]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Core/PiSmmCore/HeapGuard.c
MdeModulePkg/Core: fix too many available pages between BS_Data
[mirror_edk2.git] / MdeModulePkg / Core / PiSmmCore / HeapGuard.c
1 /** @file
2 UEFI Heap Guard functions.
3
4 Copyright (c) 2017-2018, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "HeapGuard.h"
16
17 //
18 // Global to avoid infinite reentrance of memory allocation when updating
19 // page table attributes, which may need allocating pages for new PDE/PTE.
20 //
21 GLOBAL_REMOVE_IF_UNREFERENCED BOOLEAN mOnGuarding = FALSE;
22
23 //
24 // Pointer to table tracking the Guarded memory with bitmap, in which '1'
25 // is used to indicate memory guarded. '0' might be free memory or Guard
26 // page itself, depending on status of memory adjacent to it.
27 //
28 GLOBAL_REMOVE_IF_UNREFERENCED UINT64 mGuardedMemoryMap = 0;
29
30 //
31 // Current depth level of map table pointed by mGuardedMemoryMap.
32 // mMapLevel must be initialized at least by 1. It will be automatically
33 // updated according to the address of memory just tracked.
34 //
35 GLOBAL_REMOVE_IF_UNREFERENCED UINTN mMapLevel = 1;
36
37 //
38 // Shift and mask for each level of map table
39 //
40 GLOBAL_REMOVE_IF_UNREFERENCED UINTN mLevelShift[GUARDED_HEAP_MAP_TABLE_DEPTH]
41 = GUARDED_HEAP_MAP_TABLE_DEPTH_SHIFTS;
42 GLOBAL_REMOVE_IF_UNREFERENCED UINTN mLevelMask[GUARDED_HEAP_MAP_TABLE_DEPTH]
43 = GUARDED_HEAP_MAP_TABLE_DEPTH_MASKS;
44
45 //
46 // SMM memory attribute protocol
47 //
48 EDKII_SMM_MEMORY_ATTRIBUTE_PROTOCOL *mSmmMemoryAttribute = NULL;
49
50 /**
51 Set corresponding bits in bitmap table to 1 according to the address.
52
53 @param[in] Address Start address to set for.
54 @param[in] BitNumber Number of bits to set.
55 @param[in] BitMap Pointer to bitmap which covers the Address.
56
57 @return VOID
58 **/
59 STATIC
60 VOID
61 SetBits (
62 IN EFI_PHYSICAL_ADDRESS Address,
63 IN UINTN BitNumber,
64 IN UINT64 *BitMap
65 )
66 {
67 UINTN Lsbs;
68 UINTN Qwords;
69 UINTN Msbs;
70 UINTN StartBit;
71 UINTN EndBit;
72
73 StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);
74 EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
75
76 if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) {
77 Msbs = (GUARDED_HEAP_MAP_ENTRY_BITS - StartBit) %
78 GUARDED_HEAP_MAP_ENTRY_BITS;
79 Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
80 Qwords = (BitNumber - Msbs) / GUARDED_HEAP_MAP_ENTRY_BITS;
81 } else {
82 Msbs = BitNumber;
83 Lsbs = 0;
84 Qwords = 0;
85 }
86
87 if (Msbs > 0) {
88 *BitMap |= LShiftU64 (LShiftU64 (1, Msbs) - 1, StartBit);
89 BitMap += 1;
90 }
91
92 if (Qwords > 0) {
93 SetMem64 ((VOID *)BitMap, Qwords * GUARDED_HEAP_MAP_ENTRY_BYTES,
94 (UINT64)-1);
95 BitMap += Qwords;
96 }
97
98 if (Lsbs > 0) {
99 *BitMap |= (LShiftU64 (1, Lsbs) - 1);
100 }
101 }
102
103 /**
104 Set corresponding bits in bitmap table to 0 according to the address.
105
106 @param[in] Address Start address to set for.
107 @param[in] BitNumber Number of bits to set.
108 @param[in] BitMap Pointer to bitmap which covers the Address.
109
110 @return VOID.
111 **/
112 STATIC
113 VOID
114 ClearBits (
115 IN EFI_PHYSICAL_ADDRESS Address,
116 IN UINTN BitNumber,
117 IN UINT64 *BitMap
118 )
119 {
120 UINTN Lsbs;
121 UINTN Qwords;
122 UINTN Msbs;
123 UINTN StartBit;
124 UINTN EndBit;
125
126 StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);
127 EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
128
129 if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) {
130 Msbs = (GUARDED_HEAP_MAP_ENTRY_BITS - StartBit) %
131 GUARDED_HEAP_MAP_ENTRY_BITS;
132 Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
133 Qwords = (BitNumber - Msbs) / GUARDED_HEAP_MAP_ENTRY_BITS;
134 } else {
135 Msbs = BitNumber;
136 Lsbs = 0;
137 Qwords = 0;
138 }
139
140 if (Msbs > 0) {
141 *BitMap &= ~LShiftU64 (LShiftU64 (1, Msbs) - 1, StartBit);
142 BitMap += 1;
143 }
144
145 if (Qwords > 0) {
146 SetMem64 ((VOID *)BitMap, Qwords * GUARDED_HEAP_MAP_ENTRY_BYTES, 0);
147 BitMap += Qwords;
148 }
149
150 if (Lsbs > 0) {
151 *BitMap &= ~(LShiftU64 (1, Lsbs) - 1);
152 }
153 }
154
155 /**
156 Get corresponding bits in bitmap table according to the address.
157
158 The value of bit 0 corresponds to the status of memory at given Address.
159 No more than 64 bits can be retrieved in one call.
160
161 @param[in] Address Start address to retrieve bits for.
162 @param[in] BitNumber Number of bits to get.
163 @param[in] BitMap Pointer to bitmap which covers the Address.
164
165 @return An integer containing the bits information.
166 **/
167 STATIC
168 UINT64
169 GetBits (
170 IN EFI_PHYSICAL_ADDRESS Address,
171 IN UINTN BitNumber,
172 IN UINT64 *BitMap
173 )
174 {
175 UINTN StartBit;
176 UINTN EndBit;
177 UINTN Lsbs;
178 UINTN Msbs;
179 UINT64 Result;
180
181 ASSERT (BitNumber <= GUARDED_HEAP_MAP_ENTRY_BITS);
182
183 StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);
184 EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
185
186 if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) {
187 Msbs = GUARDED_HEAP_MAP_ENTRY_BITS - StartBit;
188 Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
189 } else {
190 Msbs = BitNumber;
191 Lsbs = 0;
192 }
193
194 Result = RShiftU64 ((*BitMap), StartBit) & (LShiftU64 (1, Msbs) - 1);
195 if (Lsbs > 0) {
196 BitMap += 1;
197 Result |= LShiftU64 ((*BitMap) & (LShiftU64 (1, Lsbs) - 1), Msbs);
198 }
199
200 return Result;
201 }
202
203 /**
204 Helper function to allocate pages without Guard for internal uses.
205
206 @param[in] Pages Page number.
