]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Include/Library/NetLib.h
039e04f696f4a7f4d860a1702cc5d65e5ebb6a15
[mirror_edk2.git] / MdeModulePkg / Include / Library / NetLib.h
1 /** @file
2 This library is only intended to be used by UEFI network stack modules.
3 It provides basic functions for the UEFI network stack.
4
5 Copyright (c) 2005 - 2009, Intel Corporation
6 All rights reserved. This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution. The full text of the license may be found at
9 http://opensource.org/licenses/bsd-license.php
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #ifndef _NET_LIB_H_
17 #define _NET_LIB_H_
18
19 #include <Protocol/Ip6.h>
20
21 #include <Library/BaseLib.h>
22
23 typedef UINT32 IP4_ADDR;
24 typedef UINT32 TCP_SEQNO;
25 typedef UINT16 TCP_PORTNO;
26
27
28 #define NET_ETHER_ADDR_LEN 6
29 #define NET_IFTYPE_ETHERNET 0x01
30
31 #define NET_VLAN_TAG_LEN 4
32 #define ETHER_TYPE_VLAN 0x8100
33
34 #define EFI_IP_PROTO_UDP 0x11
35 #define EFI_IP_PROTO_TCP 0x06
36 #define EFI_IP_PROTO_ICMP 0x01
37 #define IP4_PROTO_IGMP 0x02
38 #define IP6_ICMP 58
39
40 //
41 // The address classification
42 //
43 #define IP4_ADDR_CLASSA 1
44 #define IP4_ADDR_CLASSB 2
45 #define IP4_ADDR_CLASSC 3
46 #define IP4_ADDR_CLASSD 4
47 #define IP4_ADDR_CLASSE 5
48
49 #define IP4_MASK_NUM 33
50 #define IP6_PREFIX_NUM 129
51
52 #define IP6_HOP_BY_HOP 0
53 #define IP6_DESTINATION 60
54 #define IP6_FRAGMENT 44
55 #define IP6_AH 51
56 #define IP6_ESP 50
57 #define IP6_NO_NEXT_HEADER 59
58
59 #define IP_VERSION_4 4
60 #define IP_VERSION_6 6
61
62 #pragma pack(1)
63
64 //
65 // Ethernet head definition
66 //
67 typedef struct {
68 UINT8 DstMac [NET_ETHER_ADDR_LEN];
69 UINT8 SrcMac [NET_ETHER_ADDR_LEN];
70 UINT16 EtherType;
71 } ETHER_HEAD;
72
73 //
74 // 802.1Q VLAN Tag Control Information
75 //
76 typedef union {
77 struct {
78 UINT16 Vid : 12; // Unique VLAN identifier (0 to 4094)
79 UINT16 Cfi : 1; // Canonical Format Indicator
80 UINT16 Priority : 3; // 802.1Q priority level (0 to 7)
81 } Bits;
82 UINT16 Uint16;
83 } VLAN_TCI;
84
85 #define VLAN_TCI_CFI_CANONICAL_MAC 0
86 #define VLAN_TCI_CFI_NON_CANONICAL_MAC 1
87
88 //
89 // The EFI_IP4_HEADER is hard to use because the source and
90 // destination address are defined as EFI_IPv4_ADDRESS, which
91 // is a structure. Two structures can't be compared or masked
92 // directly. This is why there is an internal representation.
93 //
94 typedef struct {
95 UINT8 HeadLen : 4;
96 UINT8 Ver : 4;
97 UINT8 Tos;
98 UINT16 TotalLen;
99 UINT16 Id;
100 UINT16 Fragment;
101 UINT8 Ttl;
102 UINT8 Protocol;
103 UINT16 Checksum;
104 IP4_ADDR Src;
105 IP4_ADDR Dst;
106 } IP4_HEAD;
107
108
109 //
110 // ICMP head definition. Each ICMP message is categorized as either an error
111 // message or query message. Two message types have their own head format.
112 //
113 typedef struct {
114 UINT8 Type;
115 UINT8 Code;
116 UINT16 Checksum;
117 } IP4_ICMP_HEAD;
118
119 typedef struct {
120 IP4_ICMP_HEAD Head;
121 UINT32 Fourth; // 4th filed of the head, it depends on Type.
122 IP4_HEAD IpHead;
123 } IP4_ICMP_ERROR_HEAD;
124
125 typedef struct {
126 IP4_ICMP_HEAD Head;
127 UINT16 Id;
128 UINT16 Seq;
129 } IP4_ICMP_QUERY_HEAD;
130
131 typedef struct {
132 UINT8 Type;
133 UINT8 Code;
134 UINT16 Checksum;
135 } IP6_ICMP_HEAD;
136
137 typedef struct {
138 IP6_ICMP_HEAD Head;
139 UINT32 Fourth;
140 EFI_IP6_HEADER IpHead;
141 } IP6_ICMP_ERROR_HEAD;
142
143 typedef struct {
144 IP6_ICMP_HEAD Head;
145 UINT32 Fourth;
146 } IP6_ICMP_INFORMATION_HEAD;
147
148 //
149 // UDP header definition
150 //
151 typedef struct {
152 UINT16 SrcPort;
153 UINT16 DstPort;
154 UINT16 Length;
155 UINT16 Checksum;
156 } EFI_UDP_HEADER;
157
158 //
159 // TCP header definition
160 //
161 typedef struct {
162 TCP_PORTNO SrcPort;
163 TCP_PORTNO DstPort;
164 TCP_SEQNO Seq;
165 TCP_SEQNO Ack;
166 UINT8 Res : 4;
167 UINT8 HeadLen : 4;
168 UINT8 Flag;
169 UINT16 Wnd;
170 UINT16 Checksum;
171 UINT16 Urg;
172 } TCP_HEAD;
173
174 #pragma pack()
175
176 #define NET_MAC_EQUAL(pMac1, pMac2, Len) \
177 (CompareMem ((pMac1), (pMac2), Len) == 0)
178
179 #define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \
180 (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))
181
182 #define NTOHL(x) SwapBytes32 (x)
183
184 #define HTONL(x) NTOHL(x)
185
186 #define NTOHS(x) SwapBytes16 (x)
187
188 #define HTONS(x) NTOHS(x)
189 #define NTOHLL(x) SwapBytes64 (x)
190 #define HTONLL(x) NTOHLL(x)
191 #define NTOHLLL(x) Ip6Swap128 (x)
192 #define HTONLLL(x) NTOHLLL(x)
193
194 //
195 // Test the IP's attribute, All the IPs are in host byte order.
196 //
197 #define IP4_IS_MULTICAST(Ip) (((Ip) & 0xF0000000) == 0xE0000000)
198 #define IP4_IS_LOCAL_BROADCAST(Ip) ((Ip) == 0xFFFFFFFF)
199 #define IP4_NET_EQUAL(Ip1, Ip2, NetMask) (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))
200 #define IP4_IS_VALID_NETMASK(Ip) (NetGetMaskLength (Ip) != IP4_MASK_NUM)
201
202 #define IP6_IS_MULTICAST(Ip6) (((Ip6)->Addr[0]) == 0xFF)
203
204 //
205 // Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.
206 //
207 #define EFI_IP4(EfiIpAddr) (*(IP4_ADDR *) ((EfiIpAddr).Addr))
208 #define EFI_NTOHL(EfiIp) (NTOHL (EFI_IP4 ((EfiIp))))
209 #define EFI_IP4_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)
210
211 #define EFI_IP6_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0)
212
213 #define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS)))
214 #define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS)))
215
216 //
217 // The debug level definition. This value is also used as the
218 // syslog's servity level. Don't change it.
219 //
220 #define NETDEBUG_LEVEL_TRACE 5
221 #define NETDEBUG_LEVEL_WARNING 4
222 #define NETDEBUG_LEVEL_ERROR 3
223
224 //
225 // Network debug message is sent out as syslog packet.
