]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Include/Library/NetLib.h
MdeModulePkg: Use monotonic count to initialize the NetLib random seed.
[mirror_edk2.git] / MdeModulePkg / Include / Library / NetLib.h
1 /** @file
2 This library is only intended to be used by UEFI network stack modules.
3 It provides basic functions for the UEFI network stack.
4
5 Copyright (c) 2005 - 2012, Intel Corporation. All rights reserved.<BR>
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution. The full text of the license may be found at<BR>
9 http://opensource.org/licenses/bsd-license.php
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #ifndef _NET_LIB_H_
17 #define _NET_LIB_H_
18
19 #include <Protocol/Ip6.h>
20
21 #include <Library/BaseLib.h>
22 #include <Library/BaseMemoryLib.h>
23
24 typedef UINT32 IP4_ADDR;
25 typedef UINT32 TCP_SEQNO;
26 typedef UINT16 TCP_PORTNO;
27
28
29 #define NET_ETHER_ADDR_LEN 6
30 #define NET_IFTYPE_ETHERNET 0x01
31
32 #define NET_VLAN_TAG_LEN 4
33 #define ETHER_TYPE_VLAN 0x8100
34
35 #define EFI_IP_PROTO_UDP 0x11
36 #define EFI_IP_PROTO_TCP 0x06
37 #define EFI_IP_PROTO_ICMP 0x01
38 #define IP4_PROTO_IGMP 0x02
39 #define IP6_ICMP 58
40
41 //
42 // The address classification
43 //
44 #define IP4_ADDR_CLASSA 1
45 #define IP4_ADDR_CLASSB 2
46 #define IP4_ADDR_CLASSC 3
47 #define IP4_ADDR_CLASSD 4
48 #define IP4_ADDR_CLASSE 5
49
50 #define IP4_MASK_NUM 33
51 #define IP6_PREFIX_NUM 129
52
53 #define IP6_HOP_BY_HOP 0
54 #define IP6_DESTINATION 60
55 #define IP6_ROUTING 43
56 #define IP6_FRAGMENT 44
57 #define IP6_AH 51
58 #define IP6_ESP 50
59 #define IP6_NO_NEXT_HEADER 59
60
61 #define IP_VERSION_4 4
62 #define IP_VERSION_6 6
63
64 #define IP6_PREFIX_LENGTH 64
65
66 #pragma pack(1)
67
68 //
69 // Ethernet head definition
70 //
71 typedef struct {
72 UINT8 DstMac [NET_ETHER_ADDR_LEN];
73 UINT8 SrcMac [NET_ETHER_ADDR_LEN];
74 UINT16 EtherType;
75 } ETHER_HEAD;
76
77 //
78 // 802.1Q VLAN Tag Control Information
79 //
80 typedef union {
81 struct {
82 UINT16 Vid : 12; // Unique VLAN identifier (0 to 4094)
83 UINT16 Cfi : 1; // Canonical Format Indicator
84 UINT16 Priority : 3; // 802.1Q priority level (0 to 7)
85 } Bits;
86 UINT16 Uint16;
87 } VLAN_TCI;
88
89 #define VLAN_TCI_CFI_CANONICAL_MAC 0
90 #define VLAN_TCI_CFI_NON_CANONICAL_MAC 1
91
92 //
93 // The EFI_IP4_HEADER is hard to use because the source and
94 // destination address are defined as EFI_IPv4_ADDRESS, which
95 // is a structure. Two structures can't be compared or masked
96 // directly. This is why there is an internal representation.
97 //
98 typedef struct {
99 UINT8 HeadLen : 4;
100 UINT8 Ver : 4;
101 UINT8 Tos;
102 UINT16 TotalLen;
103 UINT16 Id;
104 UINT16 Fragment;
105 UINT8 Ttl;
106 UINT8 Protocol;
107 UINT16 Checksum;
108 IP4_ADDR Src;
109 IP4_ADDR Dst;
110 } IP4_HEAD;
111
112
113 //
114 // ICMP head definition. Each ICMP message is categorized as either an error
115 // message or query message. Two message types have their own head format.
116 //
117 typedef struct {
118 UINT8 Type;
119 UINT8 Code;
120 UINT16 Checksum;
121 } IP4_ICMP_HEAD;
122
123 typedef struct {
124 IP4_ICMP_HEAD Head;
125 UINT32 Fourth; // 4th filed of the head, it depends on Type.
126 IP4_HEAD IpHead;
127 } IP4_ICMP_ERROR_HEAD;
128
129 typedef struct {
130 IP4_ICMP_HEAD Head;
131 UINT16 Id;
132 UINT16 Seq;
133 } IP4_ICMP_QUERY_HEAD;
134
135 typedef struct {
136 UINT8 Type;
137 UINT8 Code;
138 UINT16 Checksum;
139 } IP6_ICMP_HEAD;
140
141 typedef struct {
142 IP6_ICMP_HEAD Head;
143 UINT32 Fourth;
144 EFI_IP6_HEADER IpHead;
145 } IP6_ICMP_ERROR_HEAD;
146
147 typedef struct {
148 IP6_ICMP_HEAD Head;
149 UINT32 Fourth;
150 } IP6_ICMP_INFORMATION_HEAD;
151
152 //
153 // UDP header definition
154 //
155 typedef struct {
156 UINT16 SrcPort;
157 UINT16 DstPort;
158 UINT16 Length;
159 UINT16 Checksum;
160 } EFI_UDP_HEADER;
161
162 //
163 // TCP header definition
164 //
165 typedef struct {
166 TCP_PORTNO SrcPort;
167 TCP_PORTNO DstPort;
168 TCP_SEQNO Seq;
169 TCP_SEQNO Ack;
170 UINT8 Res : 4;
171 UINT8 HeadLen : 4;
172 UINT8 Flag;
173 UINT16 Wnd;
174 UINT16 Checksum;
175 UINT16 Urg;
176 } TCP_HEAD;
177
178 #pragma pack()
179
180 #define NET_MAC_EQUAL(pMac1, pMac2, Len) \
181 (CompareMem ((pMac1), (pMac2), Len) == 0)
182
183 #define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \
184 (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))
185
186 #define NTOHL(x) SwapBytes32 (x)
187
188 #define HTONL(x) NTOHL(x)
189
190 #define NTOHS(x) SwapBytes16 (x)
191
192 #define HTONS(x) NTOHS(x)
193 #define NTOHLL(x) SwapBytes64 (x)
194 #define HTONLL(x) NTOHLL(x)
195 #define NTOHLLL(x) Ip6Swap128 (x)
196 #define HTONLLL(x) NTOHLLL(x)
197
198 //
199 // Test the IP's attribute, All the IPs are in host byte order.
200 //
201 #define IP4_IS_MULTICAST(Ip) (((Ip) & 0xF0000000) == 0xE0000000)
202 #define IP4_IS_LOCAL_BROADCAST(Ip) ((Ip) == 0xFFFFFFFF)
203 #define IP4_NET_EQUAL(Ip1, Ip2, NetMask) (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))
204 #define IP4_IS_VALID_NETMASK(Ip) (NetGetMaskLength (Ip) != IP4_MASK_NUM)
205
206 #define IP6_IS_MULTICAST(Ip6) (((Ip6)->Addr[0]) == 0xFF)
207
208 //
209 // Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.
210 //
211 #define EFI_IP4(EfiIpAddr) (*(IP4_ADDR *) ((EfiIpAddr).Addr))
212 #define EFI_NTOHL(EfiIp) (NTOHL (EFI_IP4 ((EfiIp))))
213 #define EFI_IP4_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)
214
215 #define EFI_IP6_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0)
216
217 #define IP4_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv4_ADDRESS)))
218 #define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS)))
219 #define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS)))
220
221 //
222 // The debug level definition. This value is also used as the
223 // syslog's servity level. Don't change it.
224 //
225 #define NETDEBUG_LEVEL_TRACE 5
226 #define NETDEBUG_LEVEL_WARNING 4
227 #define NETDEBUG_LEVEL_ERROR 3
228
229 //
230 // Network debug message is sent out as syslog packet.
231 //
232 #define NET_SYSLOG_FACILITY 16 // Syslog local facility local use
233 #define NET_SYSLOG_PACKET_LEN 512
234 #define NET_SYSLOG_TX_TIMEOUT (500 * 1000 * 10) // 500ms
235 #define NET_DEBUG_MSG_LEN 470 // 512 - (ether+ip4+udp4 head length)
236
237 //
238 // The debug output expects the ASCII format string, Use %a to print ASCII
239 // string, and %s to print UNICODE string. PrintArg must be enclosed in ().
