]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Core/PiSmmCore/HeapGuard.c
MdeModulePkg PiSmmCore: Set ForwardLink to NULL in RemoveOldEntry()
[mirror_edk2.git] / MdeModulePkg / Core / PiSmmCore / HeapGuard.c
1 /** @file
2 UEFI Heap Guard functions.
3
4 Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "HeapGuard.h"
16
17 //
18 // Global to avoid infinite reentrance of memory allocation when updating
19 // page table attributes, which may need allocating pages for new PDE/PTE.
20 //
21 GLOBAL_REMOVE_IF_UNREFERENCED BOOLEAN mOnGuarding = FALSE;
22
23 //
24 // Pointer to table tracking the Guarded memory with bitmap, in which '1'
25 // is used to indicate memory guarded. '0' might be free memory or Guard
26 // page itself, depending on status of memory adjacent to it.
27 //
28 GLOBAL_REMOVE_IF_UNREFERENCED UINT64 mGuardedMemoryMap = 0;
29
30 //
31 // Current depth level of map table pointed by mGuardedMemoryMap.
32 // mMapLevel must be initialized at least by 1. It will be automatically
33 // updated according to the address of memory just tracked.
34 //
35 GLOBAL_REMOVE_IF_UNREFERENCED UINTN mMapLevel = 1;
36
37 //
38 // Shift and mask for each level of map table
39 //
40 GLOBAL_REMOVE_IF_UNREFERENCED UINTN mLevelShift[GUARDED_HEAP_MAP_TABLE_DEPTH]
41 = GUARDED_HEAP_MAP_TABLE_DEPTH_SHIFTS;
42 GLOBAL_REMOVE_IF_UNREFERENCED UINTN mLevelMask[GUARDED_HEAP_MAP_TABLE_DEPTH]
43 = GUARDED_HEAP_MAP_TABLE_DEPTH_MASKS;
44
45 //
46 // SMM memory attribute protocol
47 //
48 EDKII_SMM_MEMORY_ATTRIBUTE_PROTOCOL *mSmmMemoryAttribute = NULL;
49
50 /**
51 Set corresponding bits in bitmap table to 1 according to the address.
52
53 @param[in] Address Start address to set for.
54 @param[in] BitNumber Number of bits to set.
55 @param[in] BitMap Pointer to bitmap which covers the Address.
56
57 @return VOID
58 **/
59 STATIC
60 VOID
61 SetBits (
62 IN EFI_PHYSICAL_ADDRESS Address,
63 IN UINTN BitNumber,
64 IN UINT64 *BitMap
65 )
66 {
67 UINTN Lsbs;
68 UINTN Qwords;
69 UINTN Msbs;
70 UINTN StartBit;
71 UINTN EndBit;
72
73 StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);
74 EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
75
76 if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) {
77 Msbs = (GUARDED_HEAP_MAP_ENTRY_BITS - StartBit) %
78 GUARDED_HEAP_MAP_ENTRY_BITS;
79 Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
80 Qwords = (BitNumber - Msbs) / GUARDED_HEAP_MAP_ENTRY_BITS;
81 } else {
82 Msbs = BitNumber;
83 Lsbs = 0;
84 Qwords = 0;
85 }
86
87 if (Msbs > 0) {
88 *BitMap |= LShiftU64 (LShiftU64 (1, Msbs) - 1, StartBit);
89 BitMap += 1;
90 }
91
92 if (Qwords > 0) {
93 SetMem64 ((VOID *)BitMap, Qwords * GUARDED_HEAP_MAP_ENTRY_BYTES,
94 (UINT64)-1);
95 BitMap += Qwords;
96 }
97
98 if (Lsbs > 0) {
99 *BitMap |= (LShiftU64 (1, Lsbs) - 1);
100 }
101 }
102
103 /**
104 Set corresponding bits in bitmap table to 0 according to the address.
105
106 @param[in] Address Start address to set for.
107 @param[in] BitNumber Number of bits to set.
108 @param[in] BitMap Pointer to bitmap which covers the Address.
109
110 @return VOID.
111 **/
112 STATIC
113 VOID
114 ClearBits (
115 IN EFI_PHYSICAL_ADDRESS Address,
116 IN UINTN BitNumber,
117 IN UINT64 *BitMap
118 )
119 {
120 UINTN Lsbs;
121 UINTN Qwords;
122 UINTN Msbs;
123 UINTN StartBit;
124 UINTN EndBit;
125
126 StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);
127 EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
128
129 if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) {
130 Msbs = (GUARDED_HEAP_MAP_ENTRY_BITS - StartBit) %
131 GUARDED_HEAP_MAP_ENTRY_BITS;
132 Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
133 Qwords = (BitNumber - Msbs) / GUARDED_HEAP_MAP_ENTRY_BITS;
134 } else {
135 Msbs = BitNumber;
136 Lsbs = 0;
137 Qwords = 0;
138 }
139
140 if (Msbs > 0) {
141 *BitMap &= ~LShiftU64 (LShiftU64 (1, Msbs) - 1, StartBit);
142 BitMap += 1;
143 }
144
145 if (Qwords > 0) {
146 SetMem64 ((VOID *)BitMap, Qwords * GUARDED_HEAP_MAP_ENTRY_BYTES, 0);
147 BitMap += Qwords;
148 }
149
150 if (Lsbs > 0) {
151 *BitMap &= ~(LShiftU64 (1, Lsbs) - 1);
152 }
153 }
154
155 /**
156 Get corresponding bits in bitmap table according to the address.
157
158 The value of bit 0 corresponds to the status of memory at given Address.
159 No more than 64 bits can be retrieved in one call.
160
161 @param[in] Address Start address to retrieve bits for.
162 @param[in] BitNumber Number of bits to get.
163 @param[in] BitMap Pointer to bitmap which covers the Address.
164
165 @return An integer containing the bits information.
166 **/
167 STATIC
168 UINT64
169 GetBits (
170 IN EFI_PHYSICAL_ADDRESS Address,
171 IN UINTN BitNumber,
172 IN UINT64 *BitMap
173 )
174 {
175 UINTN StartBit;
176 UINTN EndBit;
177 UINTN Lsbs;
178 UINTN Msbs;
179 UINT64 Result;
180
181 ASSERT (BitNumber <= GUARDED_HEAP_MAP_ENTRY_BITS);
182
183 StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);
184 EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
185
186 if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) {
187 Msbs = GUARDED_HEAP_MAP_ENTRY_BITS - StartBit;
188 Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
189 } else {
190 Msbs = BitNumber;
191 Lsbs = 0;
192 }
193
194 Result = RShiftU64 ((*BitMap), StartBit) & (LShiftU64 (1, Msbs) - 1);
195 if (Lsbs > 0) {
196 BitMap += 1;
197 Result |= LShiftU64 ((*BitMap) & (LShiftU64 (1, Lsbs) - 1), Msbs);
198 }
199
200 return Result;
201 }
202
203 /**
204 Helper function to allocate pages without Guard for internal uses.
205
206 @param[in] Pages Page number.