226 //
227 #define NET_SYSLOG_FACILITY 16 // Syslog local facility local use
228 #define NET_SYSLOG_PACKET_LEN 512
229 #define NET_SYSLOG_TX_TIMEOUT (500 * 1000 * 10) // 500ms
230 #define NET_DEBUG_MSG_LEN 470 // 512 - (ether+ip4+udp4 head length)
231
232 //
233 // The debug output expects the ASCII format string, Use %a to print ASCII
234 // string, and %s to print UNICODE string. PrintArg must be enclosed in ().
235 // For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name));
236 //
237 #define NET_DEBUG_TRACE(Module, PrintArg) \
238 NetDebugOutput ( \
239 NETDEBUG_LEVEL_TRACE, \
240 Module, \
241 __FILE__, \
242 __LINE__, \
243 NetDebugASPrint PrintArg \
244 )
245
246 #define NET_DEBUG_WARNING(Module, PrintArg) \
247 NetDebugOutput ( \
248 NETDEBUG_LEVEL_WARNING, \
249 Module, \
250 __FILE__, \
251 __LINE__, \
252 NetDebugASPrint PrintArg \
253 )
254
255 #define NET_DEBUG_ERROR(Module, PrintArg) \
256 NetDebugOutput ( \
257 NETDEBUG_LEVEL_ERROR, \
258 Module, \
259 __FILE__, \
260 __LINE__, \
261 NetDebugASPrint PrintArg \
262 )
263
264 /**
265 Allocate a buffer, then format the message to it. This is a
266 help function for the NET_DEBUG_XXX macros. The PrintArg of
267 these macros treats the variable length print parameters as a
268 single parameter, and pass it to the NetDebugASPrint. For
269 example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))
270 if extracted to:
271
272 NetDebugOutput (
273 NETDEBUG_LEVEL_TRACE,
274 "Tcp",
275 __FILE__,
276 __LINE__,
277 NetDebugASPrint ("State transit to %a\n", Name)
278 )
279
280 @param Format The ASCII format string.
281 @param ... The variable length parameter whose format is determined
282 by the Format string.
283
284 @return The buffer containing the formatted message,
285 or NULL if failed to allocate memory.
286
287 **/
288 CHAR8 *
289 NetDebugASPrint (
290 IN CHAR8 *Format,
291 ...
292 );
293
294 /**
295 Builds an UDP4 syslog packet and send it using SNP.
296
297 This function will locate a instance of SNP then send the message through it.
298 Because it isn't open the SNP BY_DRIVER, apply caution when using it.
299
300 @param Level The servity level of the message.
301 @param Module The Moudle that generates the log.
302 @param File The file that contains the log.
303 @param Line The exact line that contains the log.
304 @param Message The user message to log.
305
306 @retval EFI_INVALID_PARAMETER Any input parameter is invalid.
307 @retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet
308 @retval EFI_SUCCESS The log is discard because that it is more verbose
309 than the mNetDebugLevelMax. Or, it has been sent out.
310 **/
311 EFI_STATUS
312 NetDebugOutput (
313 IN UINT32 Level,
314 IN UINT8 *Module,
315 IN UINT8 *File,
316 IN UINT32 Line,
317 IN UINT8 *Message
318 );
319
320
321 /**
322 Return the length of the mask.
323
324 Return the length of the mask. Valid values are 0 to 32.
325 If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.
326 NetMask is in the host byte order.
327
328 @param[in] NetMask The netmask to get the length from.
329
330 @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid.
331
332 **/
333 INTN
334 EFIAPI
335 NetGetMaskLength (
336 IN IP4_ADDR NetMask
337 );
338
339 /**
340 Return the class of the IP address, such as class A, B, C.
341 Addr is in host byte order.
342
343 The address of class A starts with 0.
344 If the address belong to class A, return IP4_ADDR_CLASSA.
345 The address of class B starts with 10.
346 If the address belong to class B, return IP4_ADDR_CLASSB.
347 The address of class C starts with 110.
348 If the address belong to class C, return IP4_ADDR_CLASSC.
349 The address of class D starts with 1110.
350 If the address belong to class D, return IP4_ADDR_CLASSD.
351 The address of class E starts with 1111.
352 If the address belong to class E, return IP4_ADDR_CLASSE.
353
354
355 @param[in] Addr The address to get the class from.
356
357 @return IP address class, such as IP4_ADDR_CLASSA.
358
359 **/
360 INTN
361 EFIAPI
362 NetGetIpClass (
363 IN IP4_ADDR Addr
364 );
365
366 /**
367 Check whether the IP is a valid unicast address according to
368 the netmask. If NetMask is zero, use the IP address's class to get the default mask.
369
370 If Ip is 0, IP is not a valid unicast address.
371 Class D address is used for multicasting and class E address is reserved for future. If Ip
372 belongs to class D or class E, Ip is not a valid unicast address.
373 If all bits of the host address of Ip are 0 or 1, Ip is not a valid unicast address.
374
375 @param[in] Ip The IP to check against.
376 @param[in] NetMask The mask of the IP.
377
378 @return TRUE if Ip is a valid unicast address on the network, otherwise FALSE.
379
380 **/
381 BOOLEAN
382 EFIAPI
383 NetIp4IsUnicast (
384 IN IP4_ADDR Ip,
385 IN IP4_ADDR NetMask
386 );
387
388 /**
389 Check whether the incoming IPv6 address is a valid unicast address.
390
391 If the address is a multicast address has binary 0xFF at the start, it is not
392 a valid unicast address. If the address is unspecified ::, it is not a valid
393 unicast address to be assigned to any node. If the address is loopback address
394 ::1, it is also not a valid unicast address to be assigned to any physical
395 interface.
396
397 @param[in] Ip6 The IPv6 address to check against.
398
399 @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.
400
401 **/
402 BOOLEAN
403 NetIp6IsValidUnicast (
404 IN EFI_IPv6_ADDRESS *Ip6
405 );
406
407
408 /**
409 Check whether the incoming Ipv6 address is the unspecified address or not.
410
411 @param[in] Ip6 - Ip6 address, in network order.
412
413 @retval TRUE - Yes, unspecified
414 @retval FALSE - No
415
416 **/
417 BOOLEAN
418 NetIp6IsUnspecifiedAddr (
419 IN EFI_IPv6_ADDRESS *Ip6
420 );
421
422 /**
423 Check whether the incoming Ipv6 address is a link-local address.
424
425 @param[in] Ip6 - Ip6 address, in network order.
426
427 @retval TRUE - Yes, link-local address
428 @retval FALSE - No
429
430 **/
431 BOOLEAN
432 NetIp6IsLinkLocalAddr (
433 IN EFI_IPv6_ADDRESS *Ip6
434 );
435
436 /**
437 Check whether the Ipv6 address1 and address2 are on the connected network.
438
439 @param[in] Ip1 - Ip6 address1, in network order.
440 @param[in] Ip2 - Ip6 address2, in network order.
441 @param[in] PrefixLength - The prefix length of the checking net.
442
443 @retval TRUE - Yes, connected.
444 @retval FALSE - No.
445
446 **/
447 BOOLEAN
448 NetIp6IsNetEqual (
449 EFI_IPv6_ADDRESS *Ip1,
450 EFI_IPv6_ADDRESS *Ip2,
451 UINT8 PrefixLength
452 );
453
454 /**
455 Switches the endianess of an IPv6 address
456
457 This function swaps the bytes in a 128-bit IPv6 address to switch the value
458 from little endian to big endian or vice versa. The byte swapped value is
459 returned.
460
461 @param Ip6 Points to an IPv6 address
462
463 @return The byte swapped IPv6 address.