207
208 @return Address of memory allocated.
209 **/
210 VOID *
211 PageAlloc (
212 IN UINTN Pages
213 )
214 {
215 EFI_STATUS Status;
216 EFI_PHYSICAL_ADDRESS Memory;
217
218 Status = SmmInternalAllocatePages (AllocateAnyPages, EfiRuntimeServicesData,
219 Pages, &Memory, FALSE);
220 if (EFI_ERROR (Status)) {
221 Memory = 0;
222 }
223
224 return (VOID *)(UINTN)Memory;
225 }
226
227 /**
228 Locate the pointer of bitmap from the guarded memory bitmap tables, which
229 covers the given Address.
230
231 @param[in] Address Start address to search the bitmap for.
232 @param[in] AllocMapUnit Flag to indicate memory allocation for the table.
233 @param[out] BitMap Pointer to bitmap which covers the Address.
234
235 @return The bit number from given Address to the end of current map table.
236 **/
237 UINTN
238 FindGuardedMemoryMap (
239 IN EFI_PHYSICAL_ADDRESS Address,
240 IN BOOLEAN AllocMapUnit,
241 OUT UINT64 **BitMap
242 )
243 {
244 UINTN Level;
245 UINT64 *GuardMap;
246 UINT64 MapMemory;
247 UINTN Index;
248 UINTN Size;
249 UINTN BitsToUnitEnd;
250
251 //
252 // Adjust current map table depth according to the address to access
253 //
254 while (mMapLevel < GUARDED_HEAP_MAP_TABLE_DEPTH
255 &&
256 RShiftU64 (
257 Address,
258 mLevelShift[GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel - 1]
259 ) != 0) {
260
261 if (mGuardedMemoryMap != 0) {
262 Size = (mLevelMask[GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel - 1] + 1)
263 * GUARDED_HEAP_MAP_ENTRY_BYTES;
264 MapMemory = (UINT64)(UINTN)PageAlloc (EFI_SIZE_TO_PAGES (Size));
265 ASSERT (MapMemory != 0);
266
267 SetMem ((VOID *)(UINTN)MapMemory, Size, 0);
268
269 *(UINT64 *)(UINTN)MapMemory = mGuardedMemoryMap;
270 mGuardedMemoryMap = MapMemory;
271 }
272
273 mMapLevel++;
274
275 }
276
277 GuardMap = &mGuardedMemoryMap;
278 for (Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;
279 Level < GUARDED_HEAP_MAP_TABLE_DEPTH;
280 ++Level) {
281
282 if (*GuardMap == 0) {
283 if (!AllocMapUnit) {
284 GuardMap = NULL;
285 break;
286 }
287
288 Size = (mLevelMask[Level] + 1) * GUARDED_HEAP_MAP_ENTRY_BYTES;
289 MapMemory = (UINT64)(UINTN)PageAlloc (EFI_SIZE_TO_PAGES (Size));
290 ASSERT (MapMemory != 0);
291
292 SetMem ((VOID *)(UINTN)MapMemory, Size, 0);
293 *GuardMap = MapMemory;
294 }
295
296 Index = (UINTN)RShiftU64 (Address, mLevelShift[Level]);
297 Index &= mLevelMask[Level];
298 GuardMap = (UINT64 *)(UINTN)((*GuardMap) + Index * sizeof (UINT64));
299
300 }
301
302 BitsToUnitEnd = GUARDED_HEAP_MAP_BITS - GUARDED_HEAP_MAP_BIT_INDEX (Address);
303 *BitMap = GuardMap;
304
305 return BitsToUnitEnd;
306 }
307
308 /**
309 Set corresponding bits in bitmap table to 1 according to given memory range.
310
311 @param[in] Address Memory address to guard from.
312 @param[in] NumberOfPages Number of pages to guard.
313
314 @return VOID
315 **/
316 VOID
317 EFIAPI
318 SetGuardedMemoryBits (
319 IN EFI_PHYSICAL_ADDRESS Address,
320 IN UINTN NumberOfPages
321 )
322 {
323 UINT64 *BitMap;
324 UINTN Bits;
325 UINTN BitsToUnitEnd;
326
327 while (NumberOfPages > 0) {
328 BitsToUnitEnd = FindGuardedMemoryMap (Address, TRUE, &BitMap);
329 ASSERT (BitMap != NULL);
330
331 if (NumberOfPages > BitsToUnitEnd) {
332 // Cross map unit
333 Bits = BitsToUnitEnd;
334 } else {
335 Bits = NumberOfPages;
336 }
337
338 SetBits (Address, Bits, BitMap);
339
340 NumberOfPages -= Bits;
341 Address += EFI_PAGES_TO_SIZE (Bits);
342 }
343 }
344
345 /**
346 Clear corresponding bits in bitmap table according to given memory range.
347
348 @param[in] Address Memory address to unset from.
349 @param[in] NumberOfPages Number of pages to unset guard.
350
351 @return VOID
352 **/
353 VOID
354 EFIAPI
355 ClearGuardedMemoryBits (
356 IN EFI_PHYSICAL_ADDRESS Address,
357 IN UINTN NumberOfPages
358 )
359 {
360 UINT64 *BitMap;
361 UINTN Bits;
362 UINTN BitsToUnitEnd;
363
364 while (NumberOfPages > 0) {
365 BitsToUnitEnd = FindGuardedMemoryMap (Address, TRUE, &BitMap);
366 ASSERT (BitMap != NULL);
367
368 if (NumberOfPages > BitsToUnitEnd) {
369 // Cross map unit
370 Bits = BitsToUnitEnd;
371 } else {
372 Bits = NumberOfPages;
373 }
374
375 ClearBits (Address, Bits, BitMap);
376
377 NumberOfPages -= Bits;
378 Address += EFI_PAGES_TO_SIZE (Bits);
379 }
380 }
381
382 /**
383 Retrieve corresponding bits in bitmap table according to given memory range.
384
385 @param[in] Address Memory address to retrieve from.
386 @param[in] NumberOfPages Number of pages to retrieve.