240 // For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name));
241 //
242 #define NET_DEBUG_TRACE(Module, PrintArg) \
243 NetDebugOutput ( \
244 NETDEBUG_LEVEL_TRACE, \
245 Module, \
246 __FILE__, \
247 __LINE__, \
248 NetDebugASPrint PrintArg \
249 )
250
251 #define NET_DEBUG_WARNING(Module, PrintArg) \
252 NetDebugOutput ( \
253 NETDEBUG_LEVEL_WARNING, \
254 Module, \
255 __FILE__, \
256 __LINE__, \
257 NetDebugASPrint PrintArg \
258 )
259
260 #define NET_DEBUG_ERROR(Module, PrintArg) \
261 NetDebugOutput ( \
262 NETDEBUG_LEVEL_ERROR, \
263 Module, \
264 __FILE__, \
265 __LINE__, \
266 NetDebugASPrint PrintArg \
267 )
268
269 /**
270 Allocate a buffer, then format the message to it. This is a
271 help function for the NET_DEBUG_XXX macros. The PrintArg of
272 these macros treats the variable length print parameters as a
273 single parameter, and pass it to the NetDebugASPrint. For
274 example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))
275 if extracted to:
276
277 NetDebugOutput (
278 NETDEBUG_LEVEL_TRACE,
279 "Tcp",
280 __FILE__,
281 __LINE__,
282 NetDebugASPrint ("State transit to %a\n", Name)
283 )
284
285 @param Format The ASCII format string.
286 @param ... The variable length parameter whose format is determined
287 by the Format string.
288
289 @return The buffer containing the formatted message,
290 or NULL if memory allocation failed.
291
292 **/
293 CHAR8 *
294 EFIAPI
295 NetDebugASPrint (
296 IN CHAR8 *Format,
297 ...
298 );
299
300 /**
301 Builds an UDP4 syslog packet and send it using SNP.
302
303 This function will locate a instance of SNP then send the message through it.
304 Because it isn't open the SNP BY_DRIVER, apply caution when using it.
305
306 @param Level The servity level of the message.
307 @param Module The Moudle that generates the log.
308 @param File The file that contains the log.
309 @param Line The exact line that contains the log.
310 @param Message The user message to log.
311
312 @retval EFI_INVALID_PARAMETER Any input parameter is invalid.
313 @retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet
314 @retval EFI_SUCCESS The log is discard because that it is more verbose
315 than the mNetDebugLevelMax. Or, it has been sent out.
316 **/
317 EFI_STATUS
318 EFIAPI
319 NetDebugOutput (
320 IN UINT32 Level,
321 IN UINT8 *Module,
322 IN UINT8 *File,
323 IN UINT32 Line,
324 IN UINT8 *Message
325 );
326
327
328 /**
329 Return the length of the mask.
330
331 Return the length of the mask. Valid values are 0 to 32.
332 If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.
333 NetMask is in the host byte order.
334
335 @param[in] NetMask The netmask to get the length from.
336
337 @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid.
338
339 **/
340 INTN
341 EFIAPI
342 NetGetMaskLength (
343 IN IP4_ADDR NetMask
344 );
345
346 /**
347 Return the class of the IP address, such as class A, B, C.
348 Addr is in host byte order.
349
350 The address of class A starts with 0.
351 If the address belong to class A, return IP4_ADDR_CLASSA.
352 The address of class B starts with 10.
353 If the address belong to class B, return IP4_ADDR_CLASSB.
354 The address of class C starts with 110.
355 If the address belong to class C, return IP4_ADDR_CLASSC.
356 The address of class D starts with 1110.
357 If the address belong to class D, return IP4_ADDR_CLASSD.
358 The address of class E starts with 1111.
359 If the address belong to class E, return IP4_ADDR_CLASSE.
360
361
362 @param[in] Addr The address to get the class from.
363
364 @return IP address class, such as IP4_ADDR_CLASSA.
365
366 **/
367 INTN
368 EFIAPI
369 NetGetIpClass (
370 IN IP4_ADDR Addr
371 );
372
373 /**
374 Check whether the IP is a valid unicast address according to
375 the netmask. If NetMask is zero, use the IP address's class to get the default mask.
376
377 If Ip is 0, IP is not a valid unicast address.
378 Class D address is used for multicasting and class E address is reserved for future. If Ip
379 belongs to class D or class E, Ip is not a valid unicast address.
380 If all bits of the host address of Ip are 0 or 1, Ip is not a valid unicast address.
381
382 @param[in] Ip The IP to check against.
383 @param[in] NetMask The mask of the IP.
384
385 @return TRUE if Ip is a valid unicast address on the network, otherwise FALSE.
386
387 **/
388 BOOLEAN
389 EFIAPI
390 NetIp4IsUnicast (
391 IN IP4_ADDR Ip,
392 IN IP4_ADDR NetMask
393 );
394
395 /**
396 Check whether the incoming IPv6 address is a valid unicast address.
397
398 If the address is a multicast address has binary 0xFF at the start, it is not
399 a valid unicast address. If the address is unspecified ::, it is not a valid
400 unicast address to be assigned to any node. If the address is loopback address
401 ::1, it is also not a valid unicast address to be assigned to any physical
402 interface.
403
404 @param[in] Ip6 The IPv6 address to check against.
405
406 @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.
407
408 **/
409 BOOLEAN
410 EFIAPI
411 NetIp6IsValidUnicast (
412 IN EFI_IPv6_ADDRESS *Ip6
413 );
414
415
416 /**
417 Check whether the incoming Ipv6 address is the unspecified address or not.
418
419 @param[in] Ip6 - Ip6 address, in network order.
420
421 @retval TRUE - Yes, incoming Ipv6 address is the unspecified address.
422 @retval FALSE - The incoming Ipv6 address is not the unspecified address
423
424 **/
425 BOOLEAN
426 EFIAPI
427 NetIp6IsUnspecifiedAddr (
428 IN EFI_IPv6_ADDRESS *Ip6
429 );
430
431 /**
432 Check whether the incoming Ipv6 address is a link-local address.
433
434 @param[in] Ip6 - Ip6 address, in network order.
435
436 @retval TRUE - The incoming Ipv6 address is a link-local address.
437 @retval FALSE - The incoming Ipv6 address is not a link-local address.
438
439 **/
440 BOOLEAN
441 EFIAPI
442 NetIp6IsLinkLocalAddr (
443 IN EFI_IPv6_ADDRESS *Ip6
444 );
445
446 /**
447 Check whether the Ipv6 address1 and address2 are on the connected network.
448
449 @param[in] Ip1 - Ip6 address1, in network order.
450 @param[in] Ip2 - Ip6 address2, in network order.
451 @param[in] PrefixLength - The prefix length of the checking net.
452
453 @retval TRUE - Yes, the Ipv6 address1 and address2 are connected.
454 @retval FALSE - No the Ipv6 address1 and address2 are not connected.
455
456 **/
457 BOOLEAN
458 EFIAPI
459 NetIp6IsNetEqual (
460 EFI_IPv6_ADDRESS *Ip1,
461 EFI_IPv6_ADDRESS *Ip2,
462 UINT8 PrefixLength
463 );
464
465 /**
466 Switches the endianess of an IPv6 address.
467
468 This function swaps the bytes in a 128-bit IPv6 address to switch the value
469 from little endian to big endian or vice versa. The byte swapped value is
470 returned.
471
472 @param Ip6 Points to an IPv6 address.
473
474 @return The byte swapped IPv6 address.
475
476 **/
477 EFI_IPv6_ADDRESS *
478 EFIAPI
479 Ip6Swap128 (
480 EFI_IPv6_ADDRESS *Ip6
481 );
482
483 extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM];
484
485
486 extern EFI_IPv4_ADDRESS mZeroIp4Addr;
487
488 #define NET_IS_DIGIT(Ch) (('0' <= (Ch)) && ((Ch) <= '9'))
489 #define NET_ROUNDUP(size, unit) (((size) + (unit) - 1) & (~((unit) - 1)))
490 #define NET_IS_LOWER_CASE_CHAR(Ch) (('a' <= (Ch)) && ((Ch) <= 'z'))
491 #define NET_IS_UPPER_CASE_CHAR(Ch) (('A' <= (Ch)) && ((Ch) <= 'Z'))
492
493 #define TICKS_PER_MS 10000U
494 #define TICKS_PER_SECOND 10000000U
495
496 #define NET_RANDOM(Seed) ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)
497
498 /**
499 Extract a UINT32 from a byte stream.
500
501 This function copies a UINT32 from a byte stream, and then converts it from Network
502 byte order to host byte order. Use this function to avoid alignment error.
503
504 @param[in] Buf The buffer to extract the UINT32.
505
506 @return The UINT32 extracted.
507
508 **/
509 UINT32
510 EFIAPI
511 NetGetUint32 (
512 IN UINT8 *Buf
513 );
514
515 /**
516 Puts a UINT32 into the byte stream in network byte order.
517
518 Converts a UINT32 from host byte order to network byte order, then copies it to the
519 byte stream.
520
521 @param[in, out] Buf The buffer in which to put the UINT32.
522 @param[in] Data The data to be converted and put into the byte stream.
523
524 **/
525 VOID
526 EFIAPI
527 NetPutUint32 (
528 IN OUT UINT8 *Buf,
529 IN UINT32 Data
530 );
531
532 /**
533 Initialize a random seed using current time and monotonic count.
534
535 Get current time and monotonic count first. Then initialize a random seed
536 based on some basic mathematics operation on the hour, day, minute, second,
537 nanosecond and year of the current time and the monotonic count value.