207
208 @return Address of memory allocated.
209 **/
210 VOID *
211 PageAlloc (
212 IN UINTN Pages
213 )
214 {
215 EFI_STATUS Status;
216 EFI_PHYSICAL_ADDRESS Memory;
217
218 Status = SmmInternalAllocatePages (AllocateAnyPages, EfiRuntimeServicesData,
219 Pages, &Memory, FALSE);
220 if (EFI_ERROR (Status)) {
221 Memory = 0;
222 }
223
224 return (VOID *)(UINTN)Memory;
225 }
226
227 /**
228 Locate the pointer of bitmap from the guarded memory bitmap tables, which
229 covers the given Address.
230
231 @param[in] Address Start address to search the bitmap for.
232 @param[in] AllocMapUnit Flag to indicate memory allocation for the table.
233 @param[out] BitMap Pointer to bitmap which covers the Address.
234
235 @return The bit number from given Address to the end of current map table.
236 **/
237 UINTN
238 FindGuardedMemoryMap (
239 IN EFI_PHYSICAL_ADDRESS Address,
240 IN BOOLEAN AllocMapUnit,
241 OUT UINT64 **BitMap
242 )
243 {
244 UINTN Level;
245 UINT64 *GuardMap;
246 UINT64 MapMemory;
247 UINTN Index;
248 UINTN Size;
249 UINTN BitsToUnitEnd;
250
251 //
252 // Adjust current map table depth according to the address to access
253 //
254 while (mMapLevel < GUARDED_HEAP_MAP_TABLE_DEPTH
255 &&
256 RShiftU64 (
257 Address,
258 mLevelShift[GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel - 1]
259 ) != 0) {
260
261 if (mGuardedMemoryMap != 0) {
262 Size = (mLevelMask[GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel - 1] + 1)
263 * GUARDED_HEAP_MAP_ENTRY_BYTES;
264 MapMemory = (UINT64)(UINTN)PageAlloc (EFI_SIZE_TO_PAGES (Size));
265 ASSERT (MapMemory != 0);
266
267 SetMem ((VOID *)(UINTN)MapMemory, Size, 0);
268
269 *(UINT64 *)(UINTN)MapMemory = mGuardedMemoryMap;
270 mGuardedMemoryMap = MapMemory;
271 }
272
273 mMapLevel++;
274
275 }
276
277 GuardMap = &mGuardedMemoryMap;
278 for (Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;
279 Level < GUARDED_HEAP_MAP_TABLE_DEPTH;
280 ++Level) {
281
282 if (*GuardMap == 0) {
283 if (!AllocMapUnit) {
284 GuardMap = NULL;
285 break;
286 }
287
288 Size = (mLevelMask[Level] + 1) * GUARDED_HEAP_MAP_ENTRY_BYTES;
289 MapMemory = (UINT64)(UINTN)PageAlloc (EFI_SIZE_TO_PAGES (Size));
290 ASSERT (MapMemory != 0);
291
292 SetMem ((VOID *)(UINTN)MapMemory, Size, 0);
293 *GuardMap = MapMemory;
294 }
295
296 Index = (UINTN)RShiftU64 (Address, mLevelShift[Level]);
297 Index &= mLevelMask[Level];
298 GuardMap = (UINT64 *)(UINTN)((*GuardMap) + Index * sizeof (UINT64));
299
300 }
301
302 BitsToUnitEnd = GUARDED_HEAP_MAP_BITS - GUARDED_HEAP_MAP_BIT_INDEX (Address);
303 *BitMap = GuardMap;
304
305 return BitsToUnitEnd;
306 }
307
308 /**
309 Set corresponding bits in bitmap table to 1 according to given memory range.
310
311 @param[in] Address Memory address to guard from.
312 @param[in] NumberOfPages Number of pages to guard.
313
314 @return VOID
315 **/
316 VOID
317 EFIAPI
318 SetGuardedMemoryBits (
319 IN EFI_PHYSICAL_ADDRESS Address,
320 IN UINTN NumberOfPages
321 )
322 {
323 UINT64 *BitMap;
324 UINTN Bits;
325 UINTN BitsToUnitEnd;
326
327 while (NumberOfPages > 0) {
328 BitsToUnitEnd = FindGuardedMemoryMap (Address, TRUE, &BitMap);
329 ASSERT (BitMap != NULL);
330
331 if (NumberOfPages > BitsToUnitEnd) {
332 // Cross map unit
333 Bits = BitsToUnitEnd;
334 } else {
335 Bits = NumberOfPages;
336 }
337
338 SetBits (Address, Bits, BitMap);
339
340 NumberOfPages -= Bits;
341 Address += EFI_PAGES_TO_SIZE (Bits);
342 }
343 }
344
345 /**
346 Clear corresponding bits in bitmap table according to given memory range.
347
348 @param[in] Address Memory address to unset from.
349 @param[in] NumberOfPages Number of pages to unset guard.
350
351 @return VOID
352 **/
353 VOID
354 EFIAPI
355 ClearGuardedMemoryBits (
356 IN EFI_PHYSICAL_ADDRESS Address,
357 IN UINTN NumberOfPages
358 )
359 {
360 UINT64 *BitMap;
361 UINTN Bits;
362 UINTN BitsToUnitEnd;
363
364 while (NumberOfPages > 0) {
365 BitsToUnitEnd = FindGuardedMemoryMap (Address, TRUE, &BitMap);
366 ASSERT (BitMap != NULL);
367
368 if (NumberOfPages > BitsToUnitEnd) {
369 // Cross map unit
370 Bits = BitsToUnitEnd;
371 } else {
372 Bits = NumberOfPages;
373 }
374
375 ClearBits (Address, Bits, BitMap);
376
377 NumberOfPages -= Bits;
378 Address += EFI_PAGES_TO_SIZE (Bits);
379 }
380 }
381
382 /**
383 Retrieve corresponding bits in bitmap table according to given memory range.
384
385 @param[in] Address Memory address to retrieve from.
386 @param[in] NumberOfPages Number of pages to retrieve.