387
388 @return An integer containing the guarded memory bitmap.
389 **/
390 UINTN
391 GetGuardedMemoryBits (
392 IN EFI_PHYSICAL_ADDRESS Address,
393 IN UINTN NumberOfPages
394 )
395 {
396 UINT64 *BitMap;
397 UINTN Bits;
398 UINTN Result;
399 UINTN Shift;
400 UINTN BitsToUnitEnd;
401
402 ASSERT (NumberOfPages <= GUARDED_HEAP_MAP_ENTRY_BITS);
403
404 Result = 0;
405 Shift = 0;
406 while (NumberOfPages > 0) {
407 BitsToUnitEnd = FindGuardedMemoryMap (Address, FALSE, &BitMap);
408
409 if (NumberOfPages > BitsToUnitEnd) {
410 // Cross map unit
411 Bits = BitsToUnitEnd;
412 } else {
413 Bits = NumberOfPages;
414 }
415
416 if (BitMap != NULL) {
417 Result |= LShiftU64 (GetBits (Address, Bits, BitMap), Shift);
418 }
419
420 Shift += Bits;
421 NumberOfPages -= Bits;
422 Address += EFI_PAGES_TO_SIZE (Bits);
423 }
424
425 return Result;
426 }
427
428 /**
429 Get bit value in bitmap table for the given address.
430
431 @param[in] Address The address to retrieve for.
432
433 @return 1 or 0.
434 **/
435 UINTN
436 EFIAPI
437 GetGuardMapBit (
438 IN EFI_PHYSICAL_ADDRESS Address
439 )
440 {
441 UINT64 *GuardMap;
442
443 FindGuardedMemoryMap (Address, FALSE, &GuardMap);
444 if (GuardMap != NULL) {
445 if (RShiftU64 (*GuardMap,
446 GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address)) & 1) {
447 return 1;
448 }
449 }
450
451 return 0;
452 }
453
454 /**
455 Set the bit in bitmap table for the given address.
456
457 @param[in] Address The address to set for.
458
459 @return VOID.
460 **/
461 VOID
462 EFIAPI
463 SetGuardMapBit (
464 IN EFI_PHYSICAL_ADDRESS Address
465 )
466 {
467 UINT64 *GuardMap;
468 UINT64 BitMask;
469
470 FindGuardedMemoryMap (Address, TRUE, &GuardMap);
471 if (GuardMap != NULL) {
472 BitMask = LShiftU64 (1, GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address));
473 *GuardMap |= BitMask;
474 }
475 }
476
477 /**
478 Clear the bit in bitmap table for the given address.
479
480 @param[in] Address The address to clear for.
481
482 @return VOID.
483 **/
484 VOID
485 EFIAPI
486 ClearGuardMapBit (
487 IN EFI_PHYSICAL_ADDRESS Address
488 )
489 {
490 UINT64 *GuardMap;
491 UINT64 BitMask;
492
493 FindGuardedMemoryMap (Address, TRUE, &GuardMap);
494 if (GuardMap != NULL) {
495 BitMask = LShiftU64 (1, GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address));
496 *GuardMap &= ~BitMask;
497 }
498 }
499
500 /**
501 Check to see if the page at the given address is a Guard page or not.
502
503 @param[in] Address The address to check for.
504
505 @return TRUE The page at Address is a Guard page.
506 @return FALSE The page at Address is not a Guard page.
507 **/
508 BOOLEAN
509 EFIAPI
510 IsGuardPage (
511 IN EFI_PHYSICAL_ADDRESS Address
512 )
513 {
514 UINTN BitMap;
515
516 //
517 // There must be at least one guarded page before and/or after given
518 // address if it's a Guard page. The bitmap pattern should be one of
519 // 001, 100 and 101
520 //
521 BitMap = GetGuardedMemoryBits (Address - EFI_PAGE_SIZE, 3);
522 return ((BitMap == BIT0) || (BitMap == BIT2) || (BitMap == (BIT2 | BIT0)));
523 }
524
525 /**
526 Check to see if the page at the given address is a head Guard page or not.
527
528 @param[in] Address The address to check for.
529
530 @return TRUE The page at Address is a head Guard page.
531 @return FALSE The page at Address is not a head Guard page.
532 **/
533 BOOLEAN
534 EFIAPI
535 IsHeadGuard (
536 IN EFI_PHYSICAL_ADDRESS Address
537 )
538 {
539 return (GetGuardedMemoryBits (Address, 2) == BIT1);
540 }
541
542 /**
543 Check to see if the page at the given address is a tail Guard page or not.
544
545 @param[in] Address The address to check for.
546
547 @return TRUE The page at Address is a tail Guard page.
548 @return FALSE The page at Address is not a tail Guard page.
549 **/
550 BOOLEAN
551 EFIAPI
552 IsTailGuard (
553 IN EFI_PHYSICAL_ADDRESS Address
554 )
555 {
556 return (GetGuardedMemoryBits (Address - EFI_PAGE_SIZE, 2) == BIT0);
557 }
558
559 /**
560 Check to see if the page at the given address is guarded or not.
561
562 @param[in] Address The address to check for.
563
564 @return TRUE The page at Address is guarded.
565 @return FALSE The page at Address is not guarded.
566 **/
567 BOOLEAN
568 EFIAPI
569 IsMemoryGuarded (
570 IN EFI_PHYSICAL_ADDRESS Address
571 )
572 {
573 return (GetGuardMapBit (Address) == 1);
574 }
575
576 /**
577 Set the page at the given address to be a Guard page.
578
579 This is done by changing the page table attribute to be NOT PRSENT.
580
581 @param[in] BaseAddress Page address to Guard at.
582
583 @return VOID.
584 **/
585 VOID
586 EFIAPI
587 SetGuardPage (
588 IN EFI_PHYSICAL_ADDRESS BaseAddress
589 )
590 {
591 if (mSmmMemoryAttribute != NULL) {
592 mOnGuarding = TRUE;
593 mSmmMemoryAttribute->SetMemoryAttributes (
594 mSmmMemoryAttribute,
595 BaseAddress,
596 EFI_PAGE_SIZE,
597 EFI_MEMORY_RP
598 );
599 mOnGuarding = FALSE;
600 }
601 }
602
603 /**
604 Unset the Guard page at the given address to the normal memory.
605
606 This is done by changing the page table attribute to be PRSENT.
607
608 @param[in] BaseAddress Page address to Guard at.
609
610 @return VOID.