538
539 @return The random seed initialized with current time.
540
541 **/
542 UINT32
543 EFIAPI
544 NetRandomInitSeed (
545 VOID
546 );
547
548
549 #define NET_LIST_USER_STRUCT(Entry, Type, Field) \
550 BASE_CR(Entry, Type, Field)
551
552 #define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig) \
553 CR(Entry, Type, Field, Sig)
554
555 //
556 // Iterate through the double linked list. It is NOT delete safe
557 //
558 #define NET_LIST_FOR_EACH(Entry, ListHead) \
559 for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)
560
561 //
562 // Iterate through the double linked list. This is delete-safe.
563 // Don't touch NextEntry. Also, don't use this macro if list
564 // entries other than the Entry may be deleted when processing
565 // the current Entry.
566 //
567 #define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \
568 for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \
569 Entry != (ListHead); \
570 Entry = NextEntry, NextEntry = Entry->ForwardLink \
571 )
572
573 //
574 // Make sure the list isn't empty before getting the first/last record.
575 //
576 #define NET_LIST_HEAD(ListHead, Type, Field) \
577 NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)
578
579 #define NET_LIST_TAIL(ListHead, Type, Field) \
580 NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)
581
582
583 /**
584 Remove the first node entry on the list, and return the removed node entry.
585
586 Removes the first node entry from a doubly linked list. It is up to the caller of
587 this function to release the memory used by the first node, if that is required. On
588 exit, the removed node is returned.
589
590 If Head is NULL, then ASSERT().
591 If Head was not initialized, then ASSERT().
592 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
593 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
594 then ASSERT().
595
596 @param[in, out] Head The list header.
597
598 @return The first node entry that is removed from the list, NULL if the list is empty.
599
600 **/
601 LIST_ENTRY *
602 EFIAPI
603 NetListRemoveHead (
604 IN OUT LIST_ENTRY *Head
605 );
606
607 /**
608 Remove the last node entry on the list and return the removed node entry.
609
610 Removes the last node entry from a doubly linked list. It is up to the caller of
611 this function to release the memory used by the first node, if that is required. On
612 exit, the removed node is returned.
613
614 If Head is NULL, then ASSERT().
615 If Head was not initialized, then ASSERT().
616 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
617 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
618 then ASSERT().
619
620 @param[in, out] Head The list head.
621
622 @return The last node entry that is removed from the list, NULL if the list is empty.
623
624 **/
625 LIST_ENTRY *
626 EFIAPI
627 NetListRemoveTail (
628 IN OUT LIST_ENTRY *Head
629 );
630
631 /**
632 Insert a new node entry after a designated node entry of a doubly linked list.
633
634 Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry
635 of the doubly linked list.
636
637 @param[in, out] PrevEntry The entry after which to insert.
638 @param[in, out] NewEntry The new entry to insert.
639
640 **/
641 VOID
642 EFIAPI
643 NetListInsertAfter (
644 IN OUT LIST_ENTRY *PrevEntry,
645 IN OUT LIST_ENTRY *NewEntry
646 );
647
648 /**
649 Insert a new node entry before a designated node entry of a doubly linked list.
650
651 Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry
652 of the doubly linked list.
653
654 @param[in, out] PostEntry The entry to insert before.
655 @param[in, out] NewEntry The new entry to insert.
656
657 **/
658 VOID
659 EFIAPI
660 NetListInsertBefore (
661 IN OUT LIST_ENTRY *PostEntry,
662 IN OUT LIST_ENTRY *NewEntry
663 );
664
665 /**
666 Callback function which provided by user to remove one node in NetDestroyLinkList process.
667
668 @param[in] Entry The entry to be removed.
669 @param[in] Context Pointer to the callback context corresponds to the Context in NetDestroyLinkList.
670
671 @retval EFI_SUCCESS The entry has been removed successfully.
672 @retval Others Fail to remove the entry.
673
674 **/
675 typedef
676 EFI_STATUS
677 (EFIAPI *NET_DESTROY_LINK_LIST_CALLBACK) (
678 IN LIST_ENTRY *Entry,
679 IN VOID *Context OPTIONAL
680 );
681
682 /**
683 Safe destroy nodes in a linked list, and return the length of the list after all possible operations finished.
684
685 Destroy network children list by list traversals is not safe due to graph dependencies between nodes.
686 This function performs a safe traversal to destroy these nodes by checking to see if the node being destroyed
687 has been removed from the list or not.
688 If it has been removed, then restart the traversal from the head.
689 If it hasn't been removed, then continue with the next node directly.
690 This function will end the iterate and return the CallBack's last return value if error happens,
691 or retrun EFI_SUCCESS if 2 complete passes are made with no changes in the number of children in the list.
692
693 @param[in] List The head of the list.
694 @param[in] CallBack Pointer to the callback function to destroy one node in the list.
695 @param[in] Context Pointer to the callback function's context: corresponds to the
696 parameter Context in NET_DESTROY_LINK_LIST_CALLBACK.
697 @param[out] ListLength The length of the link list if the function returns successfully.
698
699 @retval EFI_SUCCESS Two complete passes are made with no changes in the number of children.
700 @retval EFI_INVALID_PARAMETER The input parameter is invalid.
701 @retval Others Return the CallBack's last return value.
702
703 **/
704 EFI_STATUS
705 EFIAPI
706 NetDestroyLinkList (
707 IN LIST_ENTRY *List,
708 IN NET_DESTROY_LINK_LIST_CALLBACK CallBack,
709 IN VOID *Context, OPTIONAL
710 OUT UINTN *ListLength OPTIONAL
711 );
712
713 /**
714 This function checks the input Handle to see if it's one of these handles in ChildHandleBuffer.
715
716 @param[in] Handle Handle to be checked.
717 @param[in] NumberOfChildren Number of Handles in ChildHandleBuffer.
718 @param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL
719 if NumberOfChildren is 0.
720
721 @retval TURE Found the input Handle in ChildHandleBuffer.
722 @retval FALSE Can't find the input Handle in ChildHandleBuffer.
723
724 **/
725 BOOLEAN
726 EFIAPI
727 NetIsInHandleBuffer (
728 IN EFI_HANDLE Handle,
729 IN UINTN NumberOfChildren,
730 IN EFI_HANDLE *ChildHandleBuffer OPTIONAL
731 );
732
733 //
734 // Object container: EFI network stack spec defines various kinds of
735 // tokens. The drivers can share code to manage those objects.
736 //
737 typedef struct {
738 LIST_ENTRY Link;
739 VOID *Key;
740 VOID *Value;
741 } NET_MAP_ITEM;
742
743 typedef struct {
744 LIST_ENTRY Used;
745 LIST_ENTRY Recycled;
746 UINTN Count;
747 } NET_MAP;
748
749 #define NET_MAP_INCREAMENT 64
750
751 /**
752 Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.
753
754 Initialize the forward and backward links of two head nodes donated by Map->Used
755 and Map->Recycled of two doubly linked lists.
756 Initializes the count of the <Key, Value> pairs in the netmap to zero.
757
758 If Map is NULL, then ASSERT().
759 If the address of Map->Used is NULL, then ASSERT().
760 If the address of Map->Recycled is NULl, then ASSERT().
761
762 @param[in, out] Map The netmap to initialize.
763
764 **/
765 VOID
766 EFIAPI
767 NetMapInit (
768 IN OUT NET_MAP *Map
769 );
770
771 /**
772 To clean up the netmap, that is, release allocated memories.
773
774 Removes all nodes of the Used doubly linked list and frees memory of all related netmap items.
775 Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.
776 The number of the <Key, Value> pairs in the netmap is set to zero.
777
778 If Map is NULL, then ASSERT().
779
780 @param[in, out] Map The netmap to clean up.
781
782 **/
783 VOID
784 EFIAPI
785 NetMapClean (
786 IN OUT NET_MAP *Map
787 );
788
789 /**
790 Test whether the netmap is empty and return true if it is.
791
792 If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.
793
794 If Map is NULL, then ASSERT().
795
796
797 @param[in] Map The net map to test.
798
799 @return TRUE if the netmap is empty, otherwise FALSE.
800
801 **/
802 BOOLEAN
803 EFIAPI
804 NetMapIsEmpty (
805 IN NET_MAP *Map
806 );
807
808 /**
809 Return the number of the <Key, Value> pairs in the netmap.
810
811 @param[in] Map The netmap to get the entry number.
812
813 @return The entry number in the netmap.
814
815 **/
816 UINTN
817 EFIAPI
818 NetMapGetCount (
819 IN NET_MAP *Map
820 );
821
822 /**
823 Allocate an item to save the <Key, Value> pair to the head of the netmap.
824
825 Allocate an item to save the <Key, Value> pair and add corresponding node entry
826 to the beginning of the Used doubly linked list. The number of the <Key, Value>
827 pairs in the netmap increase by 1.
828
829 If Map is NULL, then ASSERT().
830
831 @param[in, out] Map The netmap to insert into.
832 @param[in] Key The user's key.