387
388 @return An integer containing the guarded memory bitmap.
389 **/
390 UINTN
391 GetGuardedMemoryBits (
392 IN EFI_PHYSICAL_ADDRESS Address,
393 IN UINTN NumberOfPages
394 )
395 {
396 UINT64 *BitMap;
397 UINTN Bits;
398 UINTN Result;
399 UINTN Shift;
400 UINTN BitsToUnitEnd;
401
402 ASSERT (NumberOfPages <= GUARDED_HEAP_MAP_ENTRY_BITS);
403
404 Result = 0;
405 Shift = 0;
406 while (NumberOfPages > 0) {
407 BitsToUnitEnd = FindGuardedMemoryMap (Address, FALSE, &BitMap);
408
409 if (NumberOfPages > BitsToUnitEnd) {
410 // Cross map unit
411 Bits = BitsToUnitEnd;
412 } else {
413 Bits = NumberOfPages;
414 }
415
416 if (BitMap != NULL) {
417 Result |= LShiftU64 (GetBits (Address, Bits, BitMap), Shift);
418 }
419
420 Shift += Bits;
421 NumberOfPages -= Bits;
422 Address += EFI_PAGES_TO_SIZE (Bits);
423 }
424
425 return Result;
426 }
427
428 /**
429 Get bit value in bitmap table for the given address.
430
431 @param[in] Address The address to retrieve for.
432
433 @return 1 or 0.
434 **/
435 UINTN
436 EFIAPI
437 GetGuardMapBit (
438 IN EFI_PHYSICAL_ADDRESS Address
439 )
440 {
441 UINT64 *GuardMap;
442
443 FindGuardedMemoryMap (Address, FALSE, &GuardMap);
444 if (GuardMap != NULL) {
445 if (RShiftU64 (*GuardMap,
446 GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address)) & 1) {
447 return 1;
448 }
449 }
450
451 return 0;
452 }
453
454 /**
455 Set the bit in bitmap table for the given address.
456
457 @param[in] Address The address to set for.
458
459 @return VOID.
460 **/
461 VOID
462 EFIAPI
463 SetGuardMapBit (
464 IN EFI_PHYSICAL_ADDRESS Address
465 )
466 {
467 UINT64 *GuardMap;
468 UINT64 BitMask;
469
470 FindGuardedMemoryMap (Address, TRUE, &GuardMap);
471 if (GuardMap != NULL) {
472 BitMask = LShiftU64 (1, GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address));
473 *GuardMap |= BitMask;
474 }
475 }
476
477 /**
478 Clear the bit in bitmap table for the given address.
479
480 @param[in] Address The address to clear for.
481
482 @return VOID.
483 **/
484 VOID
485 EFIAPI
486 ClearGuardMapBit (
487 IN EFI_PHYSICAL_ADDRESS Address
488 )
489 {
490 UINT64 *GuardMap;
491 UINT64 BitMask;
492
493 FindGuardedMemoryMap (Address, TRUE, &GuardMap);
494 if (GuardMap != NULL) {
495 BitMask = LShiftU64 (1, GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address));
496 *GuardMap &= ~BitMask;
497 }
498 }
499
500 /**
501 Check to see if the page at the given address is a Guard page or not.
502
503 @param[in] Address The address to check for.
504
505 @return TRUE The page at Address is a Guard page.
506 @return FALSE The page at Address is not a Guard page.
507 **/
508 BOOLEAN
509 EFIAPI
510 IsGuardPage (
511 IN EFI_PHYSICAL_ADDRESS Address
512 )
513 {
514 UINTN BitMap;
515
516 //
517 // There must be at least one guarded page before and/or after given
518 // address if it's a Guard page. The bitmap pattern should be one of
519 // 001, 100 and 101
520 //
521 BitMap = GetGuardedMemoryBits (Address - EFI_PAGE_SIZE, 3);
522 return ((BitMap == BIT0) || (BitMap == BIT2) || (BitMap == (BIT2 | BIT0)));
523 }
524
525 /**
526 Check to see if the page at the given address is a head Guard page or not.
527
528 @param[in] Address The address to check for.
529
530 @return TRUE The page at Address is a head Guard page.
531 @return FALSE The page at Address is not a head Guard page.
532 **/
533 BOOLEAN
534 EFIAPI
535 IsHeadGuard (
536 IN EFI_PHYSICAL_ADDRESS Address
537 )
538 {
539 return (GetGuardedMemoryBits (Address, 2) == BIT1);
540 }
541
542 /**
543 Check to see if the page at the given address is a tail Guard page or not.
544
545 @param[in] Address The address to check for.
546
547 @return TRUE The page at Address is a tail Guard page.
548 @return FALSE The page at Address is not a tail Guard page.
549 **/
550 BOOLEAN
551 EFIAPI
552 IsTailGuard (
553 IN EFI_PHYSICAL_ADDRESS Address
554 )
555 {
556 return (GetGuardedMemoryBits (Address - EFI_PAGE_SIZE, 2) == BIT0);
557 }
558
559 /**
560 Check to see if the page at the given address is guarded or not.
561
562 @param[in] Address The address to check for.
563
564 @return TRUE The page at Address is guarded.
565 @return FALSE The page at Address is not guarded.
566 **/
567 BOOLEAN
568 EFIAPI
569 IsMemoryGuarded (
570 IN EFI_PHYSICAL_ADDRESS Address
571 )
572 {
573 return (GetGuardMapBit (Address) == 1);
574 }
575
576 /**
577 Set the page at the given address to be a Guard page.
578
579 This is done by changing the page table attribute to be NOT PRSENT.
580
581 @param[in] BaseAddress Page address to Guard at.
582
583 @return VOID.
584 **/
585 VOID
586 EFIAPI
587 SetGuardPage (
588 IN EFI_PHYSICAL_ADDRESS BaseAddress
589 )
590 {
591 if (mSmmMemoryAttribute != NULL) {
592 mOnGuarding = TRUE;
593 mSmmMemoryAttribute->SetMemoryAttributes (
594 mSmmMemoryAttribute,
595 BaseAddress,
596 EFI_PAGE_SIZE,
597 EFI_MEMORY_RP
598 );
599 mOnGuarding = FALSE;
600 }
601 }
602
603 /**
604 Unset the Guard page at the given address to the normal memory.
605
606 This is done by changing the page table attribute to be PRSENT.
607
608 @param[in] BaseAddress Page address to Guard at.
609
610 @return VOID.
