]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Include/Library/NetLib.h
4bb1f766a10937e515e3c9244a367370ca7b7a97
[mirror_edk2.git] / MdeModulePkg / Include / Library / NetLib.h
1 /** @file
2 This library is only intended to be used by UEFI network stack modules.
3 It provides basic functions for the UEFI network stack.
4
5 Copyright (c) 2005 - 2011, Intel Corporation. All rights reserved.<BR>
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution. The full text of the license may be found at<BR>
9 http://opensource.org/licenses/bsd-license.php
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #ifndef _NET_LIB_H_
17 #define _NET_LIB_H_
18
19 #include <Protocol/Ip6.h>
20
21 #include <Library/BaseLib.h>
22 #include <Library/BaseMemoryLib.h>
23
24 typedef UINT32 IP4_ADDR;
25 typedef UINT32 TCP_SEQNO;
26 typedef UINT16 TCP_PORTNO;
27
28
29 #define NET_ETHER_ADDR_LEN 6
30 #define NET_IFTYPE_ETHERNET 0x01
31
32 #define NET_VLAN_TAG_LEN 4
33 #define ETHER_TYPE_VLAN 0x8100
34
35 #define EFI_IP_PROTO_UDP 0x11
36 #define EFI_IP_PROTO_TCP 0x06
37 #define EFI_IP_PROTO_ICMP 0x01
38 #define IP4_PROTO_IGMP 0x02
39 #define IP6_ICMP 58
40
41 //
42 // The address classification
43 //
44 #define IP4_ADDR_CLASSA 1
45 #define IP4_ADDR_CLASSB 2
46 #define IP4_ADDR_CLASSC 3
47 #define IP4_ADDR_CLASSD 4
48 #define IP4_ADDR_CLASSE 5
49
50 #define IP4_MASK_NUM 33
51 #define IP6_PREFIX_NUM 129
52
53 #define IP6_HOP_BY_HOP 0
54 #define IP6_DESTINATION 60
55 #define IP6_ROUTING 43
56 #define IP6_FRAGMENT 44
57 #define IP6_AH 51
58 #define IP6_ESP 50
59 #define IP6_NO_NEXT_HEADER 59
60
61 #define IP_VERSION_4 4
62 #define IP_VERSION_6 6
63
64 #pragma pack(1)
65
66 //
67 // Ethernet head definition
68 //
69 typedef struct {
70 UINT8 DstMac [NET_ETHER_ADDR_LEN];
71 UINT8 SrcMac [NET_ETHER_ADDR_LEN];
72 UINT16 EtherType;
73 } ETHER_HEAD;
74
75 //
76 // 802.1Q VLAN Tag Control Information
77 //
78 typedef union {
79 struct {
80 UINT16 Vid : 12; // Unique VLAN identifier (0 to 4094)
81 UINT16 Cfi : 1; // Canonical Format Indicator
82 UINT16 Priority : 3; // 802.1Q priority level (0 to 7)
83 } Bits;
84 UINT16 Uint16;
85 } VLAN_TCI;
86
87 #define VLAN_TCI_CFI_CANONICAL_MAC 0
88 #define VLAN_TCI_CFI_NON_CANONICAL_MAC 1
89
90 //
91 // The EFI_IP4_HEADER is hard to use because the source and
92 // destination address are defined as EFI_IPv4_ADDRESS, which
93 // is a structure. Two structures can't be compared or masked
94 // directly. This is why there is an internal representation.
95 //
96 typedef struct {
97 UINT8 HeadLen : 4;
98 UINT8 Ver : 4;
99 UINT8 Tos;
100 UINT16 TotalLen;
101 UINT16 Id;
102 UINT16 Fragment;
103 UINT8 Ttl;
104 UINT8 Protocol;
105 UINT16 Checksum;
106 IP4_ADDR Src;
107 IP4_ADDR Dst;
108 } IP4_HEAD;
109
110
111 //
112 // ICMP head definition. Each ICMP message is categorized as either an error
113 // message or query message. Two message types have their own head format.