464
465 **/
466 EFI_IPv6_ADDRESS *
467 Ip6Swap128 (
468 EFI_IPv6_ADDRESS *Ip6
469 );
470
471 extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM];
472
473
474 extern EFI_IPv4_ADDRESS mZeroIp4Addr;
475
476 #define NET_IS_DIGIT(Ch) (('0' <= (Ch)) && ((Ch) <= '9'))
477 #define NET_ROUNDUP(size, unit) (((size) + (unit) - 1) & (~((unit) - 1)))
478 #define NET_IS_LOWER_CASE_CHAR(Ch) (('a' <= (Ch)) && ((Ch) <= 'z'))
479 #define NET_IS_UPPER_CASE_CHAR(Ch) (('A' <= (Ch)) && ((Ch) <= 'Z'))
480
481 #define TICKS_PER_MS 10000U
482 #define TICKS_PER_SECOND 10000000U
483
484 #define NET_RANDOM(Seed) ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)
485
486 /**
487 Extract a UINT32 from a byte stream.
488
489 This function copies a UINT32 from a byte stream, and then converts it from Network
490 byte order to host byte order. Use this function to avoid alignment error.
491
492 @param[in] Buf The buffer to extract the UINT32.
493
494 @return The UINT32 extracted.
495
496 **/
497 UINT32
498 EFIAPI
499 NetGetUint32 (
500 IN UINT8 *Buf
501 );
502
503 /**
504 Puts a UINT32 into the byte stream in network byte order.
505
506 Converts a UINT32 from host byte order to network byte order, and then copies it to the
507 byte stream.
508
509 @param[in, out] Buf The buffer to put the UINT32.
510 @param[in] Data The data to put.
511
512 **/
513 VOID
514 EFIAPI
515 NetPutUint32 (
516 IN OUT UINT8 *Buf,
517 IN UINT32 Data
518 );
519
520 /**
521 Initialize a random seed using current time.
522
523 Get current time first. Then initialize a random seed based on some basic
524 mathematical operations on the hour, day, minute, second, nanosecond and year
525 of the current time.
526
527 @return The random seed, initialized with current time.
528
529 **/
530 UINT32
531 EFIAPI
532 NetRandomInitSeed (
533 VOID
534 );
535
536
537 #define NET_LIST_USER_STRUCT(Entry, Type, Field) \
538 BASE_CR(Entry, Type, Field)
539
540 #define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig) \
541 CR(Entry, Type, Field, Sig)
542
543 //
544 // Iterate through the double linked list. It is NOT delete safe
545 //
546 #define NET_LIST_FOR_EACH(Entry, ListHead) \
547 for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)
548
549 //
550 // Iterate through the double linked list. This is delete-safe.
551 // Don't touch NextEntry. Also, don't use this macro if list
552 // entries other than the Entry may be deleted when processing
553 // the current Entry.
554 //
555 #define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \
556 for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \
557 Entry != (ListHead); \
558 Entry = NextEntry, NextEntry = Entry->ForwardLink \
559 )
560
561 //
562 // Make sure the list isn't empty before getting the first/last record.
563 //
564 #define NET_LIST_HEAD(ListHead, Type, Field) \
565 NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)
566
567 #define NET_LIST_TAIL(ListHead, Type, Field) \
568 NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)
569
570
571 /**
572 Remove the first node entry on the list, and return the removed node entry.
573
574 Removes the first node entry from a doubly linked list. It is up to the caller of
575 this function to release the memory used by the first node, if that is required. On
576 exit, the removed node is returned.
577
578 If Head is NULL, then ASSERT().
579 If Head was not initialized, then ASSERT().
580 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
581 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
582 then ASSERT().
583
584 @param[in, out] Head The list header.
585
586 @return The first node entry that is removed from the list, NULL if the list is empty.
587
588 **/
589 LIST_ENTRY *
590 EFIAPI
591 NetListRemoveHead (
592 IN OUT LIST_ENTRY *Head
593 );
594
595 /**
596 Remove the last node entry on the list and return the removed node entry.
597
598 Removes the last node entry from a doubly linked list. It is up to the caller of
599 this function to release the memory used by the first node, if that is required. On
600 exit, the removed node is returned.
601
602 If Head is NULL, then ASSERT().
603 If Head was not initialized, then ASSERT().
604 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
605 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
606 then ASSERT().
607
608 @param[in, out] Head The list head.
609
610 @return The last node entry that is removed from the list, NULL if the list is empty.
611
612 **/
613 LIST_ENTRY *
614 EFIAPI
615 NetListRemoveTail (
616 IN OUT LIST_ENTRY *Head
617 );
618
619 /**
620 Insert a new node entry after a designated node entry of a doubly linked list.
621
622 Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry
623 of the doubly linked list.
624
625 @param[in, out] PrevEntry The entry after which to insert.
626 @param[in, out] NewEntry The new entry to insert.
627
628 **/
629 VOID
630 EFIAPI
631 NetListInsertAfter (
632 IN OUT LIST_ENTRY *PrevEntry,
633 IN OUT LIST_ENTRY *NewEntry
634 );
635
636 /**
637 Insert a new node entry before a designated node entry of a doubly linked list.
638
639 Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry
640 of the doubly linked list.
641
642 @param[in, out] PostEntry The entry to insert before.
643 @param[in, out] NewEntry The new entry to insert.
644
645 **/
646 VOID
647 EFIAPI
648 NetListInsertBefore (
649 IN OUT LIST_ENTRY *PostEntry,
650 IN OUT LIST_ENTRY *NewEntry
651 );
652
653
654 //
655 // Object container: EFI network stack spec defines various kinds of
656 // tokens. The drivers can share code to manage those objects.
657 //
658 typedef struct {
659 LIST_ENTRY Link;
660 VOID *Key;
661 VOID *Value;
662 } NET_MAP_ITEM;
663
664 typedef struct {
665 LIST_ENTRY Used;
666 LIST_ENTRY Recycled;
667 UINTN Count;
668 } NET_MAP;
669
670 #define NET_MAP_INCREAMENT 64
671
672 /**
673 Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.
674
675 Initialize the forward and backward links of two head nodes donated by Map->Used
676 and Map->Recycled of two doubly linked lists.
677 Initializes the count of the <Key, Value> pairs in the netmap to zero.
678
679 If Map is NULL, then ASSERT().
680 If the address of Map->Used is NULL, then ASSERT().
681 If the address of Map->Recycled is NULl, then ASSERT().
682
683 @param[in, out] Map The netmap to initialize.
684
685 **/
686 VOID
687 EFIAPI
688 NetMapInit (
689 IN OUT NET_MAP *Map
690 );
691
692 /**
693 To clean up the netmap, that is, release allocated memories.
694
695 Removes all nodes of the Used doubly linked list and frees memory of all related netmap items.
696 Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.
697 The number of the <Key, Value> pairs in the netmap is set to zero.
698
699 If Map is NULL, then ASSERT().
700
701 @param[in, out] Map The netmap to clean up.
702
703 **/
704 VOID
705 EFIAPI
706 NetMapClean (
707 IN OUT NET_MAP *Map
708 );
709
710 /**
711 Test whether the netmap is empty and return true if it is.
712
713 If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.
714
715 If Map is NULL, then ASSERT().
716
717
718 @param[in] Map The net map to test.
719
720 @return TRUE if the netmap is empty, otherwise FALSE.
721
722 **/
723 BOOLEAN
724 EFIAPI
725 NetMapIsEmpty (
726 IN NET_MAP *Map
727 );
728
729 /**
730 Return the number of the <Key, Value> pairs in the netmap.
731
732 @param[in] Map The netmap to get the entry number.
733
734 @return The entry number in the netmap.