611 **/
612 VOID
613 EFIAPI
614 UnsetGuardPage (
615 IN EFI_PHYSICAL_ADDRESS BaseAddress
616 )
617 {
618 if (mSmmMemoryAttribute != NULL) {
619 mOnGuarding = TRUE;
620 mSmmMemoryAttribute->ClearMemoryAttributes (
621 mSmmMemoryAttribute,
622 BaseAddress,
623 EFI_PAGE_SIZE,
624 EFI_MEMORY_RP
625 );
626 mOnGuarding = FALSE;
627 }
628 }
629
630 /**
631 Check to see if the memory at the given address should be guarded or not.
632
633 @param[in] MemoryType Memory type to check.
634 @param[in] AllocateType Allocation type to check.
635 @param[in] PageOrPool Indicate a page allocation or pool allocation.
636
637
638 @return TRUE The given type of memory should be guarded.
639 @return FALSE The given type of memory should not be guarded.
640 **/
641 BOOLEAN
642 IsMemoryTypeToGuard (
643 IN EFI_MEMORY_TYPE MemoryType,
644 IN EFI_ALLOCATE_TYPE AllocateType,
645 IN UINT8 PageOrPool
646 )
647 {
648 UINT64 TestBit;
649 UINT64 ConfigBit;
650
651 if ((PcdGet8 (PcdHeapGuardPropertyMask) & PageOrPool) == 0
652 || mOnGuarding
653 || AllocateType == AllocateAddress) {
654 return FALSE;
655 }
656
657 ConfigBit = 0;
658 if ((PageOrPool & GUARD_HEAP_TYPE_POOL) != 0) {
659 ConfigBit |= PcdGet64 (PcdHeapGuardPoolType);
660 }
661
662 if ((PageOrPool & GUARD_HEAP_TYPE_PAGE) != 0) {
663 ConfigBit |= PcdGet64 (PcdHeapGuardPageType);
664 }
665
666 if (MemoryType == EfiRuntimeServicesData ||
667 MemoryType == EfiRuntimeServicesCode) {
668 TestBit = LShiftU64 (1, MemoryType);
669 } else if (MemoryType == EfiMaxMemoryType) {
670 TestBit = (UINT64)-1;
671 } else {
672 TestBit = 0;
673 }
674
675 return ((ConfigBit & TestBit) != 0);
676 }
677
678 /**
679 Check to see if the pool at the given address should be guarded or not.
680
681 @param[in] MemoryType Pool type to check.
682
683
684 @return TRUE The given type of pool should be guarded.
685 @return FALSE The given type of pool should not be guarded.
686 **/
687 BOOLEAN
688 IsPoolTypeToGuard (
689 IN EFI_MEMORY_TYPE MemoryType
690 )
691 {
692 return IsMemoryTypeToGuard (MemoryType, AllocateAnyPages,
693 GUARD_HEAP_TYPE_POOL);
694 }
695
696 /**
697 Check to see if the page at the given address should be guarded or not.
698
699 @param[in] MemoryType Page type to check.
700 @param[in] AllocateType Allocation type to check.
701
702 @return TRUE The given type of page should be guarded.
703 @return FALSE The given type of page should not be guarded.
704 **/
705 BOOLEAN
706 IsPageTypeToGuard (
707 IN EFI_MEMORY_TYPE MemoryType,
708 IN EFI_ALLOCATE_TYPE AllocateType
709 )
710 {
711 return IsMemoryTypeToGuard (MemoryType, AllocateType, GUARD_HEAP_TYPE_PAGE);
712 }
713
714 /**
715 Check to see if the heap guard is enabled for page and/or pool allocation.
716
717 @return TRUE/FALSE.
718 **/
719 BOOLEAN
720 IsHeapGuardEnabled (
721 VOID
722 )
723 {
724 return IsMemoryTypeToGuard (EfiMaxMemoryType, AllocateAnyPages,
725 GUARD_HEAP_TYPE_POOL|GUARD_HEAP_TYPE_PAGE);
726 }
727
728 /**
729 Set head Guard and tail Guard for the given memory range.
730
731 @param[in] Memory Base address of memory to set guard for.
732 @param[in] NumberOfPages Memory size in pages.
733
734 @return VOID.
735 **/
736 VOID
737 SetGuardForMemory (
738 IN EFI_PHYSICAL_ADDRESS Memory,
739 IN UINTN NumberOfPages
740 )
741 {
742 EFI_PHYSICAL_ADDRESS GuardPage;
743
744 //
745 // Set tail Guard
746 //
747 GuardPage = Memory + EFI_PAGES_TO_SIZE (NumberOfPages);
748 if (!IsGuardPage (GuardPage)) {
749 SetGuardPage (GuardPage);
750 }
751
752 // Set head Guard
753 GuardPage = Memory - EFI_PAGES_TO_SIZE (1);
754 if (!IsGuardPage (GuardPage)) {
755 SetGuardPage (GuardPage);
756 }
757
758 //
759 // Mark the memory range as Guarded
760 //
761 SetGuardedMemoryBits (Memory, NumberOfPages);
762 }
763
764 /**
765 Unset head Guard and tail Guard for the given memory range.
766
767 @param[in] Memory Base address of memory to unset guard for.
768 @param[in] NumberOfPages Memory size in pages.
769
770 @return VOID.
771 **/
772 VOID
773 UnsetGuardForMemory (
774 IN EFI_PHYSICAL_ADDRESS Memory,
775 IN UINTN NumberOfPages
776 )
777 {
778 EFI_PHYSICAL_ADDRESS GuardPage;
779 UINT64 GuardBitmap;
780
781 if (NumberOfPages == 0) {
782 return;
783 }
784
785 //
786 // Head Guard must be one page before, if any.
787 //
788 // MSB-> 1 0 <-LSB
789 // -------------------
790 // Head Guard -> 0 1 -> Don't free Head Guard (shared Guard)
791 // Head Guard -> 0 0 -> Free Head Guard either (not shared Guard)
792 // 1 X -> Don't free first page (need a new Guard)
793 // (it'll be turned into a Guard page later)
794 // -------------------
795 // Start -> -1 -2
796 //
797 GuardPage = Memory - EFI_PAGES_TO_SIZE (1);
798 GuardBitmap = GetGuardedMemoryBits (Memory - EFI_PAGES_TO_SIZE (2), 2);
799 if ((GuardBitmap & BIT1) == 0) {
800 //
801 // Head Guard exists.
802 //
803 if ((GuardBitmap & BIT0) == 0) {
804 //
805 // If the head Guard is not a tail Guard of adjacent memory block,
806 // unset it.