114 //
115 typedef struct {
116 UINT8 Type;
117 UINT8 Code;
118 UINT16 Checksum;
119 } IP4_ICMP_HEAD;
120
121 typedef struct {
122 IP4_ICMP_HEAD Head;
123 UINT32 Fourth; // 4th filed of the head, it depends on Type.
124 IP4_HEAD IpHead;
125 } IP4_ICMP_ERROR_HEAD;
126
127 typedef struct {
128 IP4_ICMP_HEAD Head;
129 UINT16 Id;
130 UINT16 Seq;
131 } IP4_ICMP_QUERY_HEAD;
132
133 typedef struct {
134 UINT8 Type;
135 UINT8 Code;
136 UINT16 Checksum;
137 } IP6_ICMP_HEAD;
138
139 typedef struct {
140 IP6_ICMP_HEAD Head;
141 UINT32 Fourth;
142 EFI_IP6_HEADER IpHead;
143 } IP6_ICMP_ERROR_HEAD;
144
145 typedef struct {
146 IP6_ICMP_HEAD Head;
147 UINT32 Fourth;
148 } IP6_ICMP_INFORMATION_HEAD;
149
150 //
151 // UDP header definition
152 //
153 typedef struct {
154 UINT16 SrcPort;
155 UINT16 DstPort;
156 UINT16 Length;
157 UINT16 Checksum;
158 } EFI_UDP_HEADER;
159
160 //
161 // TCP header definition
162 //
163 typedef struct {
164 TCP_PORTNO SrcPort;
165 TCP_PORTNO DstPort;
166 TCP_SEQNO Seq;
167 TCP_SEQNO Ack;
168 UINT8 Res : 4;
169 UINT8 HeadLen : 4;
170 UINT8 Flag;
171 UINT16 Wnd;
172 UINT16 Checksum;
173 UINT16 Urg;
174 } TCP_HEAD;
175
176 #pragma pack()
177
178 #define NET_MAC_EQUAL(pMac1, pMac2, Len) \
179 (CompareMem ((pMac1), (pMac2), Len) == 0)
180
181 #define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \
182 (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))
183
184 #define NTOHL(x) SwapBytes32 (x)
185
186 #define HTONL(x) NTOHL(x)
187
188 #define NTOHS(x) SwapBytes16 (x)
189
190 #define HTONS(x) NTOHS(x)
191 #define NTOHLL(x) SwapBytes64 (x)
192 #define HTONLL(x) NTOHLL(x)
193 #define NTOHLLL(x) Ip6Swap128 (x)
194 #define HTONLLL(x) NTOHLLL(x)
195
196 //
197 // Test the IP's attribute, All the IPs are in host byte order.
198 //
199 #define IP4_IS_MULTICAST(Ip) (((Ip) & 0xF0000000) == 0xE0000000)
200 #define IP4_IS_LOCAL_BROADCAST(Ip) ((Ip) == 0xFFFFFFFF)
201 #define IP4_NET_EQUAL(Ip1, Ip2, NetMask) (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))
202 #define IP4_IS_VALID_NETMASK(Ip) (NetGetMaskLength (Ip) != IP4_MASK_NUM)
203
204 #define IP6_IS_MULTICAST(Ip6) (((Ip6)->Addr[0]) == 0xFF)
205
206 //
207 // Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.
208 //
209 #define EFI_IP4(EfiIpAddr) (*(IP4_ADDR *) ((EfiIpAddr).Addr))
210 #define EFI_NTOHL(EfiIp) (NTOHL (EFI_IP4 ((EfiIp))))
211 #define EFI_IP4_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)
212
213 #define EFI_IP6_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0)
214
215 #define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS)))
216 #define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS)))
217
218 //
219 // The debug level definition. This value is also used as the
220 // syslog's servity level. Don't change it.
221 //
222 #define NETDEBUG_LEVEL_TRACE 5
223 #define NETDEBUG_LEVEL_WARNING 4
224 #define NETDEBUG_LEVEL_ERROR 3
225
226 //
227 // Network debug message is sent out as syslog packet.
228 //
229 #define NET_SYSLOG_FACILITY 16 // Syslog local facility local use
230 #define NET_SYSLOG_PACKET_LEN 512
231 #define NET_SYSLOG_TX_TIMEOUT (500 * 1000 * 10) // 500ms
232 #define NET_DEBUG_MSG_LEN 470 // 512 - (ether+ip4+udp4 head length)
233
234 //
235 // The debug output expects the ASCII format string, Use %a to print ASCII
236 // string, and %s to print UNICODE string. PrintArg must be enclosed in ().
