @param InsertedDriverEntry The driver to insert on the ScheduledLink Queue
962
963 **/
964 VOID
965 SmmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (
966 IN EFI_SMM_DRIVER_ENTRY *InsertedDriverEntry
967 )
968 {
969 LIST_ENTRY *Link;
970 EFI_SMM_DRIVER_ENTRY *DriverEntry;
971
972 //
973 // Process Before Dependency
974 //
975 for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
976 DriverEntry = CR(Link, EFI_SMM_DRIVER_ENTRY, Link, EFI_SMM_DRIVER_ENTRY_SIGNATURE);
977 if (DriverEntry->Before && DriverEntry->Dependent) {
978 if (CompareGuid (&InsertedDriverEntry->FileName, &DriverEntry->BeforeAfterGuid)) {
979 //
980 // Recursively process BEFORE
981 //
982 SmmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
983 }
984 }
985 }
986
987 //
988 // Convert driver from Dependent to Scheduled state
989 //
990
991 InsertedDriverEntry->Dependent = FALSE;
992 InsertedDriverEntry->Scheduled = TRUE;
993 InsertTailList (&mScheduledQueue, &InsertedDriverEntry->ScheduledLink);
994
995
996 //
997 // Process After Dependency
998 //
999 for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
1000 DriverEntry = CR(Link, EFI_SMM_DRIVER_ENTRY, Link, EFI_SMM_DRIVER_ENTRY_SIGNATURE);
1001 if (DriverEntry->After && DriverEntry->Dependent) {
1002 if (CompareGuid (&InsertedDriverEntry->FileName, &DriverEntry->BeforeAfterGuid)) {
1003 //
1004 // Recursively process AFTER
1005 //
1006 SmmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
1007 }
1008 }
1009 }
1010 }
1011
1012 /**
1013 Return TRUE if the Fv has been processed, FALSE if not.
1014
1015 @param FvHandle The handle of a FV that's being tested
1016
1017 @retval TRUE Fv protocol on FvHandle has been processed
1018 @retval FALSE Fv protocol on FvHandle has not yet been
1019 processed
1020
1021 **/
1022 BOOLEAN
1023 FvHasBeenProcessed (
1024 IN EFI_HANDLE FvHandle
1025 )
1026 {
1027 LIST_ENTRY *Link;
1028 KNOWN_HANDLE *KnownHandle;
1029
1030 for (Link = mFvHandleList.ForwardLink; Link != &mFvHandleList; Link = Link->ForwardLink) {
1031 KnownHandle = CR(Link, KNOWN_HANDLE, Link, KNOWN_HANDLE_SIGNATURE);
1032 if (KnownHandle->Handle == FvHandle) {
1033 return TRUE;
1034 }
1035 }
1036 return FALSE;
1037 }
1038
1039 /**
1040 Remember that Fv protocol on FvHandle has had it's drivers placed on the
1041 mDiscoveredList. This fucntion adds entries on the mFvHandleList. Items are
1042 never removed/freed from the mFvHandleList.
1043
1044 @param FvHandle The handle of a FV that has been processed
1045
1046 **/
1047 VOID
1048 FvIsBeingProcesssed (
1049 IN EFI_HANDLE FvHandle
1050 )
1051 {
1052 KNOWN_HANDLE *KnownHandle;
1053
1054 KnownHandle = AllocatePool (sizeof (KNOWN_HANDLE));
1055 ASSERT (KnownHandle != NULL);
1056
1057 KnownHandle->Signature = KNOWN_HANDLE_SIGNATURE;
1058 KnownHandle->Handle = FvHandle;
1059 InsertTailList (&mFvHandleList, &KnownHandle->Link);
1060 }
1061
1062 /**
1063 Convert FvHandle and DriverName into an EFI device path
1064
1065 @param Fv Fv protocol, needed to read Depex info out of
1066 FLASH.
1067 @param FvHandle Handle for Fv, needed in the
1068 EFI_SMM_DRIVER_ENTRY so that the PE image can be
1069 read out of the FV at a later time.
1070 @param DriverName Name of driver to add to mDiscoveredList.