611 **/
612 VOID
613 EFIAPI
614 UnsetGuardPage (
615 IN EFI_PHYSICAL_ADDRESS BaseAddress
616 )
617 {
618 if (mSmmMemoryAttribute != NULL) {
619 mOnGuarding = TRUE;
620 mSmmMemoryAttribute->ClearMemoryAttributes (
621 mSmmMemoryAttribute,
622 BaseAddress,
623 EFI_PAGE_SIZE,
624 EFI_MEMORY_RP
625 );
626 mOnGuarding = FALSE;
627 }
628 }
629
630 /**
631 Check to see if the memory at the given address should be guarded or not.
632
633 @param[in] MemoryType Memory type to check.
634 @param[in] AllocateType Allocation type to check.
635 @param[in] PageOrPool Indicate a page allocation or pool allocation.
636
637
638 @return TRUE The given type of memory should be guarded.
639 @return FALSE The given type of memory should not be guarded.
640 **/
641 BOOLEAN
642 IsMemoryTypeToGuard (
643 IN EFI_MEMORY_TYPE MemoryType,
644 IN EFI_ALLOCATE_TYPE AllocateType,
645 IN UINT8 PageOrPool
646 )
647 {
648 UINT64 TestBit;
649 UINT64 ConfigBit;
650
651 if ((PcdGet8 (PcdHeapGuardPropertyMask) & PageOrPool) == 0
652 || mOnGuarding
653 || AllocateType == AllocateAddress) {
654 return FALSE;
655 }
656
657 ConfigBit = 0;
658 if ((PageOrPool & GUARD_HEAP_TYPE_POOL) != 0) {
659 ConfigBit |= PcdGet64 (PcdHeapGuardPoolType);
660 }
661
662 if ((PageOrPool & GUARD_HEAP_TYPE_PAGE) != 0) {
663 ConfigBit |= PcdGet64 (PcdHeapGuardPageType);
664 }
665
666 if (MemoryType == EfiRuntimeServicesData ||
667 MemoryType == EfiRuntimeServicesCode) {
668 TestBit = LShiftU64 (1, MemoryType);
669 } else if (MemoryType == EfiMaxMemoryType) {
670 TestBit = (UINT64)-1;
671 } else {
672 TestBit = 0;
673 }
674
675 return ((ConfigBit & TestBit) != 0);
676 }
677
678 /**
679 Check to see if the pool at the given address should be guarded or not.
680
681 @param[in] MemoryType Pool type to check.
682
683
684 @return TRUE The given type of pool should be guarded.
685 @return FALSE The given type of pool should not be guarded.
686 **/
687 BOOLEAN
688 IsPoolTypeToGuard (
689 IN EFI_MEMORY_TYPE MemoryType
690 )
691 {
692 return IsMemoryTypeToGuard (MemoryType, AllocateAnyPages,
693 GUARD_HEAP_TYPE_POOL);
694 }
695
696 /**
697 Check to see if the page at the given address should be guarded or not.
698
699 @param[in] MemoryType Page type to check.
700 @param[in] AllocateType Allocation type to check.
701
702 @return TRUE The given type of page should be guarded.
703 @return FALSE The given type of page should not be guarded.
704 **/
705 BOOLEAN
706 IsPageTypeToGuard (
707 IN EFI_MEMORY_TYPE MemoryType,
708 IN EFI_ALLOCATE_TYPE AllocateType
709 )
710 {
711 return IsMemoryTypeToGuard (MemoryType, AllocateType, GUARD_HEAP_TYPE_PAGE);
712 }
713
714 /**
715 Check to see if the heap guard is enabled for page and/or pool allocation.
716
717 @return TRUE/FALSE.
718 **/
719 BOOLEAN
720 IsHeapGuardEnabled (
721 VOID
722 )
723 {
724 return IsMemoryTypeToGuard (EfiMaxMemoryType, AllocateAnyPages,
725 GUARD_HEAP_TYPE_POOL|GUARD_HEAP_TYPE_PAGE);
726 }
727
728 /**
729 Set head Guard and tail Guard for the given memory range.
730
731 @param[in] Memory Base address of memory to set guard for.
732 @param[in] NumberOfPages Memory size in pages.
733
734 @return VOID.
735 **/
736 VOID
737 SetGuardForMemory (
738 IN EFI_PHYSICAL_ADDRESS Memory,
739 IN UINTN NumberOfPages
740 )
741 {
742 EFI_PHYSICAL_ADDRESS GuardPage;
743
744 //
745 // Set tail Guard
746 //
747 GuardPage = Memory + EFI_PAGES_TO_SIZE (NumberOfPages);
748 if (!IsGuardPage (GuardPage)) {
749 SetGuardPage (GuardPage);
750 }
751
752 // Set head Guard
753 GuardPage = Memory - EFI_PAGES_TO_SIZE (1);
754 if (!IsGuardPage (GuardPage)) {
755 SetGuardPage (GuardPage);
756 }
757
758 //
759 // Mark the memory range as Guarded
760 //
761 SetGuardedMemoryBits (Memory, NumberOfPages);
762 }
763
764 /**
765 Unset head Guard and tail Guard for the given memory range.
766
767 @param[in] Memory Base address of memory to unset guard for.
768 @param[in] NumberOfPages Memory size in pages.
769
770 @return VOID.
771 **/
772 VOID
773 UnsetGuardForMemory (
774 IN EFI_PHYSICAL_ADDRESS Memory,
775 IN UINTN NumberOfPages
776 )
777 {
778 EFI_PHYSICAL_ADDRESS GuardPage;
779 UINT64 GuardBitmap;
780
781 if (NumberOfPages == 0) {
782 return;
783 }
784
785 //
786 // Head Guard must be one page before, if any.
787 //
788 // MSB-> 1 0 <-LSB
789 // -------------------
790 // Head Guard -> 0 1 -> Don't free Head Guard (shared Guard)
791 // Head Guard -> 0 0 -> Free Head Guard either (not shared Guard)
792 // 1 X -> Don't free first page (need a new Guard)
793 // (it'll be turned into a Guard page later)
794 // -------------------
795 // Start -> -1 -2
796 //
797 GuardPage = Memory - EFI_PAGES_TO_SIZE (1);
798 GuardBitmap = GetGuardedMemoryBits (Memory - EFI_PAGES_TO_SIZE (2), 2);
799 if ((GuardBitmap & BIT1) == 0) {
800 //
801 // Head Guard exists.
802 //
803 if ((GuardBitmap & BIT0) == 0) {
804 //
805 // If the head Guard is not a tail Guard of adjacent memory block,
806 // unset it.