735
736 **/
737 UINTN
738 EFIAPI
739 NetMapGetCount (
740 IN NET_MAP *Map
741 );
742
743 /**
744 Allocate an item to save the <Key, Value> pair to the head of the netmap.
745
746 Allocate an item to save the <Key, Value> pair and add corresponding node entry
747 to the beginning of the Used doubly linked list. The number of the <Key, Value>
748 pairs in the netmap increase by 1.
749
750 If Map is NULL, then ASSERT().
751
752 @param[in, out] Map The netmap to insert into.
753 @param[in] Key The user's key.
754 @param[in] Value The user's value for the key.
755
756 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
757 @retval EFI_SUCCESS The item is inserted to the head.
758
759 **/
760 EFI_STATUS
761 EFIAPI
762 NetMapInsertHead (
763 IN OUT NET_MAP *Map,
764 IN VOID *Key,
765 IN VOID *Value OPTIONAL
766 );
767
768 /**
769 Allocate an item to save the <Key, Value> pair to the tail of the netmap.
770
771 Allocate an item to save the <Key, Value> pair and add corresponding node entry
772 to the tail of the Used doubly linked list. The number of the <Key, Value>
773 pairs in the netmap increase by 1.
774
775 If Map is NULL, then ASSERT().
776
777 @param[in, out] Map The netmap to insert into.
778 @param[in] Key The user's key.
779 @param[in] Value The user's value for the key.
780
781 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
782 @retval EFI_SUCCESS The item is inserted to the tail.
783
784 **/
785 EFI_STATUS
786 EFIAPI
787 NetMapInsertTail (
788 IN OUT NET_MAP *Map,
789 IN VOID *Key,
790 IN VOID *Value OPTIONAL
791 );
792
793 /**
794 Finds the key in the netmap and returns the point to the item containing the Key.
795
796 Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every
797 item with the key to search. It returns the point to the item contains the Key if found.
798
799 If Map is NULL, then ASSERT().
800
801 @param[in] Map The netmap to search within.
802 @param[in] Key The key to search.
803
804 @return The point to the item contains the Key, or NULL if Key isn't in the map.
805
806 **/
807 NET_MAP_ITEM *
808 EFIAPI
809 NetMapFindKey (
810 IN NET_MAP *Map,
811 IN VOID *Key
812 );
813
814 /**
815 Remove the node entry of the item from the netmap and return the key of the removed item.
816
817 Remove the node entry of the item from the Used doubly linked list of the netmap.
818 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
819 entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,
820 Value will point to the value of the item. It returns the key of the removed item.
821
822 If Map is NULL, then ASSERT().
823 If Item is NULL, then ASSERT().
824 if item in not in the netmap, then ASSERT().
825
826 @param[in, out] Map The netmap to remove the item from.
827 @param[in, out] Item The item to remove.
828 @param[out] Value The variable to receive the value if not NULL.
829
830 @return The key of the removed item.
831
832 **/
833 VOID *
834 EFIAPI
835 NetMapRemoveItem (
836 IN OUT NET_MAP *Map,
837 IN OUT NET_MAP_ITEM *Item,
838 OUT VOID **Value OPTIONAL
839 );
840
841 /**
842 Remove the first node entry on the netmap and return the key of the removed item.
843
844 Remove the first node entry from the Used doubly linked list of the netmap.
845 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
846 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
847 parameter Value will point to the value of the item. It returns the key of the removed item.
848
849 If Map is NULL, then ASSERT().
850 If the Used doubly linked list is empty, then ASSERT().
851
852 @param[in, out] Map The netmap to remove the head from.
853 @param[out] Value The variable to receive the value if not NULL.
854
855 @return The key of the item removed.
856
857 **/
858 VOID *
859 EFIAPI
860 NetMapRemoveHead (
861 IN OUT NET_MAP *Map,
862 OUT VOID **Value OPTIONAL
863 );
864
865 /**
866 Remove the last node entry on the netmap and return the key of the removed item.
867
868 Remove the last node entry from the Used doubly linked list of the netmap.
869 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
870 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
871 parameter Value will point to the value of the item. It returns the key of the removed item.
872
873 If Map is NULL, then ASSERT().
874 If the Used doubly linked list is empty, then ASSERT().
875
876 @param[in, out] Map The netmap to remove the tail from.
877 @param[out] Value The variable to receive the value if not NULL.
878
879 @return The key of the item removed.
880
881 **/
882 VOID *
883 EFIAPI
884 NetMapRemoveTail (
885 IN OUT NET_MAP *Map,
886 OUT VOID **Value OPTIONAL
887 );
888
889 typedef
890 EFI_STATUS
891 (*NET_MAP_CALLBACK) (
892 IN NET_MAP *Map,
893 IN NET_MAP_ITEM *Item,
894 IN VOID *Arg
895 );
896
897 /**
898 Iterate through the netmap and call CallBack for each item.
899
900 It will contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break
901 from the loop. It returns the CallBack's last return value. This function is
902 delete safe for the current item.
903
904 If Map is NULL, then ASSERT().
905 If CallBack is NULL, then ASSERT().
906
907 @param[in] Map The Map to iterate through.
908 @param[in] CallBack The callback function to call for each item.
909 @param[in] Arg The opaque parameter to the callback.
910
911 @retval EFI_SUCCESS There is no item in the netmap or CallBack for each item
912 return EFI_SUCCESS.
913 @retval Others It returns the CallBack's last return value.
914
915 **/
916 EFI_STATUS
917 EFIAPI
918 NetMapIterate (
919 IN NET_MAP *Map,
920 IN NET_MAP_CALLBACK CallBack,
921 IN VOID *Arg OPTIONAL
922 );
923
924
925 //
926 // Helper functions to implement driver binding and service binding protocols.
927 //
928 /**
929 Create a child of the service that is identified by ServiceBindingGuid.
930
931 Get the ServiceBinding Protocol first, then use it to create a child.
932
933 If ServiceBindingGuid is NULL, then ASSERT().
934 If ChildHandle is NULL, then ASSERT().
935
936 @param[in] Controller The controller which has the service installed.
937 @param[in] Image The image handle used to open service.
938 @param[in] ServiceBindingGuid The service's Guid.
939 @param[in, out] ChildHandle The handle to receive the created child.
940
941 @retval EFI_SUCCESS The child was successfully created.
942 @retval Others Failed to create the child.
943
944 **/
945 EFI_STATUS
946 EFIAPI
947 NetLibCreateServiceChild (
948 IN EFI_HANDLE Controller,
949 IN EFI_HANDLE Image,
950 IN EFI_GUID *ServiceBindingGuid,
951 IN OUT EFI_HANDLE *ChildHandle
952 );
953
954 /**
955 Destroy a child of the service that is identified by ServiceBindingGuid.
956
957 Get the ServiceBinding Protocol first, then use it to destroy a child.
958
959 If ServiceBindingGuid is NULL, then ASSERT().
960
961 @param[in] Controller The controller which has the service installed.
962 @param[in] Image The image handle used to open service.
963 @param[in] ServiceBindingGuid The service's Guid.
964 @param[in] ChildHandle The child to destroy.
965
966 @retval EFI_SUCCESS The child is successfully destroyed.
967 @retval Others Failed to destroy the child.
968
969 **/
970 EFI_STATUS
971 EFIAPI
972 NetLibDestroyServiceChild (
973 IN EFI_HANDLE Controller,
974 IN EFI_HANDLE Image,
975 IN EFI_GUID *ServiceBindingGuid,
976 IN EFI_HANDLE ChildHandle
977 );
978
979 /**
980 Get handle with Simple Network Protocol installed on it.
981
982 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
983 If Simple Network Protocol is already installed on the ServiceHandle, the
984 ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,
985 try to find its parent handle with SNP installed.
986
987 @param[in] ServiceHandle The handle where network service binding protocols are
988 installed on.
989 @param[out] Snp The pointer to store the address of the SNP instance.
990 This is an optional parameter that may be NULL.
991
992 @return The SNP handle, or NULL if not found.