1071
1072 @return Pointer to device path constructed from FvHandle and DriverName
1073
1074 **/
1075 EFI_DEVICE_PATH_PROTOCOL *
1076 SmmFvToDevicePath (
1077 IN EFI_FIRMWARE_VOLUME2_PROTOCOL *Fv,
1078 IN EFI_HANDLE FvHandle,
1079 IN EFI_GUID *DriverName
1080 )
1081 {
1082 EFI_STATUS Status;
1083 EFI_DEVICE_PATH_PROTOCOL *FvDevicePath;
1084 EFI_DEVICE_PATH_PROTOCOL *FileNameDevicePath;
1085
1086 //
1087 // Remember the device path of the FV
1088 //
1089 Status = gBS->HandleProtocol (FvHandle, &gEfiDevicePathProtocolGuid, (VOID **)&FvDevicePath);
1090 if (EFI_ERROR (Status)) {
1091 FileNameDevicePath = NULL;
1092 } else {
1093 //
1094 // Build a device path to the file in the FV to pass into gBS->LoadImage
1095 //
1096 EfiInitializeFwVolDevicepathNode (&mFvDevicePath.File, DriverName);
1097 SetDevicePathEndNode (&mFvDevicePath.End);
1098
1099 //
1100 // Note: FileNameDevicePath is in DXE memory
1101 //
1102 FileNameDevicePath = AppendDevicePath (
1103 FvDevicePath,
1104 (EFI_DEVICE_PATH_PROTOCOL *)&mFvDevicePath
1105 );
1106 }
1107 return FileNameDevicePath;
1108 }
1109
1110 /**
1111 Add an entry to the mDiscoveredList. Allocate memory to store the DriverEntry,
1112 and initilize any state variables. Read the Depex from the FV and store it
1113 in DriverEntry. Pre-process the Depex to set the SOR, Before and After state.
1114 The Discovered list is never free'ed and contains booleans that represent the
1115 other possible SMM driver states.
1116
1117 @param Fv Fv protocol, needed to read Depex info out of
1118 FLASH.
1119 @param FvHandle Handle for Fv, needed in the
1120 EFI_SMM_DRIVER_ENTRY so that the PE image can be
1121 read out of the FV at a later time.
1122 @param DriverName Name of driver to add to mDiscoveredList.
1123
1124 @retval EFI_SUCCESS If driver was added to the mDiscoveredList.
1125 @retval EFI_ALREADY_STARTED The driver has already been started. Only one
1126 DriverName may be active in the system at any one
1127 time.
1128
1129 **/
1130 EFI_STATUS
1131 SmmAddToDriverList (
1132 IN EFI_FIRMWARE_VOLUME2_PROTOCOL *Fv,
1133 IN EFI_HANDLE FvHandle,
1134 IN EFI_GUID *DriverName
1135 )
1136 {
1137 EFI_SMM_DRIVER_ENTRY *DriverEntry;
1138
1139 //
1140 // Create the Driver Entry for the list. ZeroPool initializes lots of variables to
1141 // NULL or FALSE.
1142 //
1143 DriverEntry = AllocateZeroPool (sizeof (EFI_SMM_DRIVER_ENTRY));
1144 ASSERT (DriverEntry != NULL);
1145
1146 DriverEntry->Signature = EFI_SMM_DRIVER_ENTRY_SIGNATURE;
1147 CopyGuid (&DriverEntry->FileName, DriverName);
1148 DriverEntry->FvHandle = FvHandle;
1149 DriverEntry->Fv = Fv;
1150 DriverEntry->FvFileDevicePath = SmmFvToDevicePath (Fv, FvHandle, DriverName);
1151
1152 SmmGetDepexSectionAndPreProccess (DriverEntry);
1153
1154 InsertTailList (&mDiscoveredList, &DriverEntry->Link);
1155 gRequestDispatch = TRUE;
1156
1157 return EFI_SUCCESS;
1158 }
1159
1160 /**
1161 This function is the main entry point for an SMM handler dispatch
1162 or communicate-based callback.
1163
1164 Event notification that is fired every time a FV dispatch protocol is added.
1165 More than one protocol may have been added when this event is fired, so you
1166 must loop on SmmLocateHandle () to see how many protocols were added and
1167 do the following to each FV:
1168 If the Fv has already been processed, skip it. If the Fv has not been
1169 processed then mark it as being processed, as we are about to process it.