807 //
808 UnsetGuardPage (GuardPage);
809 }
810 } else {
811 //
812 // Pages before memory to free are still in Guard. It's a partial free
813 // case. Turn first page of memory block to free into a new Guard.
814 //
815 SetGuardPage (Memory);
816 }
817
818 //
819 // Tail Guard must be the page after this memory block to free, if any.
820 //
821 // MSB-> 1 0 <-LSB
822 // --------------------
823 // 1 0 <- Tail Guard -> Don't free Tail Guard (shared Guard)
824 // 0 0 <- Tail Guard -> Free Tail Guard either (not shared Guard)
825 // X 1 -> Don't free last page (need a new Guard)
826 // (it'll be turned into a Guard page later)
827 // --------------------
828 // +1 +0 <- End
829 //
830 GuardPage = Memory + EFI_PAGES_TO_SIZE (NumberOfPages);
831 GuardBitmap = GetGuardedMemoryBits (GuardPage, 2);
832 if ((GuardBitmap & BIT0) == 0) {
833 //
834 // Tail Guard exists.
835 //
836 if ((GuardBitmap & BIT1) == 0) {
837 //
838 // If the tail Guard is not a head Guard of adjacent memory block,
839 // free it; otherwise, keep it.
840 //
841 UnsetGuardPage (GuardPage);
842 }
843 } else {
844 //
845 // Pages after memory to free are still in Guard. It's a partial free
846 // case. We need to keep one page to be a head Guard.
847 //
848 SetGuardPage (GuardPage - EFI_PAGES_TO_SIZE (1));
849 }
850
851 //
852 // No matter what, we just clear the mark of the Guarded memory.
853 //
854 ClearGuardedMemoryBits(Memory, NumberOfPages);
855 }
856
857 /**
858 Adjust address of free memory according to existing and/or required Guard.
859
860 This function will check if there're existing Guard pages of adjacent
861 memory blocks, and try to use it as the Guard page of the memory to be
862 allocated.
863
864 @param[in] Start Start address of free memory block.
865 @param[in] Size Size of free memory block.
866 @param[in] SizeRequested Size of memory to allocate.
867
868 @return The end address of memory block found.
869 @return 0 if no enough space for the required size of memory and its Guard.
870 **/
871 UINT64
872 AdjustMemoryS (
873 IN UINT64 Start,
874 IN UINT64 Size,
875 IN UINT64 SizeRequested
876 )
877 {
878 UINT64 Target;
879
880 //
881 // UEFI spec requires that allocated pool must be 8-byte aligned. If it's
882 // indicated to put the pool near the Tail Guard, we need extra bytes to
883 // make sure alignment of the returned pool address.
884 //
885 if ((PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) == 0) {
886 SizeRequested = ALIGN_VALUE(SizeRequested, 8);
887 }
888
889 Target = Start + Size - SizeRequested;
890
891 if (!IsGuardPage (Start + Size)) {
892 // No Guard at tail to share. One more page is needed.
893 Target -= EFI_PAGES_TO_SIZE (1);
894 }
895
896 // Out of range?
897 if (Target < Start) {
898 return 0;
899 }
900
901 // At the edge?
902 if (Target == Start) {
903 if (!IsGuardPage (Target - EFI_PAGES_TO_SIZE (1))) {
904 // No enough space for a new head Guard if no Guard at head to share.
905 return 0;
906 }
907 }
908
909 // OK, we have enough pages for memory and its Guards. Return the End of the
910 // free space.
911 return Target + SizeRequested - 1;
912 }
913
914 /**
915 Adjust the start address and number of pages to free according to Guard.
916
917 The purpose of this function is to keep the shared Guard page with adjacent
918 memory block if it's still in guard, or free it if no more sharing. Another
919 is to reserve pages as Guard pages in partial page free situation.
920
921 @param[in,out] Memory Base address of memory to free.
922 @param[in,out] NumberOfPages Size of memory to free.
923
924 @return VOID.
925 **/
926 VOID
927 AdjustMemoryF (
928 IN OUT EFI_PHYSICAL_ADDRESS *Memory,
929 IN OUT UINTN *NumberOfPages
930 )
931 {
932 EFI_PHYSICAL_ADDRESS Start;
933 EFI_PHYSICAL_ADDRESS MemoryToTest;
934 UINTN PagesToFree;
935 UINT64 GuardBitmap;
936
937 if (Memory == NULL || NumberOfPages == NULL || *NumberOfPages == 0) {
938 return;
939 }
940
941 Start = *Memory;
942 PagesToFree = *NumberOfPages;
943
944 //
945 // Head Guard must be one page before, if any.
946 //
947 // MSB-> 1 0 <-LSB
948 // -------------------
949 // Head Guard -> 0 1 -> Don't free Head Guard (shared Guard)
950 // Head Guard -> 0 0 -> Free Head Guard either (not shared Guard)
951 // 1 X -> Don't free first page (need a new Guard)
952 // (it'll be turned into a Guard page later)
953 // -------------------
954 // Start -> -1 -2
955 //
956 MemoryToTest = Start - EFI_PAGES_TO_SIZE (2);
957 GuardBitmap = GetGuardedMemoryBits (MemoryToTest, 2);
958 if ((GuardBitmap & BIT1) == 0) {
959 //
960 // Head Guard exists.
961 //
962 if ((GuardBitmap & BIT0) == 0) {
963 //
964 // If the head Guard is not a tail Guard of adjacent memory block,
965 // free it; otherwise, keep it.
966 //
967 Start -= EFI_PAGES_TO_SIZE (1);
968 PagesToFree += 1;
969 }
970 } else {
971 //
972 // No Head Guard, and pages before memory to free are still in Guard. It's a
973 // partial free case. We need to keep one page to be a tail Guard.
974 //
975 Start += EFI_PAGES_TO_SIZE (1);
976 PagesToFree -= 1;
977 }
978
979 //
980 // Tail Guard must be the page after this memory block to free, if any.
981 //
982 // MSB-> 1 0 <-LSB
983 // --------------------
984 // 1 0 <- Tail Guard -> Don't free Tail Guard (shared Guard)
985 // 0 0 <- Tail Guard -> Free Tail Guard either (not shared Guard)
986 // X 1 -> Don't free last page (need a new Guard)
987 // (it'll be turned into a Guard page later)
988 // --------------------
989 // +1 +0 <- End
990 //
991 MemoryToTest = Start + EFI_PAGES_TO_SIZE (PagesToFree);
992 GuardBitmap = GetGuardedMemoryBits (MemoryToTest, 2);
993 if ((GuardBitmap & BIT0) == 0) {
994 //
995 // Tail Guard exists.