993
994 **/
995 EFI_HANDLE
996 EFIAPI
997 NetLibGetSnpHandle (
998 IN EFI_HANDLE ServiceHandle,
999 OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL
1000 );
1001
1002 /**
1003 Retrieve VLAN ID of a VLAN device handle.
1004
1005 Search VLAN device path node in Device Path of specified ServiceHandle and
1006 return its VLAN ID. If no VLAN device path node found, then this ServiceHandle
1007 is not a VLAN device handle, and 0 will be returned.
1008
1009 @param[in] ServiceHandle The handle where network service binding protocols are
1010 installed on.
1011
1012 @return VLAN ID of the device handle, or 0 if not a VLAN device.
1013
1014 **/
1015 UINT16
1016 EFIAPI
1017 NetLibGetVlanId (
1018 IN EFI_HANDLE ServiceHandle
1019 );
1020
1021 /**
1022 Find VLAN device handle with specified VLAN ID.
1023
1024 The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.
1025 This function will append VLAN device path node to the parent device path,
1026 and then use LocateDevicePath() to find the correct VLAN device handle.
1027
1028 @param[in] ServiceHandle The handle where network service binding protocols are
1029 installed on.
1030 @param[in] VLanId The configured VLAN ID for the VLAN device.
1031
1032 @return The VLAN device handle, or NULL if not found.
1033
1034 **/
1035 EFI_HANDLE
1036 EFIAPI
1037 NetLibGetVlanHandle (
1038 IN EFI_HANDLE ControllerHandle,
1039 IN UINT16 VlanId
1040 );
1041
1042 /**
1043 Get MAC address associated with the network service handle.
1044
1045 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1046 If SNP is installed on the ServiceHandle or its parent handle, MAC address will
1047 be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.
1048
1049 @param[in] ServiceHandle The handle where network service binding protocols are
1050 installed on.
1051 @param[out] MacAddress The pointer to store the returned MAC address.
1052 @param[out] AddressSize The length of returned MAC address.
1053
1054 @retval EFI_SUCCESS MAC address is returned successfully.
1055 @retval Others Failed to get SNP mode data.
1056
1057 **/
1058 EFI_STATUS
1059 EFIAPI
1060 NetLibGetMacAddress (
1061 IN EFI_HANDLE ServiceHandle,
1062 OUT EFI_MAC_ADDRESS *MacAddress,
1063 OUT UINTN *AddressSize
1064 );
1065
1066 /**
1067 Convert MAC address of the NIC associated with specified Service Binding Handle
1068 to a unicode string. Callers are responsible for freeing the string storage.
1069
1070 Locate simple network protocol associated with the Service Binding Handle and
1071 get the mac address from SNP. Then convert the mac address into a unicode
1072 string. It takes 2 unicode characters to represent a 1 byte binary buffer.
1073 Plus one unicode character for the null-terminator.
1074
1075 @param[in] ServiceHandle The handle where network service binding protocol is
1076 installed on.
1077 @param[in] ImageHandle The image handle used to act as the agent handle to
1078 get the simple network protocol.
1079 @param[out] MacString The pointer to store the address of the string
1080 representation of the mac address.
1081
1082 @retval EFI_SUCCESS Convert the mac address a unicode string successfully.
1083 @retval EFI_OUT_OF_RESOURCES There are not enough memory resource.
1084 @retval Others Failed to open the simple network protocol.
1085
1086 **/
1087 EFI_STATUS
1088 EFIAPI
1089 NetLibGetMacString (
1090 IN EFI_HANDLE ServiceHandle,
1091 IN EFI_HANDLE ImageHandle,
1092 OUT CHAR16 **MacString
1093 );
1094
1095 /**
1096 Create an IPv4 device path node.
1097
1098 The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.
1099 The header subtype of IPv4 device path node is MSG_IPv4_DP.
1100 The length of the IPv4 device path node in bytes is 19.
1101 Get other info from parameters to make up the whole IPv4 device path node.
1102
1103 @param[in, out] Node Pointer to the IPv4 device path node.
1104 @param[in] Controller The controller handle.
1105 @param[in] LocalIp The local IPv4 address.
1106 @param[in] LocalPort The local port.
1107 @param[in] RemoteIp The remote IPv4 address.
1108 @param[in] RemotePort The remote port.
1109 @param[in] Protocol The protocol type in the IP header.
1110 @param[in] UseDefaultAddress Whether this instance is using default address or not.
1111
1112 **/
1113 VOID
1114 EFIAPI
1115 NetLibCreateIPv4DPathNode (
1116 IN OUT IPv4_DEVICE_PATH *Node,
1117 IN EFI_HANDLE Controller,
1118 IN IP4_ADDR LocalIp,
1119 IN UINT16 LocalPort,
1120 IN IP4_ADDR RemoteIp,
1121 IN UINT16 RemotePort,
1122 IN UINT16 Protocol,
1123 IN BOOLEAN UseDefaultAddress
1124 );
1125
1126 /**
1127 Create an IPv6 device path node.
1128
1129 The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.
1130 The header subtype of IPv6 device path node is MSG_IPv6_DP.
1131 The length of the IPv6 device path node in bytes is 43.
1132 Get other info from parameters to make up the whole IPv6 device path node.
1133
1134 @param[in, out] Node Pointer to the IPv6 device path node.
1135 @param[in] Controller The controller handle.
1136 @param[in] LocalIp The local IPv6 address.
1137 @param[in] LocalPort The local port.
1138 @param[in] RemoteIp The remote IPv6 address.
1139 @param[in] RemotePort The remote port.
1140 @param[in] Protocol The protocol type in the IP header.
1141
1142 **/
1143 VOID
1144 EFIAPI
1145 NetLibCreateIPv6DPathNode (
1146 IN OUT IPv6_DEVICE_PATH *Node,
1147 IN EFI_HANDLE Controller,
1148 IN EFI_IPv6_ADDRESS *LocalIp,
1149 IN UINT16 LocalPort,
1150 IN EFI_IPv6_ADDRESS *RemoteIp,
1151 IN UINT16 RemotePort,
1152 IN UINT16 Protocol
1153 );
1154
1155
1156 /**
1157 Find the UNDI/SNP handle from controller and protocol GUID.
1158
1159 For example, IP will open an MNP child to transmit/receive
1160 packets. When MNP is stopped, IP should also be stopped. IP
1161 needs to find its own private data which is related the IP's
1162 service binding instance that is install on UNDI/SNP handle.
1163 Now, the controller is either a MNP or ARP child handle. But
1164 IP opens these handle BY_DRIVER, use that info, we can get the
1165 UNDI/SNP handle.
1166
1167 @param[in] Controller Then protocol handle to check.
1168 @param[in] ProtocolGuid The protocol that is related with the handle.
1169
1170 @return The UNDI/SNP handle or NULL for errors.
1171
1172 **/
1173 EFI_HANDLE
1174 EFIAPI
1175 NetLibGetNicHandle (
1176 IN EFI_HANDLE Controller,
1177 IN EFI_GUID *ProtocolGuid
1178 );
1179
1180 /**
1181 This is the default unload handle for all the network drivers.
1182
1183 Disconnect the driver specified by ImageHandle from all the devices in the handle database.
1184 Uninstall all the protocols installed in the driver entry point.
1185
1186 @param[in] ImageHandle The drivers' driver image.
1187
1188 @retval EFI_SUCCESS The image is unloaded.
1189 @retval Others Failed to unload the image.