1170 Read the Fv and add any driver in the Fv to the mDiscoveredList.The
1171 mDiscoveredList is never free'ed and contains variables that define
1172 the other states the SMM driver transitions to..
1173 While you are at it read the A Priori file into memory.
1174 Place drivers in the A Priori list onto the mScheduledQueue.
1175
1176 @param DispatchHandle The unique handle assigned to this handler by SmiHandlerRegister().
1177 @param Context Points to an optional handler context which was specified when the handler was registered.
1178 @param CommBuffer A pointer to a collection of data in memory that will
1179 be conveyed from a non-SMM environment into an SMM environment.
1180 @param CommBufferSize The size of the CommBuffer.
1181
1182 @return Status Code
1183
1184 **/
1185 EFI_STATUS
1186 EFIAPI
1187 SmmDriverDispatchHandler (
1188 IN EFI_HANDLE DispatchHandle,
1189 IN CONST VOID *Context, OPTIONAL
1190 IN OUT VOID *CommBuffer, OPTIONAL
1191 IN OUT UINTN *CommBufferSize OPTIONAL
1192 )
1193 {
1194 EFI_STATUS Status;
1195 UINTN HandleCount;
1196 EFI_HANDLE *HandleBuffer;
1197 EFI_STATUS GetNextFileStatus;
1198 EFI_STATUS SecurityStatus;
1199 EFI_FIRMWARE_VOLUME2_PROTOCOL *Fv;
1200 EFI_DEVICE_PATH_PROTOCOL *FvDevicePath;
1201 EFI_HANDLE FvHandle;
1202 EFI_GUID NameGuid;
1203 UINTN Key;
1204 EFI_FV_FILETYPE Type;
1205 EFI_FV_FILE_ATTRIBUTES Attributes;
1206 UINTN Size;
1207 EFI_SMM_DRIVER_ENTRY *DriverEntry;
1208 EFI_GUID *AprioriFile;
1209 UINTN AprioriEntryCount;
1210 UINTN Index;
1211 LIST_ENTRY *Link;
1212 UINT32 AuthenticationStatus;
1213 UINTN SizeOfBuffer;
1214
1215 HandleBuffer = NULL;
1216 Status = gBS->LocateHandleBuffer (
1217 ByProtocol,
1218 &gEfiFirmwareVolume2ProtocolGuid,
1219 NULL,
1220 &HandleCount,
1221 &HandleBuffer
1222 );
1223 if (EFI_ERROR (Status)) {
1224 return EFI_NOT_FOUND;
1225 }
1226
1227 for (Index = 0; Index < HandleCount; Index++) {
1228 FvHandle = HandleBuffer[Index];
1229
1230 if (FvHasBeenProcessed (FvHandle)) {
1231 //
1232 // This Fv has already been processed so lets skip it!
1233 //
1234 continue;
1235 }
1236
1237 //
1238 // Since we are about to process this Fv mark it as processed.
1239 //
1240 FvIsBeingProcesssed (FvHandle);
1241
1242 Status = gBS->HandleProtocol (FvHandle, &gEfiFirmwareVolume2ProtocolGuid, (VOID **)&Fv);
1243 if (EFI_ERROR (Status)) {
1244 //
1245 // FvHandle must have a Firmware Volume2 Protocol thus we should never get here.
1246 //
1247 ASSERT (FALSE);
1248 continue;
1249 }
1250
1251 Status = gBS->HandleProtocol (FvHandle, &gEfiDevicePathProtocolGuid, (VOID **)&FvDevicePath);
1252 if (EFI_ERROR (Status)) {
1253 //
1254 // The Firmware volume doesn't have device path, can't be dispatched.
1255 //
1256 continue;
1257 }
1258
1259 //
1260 // If the Security Architectural Protocol has not been located yet, then attempt to locate it
1261 //
1262 if (mSecurity == NULL) {
1263 gBS->LocateProtocol (&gEfiSecurityArchProtocolGuid, NULL, (VOID**)&mSecurity);
1264 }
1265
1266 //
1267 // Evaluate the authentication status of the Firmware Volume through
1268 // Security Architectural Protocol
1269 //
1270 if (mSecurity != NULL) {
1271 SecurityStatus = mSecurity->FileAuthenticationState (
1272 mSecurity,
1273 0,
1274 FvDevicePath
1275 );
1276 if (SecurityStatus != EFI_SUCCESS) {
1277 //
1278 // Security check failed. The firmware volume should not be used for any purpose.