996 //
997 if ((GuardBitmap & BIT1) == 0) {
998 //
999 // If the tail Guard is not a head Guard of adjacent memory block,
1000 // free it; otherwise, keep it.
1001 //
1002 PagesToFree += 1;
1003 }
1004 } else if (PagesToFree > 0) {
1005 //
1006 // No Tail Guard, and pages after memory to free are still in Guard. It's a
1007 // partial free case. We need to keep one page to be a head Guard.
1008 //
1009 PagesToFree -= 1;
1010 }
1011
1012 *Memory = Start;
1013 *NumberOfPages = PagesToFree;
1014 }
1015
1016 /**
1017 Adjust the base and number of pages to really allocate according to Guard.
1018
1019 @param[in,out] Memory Base address of free memory.
1020 @param[in,out] NumberOfPages Size of memory to allocate.
1021
1022 @return VOID.
1023 **/
1024 VOID
1025 AdjustMemoryA (
1026 IN OUT EFI_PHYSICAL_ADDRESS *Memory,
1027 IN OUT UINTN *NumberOfPages
1028 )
1029 {
1030 //
1031 // FindFreePages() has already taken the Guard into account. It's safe to
1032 // adjust the start address and/or number of pages here, to make sure that
1033 // the Guards are also "allocated".
1034 //
1035 if (!IsGuardPage (*Memory + EFI_PAGES_TO_SIZE (*NumberOfPages))) {
1036 // No tail Guard, add one.
1037 *NumberOfPages += 1;
1038 }
1039
1040 if (!IsGuardPage (*Memory - EFI_PAGE_SIZE)) {
1041 // No head Guard, add one.
1042 *Memory -= EFI_PAGE_SIZE;
1043 *NumberOfPages += 1;
1044 }
1045 }
1046
1047 /**
1048 Adjust the pool head position to make sure the Guard page is adjavent to
1049 pool tail or pool head.
1050
1051 @param[in] Memory Base address of memory allocated.
1052 @param[in] NoPages Number of pages actually allocated.
1053 @param[in] Size Size of memory requested.
1054 (plus pool head/tail overhead)
1055
1056 @return Address of pool head
1057 **/
1058 VOID *
1059 AdjustPoolHeadA (
1060 IN EFI_PHYSICAL_ADDRESS Memory,
1061 IN UINTN NoPages,
1062 IN UINTN Size
1063 )
1064 {
1065 if (Memory == 0 || (PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) != 0) {
1066 //
1067 // Pool head is put near the head Guard
1068 //
1069 return (VOID *)(UINTN)Memory;
1070 }
1071
1072 //
1073 // Pool head is put near the tail Guard
1074 //
1075 Size = ALIGN_VALUE (Size, 8);
1076 return (VOID *)(UINTN)(Memory + EFI_PAGES_TO_SIZE (NoPages) - Size);
1077 }
1078
1079 /**
1080 Get the page base address according to pool head address.
1081
1082 @param[in] Memory Head address of pool to free.
1083
1084 @return Address of pool head.
1085 **/
1086 VOID *
1087 AdjustPoolHeadF (
1088 IN EFI_PHYSICAL_ADDRESS Memory
1089 )
1090 {
1091 if (Memory == 0 || (PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) != 0) {
1092 //
1093 // Pool head is put near the head Guard
1094 //
1095 return (VOID *)(UINTN)Memory;
1096 }
1097
1098 //
1099 // Pool head is put near the tail Guard
1100 //
1101 return (VOID *)(UINTN)(Memory & ~EFI_PAGE_MASK);
1102 }
1103
1104 /**
1105 Helper function of memory allocation with Guard pages.
1106
1107 @param FreePageList The free page node.
1108 @param NumberOfPages Number of pages to be allocated.
1109 @param MaxAddress Request to allocate memory below this address.
1110 @param MemoryType Type of memory requested.
1111
1112 @return Memory address of allocated pages.
1113 **/
1114 UINTN
1115 InternalAllocMaxAddressWithGuard (
1116 IN OUT LIST_ENTRY *FreePageList,
1117 IN UINTN NumberOfPages,
1118 IN UINTN MaxAddress,
1119 IN EFI_MEMORY_TYPE MemoryType
1120
1121 )
1122 {
1123 LIST_ENTRY *Node;
1124 FREE_PAGE_LIST *Pages;
1125 UINTN PagesToAlloc;
1126 UINTN HeadGuard;
1127 UINTN TailGuard;
1128 UINTN Address;
1129
1130 for (Node = FreePageList->BackLink; Node != FreePageList;
1131 Node = Node->BackLink) {
1132 Pages = BASE_CR (Node, FREE_PAGE_LIST, Link);
1133 if (Pages->NumberOfPages >= NumberOfPages &&
1134 (UINTN)Pages + EFI_PAGES_TO_SIZE (NumberOfPages) - 1 <= MaxAddress) {
1135
1136 //
1137 // We may need 1 or 2 more pages for Guard. Check it out.
1138 //
1139 PagesToAlloc = NumberOfPages;
1140 TailGuard = (UINTN)Pages + EFI_PAGES_TO_SIZE (Pages->NumberOfPages);
1141 if (!IsGuardPage (TailGuard)) {
1142 //
1143 // Add one if no Guard at the end of current free memory block.
1144 //
1145 PagesToAlloc += 1;
1146 TailGuard = 0;
1147 }
1148
1149 HeadGuard = (UINTN)Pages +
1150 EFI_PAGES_TO_SIZE (Pages->NumberOfPages - PagesToAlloc) -
1151 EFI_PAGE_SIZE;
1152 if (!IsGuardPage (HeadGuard)) {
1153 //
1154 // Add one if no Guard at the page before the address to allocate
1155 //
1156 PagesToAlloc += 1;
1157 HeadGuard = 0;
1158 }
1159
1160 if (Pages->NumberOfPages < PagesToAlloc) {
1161 // Not enough space to allocate memory with Guards? Try next block.
1162 continue;
1163 }
1164
1165 Address = InternalAllocPagesOnOneNode (Pages, PagesToAlloc, MaxAddress);
1166 ConvertSmmMemoryMapEntry(MemoryType, Address, PagesToAlloc, FALSE);
1167 CoreFreeMemoryMapStack();
1168 if (HeadGuard == 0) {
1169 // Don't pass the Guard page to user.