237 // For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name));
238 //
239 #define NET_DEBUG_TRACE(Module, PrintArg) \
240 NetDebugOutput ( \
241 NETDEBUG_LEVEL_TRACE, \
242 Module, \
243 __FILE__, \
244 __LINE__, \
245 NetDebugASPrint PrintArg \
246 )
247
248 #define NET_DEBUG_WARNING(Module, PrintArg) \
249 NetDebugOutput ( \
250 NETDEBUG_LEVEL_WARNING, \
251 Module, \
252 __FILE__, \
253 __LINE__, \
254 NetDebugASPrint PrintArg \
255 )
256
257 #define NET_DEBUG_ERROR(Module, PrintArg) \
258 NetDebugOutput ( \
259 NETDEBUG_LEVEL_ERROR, \
260 Module, \
261 __FILE__, \
262 __LINE__, \
263 NetDebugASPrint PrintArg \
264 )
265
266 /**
267 Allocate a buffer, then format the message to it. This is a
268 help function for the NET_DEBUG_XXX macros. The PrintArg of
269 these macros treats the variable length print parameters as a
270 single parameter, and pass it to the NetDebugASPrint. For
271 example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))
272 if extracted to:
273
274 NetDebugOutput (
275 NETDEBUG_LEVEL_TRACE,
276 "Tcp",
277 __FILE__,
278 __LINE__,
279 NetDebugASPrint ("State transit to %a\n", Name)
280 )
281
282 @param Format The ASCII format string.
283 @param ... The variable length parameter whose format is determined
284 by the Format string.
285
286 @return The buffer containing the formatted message,
287 or NULL if memory allocation failed.
288
289 **/
290 CHAR8 *
291 EFIAPI
292 NetDebugASPrint (
293 IN CHAR8 *Format,
294 ...
295 );
296
297 /**
298 Builds an UDP4 syslog packet and send it using SNP.
299
300 This function will locate a instance of SNP then send the message through it.
301 Because it isn't open the SNP BY_DRIVER, apply caution when using it.
302
303 @param Level The servity level of the message.
304 @param Module The Moudle that generates the log.
305 @param File The file that contains the log.
306 @param Line The exact line that contains the log.
307 @param Message The user message to log.
308
309 @retval EFI_INVALID_PARAMETER Any input parameter is invalid.
310 @retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet
311 @retval EFI_SUCCESS The log is discard because that it is more verbose
312 than the mNetDebugLevelMax. Or, it has been sent out.
313 **/
314 EFI_STATUS
315 EFIAPI
316 NetDebugOutput (
317 IN UINT32 Level,
318 IN UINT8 *Module,
319 IN UINT8 *File,
320 IN UINT32 Line,
321 IN UINT8 *Message
322 );
323
324
325 /**
326 Return the length of the mask.
327
328 Return the length of the mask. Valid values are 0 to 32.
329 If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.
330 NetMask is in the host byte order.
331
332 @param[in] NetMask The netmask to get the length from.
333
334 @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid.
335
336 **/
337 INTN
338 EFIAPI
339 NetGetMaskLength (
340 IN IP4_ADDR NetMask
341 );
342
343 /**
344 Return the class of the IP address, such as class A, B, C.
345 Addr is in host byte order.
346
347 The address of class A starts with 0.
348 If the address belong to class A, return IP4_ADDR_CLASSA.
349 The address of class B starts with 10.
350 If the address belong to class B, return IP4_ADDR_CLASSB.
351 The address of class C starts with 110.
352 If the address belong to class C, return IP4_ADDR_CLASSC.
353 The address of class D starts with 1110.
354 If the address belong to class D, return IP4_ADDR_CLASSD.
355 The address of class E starts with 1111.
356 If the address belong to class E, return IP4_ADDR_CLASSE.
357
358
359 @param[in] Addr The address to get the class from.
360
361 @return IP address class, such as IP4_ADDR_CLASSA.
362
363 **/
364 INTN
365 EFIAPI
366 NetGetIpClass (
367 IN IP4_ADDR Addr
368 );
369
370 /**
371 Check whether the IP is a valid unicast address according to
372 the netmask. If NetMask is zero, use the IP address's class to get the default mask.
373
374 If Ip is 0, IP is not a valid unicast address.
375 Class D address is used for multicasting and class E address is reserved for future. If Ip
376 belongs to class D or class E, Ip is not a valid unicast address.
377 If all bits of the host address of Ip are 0 or 1, Ip is not a valid unicast address.
378
379 @param[in] Ip The IP to check against.
380 @param[in] NetMask The mask of the IP.
381
382 @return TRUE if Ip is a valid unicast address on the network, otherwise FALSE.