833 @param[in] Value The user's value for the key.
834
835 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
836 @retval EFI_SUCCESS The item is inserted to the head.
837
838 **/
839 EFI_STATUS
840 EFIAPI
841 NetMapInsertHead (
842 IN OUT NET_MAP *Map,
843 IN VOID *Key,
844 IN VOID *Value OPTIONAL
845 );
846
847 /**
848 Allocate an item to save the <Key, Value> pair to the tail of the netmap.
849
850 Allocate an item to save the <Key, Value> pair and add corresponding node entry
851 to the tail of the Used doubly linked list. The number of the <Key, Value>
852 pairs in the netmap increase by 1.
853
854 If Map is NULL, then ASSERT().
855
856 @param[in, out] Map The netmap to insert into.
857 @param[in] Key The user's key.
858 @param[in] Value The user's value for the key.
859
860 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
861 @retval EFI_SUCCESS The item is inserted to the tail.
862
863 **/
864 EFI_STATUS
865 EFIAPI
866 NetMapInsertTail (
867 IN OUT NET_MAP *Map,
868 IN VOID *Key,
869 IN VOID *Value OPTIONAL
870 );
871
872 /**
873 Finds the key in the netmap and returns the point to the item containing the Key.
874
875 Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every
876 item with the key to search. It returns the point to the item contains the Key if found.
877
878 If Map is NULL, then ASSERT().
879
880 @param[in] Map The netmap to search within.
881 @param[in] Key The key to search.
882
883 @return The point to the item contains the Key, or NULL if Key isn't in the map.
884
885 **/
886 NET_MAP_ITEM *
887 EFIAPI
888 NetMapFindKey (
889 IN NET_MAP *Map,
890 IN VOID *Key
891 );
892
893 /**
894 Remove the node entry of the item from the netmap and return the key of the removed item.
895
896 Remove the node entry of the item from the Used doubly linked list of the netmap.
897 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
898 entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,
899 Value will point to the value of the item. It returns the key of the removed item.
900
901 If Map is NULL, then ASSERT().
902 If Item is NULL, then ASSERT().
903 if item in not in the netmap, then ASSERT().
904
905 @param[in, out] Map The netmap to remove the item from.
906 @param[in, out] Item The item to remove.
907 @param[out] Value The variable to receive the value if not NULL.
908
909 @return The key of the removed item.
910
911 **/
912 VOID *
913 EFIAPI
914 NetMapRemoveItem (
915 IN OUT NET_MAP *Map,
916 IN OUT NET_MAP_ITEM *Item,
917 OUT VOID **Value OPTIONAL
918 );
919
920 /**
921 Remove the first node entry on the netmap and return the key of the removed item.
922
923 Remove the first node entry from the Used doubly linked list of the netmap.
924 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
925 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
926 parameter Value will point to the value of the item. It returns the key of the removed item.
927
928 If Map is NULL, then ASSERT().
929 If the Used doubly linked list is empty, then ASSERT().
930
931 @param[in, out] Map The netmap to remove the head from.
932 @param[out] Value The variable to receive the value if not NULL.
933
934 @return The key of the item removed.
935
936 **/
937 VOID *
938 EFIAPI
939 NetMapRemoveHead (
940 IN OUT NET_MAP *Map,
941 OUT VOID **Value OPTIONAL
942 );
943
944 /**
945 Remove the last node entry on the netmap and return the key of the removed item.
946
947 Remove the last node entry from the Used doubly linked list of the netmap.
948 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
949 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
950 parameter Value will point to the value of the item. It returns the key of the removed item.
951
952 If Map is NULL, then ASSERT().
953 If the Used doubly linked list is empty, then ASSERT().
954
955 @param[in, out] Map The netmap to remove the tail from.
956 @param[out] Value The variable to receive the value if not NULL.
957
958 @return The key of the item removed.
959
960 **/
961 VOID *
962 EFIAPI
963 NetMapRemoveTail (
964 IN OUT NET_MAP *Map,
965 OUT VOID **Value OPTIONAL
966 );
967
968 typedef
969 EFI_STATUS
970 (EFIAPI *NET_MAP_CALLBACK) (
971 IN NET_MAP *Map,
972 IN NET_MAP_ITEM *Item,
973 IN VOID *Arg
974 );
975
976 /**
977 Iterate through the netmap and call CallBack for each item.
978
979 It will contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break
980 from the loop. It returns the CallBack's last return value. This function is
981 delete safe for the current item.
982
983 If Map is NULL, then ASSERT().
984 If CallBack is NULL, then ASSERT().
985
986 @param[in] Map The Map to iterate through.
987 @param[in] CallBack The callback function to call for each item.
988 @param[in] Arg The opaque parameter to the callback.
989
990 @retval EFI_SUCCESS There is no item in the netmap, or CallBack for each item
991 returns EFI_SUCCESS.
992 @retval Others It returns the CallBack's last return value.
993
994 **/
995 EFI_STATUS
996 EFIAPI
997 NetMapIterate (
998 IN NET_MAP *Map,
999 IN NET_MAP_CALLBACK CallBack,
1000 IN VOID *Arg OPTIONAL
1001 );
1002
1003
1004 //
1005 // Helper functions to implement driver binding and service binding protocols.
1006 //
1007 /**
1008 Create a child of the service that is identified by ServiceBindingGuid.
1009
1010 Get the ServiceBinding Protocol first, then use it to create a child.
1011
1012 If ServiceBindingGuid is NULL, then ASSERT().
1013 If ChildHandle is NULL, then ASSERT().
1014
1015 @param[in] Controller The controller which has the service installed.
1016 @param[in] Image The image handle used to open service.
1017 @param[in] ServiceBindingGuid The service's Guid.
1018 @param[in, out] ChildHandle The handle to receive the created child.
1019
1020 @retval EFI_SUCCESS The child was successfully created.
1021 @retval Others Failed to create the child.
1022
1023 **/
1024 EFI_STATUS
1025 EFIAPI
1026 NetLibCreateServiceChild (
1027 IN EFI_HANDLE Controller,
1028 IN EFI_HANDLE Image,
1029 IN EFI_GUID *ServiceBindingGuid,
1030 IN OUT EFI_HANDLE *ChildHandle
1031 );
1032
1033 /**
1034 Destroy a child of the service that is identified by ServiceBindingGuid.
1035
1036 Get the ServiceBinding Protocol first, then use it to destroy a child.
1037
1038 If ServiceBindingGuid is NULL, then ASSERT().
1039
1040 @param[in] Controller The controller which has the service installed.
1041 @param[in] Image The image handle used to open service.
1042 @param[in] ServiceBindingGuid The service's Guid.
1043 @param[in] ChildHandle The child to destroy.
1044
1045 @retval EFI_SUCCESS The child was destroyed.
1046 @retval Others Failed to destroy the child.
1047
1048 **/
1049 EFI_STATUS
1050 EFIAPI
1051 NetLibDestroyServiceChild (
1052 IN EFI_HANDLE Controller,
1053 IN EFI_HANDLE Image,
1054 IN EFI_GUID *ServiceBindingGuid,
1055 IN EFI_HANDLE ChildHandle
1056 );
1057
1058 /**
1059 Get handle with Simple Network Protocol installed on it.
1060
1061 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1062 If Simple Network Protocol is already installed on the ServiceHandle, the
1063 ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,
1064 try to find its parent handle with SNP installed.
1065
1066 @param[in] ServiceHandle The handle where network service binding protocols are
1067 installed on.
1068 @param[out] Snp The pointer to store the address of the SNP instance.
1069 This is an optional parameter that may be NULL.
1070
1071 @return The SNP handle, or NULL if not found.
1072
1073 **/
1074 EFI_HANDLE
1075 EFIAPI
1076 NetLibGetSnpHandle (
1077 IN EFI_HANDLE ServiceHandle,
1078 OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL
1079 );
1080
1081 /**
1082 Retrieve VLAN ID of a VLAN device handle.
1083
1084 Search VLAN device path node in Device Path of specified ServiceHandle and
1085 return its VLAN ID. If no VLAN device path node found, then this ServiceHandle
1086 is not a VLAN device handle, and 0 will be returned.
1087
1088 @param[in] ServiceHandle The handle where network service binding protocols are
1089 installed on.
1090
1091 @return VLAN ID of the device handle, or 0 if not a VLAN device.
1092
1093 **/
1094 UINT16
1095 EFIAPI
1096 NetLibGetVlanId (
1097 IN EFI_HANDLE ServiceHandle
1098 );
1099
1100 /**
1101 Find VLAN device handle with specified VLAN ID.
1102
1103 The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.
1104 This function will append VLAN device path node to the parent device path,
1105 and then use LocateDevicePath() to find the correct VLAN device handle.
1106
1107 @param[in] ControllerHandle The handle where network service binding protocols are
1108 installed on.
1109 @param[in] VlanId The configured VLAN ID for the VLAN device.
1110
1111 @return The VLAN device handle, or NULL if not found.