807 //
808 UnsetGuardPage (GuardPage);
809 }
810 } else {
811 //
812 // Pages before memory to free are still in Guard. It's a partial free
813 // case. Turn first page of memory block to free into a new Guard.
814 //
815 SetGuardPage (Memory);
816 }
817
818 //
819 // Tail Guard must be the page after this memory block to free, if any.
820 //
821 // MSB-> 1 0 <-LSB
822 // --------------------
823 // 1 0 <- Tail Guard -> Don't free Tail Guard (shared Guard)
824 // 0 0 <- Tail Guard -> Free Tail Guard either (not shared Guard)
825 // X 1 -> Don't free last page (need a new Guard)
826 // (it'll be turned into a Guard page later)
827 // --------------------
828 // +1 +0 <- End
829 //
830 GuardPage = Memory + EFI_PAGES_TO_SIZE (NumberOfPages);
831 GuardBitmap = GetGuardedMemoryBits (GuardPage, 2);
832 if ((GuardBitmap & BIT0) == 0) {
833 //
834 // Tail Guard exists.
835 //
836 if ((GuardBitmap & BIT1) == 0) {
837 //
838 // If the tail Guard is not a head Guard of adjacent memory block,
839 // free it; otherwise, keep it.
840 //
841 UnsetGuardPage (GuardPage);
842 }
843 } else {
844 //
845 // Pages after memory to free are still in Guard. It's a partial free
846 // case. We need to keep one page to be a head Guard.
847 //
848 SetGuardPage (GuardPage - EFI_PAGES_TO_SIZE (1));
849 }
850
851 //
852 // No matter what, we just clear the mark of the Guarded memory.
853 //
854 ClearGuardedMemoryBits(Memory, NumberOfPages);
855 }
856
857 /**
858 Adjust address of free memory according to existing and/or required Guard.
859
860 This function will check if there're existing Guard pages of adjacent
861 memory blocks, and try to use it as the Guard page of the memory to be
862 allocated.
863
864 @param[in] Start Start address of free memory block.
865 @param[in] Size Size of free memory block.
866 @param[in] SizeRequested Size of memory to allocate.
867
868 @return The end address of memory block found.
869 @return 0 if no enough space for the required size of memory and its Guard.
870 **/
871 UINT64
872 AdjustMemoryS (
873 IN UINT64 Start,
874 IN UINT64 Size,
875 IN UINT64 SizeRequested
876 )
877 {
878 UINT64 Target;
879
880 //
881 // UEFI spec requires that allocated pool must be 8-byte aligned. If it's
882 // indicated to put the pool near the Tail Guard, we need extra bytes to
883 // make sure alignment of the returned pool address.
884 //
885 if ((PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) == 0) {
886 SizeRequested = ALIGN_VALUE(SizeRequested, 8);
887 }
888
889 Target = Start + Size - SizeRequested;
890
891 //
892 // At least one more page needed for Guard page.
893 //
894 if (Size < (SizeRequested + EFI_PAGES_TO_SIZE (1))) {
895 return 0;
896 }
897
898 if (!IsGuardPage (Start + Size)) {
899 // No Guard at tail to share. One more page is needed.
900 Target -= EFI_PAGES_TO_SIZE (1);
901 }
902
903 // Out of range?
904 if (Target < Start) {
905 return 0;
906 }
907
908 // At the edge?
909 if (Target == Start) {
910 if (!IsGuardPage (Target - EFI_PAGES_TO_SIZE (1))) {
911 // No enough space for a new head Guard if no Guard at head to share.
912 return 0;
913 }
914 }
915
916 // OK, we have enough pages for memory and its Guards. Return the End of the
917 // free space.
918 return Target + SizeRequested - 1;
919 }
920
921 /**
922 Adjust the start address and number of pages to free according to Guard.
923
924 The purpose of this function is to keep the shared Guard page with adjacent
925 memory block if it's still in guard, or free it if no more sharing. Another
926 is to reserve pages as Guard pages in partial page free situation.
927
928 @param[in,out] Memory Base address of memory to free.
929 @param[in,out] NumberOfPages Size of memory to free.
930
931 @return VOID.
932 **/
933 VOID
934 AdjustMemoryF (
935 IN OUT EFI_PHYSICAL_ADDRESS *Memory,
936 IN OUT UINTN *NumberOfPages
937 )
938 {
939 EFI_PHYSICAL_ADDRESS Start;
940 EFI_PHYSICAL_ADDRESS MemoryToTest;
941 UINTN PagesToFree;
942 UINT64 GuardBitmap;
943
944 if (Memory == NULL || NumberOfPages == NULL || *NumberOfPages == 0) {
945 return;
946 }
947
948 Start = *Memory;
949 PagesToFree = *NumberOfPages;
950
951 //
952 // Head Guard must be one page before, if any.
953 //
954 // MSB-> 1 0 <-LSB
955 // -------------------
956 // Head Guard -> 0 1 -> Don't free Head Guard (shared Guard)
957 // Head Guard -> 0 0 -> Free Head Guard either (not shared Guard)
958 // 1 X -> Don't free first page (need a new Guard)
959 // (it'll be turned into a Guard page later)
960 // -------------------
961 // Start -> -1 -2
962 //
963 MemoryToTest = Start - EFI_PAGES_TO_SIZE (2);
964 GuardBitmap = GetGuardedMemoryBits (MemoryToTest, 2);
965 if ((GuardBitmap & BIT1) == 0) {
966 //
967 // Head Guard exists.
968 //
969 if ((GuardBitmap & BIT0) == 0) {
970 //
971 // If the head Guard is not a tail Guard of adjacent memory block,
972 // free it; otherwise, keep it.
973 //
974 Start -= EFI_PAGES_TO_SIZE (1);
975 PagesToFree += 1;
976 }
977 } else {
978 //
979 // No Head Guard, and pages before memory to free are still in Guard. It's a
980 // partial free case. We need to keep one page to be a tail Guard.
981 //
982 Start += EFI_PAGES_TO_SIZE (1);
983 PagesToFree -= 1;
984 }
985
986 //
987 // Tail Guard must be the page after this memory block to free, if any.
988 //
989 // MSB-> 1 0 <-LSB
990 // --------------------
991 // 1 0 <- Tail Guard -> Don't free Tail Guard (shared Guard)
992 // 0 0 <- Tail Guard -> Free Tail Guard either (not shared Guard)
993 // X 1 -> Don't free last page (need a new Guard)
994 // (it'll be turned into a Guard page later)
995 // --------------------
996 // +1 +0 <- End
997 //
998 MemoryToTest = Start + EFI_PAGES_TO_SIZE (PagesToFree);
999 GuardBitmap = GetGuardedMemoryBits (MemoryToTest, 2);
1000 if ((GuardBitmap & BIT0) == 0) {
1001 //
1002 // Tail Guard exists.