1190
1191 **/
1192 EFI_STATUS
1193 EFIAPI
1194 NetLibDefaultUnload (
1195 IN EFI_HANDLE ImageHandle
1196 );
1197
1198
1199 //
1200 //Various signatures
1201 //
1202 #define NET_BUF_SIGNATURE SIGNATURE_32 ('n', 'b', 'u', 'f')
1203 #define NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c')
1204 #define NET_QUE_SIGNATURE SIGNATURE_32 ('n', 'b', 'q', 'u')
1205
1206
1207 #define NET_PROTO_DATA 64 // Opaque buffer for protocols
1208 #define NET_BUF_HEAD 1 // Trim or allocate space from head
1209 #define NET_BUF_TAIL 0 // Trim or allocate space from tail
1210 #define NET_VECTOR_OWN_FIRST 0x01 // We allocated the 1st block in the vector
1211
1212 #define NET_CHECK_SIGNATURE(PData, SIGNATURE) \
1213 ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))
1214
1215 //
1216 // Single memory block in the vector.
1217 //
1218 typedef struct {
1219 UINT32 Len; // The block's length
1220 UINT8 *Bulk; // The block's Data
1221 } NET_BLOCK;
1222
1223 typedef VOID (*NET_VECTOR_EXT_FREE) (VOID *Arg);
1224
1225 //
1226 //NET_VECTOR contains several blocks to hold all packet's
1227 //fragments and other house-keeping stuff for sharing. It
1228 //doesn't specify the where actual packet fragment begins.
1229 //
1230 typedef struct {
1231 UINT32 Signature;
1232 INTN RefCnt; // Reference count to share NET_VECTOR.
1233 NET_VECTOR_EXT_FREE Free; // external function to free NET_VECTOR
1234 VOID *Arg; // opeque argument to Free
1235 UINT32 Flag; // Flags, NET_VECTOR_OWN_FIRST
1236 UINT32 Len; // Total length of the assocated BLOCKs
1237
1238 UINT32 BlockNum;
1239 NET_BLOCK Block[1];
1240 } NET_VECTOR;
1241
1242 //
1243 //NET_BLOCK_OP operates on the NET_BLOCK. It specifies
1244 //where the actual fragment begins and ends
1245 //
1246 typedef struct {
1247 UINT8 *BlockHead; // Block's head, or the smallest valid Head
1248 UINT8 *BlockTail; // Block's tail. BlockTail-BlockHead=block length
1249 UINT8 *Head; // 1st byte of the data in the block
1250 UINT8 *Tail; // Tail of the data in the block, Tail-Head=Size
1251 UINT32 Size; // The size of the data
1252 } NET_BLOCK_OP;
1253
1254 typedef union {
1255 IP4_HEAD *Ip4;
1256 EFI_IP6_HEADER *Ip6;
1257 } NET_IP_HEAD;
1258
1259 //
1260 //NET_BUF is the buffer manage structure used by the
1261 //network stack. Every network packet may be fragmented. The Vector points to
1262 //memory blocks used by each fragment, and BlockOp
1263 //specifies where each fragment begins and ends.
1264 //
1265 //It also contains an opaque area for the protocol to store
1266 //per-packet information. Protocol must be careful not
1267 //to overwrite the members after that.
1268 //
1269 typedef struct {
1270 UINT32 Signature;
1271 INTN RefCnt;
1272 LIST_ENTRY List; // The List this NET_BUF is on
1273
1274 NET_IP_HEAD Ip; // Network layer header, for fast access
1275 TCP_HEAD *Tcp; // Transport layer header, for fast access
1276 EFI_UDP_HEADER *Udp; // User Datagram Protocol header
1277 UINT8 ProtoData [NET_PROTO_DATA]; //Protocol specific data
1278
1279 NET_VECTOR *Vector; // The vector containing the packet
1280
1281 UINT32 BlockOpNum; // Total number of BlockOp in the buffer
1282 UINT32 TotalSize; // Total size of the actual packet
1283 NET_BLOCK_OP BlockOp[1]; // Specify the position of actual packet
1284 } NET_BUF;
1285
1286 //
1287 //A queue of NET_BUFs. It is a thin extension of
1288 //NET_BUF functions.
1289 //
1290 typedef struct {
1291 UINT32 Signature;
1292 INTN RefCnt;
1293 LIST_ENTRY List; // The List this buffer queue is on
1294
1295 LIST_ENTRY BufList; // list of queued buffers
1296 UINT32 BufSize; // total length of DATA in the buffers
1297 UINT32 BufNum; // total number of buffers on the chain
1298 } NET_BUF_QUEUE;
1299
1300 //
1301 // Pseudo header for TCP and UDP checksum
1302 //
1303 #pragma pack(1)
1304 typedef struct {
1305 IP4_ADDR SrcIp;
1306 IP4_ADDR DstIp;
1307 UINT8 Reserved;
1308 UINT8 Protocol;
1309 UINT16 Len;
1310 } NET_PSEUDO_HDR;
1311
1312 typedef struct {
1313 EFI_IPv6_ADDRESS SrcIp;
1314 EFI_IPv6_ADDRESS DstIp;
1315 UINT32 Len;
1316 UINT32 Reserved:24;
1317 UINT32 NextHeader:8;
1318 } NET_IP6_PSEUDO_HDR;
1319 #pragma pack()
1320
1321 //
1322 // The fragment entry table used in network interfaces. This is
1323 // the same as NET_BLOCK now. Use two different to distinguish
1324 // the two in case that NET_BLOCK be enhanced later.
1325 //
1326 typedef struct {
1327 UINT32 Len;
1328 UINT8 *Bulk;
1329 } NET_FRAGMENT;
1330
1331 #define NET_GET_REF(PData) ((PData)->RefCnt++)
1332 #define NET_PUT_REF(PData) ((PData)->RefCnt--)
1333 #define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)
1334
1335 #define NET_BUF_SHARED(Buf) \
1336 (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))
1337
1338 #define NET_VECTOR_SIZE(BlockNum) \
1339 (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))
1340
1341 #define NET_BUF_SIZE(BlockOpNum) \
1342 (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))
1343
1344 #define NET_HEADSPACE(BlockOp) \
1345 (UINTN)((BlockOp)->Head - (BlockOp)->BlockHead)
1346
1347 #define NET_TAILSPACE(BlockOp) \
1348 (UINTN)((BlockOp)->BlockTail - (BlockOp)->Tail)
1349
1350 /**
1351 Allocate a single block NET_BUF. Upon allocation, all the
1352 free space is in the tail room.
1353
1354 @param[in] Len The length of the block.
1355
1356 @return Pointer to the allocated NET_BUF, or NULL if the
1357 allocation failed due to resource limit.
1358
1359 **/
1360 NET_BUF *
1361 EFIAPI
1362 NetbufAlloc (
1363 IN UINT32 Len
1364 );
1365
1366 /**
1367 Free the net buffer and its associated NET_VECTOR.
1368
1369 Decrease the reference count of the net buffer by one. Free the associated net
1370 vector and itself if the reference count of the net buffer is decreased to 0.
1371 The net vector free operation decreases the reference count of the net
1372 vector by one, and performs the resource free operation when the reference count
1373 of the net vector is 0.
1374
1375 @param[in] Nbuf Pointer to the NET_BUF to be freed.
1376
1377 **/
1378 VOID
1379 EFIAPI
1380 NetbufFree (
1381 IN NET_BUF *Nbuf
1382 );
1383
1384 /**
1385 Get the index of NET_BLOCK_OP that contains the byte at Offset in the net
1386 buffer.
1387
1388 For example, this function can be used to retrieve the IP header in the packet. It
1389 also can be used to get the fragment that contains the byte used
1390 mainly by the library implementation itself.
1391
1392 @param[in] Nbuf Pointer to the net buffer.
1393 @param[in] Offset The offset of the byte.
1394 @param[out] Index Index of the NET_BLOCK_OP that contains the byte at
1395 Offset.
1396
1397 @return Pointer to the Offset'th byte of data in the net buffer, or NULL
1398 if there is no such data in the net buffer.