1112
1113 **/
1114 EFI_HANDLE
1115 EFIAPI
1116 NetLibGetVlanHandle (
1117 IN EFI_HANDLE ControllerHandle,
1118 IN UINT16 VlanId
1119 );
1120
1121 /**
1122 Get MAC address associated with the network service handle.
1123
1124 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1125 If SNP is installed on the ServiceHandle or its parent handle, MAC address will
1126 be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.
1127
1128 @param[in] ServiceHandle The handle where network service binding protocols are
1129 installed on.
1130 @param[out] MacAddress The pointer to store the returned MAC address.
1131 @param[out] AddressSize The length of returned MAC address.
1132
1133 @retval EFI_SUCCESS MAC address was returned successfully.
1134 @retval Others Failed to get SNP mode data.
1135
1136 **/
1137 EFI_STATUS
1138 EFIAPI
1139 NetLibGetMacAddress (
1140 IN EFI_HANDLE ServiceHandle,
1141 OUT EFI_MAC_ADDRESS *MacAddress,
1142 OUT UINTN *AddressSize
1143 );
1144
1145 /**
1146 Convert MAC address of the NIC associated with specified Service Binding Handle
1147 to a unicode string. Callers are responsible for freeing the string storage.
1148
1149 Locate simple network protocol associated with the Service Binding Handle and
1150 get the mac address from SNP. Then convert the mac address into a unicode
1151 string. It takes 2 unicode characters to represent a 1 byte binary buffer.
1152 Plus one unicode character for the null-terminator.
1153
1154 @param[in] ServiceHandle The handle where network service binding protocol is
1155 installed.
1156 @param[in] ImageHandle The image handle used to act as the agent handle to
1157 get the simple network protocol. This parameter is
1158 optional and may be NULL.
1159 @param[out] MacString The pointer to store the address of the string
1160 representation of the mac address.
1161
1162 @retval EFI_SUCCESS Converted the mac address a unicode string successfully.
1163 @retval EFI_OUT_OF_RESOURCES There are not enough memory resources.
1164 @retval Others Failed to open the simple network protocol.
1165
1166 **/
1167 EFI_STATUS
1168 EFIAPI
1169 NetLibGetMacString (
1170 IN EFI_HANDLE ServiceHandle,
1171 IN EFI_HANDLE ImageHandle, OPTIONAL
1172 OUT CHAR16 **MacString
1173 );
1174
1175 /**
1176 Detect media status for specified network device.
1177
1178 The underlying UNDI driver may or may not support reporting media status from
1179 GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine
1180 will try to invoke Snp->GetStatus() to get the media status. If media is already
1181 present, it returns directly. If media is not present, it will stop SNP and then
1182 restart SNP to get the latest media status. This provides an opportunity to get
1183 the correct media status for old UNDI driver, which doesn't support reporting
1184 media status from GET_STATUS command.
1185 Note: there are two limitations for the current algorithm:
1186 1) For UNDI with this capability, when the cable is not attached, there will
1187 be an redundant Stop/Start() process.
1188 2) for UNDI without this capability, in case that network cable is attached when
1189 Snp->Initialize() is invoked while network cable is unattached later,
1190 NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer
1191 apps to wait for timeout time.
1192
1193 @param[in] ServiceHandle The handle where network service binding protocols are
1194 installed.
1195 @param[out] MediaPresent The pointer to store the media status.
1196
1197 @retval EFI_SUCCESS Media detection success.
1198 @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle.
1199 @retval EFI_UNSUPPORTED The network device does not support media detection.
1200 @retval EFI_DEVICE_ERROR SNP is in an unknown state.
1201
1202 **/
1203 EFI_STATUS
1204 EFIAPI
1205 NetLibDetectMedia (
1206 IN EFI_HANDLE ServiceHandle,
1207 OUT BOOLEAN *MediaPresent
1208 );
1209
1210 /**
1211 Create an IPv4 device path node.
1212
1213 The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.
1214 The header subtype of IPv4 device path node is MSG_IPv4_DP.
1215 The length of the IPv4 device path node in bytes is 19.
1216 Get other information from parameters to make up the whole IPv4 device path node.
1217
1218 @param[in, out] Node The pointer to the IPv4 device path node.
1219 @param[in] Controller The controller handle.
1220 @param[in] LocalIp The local IPv4 address.
1221 @param[in] LocalPort The local port.
1222 @param[in] RemoteIp The remote IPv4 address.
1223 @param[in] RemotePort The remote port.
1224 @param[in] Protocol The protocol type in the IP header.
1225 @param[in] UseDefaultAddress Whether this instance is using default address or not.
1226
1227 **/
1228 VOID
1229 EFIAPI
1230 NetLibCreateIPv4DPathNode (
1231 IN OUT IPv4_DEVICE_PATH *Node,
1232 IN EFI_HANDLE Controller,
1233 IN IP4_ADDR LocalIp,
1234 IN UINT16 LocalPort,
1235 IN IP4_ADDR RemoteIp,
1236 IN UINT16 RemotePort,
1237 IN UINT16 Protocol,
1238 IN BOOLEAN UseDefaultAddress
1239 );
1240
1241 /**
1242 Create an IPv6 device path node.
1243
1244 The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.
1245 The header subtype of IPv6 device path node is MSG_IPv6_DP.
1246 The length of the IPv6 device path node in bytes is 43.
1247 Get other information from parameters to make up the whole IPv6 device path node.
1248
1249 @param[in, out] Node The pointer to the IPv6 device path node.
1250 @param[in] Controller The controller handle.
1251 @param[in] LocalIp The local IPv6 address.
1252 @param[in] LocalPort The local port.
1253 @param[in] RemoteIp The remote IPv6 address.
1254 @param[in] RemotePort The remote port.
1255 @param[in] Protocol The protocol type in the IP header.
1256
1257 **/
1258 VOID
1259 EFIAPI
1260 NetLibCreateIPv6DPathNode (
1261 IN OUT IPv6_DEVICE_PATH *Node,
1262 IN EFI_HANDLE Controller,
1263 IN EFI_IPv6_ADDRESS *LocalIp,
1264 IN UINT16 LocalPort,
1265 IN EFI_IPv6_ADDRESS *RemoteIp,
1266 IN UINT16 RemotePort,
1267 IN UINT16 Protocol
1268 );
1269
1270
1271 /**
1272 Find the UNDI/SNP handle from controller and protocol GUID.
1273
1274 For example, IP will open an MNP child to transmit/receive
1275 packets. When MNP is stopped, IP should also be stopped. IP
1276 needs to find its own private data that is related the IP's
1277 service binding instance that is installed on the UNDI/SNP handle.
1278 The controller is then either an MNP or an ARP child handle. Note that
1279 IP opens these handles using BY_DRIVER. Use that infomation to get the
1280 UNDI/SNP handle.
1281
1282 @param[in] Controller The protocol handle to check.
1283 @param[in] ProtocolGuid The protocol that is related with the handle.
1284
1285 @return The UNDI/SNP handle or NULL for errors.
1286
1287 **/
1288 EFI_HANDLE
1289 EFIAPI
1290 NetLibGetNicHandle (
1291 IN EFI_HANDLE Controller,
1292 IN EFI_GUID *ProtocolGuid
1293 );
1294
1295 /**
1296 This is the default unload handle for all the network drivers.
1297
1298 Disconnect the driver specified by ImageHandle from all the devices in the handle database.
1299 Uninstall all the protocols installed in the driver entry point.
1300
1301 @param[in] ImageHandle The drivers' driver image.
1302
1303 @retval EFI_SUCCESS The image is unloaded.
1304 @retval Others Failed to unload the image.
1305
1306 **/
1307 EFI_STATUS
1308 EFIAPI
1309 NetLibDefaultUnload (
1310 IN EFI_HANDLE ImageHandle
1311 );
1312
1313 /**
1314 Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.
1315
1316 @param[in] String The pointer to the Ascii string.
1317 @param[out] Ip4Address The pointer to the converted IPv4 address.
1318
1319 @retval EFI_SUCCESS Converted to an IPv4 address successfully.
1320 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip4Address is NULL.
1321
1322 **/
1323 EFI_STATUS
1324 EFIAPI
1325 NetLibAsciiStrToIp4 (
1326 IN CONST CHAR8 *String,
1327 OUT EFI_IPv4_ADDRESS *Ip4Address
1328 );
1329
1330 /**
1331 Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the
1332 string is defined in RFC 4291 - Text Pepresentation of Addresses.
1333
1334 @param[in] String The pointer to the Ascii string.
1335 @param[out] Ip6Address The pointer to the converted IPv6 address.
1336
1337 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1338 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip6Address is NULL.
1339
1340 **/
1341 EFI_STATUS
1342 EFIAPI
1343 NetLibAsciiStrToIp6 (
1344 IN CONST CHAR8 *String,
1345 OUT EFI_IPv6_ADDRESS *Ip6Address
1346 );
1347
1348 /**
1349 Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.
1350
1351 @param[in] String The pointer to the Ascii string.
1352 @param[out] Ip4Address The pointer to the converted IPv4 address.
1353
1354 @retval EFI_SUCCESS Converted to an IPv4 address successfully.
1355 @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip4Address is NULL.