1003 //
1004 if ((GuardBitmap & BIT1) == 0) {
1005 //
1006 // If the tail Guard is not a head Guard of adjacent memory block,
1007 // free it; otherwise, keep it.
1008 //
1009 PagesToFree += 1;
1010 }
1011 } else if (PagesToFree > 0) {
1012 //
1013 // No Tail Guard, and pages after memory to free are still in Guard. It's a
1014 // partial free case. We need to keep one page to be a head Guard.
1015 //
1016 PagesToFree -= 1;
1017 }
1018
1019 *Memory = Start;
1020 *NumberOfPages = PagesToFree;
1021 }
1022
1023 /**
1024 Adjust the base and number of pages to really allocate according to Guard.
1025
1026 @param[in,out] Memory Base address of free memory.
1027 @param[in,out] NumberOfPages Size of memory to allocate.
1028
1029 @return VOID.
1030 **/
1031 VOID
1032 AdjustMemoryA (
1033 IN OUT EFI_PHYSICAL_ADDRESS *Memory,
1034 IN OUT UINTN *NumberOfPages
1035 )
1036 {
1037 //
1038 // FindFreePages() has already taken the Guard into account. It's safe to
1039 // adjust the start address and/or number of pages here, to make sure that
1040 // the Guards are also "allocated".
1041 //
1042 if (!IsGuardPage (*Memory + EFI_PAGES_TO_SIZE (*NumberOfPages))) {
1043 // No tail Guard, add one.
1044 *NumberOfPages += 1;
1045 }
1046
1047 if (!IsGuardPage (*Memory - EFI_PAGE_SIZE)) {
1048 // No head Guard, add one.
1049 *Memory -= EFI_PAGE_SIZE;
1050 *NumberOfPages += 1;
1051 }
1052 }
1053
1054 /**
1055 Adjust the pool head position to make sure the Guard page is adjavent to
1056 pool tail or pool head.
1057
1058 @param[in] Memory Base address of memory allocated.
1059 @param[in] NoPages Number of pages actually allocated.
1060 @param[in] Size Size of memory requested.
1061 (plus pool head/tail overhead)
1062
1063 @return Address of pool head
1064 **/
1065 VOID *
1066 AdjustPoolHeadA (
1067 IN EFI_PHYSICAL_ADDRESS Memory,
1068 IN UINTN NoPages,
1069 IN UINTN Size
1070 )
1071 {
1072 if (Memory == 0 || (PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) != 0) {
1073 //
1074 // Pool head is put near the head Guard
1075 //
1076 return (VOID *)(UINTN)Memory;
1077 }
1078
1079 //
1080 // Pool head is put near the tail Guard
1081 //
1082 Size = ALIGN_VALUE (Size, 8);
1083 return (VOID *)(UINTN)(Memory + EFI_PAGES_TO_SIZE (NoPages) - Size);
1084 }
1085
1086 /**
1087 Get the page base address according to pool head address.
1088
1089 @param[in] Memory Head address of pool to free.
1090
1091 @return Address of pool head.
1092 **/
1093 VOID *
1094 AdjustPoolHeadF (
1095 IN EFI_PHYSICAL_ADDRESS Memory
1096 )
1097 {
1098 if (Memory == 0 || (PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) != 0) {
1099 //
1100 // Pool head is put near the head Guard
1101 //
1102 return (VOID *)(UINTN)Memory;
1103 }
1104
1105 //
1106 // Pool head is put near the tail Guard
1107 //
1108 return (VOID *)(UINTN)(Memory & ~EFI_PAGE_MASK);
1109 }
1110
1111 /**
1112 Helper function of memory allocation with Guard pages.
1113
1114 @param FreePageList The free page node.
1115 @param NumberOfPages Number of pages to be allocated.
1116 @param MaxAddress Request to allocate memory below this address.
1117 @param MemoryType Type of memory requested.
1118
1119 @return Memory address of allocated pages.
1120 **/
1121 UINTN
1122 InternalAllocMaxAddressWithGuard (
1123 IN OUT LIST_ENTRY *FreePageList,
1124 IN UINTN NumberOfPages,
1125 IN UINTN MaxAddress,
1126 IN EFI_MEMORY_TYPE MemoryType
1127
1128 )
1129 {
1130 LIST_ENTRY *Node;
1131 FREE_PAGE_LIST *Pages;
1132 UINTN PagesToAlloc;
1133 UINTN HeadGuard;
1134 UINTN TailGuard;
1135 UINTN Address;
1136
1137 for (Node = FreePageList->BackLink; Node != FreePageList;
1138 Node = Node->BackLink) {
1139 Pages = BASE_CR (Node, FREE_PAGE_LIST, Link);
1140 if (Pages->NumberOfPages >= NumberOfPages &&
1141 (UINTN)Pages + EFI_PAGES_TO_SIZE (NumberOfPages) - 1 <= MaxAddress) {
1142
1143 //
1144 // We may need 1 or 2 more pages for Guard. Check it out.
1145 //
1146 PagesToAlloc = NumberOfPages;
1147 TailGuard = (UINTN)Pages + EFI_PAGES_TO_SIZE (Pages->NumberOfPages);
1148 if (!IsGuardPage (TailGuard)) {
1149 //
1150 // Add one if no Guard at the end of current free memory block.
1151 //
1152 PagesToAlloc += 1;
1153 TailGuard = 0;
1154 }
1155
1156 HeadGuard = (UINTN)Pages +
1157 EFI_PAGES_TO_SIZE (Pages->NumberOfPages - PagesToAlloc) -
1158 EFI_PAGE_SIZE;
1159 if (!IsGuardPage (HeadGuard)) {
1160 //
1161 // Add one if no Guard at the page before the address to allocate
1162 //
1163 PagesToAlloc += 1;
1164 HeadGuard = 0;
1165 }
1166
1167 if (Pages->NumberOfPages < PagesToAlloc) {
1168 // Not enough space to allocate memory with Guards? Try next block.
1169 continue;
1170 }
1171
1172 Address = InternalAllocPagesOnOneNode (Pages, PagesToAlloc, MaxAddress);
1173 ConvertSmmMemoryMapEntry(MemoryType, Address, PagesToAlloc, FALSE);
1174 CoreFreeMemoryMapStack();
1175 if (HeadGuard == 0) {
1176 // Don't pass the Guard page to user.