1399
1400 **/
1401 UINT8 *
1402 EFIAPI
1403 NetbufGetByte (
1404 IN NET_BUF *Nbuf,
1405 IN UINT32 Offset,
1406 OUT UINT32 *Index OPTIONAL
1407 );
1408
1409 /**
1410 Create a copy of the net buffer that shares the associated net vector.
1411
1412 The reference count of the newly created net buffer is set to 1. The reference
1413 count of the associated net vector is increased by one.
1414
1415 @param[in] Nbuf Pointer to the net buffer to be cloned.
1416
1417 @return Pointer to the cloned net buffer, or NULL if the
1418 allocation failed due to resource limit.
1419
1420 **/
1421 NET_BUF *
1422 EFIAPI
1423 NetbufClone (
1424 IN NET_BUF *Nbuf
1425 );
1426
1427 /**
1428 Create a duplicated copy of the net buffer with data copied and HeadSpace
1429 bytes of head space reserved.
1430
1431 The duplicated net buffer will allocate its own memory to hold the data of the
1432 source net buffer.
1433
1434 @param[in] Nbuf Pointer to the net buffer to be duplicated from.
1435 @param[in, out] Duplicate Pointer to the net buffer to duplicate to, if
1436 NULL a new net buffer is allocated.
1437 @param[in] HeadSpace Length of the head space to reserve.
1438
1439 @return Pointer to the duplicated net buffer, or NULL if
1440 the allocation failed due to resource limit.
1441
1442 **/
1443 NET_BUF *
1444 EFIAPI
1445 NetbufDuplicate (
1446 IN NET_BUF *Nbuf,
1447 IN OUT NET_BUF *Duplicate OPTIONAL,
1448 IN UINT32 HeadSpace
1449 );
1450
1451 /**
1452 Create a NET_BUF structure which contains Len byte data of Nbuf starting from
1453 Offset.
1454
1455 A new NET_BUF structure will be created but the associated data in NET_VECTOR
1456 is shared. This function exists to do IP packet fragmentation.
1457
1458 @param[in] Nbuf Pointer to the net buffer to be extracted.
1459 @param[in] Offset Starting point of the data to be included in the new
1460 net buffer.
1461 @param[in] Len Bytes of data to be included in the new net buffer.
1462 @param[in] HeadSpace Bytes of head space to reserve for protocol header.
1463
1464 @return Pointer to the cloned net buffer, or NULL if the
1465 allocation failed due to resource limit.
1466
1467 **/
1468 NET_BUF *
1469 EFIAPI
1470 NetbufGetFragment (
1471 IN NET_BUF *Nbuf,
1472 IN UINT32 Offset,
1473 IN UINT32 Len,
1474 IN UINT32 HeadSpace
1475 );
1476
1477 /**
1478 Reserve some space in the header room of the net buffer.
1479
1480 Upon allocation, all the space is in the tail room of the buffer. Call this
1481 function to move some space to the header room. This function is quite limited
1482 in that it can only reserve space from the first block of an empty NET_BUF not
1483 built from the external. But it should be enough for the network stack.
1484
1485 @param[in, out] Nbuf Pointer to the net buffer.
1486 @param[in] Len The length of buffer to be reserved from the header.
1487
1488 **/
1489 VOID
1490 EFIAPI
1491 NetbufReserve (
1492 IN OUT NET_BUF *Nbuf,
1493 IN UINT32 Len
1494 );
1495
1496 /**
1497 Allocate Len bytes of space from the header or tail of the buffer.
1498
1499 @param[in, out] Nbuf Pointer to the net buffer.
1500 @param[in] Len The length of the buffer to be allocated.
1501 @param[in] FromHead The flag to indicate whether reserve the data
1502 from head (TRUE) or tail (FALSE).
1503
1504 @return Pointer to the first byte of the allocated buffer,
1505 or NULL if there is no sufficient space.
1506
1507 **/
1508 UINT8*
1509 EFIAPI
1510 NetbufAllocSpace (
1511 IN OUT NET_BUF *Nbuf,
1512 IN UINT32 Len,
1513 IN BOOLEAN FromHead
1514 );
1515
1516 /**
1517 Trim Len bytes from the header or tail of the net buffer.
1518
1519 @param[in, out] Nbuf Pointer to the net buffer.
1520 @param[in] Len The length of the data to be trimmed.
1521 @param[in] FromHead The flag to indicate whether trim data from head
1522 (TRUE) or tail (FALSE).
1523
1524 @return Length of the actually trimmed data, which may be less
1525 than Len if the TotalSize of Nbuf is less than Len.
1526
1527 **/
1528 UINT32
1529 EFIAPI
1530 NetbufTrim (
1531 IN OUT NET_BUF *Nbuf,
1532 IN UINT32 Len,
1533 IN BOOLEAN FromHead
1534 );
1535
1536 /**
1537 Copy Len bytes of data from the specific offset of the net buffer to the
1538 destination memory.
1539
1540 The Len bytes of data may cross several fragments of the net buffer.
1541
1542 @param[in] Nbuf Pointer to the net buffer.
1543 @param[in] Offset The sequence number of the first byte to copy.
1544 @param[in] Len Length of the data to copy.
1545 @param[in] Dest The destination of the data to copy to.
1546
1547 @return The length of the actual copied data, or 0 if the offset
1548 specified exceeds the total size of net buffer.
1549
1550 **/
1551 UINT32
1552 EFIAPI
1553 NetbufCopy (
1554 IN NET_BUF *Nbuf,
1555 IN UINT32 Offset,
1556 IN UINT32 Len,
1557 IN UINT8 *Dest
1558 );
1559
1560 /**
1561 Build a NET_BUF from external blocks.
1562
1563 A new NET_BUF structure will be created from external blocks. An additional block
1564 of memory will be allocated to hold reserved HeadSpace bytes of header room
1565 and existing HeadLen bytes of header, but the external blocks are shared by the
1566 net buffer to avoid data copying.
1567
1568 @param[in] ExtFragment Pointer to the data block.
1569 @param[in] ExtNum The number of the data blocks.
1570 @param[in] HeadSpace The head space to be reserved.
1571 @param[in] HeadLen The length of the protocol header. The function
1572 pulls this amount of data into a linear block.
1573 @param[in] ExtFree Pointer to the caller-provided free function.
1574 @param[in] Arg The argument passed to ExtFree when ExtFree is
1575 called.
1576
1577 @return Pointer to the net buffer built from the data blocks,
1578 or NULL if the allocation failed due to resource
1579 limit.
1580
1581 **/
1582 NET_BUF *
1583 EFIAPI
1584 NetbufFromExt (
1585 IN NET_FRAGMENT *ExtFragment,
1586 IN UINT32 ExtNum,
1587 IN UINT32 HeadSpace,
1588 IN UINT32 HeadLen,
1589 IN NET_VECTOR_EXT_FREE ExtFree,
1590 IN VOID *Arg OPTIONAL
1591 );
1592
1593 /**
1594 Build a fragment table to contain the fragments in the net buffer. This is the
1595 opposite operation of the NetbufFromExt.
1596
1597 @param[in] Nbuf Point to the net buffer.
1598 @param[in, out] ExtFragment Pointer to the data block.
1599 @param[in, out] ExtNum The number of the data blocks.
1600
1601 @retval EFI_BUFFER_TOO_SMALL The number of non-empty blocks is bigger than
1602 ExtNum.
1603 @retval EFI_SUCCESS Fragment table is built successfully.
1604
1605 **/
1606 EFI_STATUS
1607 EFIAPI
1608 NetbufBuildExt (
1609 IN NET_BUF *Nbuf,
1610 IN OUT NET_FRAGMENT *ExtFragment,
1611 IN OUT UINT32 *ExtNum
1612 );
1613
1614 /**
1615 Build a net buffer from a list of net buffers.
1616
1617 All the fragments will be collected from the list of NEW_BUF and then a new
1618 net buffer will be created through NetbufFromExt.