1356 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to lack of resources.
1357
1358 **/
1359 EFI_STATUS
1360 EFIAPI
1361 NetLibStrToIp4 (
1362 IN CONST CHAR16 *String,
1363 OUT EFI_IPv4_ADDRESS *Ip4Address
1364 );
1365
1366 /**
1367 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS. The format of
1368 the string is defined in RFC 4291 - Text Pepresentation of Addresses.
1369
1370 @param[in] String The pointer to the Ascii string.
1371 @param[out] Ip6Address The pointer to the converted IPv6 address.
1372
1373 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1374 @retval EFI_INVALID_PARAMETER The string is malformated or Ip6Address is NULL.
1375 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to a lack of resources.
1376
1377 **/
1378 EFI_STATUS
1379 EFIAPI
1380 NetLibStrToIp6 (
1381 IN CONST CHAR16 *String,
1382 OUT EFI_IPv6_ADDRESS *Ip6Address
1383 );
1384
1385 /**
1386 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.
1387 The format of the string is defined in RFC 4291 - Text Pepresentation of Addresses
1388 Prefixes: ipv6-address/prefix-length.
1389
1390 @param[in] String The pointer to the Ascii string.
1391 @param[out] Ip6Address The pointer to the converted IPv6 address.
1392 @param[out] PrefixLength The pointer to the converted prefix length.
1393
1394 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1395 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip6Address is NULL.
1396 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to a lack of resources.
1397
1398 **/
1399 EFI_STATUS
1400 EFIAPI
1401 NetLibStrToIp6andPrefix (
1402 IN CONST CHAR16 *String,
1403 OUT EFI_IPv6_ADDRESS *Ip6Address,
1404 OUT UINT8 *PrefixLength
1405 );
1406
1407 /**
1408
1409 Convert one EFI_IPv6_ADDRESS to Null-terminated Unicode string.
1410 The text representation of address is defined in RFC 4291.
1411
1412 @param[in] Ip6Address The pointer to the IPv6 address.
1413 @param[out] String The buffer to return the converted string.
1414 @param[in] StringSize The length in bytes of the input String.
1415
1416 @retval EFI_SUCCESS Convert to string successfully.
1417 @retval EFI_INVALID_PARAMETER The input parameter is invalid.
1418 @retval EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result. BufferSize has been
1419 updated with the size needed to complete the request.
1420 **/
1421 EFI_STATUS
1422 EFIAPI
1423 NetLibIp6ToStr (
1424 IN EFI_IPv6_ADDRESS *Ip6Address,
1425 OUT CHAR16 *String,
1426 IN UINTN StringSize
1427 );
1428
1429 //
1430 // Various signatures
1431 //
1432 #define NET_BUF_SIGNATURE SIGNATURE_32 ('n', 'b', 'u', 'f')
1433 #define NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c')
1434 #define NET_QUE_SIGNATURE SIGNATURE_32 ('n', 'b', 'q', 'u')
1435
1436
1437 #define NET_PROTO_DATA 64 // Opaque buffer for protocols
1438 #define NET_BUF_HEAD 1 // Trim or allocate space from head
1439 #define NET_BUF_TAIL 0 // Trim or allocate space from tail
1440 #define NET_VECTOR_OWN_FIRST 0x01 // We allocated the 1st block in the vector
1441
1442 #define NET_CHECK_SIGNATURE(PData, SIGNATURE) \
1443 ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))
1444
1445 //
1446 // Single memory block in the vector.
1447 //
1448 typedef struct {
1449 UINT32 Len; // The block's length
1450 UINT8 *Bulk; // The block's Data
1451 } NET_BLOCK;
1452
1453 typedef VOID (EFIAPI *NET_VECTOR_EXT_FREE) (VOID *Arg);
1454
1455 //
1456 //NET_VECTOR contains several blocks to hold all packet's
1457 //fragments and other house-keeping stuff for sharing. It
1458 //doesn't specify the where actual packet fragment begins.
1459 //
1460 typedef struct {
1461 UINT32 Signature;
1462 INTN RefCnt; // Reference count to share NET_VECTOR.
1463 NET_VECTOR_EXT_FREE Free; // external function to free NET_VECTOR
1464 VOID *Arg; // opeque argument to Free
1465 UINT32 Flag; // Flags, NET_VECTOR_OWN_FIRST
1466 UINT32 Len; // Total length of the assocated BLOCKs
1467
1468 UINT32 BlockNum;
1469 NET_BLOCK Block[1];
1470 } NET_VECTOR;
1471
1472 //
1473 //NET_BLOCK_OP operates on the NET_BLOCK. It specifies
1474 //where the actual fragment begins and ends
1475 //
1476 typedef struct {
1477 UINT8 *BlockHead; // Block's head, or the smallest valid Head
1478 UINT8 *BlockTail; // Block's tail. BlockTail-BlockHead=block length
1479 UINT8 *Head; // 1st byte of the data in the block
1480 UINT8 *Tail; // Tail of the data in the block, Tail-Head=Size
1481 UINT32 Size; // The size of the data
1482 } NET_BLOCK_OP;
1483
1484 typedef union {
1485 IP4_HEAD *Ip4;
1486 EFI_IP6_HEADER *Ip6;
1487 } NET_IP_HEAD;
1488
1489 //
1490 //NET_BUF is the buffer manage structure used by the
1491 //network stack. Every network packet may be fragmented. The Vector points to
1492 //memory blocks used by each fragment, and BlockOp
1493 //specifies where each fragment begins and ends.
1494 //
1495 //It also contains an opaque area for the protocol to store
1496 //per-packet information. Protocol must be careful not
1497 //to overwrite the members after that.
1498 //
1499 typedef struct {
1500 UINT32 Signature;
1501 INTN RefCnt;
1502 LIST_ENTRY List; // The List this NET_BUF is on
1503
1504 NET_IP_HEAD Ip; // Network layer header, for fast access
1505 TCP_HEAD *Tcp; // Transport layer header, for fast access
1506 EFI_UDP_HEADER *Udp; // User Datagram Protocol header
1507 UINT8 ProtoData [NET_PROTO_DATA]; //Protocol specific data
1508
1509 NET_VECTOR *Vector; // The vector containing the packet
1510
1511 UINT32 BlockOpNum; // Total number of BlockOp in the buffer
1512 UINT32 TotalSize; // Total size of the actual packet
1513 NET_BLOCK_OP BlockOp[1]; // Specify the position of actual packet
1514 } NET_BUF;
1515
1516 //
1517 //A queue of NET_BUFs. It is a thin extension of
1518 //NET_BUF functions.
1519 //
1520 typedef struct {
1521 UINT32 Signature;
1522 INTN RefCnt;
1523 LIST_ENTRY List; // The List this buffer queue is on
1524
1525 LIST_ENTRY BufList; // list of queued buffers
1526 UINT32 BufSize; // total length of DATA in the buffers
1527 UINT32 BufNum; // total number of buffers on the chain
1528 } NET_BUF_QUEUE;
1529
1530 //
1531 // Pseudo header for TCP and UDP checksum
1532 //
1533 #pragma pack(1)
1534 typedef struct {
1535 IP4_ADDR SrcIp;
1536 IP4_ADDR DstIp;
1537 UINT8 Reserved;
1538 UINT8 Protocol;
1539 UINT16 Len;
1540 } NET_PSEUDO_HDR;
1541
1542 typedef struct {
1543 EFI_IPv6_ADDRESS SrcIp;
1544 EFI_IPv6_ADDRESS DstIp;
1545 UINT32 Len;
1546 UINT32 Reserved:24;
1547 UINT32 NextHeader:8;
1548 } NET_IP6_PSEUDO_HDR;
1549 #pragma pack()
1550
1551 //
1552 // The fragment entry table used in network interfaces. This is
1553 // the same as NET_BLOCK now. Use two different to distinguish
1554 // the two in case that NET_BLOCK be enhanced later.
1555 //
1556 typedef struct {
1557 UINT32 Len;
1558 UINT8 *Bulk;
1559 } NET_FRAGMENT;
1560
1561 #define NET_GET_REF(PData) ((PData)->RefCnt++)
1562 #define NET_PUT_REF(PData) ((PData)->RefCnt--)
1563 #define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)
1564
1565 #define NET_BUF_SHARED(Buf) \
1566 (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))
1567
1568 #define NET_VECTOR_SIZE(BlockNum) \
1569 (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))
1570
1571 #define NET_BUF_SIZE(BlockOpNum) \
1572 (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))
1573
1574 #define NET_HEADSPACE(BlockOp) \
1575 (UINTN)((BlockOp)->Head - (BlockOp)->BlockHead)
1576
1577 #define NET_TAILSPACE(BlockOp) \
1578 (UINTN)((BlockOp)->BlockTail - (BlockOp)->Tail)
1579
1580 /**
1581 Allocate a single block NET_BUF. Upon allocation, all the
1582 free space is in the tail room.
1583
1584 @param[in] Len The length of the block.
1585
1586 @return The pointer to the allocated NET_BUF, or NULL if the
1587 allocation failed due to resource limitations.