1177 Address += EFI_PAGE_SIZE;
1178 }
1179 SetGuardForMemory (Address, NumberOfPages);
1180 return Address;
1181 }
1182 }
1183
1184 return (UINTN)(-1);
1185 }
1186
1187 /**
1188 Helper function of memory free with Guard pages.
1189
1190 @param[in] Memory Base address of memory being freed.
1191 @param[in] NumberOfPages The number of pages to free.
1192 @param[in] AddRegion If this memory is new added region.
1193
1194 @retval EFI_NOT_FOUND Could not find the entry that covers the range.
1195 @retval EFI_INVALID_PARAMETER Address not aligned, Address is zero or NumberOfPages is zero.
1196 @return EFI_SUCCESS Pages successfully freed.
1197 **/
1198 EFI_STATUS
1199 SmmInternalFreePagesExWithGuard (
1200 IN EFI_PHYSICAL_ADDRESS Memory,
1201 IN UINTN NumberOfPages,
1202 IN BOOLEAN AddRegion
1203 )
1204 {
1205 EFI_PHYSICAL_ADDRESS MemoryToFree;
1206 UINTN PagesToFree;
1207
1208 MemoryToFree = Memory;
1209 PagesToFree = NumberOfPages;
1210
1211 AdjustMemoryF (&MemoryToFree, &PagesToFree);
1212 UnsetGuardForMemory (Memory, NumberOfPages);
1213 if (PagesToFree == 0) {
1214 return EFI_SUCCESS;
1215 }
1216
1217 return SmmInternalFreePagesEx (MemoryToFree, PagesToFree, AddRegion);
1218 }
1219
1220 /**
1221 Set all Guard pages which cannot be set during the non-SMM mode time.
1222 **/
1223 VOID
1224 SetAllGuardPages (
1225 VOID
1226 )
1227 {
1228 UINTN Entries[GUARDED_HEAP_MAP_TABLE_DEPTH];
1229 UINTN Shifts[GUARDED_HEAP_MAP_TABLE_DEPTH];
1230 UINTN Indices[GUARDED_HEAP_MAP_TABLE_DEPTH];
1231 UINT64 Tables[GUARDED_HEAP_MAP_TABLE_DEPTH];
1232 UINT64 Addresses[GUARDED_HEAP_MAP_TABLE_DEPTH];
1233 UINT64 TableEntry;
1234 UINT64 Address;
1235 UINT64 GuardPage;
1236 INTN Level;
1237 UINTN Index;
1238 BOOLEAN OnGuarding;
1239
1240 if (mGuardedMemoryMap == 0 ||
1241 mMapLevel == 0 ||
1242 mMapLevel > GUARDED_HEAP_MAP_TABLE_DEPTH) {
1243 return;
1244 }
1245
1246 CopyMem (Entries, mLevelMask, sizeof (Entries));
1247 CopyMem (Shifts, mLevelShift, sizeof (Shifts));
1248
1249 SetMem (Tables, sizeof(Tables), 0);
1250 SetMem (Addresses, sizeof(Addresses), 0);
1251 SetMem (Indices, sizeof(Indices), 0);
1252
1253 Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;
1254 Tables[Level] = mGuardedMemoryMap;
1255 Address = 0;
1256 OnGuarding = FALSE;
1257
1258 DEBUG_CODE (
1259 DumpGuardedMemoryBitmap ();
1260 );
1261
1262 while (TRUE) {
1263 if (Indices[Level] > Entries[Level]) {
1264 Tables[Level] = 0;
1265 Level -= 1;
1266 } else {
1267
1268 TableEntry = ((UINT64 *)(UINTN)(Tables[Level]))[Indices[Level]];
1269 Address = Addresses[Level];
1270
1271 if (TableEntry == 0) {
1272
1273 OnGuarding = FALSE;
1274
1275 } else if (Level < GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {
1276
1277 Level += 1;
1278 Tables[Level] = TableEntry;
1279 Addresses[Level] = Address;
1280 Indices[Level] = 0;
1281
1282 continue;
1283
1284 } else {
1285
1286 Index = 0;
1287 while (Index < GUARDED_HEAP_MAP_ENTRY_BITS) {
1288 if ((TableEntry & 1) == 1) {
1289 if (OnGuarding) {
1290 GuardPage = 0;
1291 } else {
1292 GuardPage = Address - EFI_PAGE_SIZE;
1293 }
1294 OnGuarding = TRUE;
1295 } else {
1296 if (OnGuarding) {
1297 GuardPage = Address;
1298 } else {
1299 GuardPage = 0;
1300 }
1301 OnGuarding = FALSE;
1302 }
1303
1304 if (GuardPage != 0) {
1305 SetGuardPage (GuardPage);
1306 }
1307
1308 if (TableEntry == 0) {
1309 break;
1310 }
1311
1312 TableEntry = RShiftU64 (TableEntry, 1);
1313 Address += EFI_PAGE_SIZE;
1314 Index += 1;
1315 }
1316 }
1317 }
1318
1319 if (Level < (GUARDED_HEAP_MAP_TABLE_DEPTH - (INTN)mMapLevel)) {
1320 break;
1321 }
1322
1323 Indices[Level] += 1;
1324 Address = (Level == 0) ? 0 : Addresses[Level - 1];
1325 Addresses[Level] = Address | LShiftU64(Indices[Level], Shifts[Level]);
1326
1327 }
1328 }
1329
1330 /**
1331 Hook function used to set all Guard pages after entering SMM mode.
1332 **/
1333 VOID
1334 SmmEntryPointMemoryManagementHook (
1335 VOID
1336 )
1337 {
1338 EFI_STATUS Status;
1339
1340 if (mSmmMemoryAttribute == NULL) {
1341 Status = SmmLocateProtocol (
1342 &gEdkiiSmmMemoryAttributeProtocolGuid,
1343 NULL,
1344 (VOID **)&mSmmMemoryAttribute
1345 );
1346 if (!EFI_ERROR(Status)) {
1347 SetAllGuardPages ();
1348 }
1349 }
1350 }
1351
1352 /**
1353 Helper function to convert a UINT64 value in binary to a string.
1354
1355 @param[in] Value Value of a UINT64 integer.
1356 @param[out] BinString String buffer to contain the conversion result.
1357
1358 @return VOID.