1170 Address += EFI_PAGE_SIZE;
1171 }
1172 SetGuardForMemory (Address, NumberOfPages);
1173 return Address;
1174 }
1175 }
1176
1177 return (UINTN)(-1);
1178 }
1179
1180 /**
1181 Helper function of memory free with Guard pages.
1182
1183 @param[in] Memory Base address of memory being freed.
1184 @param[in] NumberOfPages The number of pages to free.
1185 @param[in] AddRegion If this memory is new added region.
1186
1187 @retval EFI_NOT_FOUND Could not find the entry that covers the range.
1188 @retval EFI_INVALID_PARAMETER Address not aligned, Address is zero or NumberOfPages is zero.
1189 @return EFI_SUCCESS Pages successfully freed.
1190 **/
1191 EFI_STATUS
1192 SmmInternalFreePagesExWithGuard (
1193 IN EFI_PHYSICAL_ADDRESS Memory,
1194 IN UINTN NumberOfPages,
1195 IN BOOLEAN AddRegion
1196 )
1197 {
1198 EFI_PHYSICAL_ADDRESS MemoryToFree;
1199 UINTN PagesToFree;
1200
1201 if (((Memory & EFI_PAGE_MASK) != 0) || (Memory == 0) || (NumberOfPages == 0)) {
1202 return EFI_INVALID_PARAMETER;
1203 }
1204
1205 MemoryToFree = Memory;
1206 PagesToFree = NumberOfPages;
1207
1208 AdjustMemoryF (&MemoryToFree, &PagesToFree);
1209 UnsetGuardForMemory (Memory, NumberOfPages);
1210 if (PagesToFree == 0) {
1211 return EFI_SUCCESS;
1212 }
1213
1214 return SmmInternalFreePagesEx (MemoryToFree, PagesToFree, AddRegion);
1215 }
1216
1217 /**
1218 Set all Guard pages which cannot be set during the non-SMM mode time.
1219 **/
1220 VOID
1221 SetAllGuardPages (
1222 VOID
1223 )
1224 {
1225 UINTN Entries[GUARDED_HEAP_MAP_TABLE_DEPTH];
1226 UINTN Shifts[GUARDED_HEAP_MAP_TABLE_DEPTH];
1227 UINTN Indices[GUARDED_HEAP_MAP_TABLE_DEPTH];
1228 UINT64 Tables[GUARDED_HEAP_MAP_TABLE_DEPTH];
1229 UINT64 Addresses[GUARDED_HEAP_MAP_TABLE_DEPTH];
1230 UINT64 TableEntry;
1231 UINT64 Address;
1232 UINT64 GuardPage;
1233 INTN Level;
1234 UINTN Index;
1235 BOOLEAN OnGuarding;
1236
1237 if (mGuardedMemoryMap == 0 ||
1238 mMapLevel == 0 ||
1239 mMapLevel > GUARDED_HEAP_MAP_TABLE_DEPTH) {
1240 return;
1241 }
1242
1243 CopyMem (Entries, mLevelMask, sizeof (Entries));
1244 CopyMem (Shifts, mLevelShift, sizeof (Shifts));
1245
1246 SetMem (Tables, sizeof(Tables), 0);
1247 SetMem (Addresses, sizeof(Addresses), 0);
1248 SetMem (Indices, sizeof(Indices), 0);
1249
1250 Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;
1251 Tables[Level] = mGuardedMemoryMap;
1252 Address = 0;
1253 OnGuarding = FALSE;
1254
1255 DEBUG_CODE (
1256 DumpGuardedMemoryBitmap ();
1257 );
1258
1259 while (TRUE) {
1260 if (Indices[Level] > Entries[Level]) {
1261 Tables[Level] = 0;
1262 Level -= 1;
1263 } else {
1264
1265 TableEntry = ((UINT64 *)(UINTN)(Tables[Level]))[Indices[Level]];
1266 Address = Addresses[Level];
1267
1268 if (TableEntry == 0) {
1269
1270 OnGuarding = FALSE;
1271
1272 } else if (Level < GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {
1273
1274 Level += 1;
1275 Tables[Level] = TableEntry;
1276 Addresses[Level] = Address;
1277 Indices[Level] = 0;
1278
1279 continue;
1280
1281 } else {
1282
1283 Index = 0;
1284 while (Index < GUARDED_HEAP_MAP_ENTRY_BITS) {
1285 if ((TableEntry & 1) == 1) {
1286 if (OnGuarding) {
1287 GuardPage = 0;
1288 } else {
1289 GuardPage = Address - EFI_PAGE_SIZE;
1290 }
1291 OnGuarding = TRUE;
1292 } else {
1293 if (OnGuarding) {
1294 GuardPage = Address;
1295 } else {
1296 GuardPage = 0;
1297 }
1298 OnGuarding = FALSE;
1299 }
1300
1301 if (GuardPage != 0) {
1302 SetGuardPage (GuardPage);
1303 }
1304
1305 if (TableEntry == 0) {
1306 break;
1307 }
1308
1309 TableEntry = RShiftU64 (TableEntry, 1);
1310 Address += EFI_PAGE_SIZE;
1311 Index += 1;
1312 }
1313 }
1314 }
1315
1316 if (Level < (GUARDED_HEAP_MAP_TABLE_DEPTH - (INTN)mMapLevel)) {
1317 break;
1318 }
1319
1320 Indices[Level] += 1;
1321 Address = (Level == 0) ? 0 : Addresses[Level - 1];
1322 Addresses[Level] = Address | LShiftU64(Indices[Level], Shifts[Level]);
1323
1324 }
1325 }
1326
1327 /**
1328 Hook function used to set all Guard pages after entering SMM mode.
1329 **/
1330 VOID
1331 SmmEntryPointMemoryManagementHook (
1332 VOID
1333 )
1334 {
1335 EFI_STATUS Status;
1336
1337 if (mSmmMemoryAttribute == NULL) {
1338 Status = SmmLocateProtocol (
1339 &gEdkiiSmmMemoryAttributeProtocolGuid,
1340 NULL,
1341 (VOID **)&mSmmMemoryAttribute
1342 );
1343 if (!EFI_ERROR(Status)) {
1344 SetAllGuardPages ();
1345 }
1346 }
1347 }
1348
1349 /**
1350 Helper function to convert a UINT64 value in binary to a string.
1351
1352 @param[in] Value Value of a UINT64 integer.
1353 @param[out] BinString String buffer to contain the conversion result.
1354
1355 @return VOID.