1588
1589 **/
1590 NET_BUF *
1591 EFIAPI
1592 NetbufAlloc (
1593 IN UINT32 Len
1594 );
1595
1596 /**
1597 Free the net buffer and its associated NET_VECTOR.
1598
1599 Decrease the reference count of the net buffer by one. Free the associated net
1600 vector and itself if the reference count of the net buffer is decreased to 0.
1601 The net vector free operation decreases the reference count of the net
1602 vector by one, and performs the resource free operation when the reference count
1603 of the net vector is 0.
1604
1605 @param[in] Nbuf The pointer to the NET_BUF to be freed.
1606
1607 **/
1608 VOID
1609 EFIAPI
1610 NetbufFree (
1611 IN NET_BUF *Nbuf
1612 );
1613
1614 /**
1615 Get the index of NET_BLOCK_OP that contains the byte at Offset in the net
1616 buffer.
1617
1618 For example, this function can be used to retrieve the IP header in the packet. It
1619 also can be used to get the fragment that contains the byte used
1620 mainly by the library implementation itself.
1621
1622 @param[in] Nbuf The pointer to the net buffer.
1623 @param[in] Offset The offset of the byte.
1624 @param[out] Index Index of the NET_BLOCK_OP that contains the byte at
1625 Offset.
1626
1627 @return The pointer to the Offset'th byte of data in the net buffer, or NULL
1628 if there is no such data in the net buffer.
1629
1630 **/
1631 UINT8 *
1632 EFIAPI
1633 NetbufGetByte (
1634 IN NET_BUF *Nbuf,
1635 IN UINT32 Offset,
1636 OUT UINT32 *Index OPTIONAL
1637 );
1638
1639 /**
1640 Create a copy of the net buffer that shares the associated net vector.
1641
1642 The reference count of the newly created net buffer is set to 1. The reference
1643 count of the associated net vector is increased by one.
1644
1645 @param[in] Nbuf The pointer to the net buffer to be cloned.
1646
1647 @return The pointer to the cloned net buffer, or NULL if the
1648 allocation failed due to resource limitations.
1649
1650 **/
1651 NET_BUF *
1652 EFIAPI
1653 NetbufClone (
1654 IN NET_BUF *Nbuf
1655 );
1656
1657 /**
1658 Create a duplicated copy of the net buffer with data copied and HeadSpace
1659 bytes of head space reserved.
1660
1661 The duplicated net buffer will allocate its own memory to hold the data of the
1662 source net buffer.
1663
1664 @param[in] Nbuf The pointer to the net buffer to be duplicated from.
1665 @param[in, out] Duplicate The pointer to the net buffer to duplicate to. If
1666 NULL, a new net buffer is allocated.
1667 @param[in] HeadSpace The length of the head space to reserve.
1668
1669 @return The pointer to the duplicated net buffer, or NULL if
1670 the allocation failed due to resource limitations.
1671
1672 **/
1673 NET_BUF *
1674 EFIAPI
1675 NetbufDuplicate (
1676 IN NET_BUF *Nbuf,
1677 IN OUT NET_BUF *Duplicate OPTIONAL,
1678 IN UINT32 HeadSpace
1679 );
1680
1681 /**
1682 Create a NET_BUF structure which contains Len byte data of Nbuf starting from
1683 Offset.
1684
1685 A new NET_BUF structure will be created but the associated data in NET_VECTOR
1686 is shared. This function exists to perform IP packet fragmentation.
1687
1688 @param[in] Nbuf The pointer to the net buffer to be extracted.
1689 @param[in] Offset Starting point of the data to be included in the new
1690 net buffer.
1691 @param[in] Len The bytes of data to be included in the new net buffer.
1692 @param[in] HeadSpace The bytes of the head space to reserve for the protocol header.
1693
1694 @return The pointer to the cloned net buffer, or NULL if the
1695 allocation failed due to resource limitations.
1696
1697 **/
1698 NET_BUF *
1699 EFIAPI
1700 NetbufGetFragment (
1701 IN NET_BUF *Nbuf,
1702 IN UINT32 Offset,
1703 IN UINT32 Len,
1704 IN UINT32 HeadSpace
1705 );
1706
1707 /**
1708 Reserve some space in the header room of the net buffer.
1709
1710 Upon allocation, all the space is in the tail room of the buffer. Call this
1711 function to move space to the header room. This function is quite limited
1712 in that it can only reserve space from the first block of an empty NET_BUF not
1713 built from the external. However, it should be enough for the network stack.
1714
1715 @param[in, out] Nbuf The pointer to the net buffer.
1716 @param[in] Len The length of buffer to be reserved from the header.
1717
1718 **/
1719 VOID
1720 EFIAPI
1721 NetbufReserve (
1722 IN OUT NET_BUF *Nbuf,
1723 IN UINT32 Len
1724 );
1725
1726 /**
1727 Allocate Len bytes of space from the header or tail of the buffer.
1728
1729 @param[in, out] Nbuf The pointer to the net buffer.
1730 @param[in] Len The length of the buffer to be allocated.
1731 @param[in] FromHead The flag to indicate whether to reserve the data
1732 from head (TRUE) or tail (FALSE).
1733
1734 @return The pointer to the first byte of the allocated buffer,
1735 or NULL, if there is no sufficient space.
1736
1737 **/
1738 UINT8*
1739 EFIAPI
1740 NetbufAllocSpace (
1741 IN OUT NET_BUF *Nbuf,
1742 IN UINT32 Len,
1743 IN BOOLEAN FromHead
1744 );
1745
1746 /**
1747 Trim Len bytes from the header or the tail of the net buffer.
1748
1749 @param[in, out] Nbuf The pointer to the net buffer.
1750 @param[in] Len The length of the data to be trimmed.
1751 @param[in] FromHead The flag to indicate whether trim data is from the
1752 head (TRUE) or the tail (FALSE).
1753
1754 @return The length of the actual trimmed data, which may be less
1755 than Len if the TotalSize of Nbuf is less than Len.
1756
1757 **/
1758 UINT32
1759 EFIAPI
1760 NetbufTrim (
1761 IN OUT NET_BUF *Nbuf,
1762 IN UINT32 Len,
1763 IN BOOLEAN FromHead
1764 );
1765
1766 /**
1767 Copy Len bytes of data from the specific offset of the net buffer to the
1768 destination memory.
1769
1770 The Len bytes of data may cross several fragments of the net buffer.
1771
1772 @param[in] Nbuf The pointer to the net buffer.
1773 @param[in] Offset The sequence number of the first byte to copy.
1774 @param[in] Len The length of the data to copy.
1775 @param[in] Dest The destination of the data to copy to.
1776
1777 @return The length of the actual copied data, or 0 if the offset
1778 specified exceeds the total size of net buffer.
1779
1780 **/
1781 UINT32
1782 EFIAPI
1783 NetbufCopy (
1784 IN NET_BUF *Nbuf,
1785 IN UINT32 Offset,
1786 IN UINT32 Len,
1787 IN UINT8 *Dest
1788 );
1789
1790 /**
1791 Build a NET_BUF from external blocks.
1792
1793 A new NET_BUF structure will be created from external blocks. An additional block
1794 of memory will be allocated to hold reserved HeadSpace bytes of header room
1795 and existing HeadLen bytes of header, but the external blocks are shared by the
1796 net buffer to avoid data copying.
1797
1798 @param[in] ExtFragment The pointer to the data block.
1799 @param[in] ExtNum The number of the data blocks.
1800 @param[in] HeadSpace The head space to be reserved.
1801 @param[in] HeadLen The length of the protocol header. The function
1802 pulls this amount of data into a linear block.
1803 @param[in] ExtFree The pointer to the caller-provided free function.
1804 @param[in] Arg The argument passed to ExtFree when ExtFree is
1805 called.
1806
1807 @return The pointer to the net buffer built from the data blocks,
1808 or NULL if the allocation failed due to resource
1809 limit.
1810
1811 **/
1812 NET_BUF *
1813 EFIAPI
1814 NetbufFromExt (
1815 IN NET_FRAGMENT *ExtFragment,
1816 IN UINT32 ExtNum,
1817 IN UINT32 HeadSpace,
1818 IN UINT32 HeadLen,
1819 IN NET_VECTOR_EXT_FREE ExtFree,
1820 IN VOID *Arg OPTIONAL
1821 );
1822
1823 /**
1824 Build a fragment table to contain the fragments in the net buffer. This is the
1825 opposite operation of the NetbufFromExt.
1826
1827 @param[in] Nbuf Points to the net buffer.
1828 @param[in, out] ExtFragment The pointer to the data block.
1829 @param[in, out] ExtNum The number of the data blocks.
1830
1831 @retval EFI_BUFFER_TOO_SMALL The number of non-empty blocks is bigger than
1832 ExtNum.
1833 @retval EFI_SUCCESS The fragment table was built successfully.