1619
1620 @param[in] BufList A List of the net buffer.
1621 @param[in] HeadSpace The head space to be reserved.
1622 @param[in] HeaderLen The length of the protocol header. The function
1623 pulls this amount of data into a linear block.
1624 @param[in] ExtFree Pointer to the caller provided free function.
1625 @param[in] Arg The argument passed to ExtFree when ExtFree is called.
1626
1627 @return Pointer to the net buffer built from the list of net
1628 buffers.
1629
1630 **/
1631 NET_BUF *
1632 EFIAPI
1633 NetbufFromBufList (
1634 IN LIST_ENTRY *BufList,
1635 IN UINT32 HeadSpace,
1636 IN UINT32 HeaderLen,
1637 IN NET_VECTOR_EXT_FREE ExtFree,
1638 IN VOID *Arg OPTIONAL
1639 );
1640
1641 /**
1642 Free a list of net buffers.
1643
1644 @param[in, out] Head Pointer to the head of linked net buffers.
1645
1646 **/
1647 VOID
1648 EFIAPI
1649 NetbufFreeList (
1650 IN OUT LIST_ENTRY *Head
1651 );
1652
1653 /**
1654 Initiate the net buffer queue.
1655
1656 @param[in, out] NbufQue Pointer to the net buffer queue to be initialized.
1657
1658 **/
1659 VOID
1660 EFIAPI
1661 NetbufQueInit (
1662 IN OUT NET_BUF_QUEUE *NbufQue
1663 );
1664
1665 /**
1666 Allocate and initialize a net buffer queue.
1667
1668 @return Pointer to the allocated net buffer queue, or NULL if the
1669 allocation failed due to resource limit.
1670
1671 **/
1672 NET_BUF_QUEUE *
1673 EFIAPI
1674 NetbufQueAlloc (
1675 VOID
1676 );
1677
1678 /**
1679 Free a net buffer queue.
1680
1681 Decrease the reference count of the net buffer queue by one. The real resource
1682 free operation isn't performed until the reference count of the net buffer
1683 queue is decreased to 0.
1684
1685 @param[in] NbufQue Pointer to the net buffer queue to be freed.
1686
1687 **/
1688 VOID
1689 EFIAPI
1690 NetbufQueFree (
1691 IN NET_BUF_QUEUE *NbufQue
1692 );
1693
1694 /**
1695 Remove a net buffer from the head in the specific queue and return it.
1696
1697 @param[in, out] NbufQue Pointer to the net buffer queue.
1698
1699 @return Pointer to the net buffer removed from the specific queue,
1700 or NULL if there is no net buffer in the specific queue.
1701
1702 **/
1703 NET_BUF *
1704 EFIAPI
1705 NetbufQueRemove (
1706 IN OUT NET_BUF_QUEUE *NbufQue
1707 );
1708
1709 /**
1710 Append a net buffer to the net buffer queue.
1711
1712 @param[in, out] NbufQue Pointer to the net buffer queue.
1713 @param[in, out] Nbuf Pointer to the net buffer to be appended.
1714
1715 **/
1716 VOID
1717 EFIAPI
1718 NetbufQueAppend (
1719 IN OUT NET_BUF_QUEUE *NbufQue,
1720 IN OUT NET_BUF *Nbuf
1721 );
1722
1723 /**
1724 Copy Len bytes of data from the net buffer queue at the specific offset to the
1725 destination memory.
1726
1727 The copying operation is the same as NetbufCopy but applies to the net buffer
1728 queue instead of the net buffer.
1729
1730 @param[in] NbufQue Pointer to the net buffer queue.
1731 @param[in] Offset The sequence number of the first byte to copy.
1732 @param[in] Len Length of the data to copy.
1733 @param[out] Dest The destination of the data to copy to.
1734
1735 @return The length of the actual copied data, or 0 if the offset
1736 specified exceeds the total size of net buffer queue.
1737
1738 **/
1739 UINT32
1740 EFIAPI
1741 NetbufQueCopy (
1742 IN NET_BUF_QUEUE *NbufQue,
1743 IN UINT32 Offset,
1744 IN UINT32 Len,
1745 OUT UINT8 *Dest
1746 );
1747
1748 /**
1749 Trim Len bytes of data from the queue header and release any net buffer
1750 that is trimmed wholely.
1751
1752 The trimming operation is the same as NetbufTrim but applies to the net buffer
1753 queue instead of the net buffer.
1754
1755 @param[in, out] NbufQue Pointer to the net buffer queue.
1756 @param[in] Len Length of the data to trim.
1757
1758 @return The actual length of the data trimmed.
1759
1760 **/
1761 UINT32
1762 EFIAPI
1763 NetbufQueTrim (
1764 IN OUT NET_BUF_QUEUE *NbufQue,
1765 IN UINT32 Len
1766 );
1767
1768
1769 /**
1770 Flush the net buffer queue.
1771
1772 @param[in, out] NbufQue Pointer to the queue to be flushed.
1773
1774 **/
1775 VOID
1776 EFIAPI
1777 NetbufQueFlush (
1778 IN OUT NET_BUF_QUEUE *NbufQue
1779 );
1780
1781 /**
1782 Compute the checksum for a bulk of data.
1783
1784 @param[in] Bulk Pointer to the data.
1785 @param[in] Len Length of the data, in bytes.
1786
1787 @return The computed checksum.
1788
1789 **/
1790 UINT16
1791 EFIAPI
1792 NetblockChecksum (
1793 IN UINT8 *Bulk,
1794 IN UINT32 Len
1795 );
1796
1797 /**
1798 Add two checksums.
1799
1800 @param[in] Checksum1 The first checksum to be added.
1801 @param[in] Checksum2 The second checksum to be added.
1802
1803 @return The new checksum.
1804
1805 **/
1806 UINT16
1807 EFIAPI
1808 NetAddChecksum (
1809 IN UINT16 Checksum1,
1810 IN UINT16 Checksum2
1811 );
1812
1813 /**
1814 Compute the checksum for a NET_BUF.
1815
1816 @param[in] Nbuf Pointer to the net buffer.
1817
1818 @return The computed checksum.
1819
1820 **/
1821 UINT16
1822 EFIAPI
1823 NetbufChecksum (
1824 IN NET_BUF *Nbuf
1825 );
1826
1827 /**
1828 Compute the checksum for TCP/UDP pseudo header.
1829
1830 Src and Dst are in network byte order, and Len is in host byte order.
1831
1832 @param[in] Src The source address of the packet.
1833 @param[in] Dst The destination address of the packet.
1834 @param[in] Proto The protocol type of the packet.
1835 @param[in] Len The length of the packet.
1836
1837 @return The computed checksum.
1838
1839 **/
1840 UINT16
1841 EFIAPI
1842 NetPseudoHeadChecksum (
1843 IN IP4_ADDR Src,
1844 IN IP4_ADDR Dst,
1845 IN UINT8 Proto,
1846 IN UINT16 Len
1847 );
1848
1849 /**
1850 Compute the checksum for TCP6/UDP6 pseudo header.
1851
1852 Src and Dst are in network byte order, and Len is in host byte order.
1853
1854 @param[in] Src The source address of the packet.
1855 @param[in] Dst The destination address of the packet.
1856 @param[in] NextHeader The protocol type of the packet.
1857 @param[in] Len The length of the packet.
1858
1859 @return The computed checksum.
1860
1861 **/
1862 UINT16
1863 NetIp6PseudoHeadChecksum (
1864 IN EFI_IPv6_ADDRESS *Src,
1865 IN EFI_IPv6_ADDRESS *Dst,
1866 IN UINT8 NextHeader,
1867 IN UINT32 Len
1868 );
1869 #endif