1356 **/
1357 VOID
1358 Uint64ToBinString (
1359 IN UINT64 Value,
1360 OUT CHAR8 *BinString
1361 )
1362 {
1363 UINTN Index;
1364
1365 if (BinString == NULL) {
1366 return;
1367 }
1368
1369 for (Index = 64; Index > 0; --Index) {
1370 BinString[Index - 1] = '0' + (Value & 1);
1371 Value = RShiftU64 (Value, 1);
1372 }
1373 BinString[64] = '\0';
1374 }
1375
1376 /**
1377 Dump the guarded memory bit map.
1378 **/
1379 VOID
1380 EFIAPI
1381 DumpGuardedMemoryBitmap (
1382 VOID
1383 )
1384 {
1385 UINTN Entries[GUARDED_HEAP_MAP_TABLE_DEPTH];
1386 UINTN Shifts[GUARDED_HEAP_MAP_TABLE_DEPTH];
1387 UINTN Indices[GUARDED_HEAP_MAP_TABLE_DEPTH];
1388 UINT64 Tables[GUARDED_HEAP_MAP_TABLE_DEPTH];
1389 UINT64 Addresses[GUARDED_HEAP_MAP_TABLE_DEPTH];
1390 UINT64 TableEntry;
1391 UINT64 Address;
1392 INTN Level;
1393 UINTN RepeatZero;
1394 CHAR8 String[GUARDED_HEAP_MAP_ENTRY_BITS + 1];
1395 CHAR8 *Ruler1;
1396 CHAR8 *Ruler2;
1397
1398 if (mGuardedMemoryMap == 0 ||
1399 mMapLevel == 0 ||
1400 mMapLevel > GUARDED_HEAP_MAP_TABLE_DEPTH) {
1401 return;
1402 }
1403
1404 Ruler1 = " 3 2 1 0";
1405 Ruler2 = "FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210";
1406
1407 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "============================="
1408 " Guarded Memory Bitmap "
1409 "==============================\r\n"));
1410 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, " %a\r\n", Ruler1));
1411 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, " %a\r\n", Ruler2));
1412
1413 CopyMem (Entries, mLevelMask, sizeof (Entries));
1414 CopyMem (Shifts, mLevelShift, sizeof (Shifts));
1415
1416 SetMem (Indices, sizeof(Indices), 0);
1417 SetMem (Tables, sizeof(Tables), 0);
1418 SetMem (Addresses, sizeof(Addresses), 0);
1419
1420 Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;
1421 Tables[Level] = mGuardedMemoryMap;
1422 Address = 0;
1423 RepeatZero = 0;
1424
1425 while (TRUE) {
1426 if (Indices[Level] > Entries[Level]) {
1427
1428 Tables[Level] = 0;
1429 Level -= 1;
1430 RepeatZero = 0;
1431
1432 DEBUG ((
1433 HEAP_GUARD_DEBUG_LEVEL,
1434 "========================================="
1435 "=========================================\r\n"
1436 ));
1437
1438 } else {
1439
1440 TableEntry = ((UINT64 *)(UINTN)Tables[Level])[Indices[Level]];
1441 Address = Addresses[Level];
1442
1443 if (TableEntry == 0) {
1444
1445 if (Level == GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {
1446 if (RepeatZero == 0) {
1447 Uint64ToBinString(TableEntry, String);
1448 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "%016lx: %a\r\n", Address, String));
1449 } else if (RepeatZero == 1) {
1450 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "... : ...\r\n"));
1451 }
1452 RepeatZero += 1;
1453 }
1454
1455 } else if (Level < GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {
1456
1457 Level += 1;
1458 Tables[Level] = TableEntry;
1459 Addresses[Level] = Address;
1460 Indices[Level] = 0;
1461 RepeatZero = 0;
1462
1463 continue;
1464
1465 } else {
1466
1467 RepeatZero = 0;
1468 Uint64ToBinString(TableEntry, String);
1469 DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "%016lx: %a\r\n", Address, String));
1470
1471 }
1472 }
1473
1474 if (Level < (GUARDED_HEAP_MAP_TABLE_DEPTH - (INTN)mMapLevel)) {
1475 break;
1476 }
1477
1478 Indices[Level] += 1;
1479 Address = (Level == 0) ? 0 : Addresses[Level - 1];
1480 Addresses[Level] = Address | LShiftU64(Indices[Level], Shifts[Level]);
1481
1482 }
1483 }
1484
1485 /**
1486 Debug function used to verify if the Guard page is well set or not.
1487
1488 @param[in] BaseAddress Address of memory to check.
1489 @param[in] NumberOfPages Size of memory in pages.
1490
1491 @return TRUE The head Guard and tail Guard are both well set.
1492 @return FALSE The head Guard and/or tail Guard are not well set.
1493 **/
1494 BOOLEAN
1495 VerifyMemoryGuard (
1496 IN EFI_PHYSICAL_ADDRESS BaseAddress,
1497 IN UINTN NumberOfPages
1498 )
1499 {
1500 EFI_STATUS Status;
1501 UINT64 Attribute;
1502 EFI_PHYSICAL_ADDRESS Address;
1503
1504 if (mSmmMemoryAttribute == NULL) {
1505 return TRUE;
1506 }
1507
1508 Attribute = 0;
1509 Address = BaseAddress - EFI_PAGE_SIZE;
1510 Status = mSmmMemoryAttribute->GetMemoryAttributes (
1511 mSmmMemoryAttribute,
1512 Address,
1513 EFI_PAGE_SIZE,
1514 &Attribute
1515 );
1516 if (EFI_ERROR (Status) || (Attribute & EFI_MEMORY_RP) == 0) {
1517 DEBUG ((DEBUG_ERROR, "Head Guard is not set at: %016lx (%016lX)!!!\r\n",
1518 Address, Attribute));
1519 DumpGuardedMemoryBitmap ();
1520 return FALSE;
1521 }
1522
1523 Attribute = 0;
1524 Address = BaseAddress + EFI_PAGES_TO_SIZE (NumberOfPages);
1525 Status = mSmmMemoryAttribute->GetMemoryAttributes (
1526 mSmmMemoryAttribute,
1527 Address,
1528 EFI_PAGE_SIZE,
1529 &Attribute
1530 );
1531 if (EFI_ERROR (Status) || (Attribute & EFI_MEMORY_RP) == 0) {
1532 DEBUG ((DEBUG_ERROR, "Tail Guard is not set at: %016lx (%016lX)!!!\r\n",
1533 Address, Attribute));
1534 DumpGuardedMemoryBitmap ();
1535 return FALSE;
1536 }
1537
1538 return TRUE;
1539 }
1540