1834
1835 **/
1836 EFI_STATUS
1837 EFIAPI
1838 NetbufBuildExt (
1839 IN NET_BUF *Nbuf,
1840 IN OUT NET_FRAGMENT *ExtFragment,
1841 IN OUT UINT32 *ExtNum
1842 );
1843
1844 /**
1845 Build a net buffer from a list of net buffers.
1846
1847 All the fragments will be collected from the list of NEW_BUF, and then a new
1848 net buffer will be created through NetbufFromExt.
1849
1850 @param[in] BufList A List of the net buffer.
1851 @param[in] HeadSpace The head space to be reserved.
1852 @param[in] HeaderLen The length of the protocol header. The function
1853 pulls this amount of data into a linear block.
1854 @param[in] ExtFree The pointer to the caller provided free function.
1855 @param[in] Arg The argument passed to ExtFree when ExtFree is called.
1856
1857 @return The pointer to the net buffer built from the list of net
1858 buffers.
1859
1860 **/
1861 NET_BUF *
1862 EFIAPI
1863 NetbufFromBufList (
1864 IN LIST_ENTRY *BufList,
1865 IN UINT32 HeadSpace,
1866 IN UINT32 HeaderLen,
1867 IN NET_VECTOR_EXT_FREE ExtFree,
1868 IN VOID *Arg OPTIONAL
1869 );
1870
1871 /**
1872 Free a list of net buffers.
1873
1874 @param[in, out] Head The pointer to the head of linked net buffers.
1875
1876 **/
1877 VOID
1878 EFIAPI
1879 NetbufFreeList (
1880 IN OUT LIST_ENTRY *Head
1881 );
1882
1883 /**
1884 Initiate the net buffer queue.
1885
1886 @param[in, out] NbufQue The pointer to the net buffer queue to be initialized.
1887
1888 **/
1889 VOID
1890 EFIAPI
1891 NetbufQueInit (
1892 IN OUT NET_BUF_QUEUE *NbufQue
1893 );
1894
1895 /**
1896 Allocate and initialize a net buffer queue.
1897
1898 @return The pointer to the allocated net buffer queue, or NULL if the
1899 allocation failed due to resource limit.
1900
1901 **/
1902 NET_BUF_QUEUE *
1903 EFIAPI
1904 NetbufQueAlloc (
1905 VOID
1906 );
1907
1908 /**
1909 Free a net buffer queue.
1910
1911 Decrease the reference count of the net buffer queue by one. The real resource
1912 free operation isn't performed until the reference count of the net buffer
1913 queue is decreased to 0.
1914
1915 @param[in] NbufQue The pointer to the net buffer queue to be freed.
1916
1917 **/
1918 VOID
1919 EFIAPI
1920 NetbufQueFree (
1921 IN NET_BUF_QUEUE *NbufQue
1922 );
1923
1924 /**
1925 Remove a net buffer from the head in the specific queue and return it.
1926
1927 @param[in, out] NbufQue The pointer to the net buffer queue.
1928
1929 @return The pointer to the net buffer removed from the specific queue,
1930 or NULL if there is no net buffer in the specific queue.
1931
1932 **/
1933 NET_BUF *
1934 EFIAPI
1935 NetbufQueRemove (
1936 IN OUT NET_BUF_QUEUE *NbufQue
1937 );
1938
1939 /**
1940 Append a net buffer to the net buffer queue.
1941
1942 @param[in, out] NbufQue The pointer to the net buffer queue.
1943 @param[in, out] Nbuf The pointer to the net buffer to be appended.
1944
1945 **/
1946 VOID
1947 EFIAPI
1948 NetbufQueAppend (
1949 IN OUT NET_BUF_QUEUE *NbufQue,
1950 IN OUT NET_BUF *Nbuf
1951 );
1952
1953 /**
1954 Copy Len bytes of data from the net buffer queue at the specific offset to the
1955 destination memory.
1956
1957 The copying operation is the same as NetbufCopy, but applies to the net buffer
1958 queue instead of the net buffer.
1959
1960 @param[in] NbufQue The pointer to the net buffer queue.
1961 @param[in] Offset The sequence number of the first byte to copy.
1962 @param[in] Len The length of the data to copy.
1963 @param[out] Dest The destination of the data to copy to.
1964
1965 @return The length of the actual copied data, or 0 if the offset
1966 specified exceeds the total size of net buffer queue.
1967
1968 **/
1969 UINT32
1970 EFIAPI
1971 NetbufQueCopy (
1972 IN NET_BUF_QUEUE *NbufQue,
1973 IN UINT32 Offset,
1974 IN UINT32 Len,
1975 OUT UINT8 *Dest
1976 );
1977
1978 /**
1979 Trim Len bytes of data from the buffer queue and free any net buffer
1980 that is completely trimmed.
1981
1982 The trimming operation is the same as NetbufTrim but applies to the net buffer
1983 queue instead of the net buffer.
1984
1985 @param[in, out] NbufQue The pointer to the net buffer queue.
1986 @param[in] Len The length of the data to trim.
1987
1988 @return The actual length of the data trimmed.
1989
1990 **/
1991 UINT32
1992 EFIAPI
1993 NetbufQueTrim (
1994 IN OUT NET_BUF_QUEUE *NbufQue,
1995 IN UINT32 Len
1996 );
1997
1998
1999 /**
2000 Flush the net buffer queue.
2001
2002 @param[in, out] NbufQue The pointer to the queue to be flushed.
2003
2004 **/
2005 VOID
2006 EFIAPI
2007 NetbufQueFlush (
2008 IN OUT NET_BUF_QUEUE *NbufQue
2009 );
2010
2011 /**
2012 Compute the checksum for a bulk of data.
2013
2014 @param[in] Bulk The pointer to the data.
2015 @param[in] Len The length of the data, in bytes.
2016
2017 @return The computed checksum.
2018
2019 **/
2020 UINT16
2021 EFIAPI
2022 NetblockChecksum (
2023 IN UINT8 *Bulk,
2024 IN UINT32 Len
2025 );
2026
2027 /**
2028 Add two checksums.
2029
2030 @param[in] Checksum1 The first checksum to be added.
2031 @param[in] Checksum2 The second checksum to be added.
2032
2033 @return The new checksum.
2034
2035 **/
2036 UINT16
2037 EFIAPI
2038 NetAddChecksum (
2039 IN UINT16 Checksum1,
2040 IN UINT16 Checksum2
2041 );
2042
2043 /**
2044 Compute the checksum for a NET_BUF.
2045
2046 @param[in] Nbuf The pointer to the net buffer.
2047
2048 @return The computed checksum.
2049
2050 **/
2051 UINT16
2052 EFIAPI
2053 NetbufChecksum (
2054 IN NET_BUF *Nbuf
2055 );
2056
2057 /**
2058 Compute the checksum for TCP/UDP pseudo header.
2059
2060 Src and Dst are in network byte order, and Len is in host byte order.
2061
2062 @param[in] Src The source address of the packet.
2063 @param[in] Dst The destination address of the packet.
2064 @param[in] Proto The protocol type of the packet.
2065 @param[in] Len The length of the packet.
2066
2067 @return The computed checksum.
2068
2069 **/
2070 UINT16
2071 EFIAPI
2072 NetPseudoHeadChecksum (
2073 IN IP4_ADDR Src,
2074 IN IP4_ADDR Dst,
2075 IN UINT8 Proto,
2076 IN UINT16 Len
2077 );
2078
2079 /**
2080 Compute the checksum for the TCP6/UDP6 pseudo header.
2081
2082 Src and Dst are in network byte order, and Len is in host byte order.
2083
2084 @param[in] Src The source address of the packet.
2085 @param[in] Dst The destination address of the packet.
2086 @param[in] NextHeader The protocol type of the packet.
2087 @param[in] Len The length of the packet.
2088
2089 @return The computed checksum.
2090
2091 **/
2092 UINT16
2093 EFIAPI
2094 NetIp6PseudoHeadChecksum (
2095 IN EFI_IPv6_ADDRESS *Src,
2096 IN EFI_IPv6_ADDRESS *Dst,
2097 IN UINT8 NextHeader,
2098 IN UINT32 Len
2099 );
2100
2101 /**
2102 The function frees the net buffer which allocated by the IP protocol. It releases
2103 only the net buffer and doesn't call the external free function.
2104
2105 This function should be called after finishing the process of mIpSec->ProcessExt()
2106 for outbound traffic. The (EFI_IPSEC2_PROTOCOL)->ProcessExt() allocates a new
2107 buffer for the ESP, so there needs a function to free the old net buffer.
2108
2109 @param[in] Nbuf The network buffer to be freed.
2110
2111 **/
2112 VOID
2113 NetIpSecNetbufFree (
2114 NET_BUF *Nbuf
2115 );
2116
2117 /**
2118 This function obtains the system guid from the smbios table.
2119
2120 @param[out] SystemGuid The pointer of the returned system guid.
2121
2122 @retval EFI_SUCCESS Successfully obtained the system guid.
2123 @retval EFI_NOT_FOUND Did not find the SMBIOS table.
2124
2125 **/
2126 EFI_STATUS
2127 EFIAPI
2128 NetLibGetSystemGuid (
2129 OUT EFI_GUID *SystemGuid
2130 );
2131
2132 #endif