1359 **/
1360 VOID
1361 Uint64ToBinString (
1362 IN UINT64 Value,
1363 OUT CHAR8 *BinString
1364 )
1365 {
1366 UINTN Index;
1367
1368 if (BinString == NULL) {
1369 return;
1370 }
1371
1372 for (Index = 64; Index > 0; --Index) {
1373 BinString[Index - 1] = '0' + (Value & 1);
1374 Value = RShiftU64 (Value, 1);
1375 }
1376 BinString[64] = '\0';
1377 }
1378
1379 /**
1380 Dump the guarded memory bit map.
1381 **/
1382 VOID
1383 EFIAPI
1384 DumpGuardedMemoryBitmap (
1385 VOID
1386 )
1387 {
1388 UINTN Entries[GUARDED_HEAP_MAP_TABLE_DEPTH];
1389 UINTN Shifts[GUARDED_HEAP_MAP_TABLE_DEPTH];
1390 UINTN Indices[GUARDED_HEAP_MAP_TABLE_DEPTH];
1391 UINT64 Tables[GUARDED_HEAP_MAP_TABLE_DEPTH];
1392 UINT64 Addresses[GUARDED_HEAP_MAP_TABLE_DEPTH];
1393 UINT64 TableEntry;
1394 UINT64 Address;
1395 INTN Level;
1396 UINTN RepeatZero;
1397 CHAR8 String[GUARDED_HEAP_MAP_ENTRY_BITS + 1];
1398 CHAR8 *Ruler1;
1399 CHAR8 *Ruler2;
1400
1401 if (mGuardedMemoryMap == 0 ||
1402 mMapLevel == 0 ||
1403 mMapLevel > GUARDED_HEAP_MAP_TABLE_DEPTH) {
1404 return;
1405 }
1406
1407 Ruler1 = " 3 2 1 0";
1408 Ruler2 = "FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210";
1409
1410 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "============================="
1411 " Guarded Memory Bitmap "
1412 "==============================\r\n"));
1413 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, " %a\r\n", Ruler1));
1414 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, " %a\r\n", Ruler2));
1415
1416 CopyMem (Entries, mLevelMask, sizeof (Entries));
1417 CopyMem (Shifts, mLevelShift, sizeof (Shifts));
1418
1419 SetMem (Indices, sizeof(Indices), 0);
1420 SetMem (Tables, sizeof(Tables), 0);
1421 SetMem (Addresses, sizeof(Addresses), 0);
1422
1423 Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;
1424 Tables[Level] = mGuardedMemoryMap;
1425 Address = 0;
1426 RepeatZero = 0;
1427
1428 while (TRUE) {
1429 if (Indices[Level] > Entries[Level]) {
1430
1431 Tables[Level] = 0;
1432 Level -= 1;
1433 RepeatZero = 0;
1434
1435 DEBUG ((
1436 HEAP_GUARD_DEBUG_LEVEL,
1437 "========================================="
1438 "=========================================\r\n"
1439 ));
1440
1441 } else {
1442
1443 TableEntry = ((UINT64 *)(UINTN)Tables[Level])[Indices[Level]];
1444 Address = Addresses[Level];
1445
1446 if (TableEntry == 0) {
1447
1448 if (Level == GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {
1449 if (RepeatZero == 0) {
1450 Uint64ToBinString(TableEntry, String);
1451 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "%016lx: %a\r\n", Address, String));
1452 } else if (RepeatZero == 1) {
1453 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "... : ...\r\n"));
1454 }
1455 RepeatZero += 1;
1456 }
1457
1458 } else if (Level < GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {
1459
1460 Level += 1;
1461 Tables[Level] = TableEntry;
1462 Addresses[Level] = Address;
1463 Indices[Level] = 0;
1464 RepeatZero = 0;
1465
1466 continue;
1467
1468 } else {
1469
1470 RepeatZero = 0;
1471 Uint64ToBinString(TableEntry, String);
1472 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "%016lx: %a\r\n", Address, String));
1473
1474 }
1475 }
1476
1477 if (Level < (GUARDED_HEAP_MAP_TABLE_DEPTH - (INTN)mMapLevel)) {
1478 break;
1479 }
1480
1481 Indices[Level] += 1;
1482 Address = (Level == 0) ? 0 : Addresses[Level - 1];
1483 Addresses[Level] = Address | LShiftU64(Indices[Level], Shifts[Level]);
1484
1485 }
1486 }
1487
1488 /**
1489 Debug function used to verify if the Guard page is well set or not.
1490
1491 @param[in] BaseAddress Address of memory to check.
1492 @param[in] NumberOfPages Size of memory in pages.
1493
1494 @return TRUE The head Guard and tail Guard are both well set.
1495 @return FALSE The head Guard and/or tail Guard are not well set.
1496 **/
1497 BOOLEAN
1498 VerifyMemoryGuard (
1499 IN EFI_PHYSICAL_ADDRESS BaseAddress,
1500 IN UINTN NumberOfPages
1501 )
1502 {
1503 EFI_STATUS Status;
1504 UINT64 Attribute;
1505 EFI_PHYSICAL_ADDRESS Address;
1506
1507 if (mSmmMemoryAttribute == NULL) {
1508 return TRUE;
1509 }
1510
1511 Attribute = 0;
1512 Address = BaseAddress - EFI_PAGE_SIZE;
1513 Status = mSmmMemoryAttribute->GetMemoryAttributes (
1514 mSmmMemoryAttribute,
1515 Address,
1516 EFI_PAGE_SIZE,
1517 &Attribute
1518 );
1519 if (EFI_ERROR (Status) || (Attribute & EFI_MEMORY_RP) == 0) {
1520 DEBUG ((DEBUG_ERROR, "Head Guard is not set at: %016lx (%016lX)!!!\r\n",
1521 Address, Attribute));
1522 DumpGuardedMemoryBitmap ();
1523 return FALSE;
1524 }
1525
1526 Attribute = 0;
1527 Address = BaseAddress + EFI_PAGES_TO_SIZE (NumberOfPages);
1528 Status = mSmmMemoryAttribute->GetMemoryAttributes (
1529 mSmmMemoryAttribute,
1530 Address,
1531 EFI_PAGE_SIZE,
1532 &Attribute
1533 );
1534 if (EFI_ERROR (Status) || (Attribute & EFI_MEMORY_RP) == 0) {
1535 DEBUG ((DEBUG_ERROR, "Tail Guard is not set at: %016lx (%016lX)!!!\r\n",
1536 Address, Attribute));
1537 DumpGuardedMemoryBitmap ();
1538 return FALSE;
1539 }
1540
1541 return TRUE;
1542 }
1543