1279 //
1280 continue;
1281 }
1282 }
1283
1284 //
1285 // Discover Drivers in FV and add them to the Discovered Driver List.
1286 // Process EFI_FV_FILETYPE_SMM type and then EFI_FV_FILETYPE_COMBINED_SMM_DXE
1287 //
1288 for (Index = 0; Index < sizeof (mSmmFileTypes)/sizeof (EFI_FV_FILETYPE); Index++) {
1289 //
1290 // Initialize the search key
1291 //
1292 Key = 0;
1293 do {
1294 Type = mSmmFileTypes[Index];
1295 GetNextFileStatus = Fv->GetNextFile (
1296 Fv,
1297 &Key,
1298 &Type,
1299 &NameGuid,
1300 &Attributes,
1301 &Size
1302 );
1303 if (!EFI_ERROR (GetNextFileStatus)) {
1304 SmmAddToDriverList (Fv, FvHandle, &NameGuid);
1305 }
1306 } while (!EFI_ERROR (GetNextFileStatus));
1307 }
1308
1309 //
1310 // Read the array of GUIDs from the Apriori file if it is present in the firmware volume
1311 // (Note: AprioriFile is in DXE memory)
1312 //
1313 AprioriFile = NULL;
1314 Status = Fv->ReadSection (
1315 Fv,
1316 &gAprioriGuid,
1317 EFI_SECTION_RAW,
1318 0,
1319 (VOID **)&AprioriFile,
1320 &SizeOfBuffer,
1321 &AuthenticationStatus
1322 );
1323 if (!EFI_ERROR (Status)) {
1324 AprioriEntryCount = SizeOfBuffer / sizeof (EFI_GUID);
1325 } else {
1326 AprioriEntryCount = 0;
1327 }
1328
1329 //
1330 // Put drivers on Apriori List on the Scheduled queue. The Discovered List includes
1331 // drivers not in the current FV and these must be skipped since the a priori list
1332 // is only valid for the FV that it resided in.
1333 //
1334
1335 for (Index = 0; Index < AprioriEntryCount; Index++) {
1336 for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
1337 DriverEntry = CR(Link, EFI_SMM_DRIVER_ENTRY, Link, EFI_SMM_DRIVER_ENTRY_SIGNATURE);
1338 if (CompareGuid (&DriverEntry->FileName, &AprioriFile[Index]) &&
1339 (FvHandle == DriverEntry->FvHandle)) {
1340 DriverEntry->Dependent = FALSE;
1341 DriverEntry->Scheduled = TRUE;
1342 InsertTailList (&mScheduledQueue, &DriverEntry->ScheduledLink);
1343 break;
1344 }
1345 }
1346 }
1347
1348 //
1349 // Free data allocated by Fv->ReadSection ()
1350 //
1351 // The UEFI Boot Services FreePool() function must be used because Fv->ReadSection
1352 // used the UEFI Boot Services AllocatePool() function
1353 //
1354 gBS->FreePool (AprioriFile);
1355 }
1356
1357 //
1358 // Execute the SMM Dispatcher on any newly discovered FVs and previously
1359 // discovered SMM drivers that have been discovered but not dispatched.
1360 //
1361 return SmmDispatcher ();
1362 }
1363
1364 /**
1365 Traverse the discovered list for any drivers that were discovered but not loaded
1366 because the dependency experessions evaluated to false.
1367
1368 **/
1369 VOID
1370 SmmDisplayDiscoveredNotDispatched (
1371 VOID
1372 )
1373 {
1374 LIST_ENTRY *Link;
1375 EFI_SMM_DRIVER_ENTRY *DriverEntry;
1376
1377 for (Link = mDiscoveredList.ForwardLink;Link !=&mDiscoveredList; Link = Link->ForwardLink) {
1378 DriverEntry = CR(Link, EFI_SMM_DRIVER_ENTRY, Link, EFI_SMM_DRIVER_ENTRY_SIGNATURE);
1379 if (DriverEntry->Dependent) {
1380 DEBUG ((DEBUG_LOAD, "SMM Driver %g was discovered but not loaded!!\n", &DriverEntry->FileName));
1381 }
1382 }
1383 }