383
384 **/
385 BOOLEAN
386 EFIAPI
387 NetIp4IsUnicast (
388 IN IP4_ADDR Ip,
389 IN IP4_ADDR NetMask
390 );
391
392 /**
393 Check whether the incoming IPv6 address is a valid unicast address.
394
395 If the address is a multicast address has binary 0xFF at the start, it is not
396 a valid unicast address. If the address is unspecified ::, it is not a valid
397 unicast address to be assigned to any node. If the address is loopback address
398 ::1, it is also not a valid unicast address to be assigned to any physical
399 interface.
400
401 @param[in] Ip6 The IPv6 address to check against.
402
403 @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.
404
405 **/
406 BOOLEAN
407 EFIAPI
408 NetIp6IsValidUnicast (
409 IN EFI_IPv6_ADDRESS *Ip6
410 );
411
412
413 /**
414 Check whether the incoming Ipv6 address is the unspecified address or not.
415
416 @param[in] Ip6 - Ip6 address, in network order.
417
418 @retval TRUE - Yes, incoming Ipv6 address is the unspecified address.
419 @retval FALSE - The incoming Ipv6 address is not the unspecified address
420
421 **/
422 BOOLEAN
423 EFIAPI
424 NetIp6IsUnspecifiedAddr (
425 IN EFI_IPv6_ADDRESS *Ip6
426 );
427
428 /**
429 Check whether the incoming Ipv6 address is a link-local address.
430
431 @param[in] Ip6 - Ip6 address, in network order.
432
433 @retval TRUE - The incoming Ipv6 address is a link-local address.
434 @retval FALSE - The incoming Ipv6 address is not a link-local address.
435
436 **/
437 BOOLEAN
438 EFIAPI
439 NetIp6IsLinkLocalAddr (
440 IN EFI_IPv6_ADDRESS *Ip6
441 );
442
443 /**
444 Check whether the Ipv6 address1 and address2 are on the connected network.
445
446 @param[in] Ip1 - Ip6 address1, in network order.
447 @param[in] Ip2 - Ip6 address2, in network order.
448 @param[in] PrefixLength - The prefix length of the checking net.
449
450 @retval TRUE - Yes, the Ipv6 address1 and address2 are connected.
451 @retval FALSE - No the Ipv6 address1 and address2 are not connected.
452
453 **/
454 BOOLEAN
455 EFIAPI
456 NetIp6IsNetEqual (
457 EFI_IPv6_ADDRESS *Ip1,
458 EFI_IPv6_ADDRESS *Ip2,
459 UINT8 PrefixLength
460 );
461
462 /**
463 Switches the endianess of an IPv6 address.
464
465 This function swaps the bytes in a 128-bit IPv6 address to switch the value
466 from little endian to big endian or vice versa. The byte swapped value is
467 returned.
468
469 @param Ip6 Points to an IPv6 address.
470
471 @return The byte swapped IPv6 address.
472
473 **/
474 EFI_IPv6_ADDRESS *
475 EFIAPI
476 Ip6Swap128 (
477 EFI_IPv6_ADDRESS *Ip6
478 );
479
480 extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM];
481
482
483 extern EFI_IPv4_ADDRESS mZeroIp4Addr;
484
485 #define NET_IS_DIGIT(Ch) (('0' <= (Ch)) && ((Ch) <= '9'))
486 #define NET_ROUNDUP(size, unit) (((size) + (unit) - 1) & (~((unit) - 1)))
487 #define NET_IS_LOWER_CASE_CHAR(Ch) (('a' <= (Ch)) && ((Ch) <= 'z'))
488 #define NET_IS_UPPER_CASE_CHAR(Ch) (('A' <= (Ch)) && ((Ch) <= 'Z'))
489
490 #define TICKS_PER_MS 10000U
491 #define TICKS_PER_SECOND 10000000U
492
493 #define NET_RANDOM(Seed) ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)
494
495 /**
496 Extract a UINT32 from a byte stream.
497
498 This function copies a UINT32 from a byte stream, and then converts it from Network
499 byte order to host byte order. Use this function to avoid alignment error.
500
501 @param[in] Buf The buffer to extract the UINT32.
502
503 @return The UINT32 extracted.
504
505 **/
506 UINT32
507 EFIAPI
508 NetGetUint32 (
509 IN UINT8 *Buf
510 );
511
512 /**
513 Puts a UINT32 into the byte stream in network byte order.
514
515 Converts a UINT32 from host byte order to network byte order, then copies it to the
516 byte stream.
517
518 @param[in, out] Buf The buffer in which to put the UINT32.
519 @param[in] Data The data to be converted and put into the byte stream.
520
521 **/
522 VOID
523 EFIAPI
524 NetPutUint32 (
525 IN OUT UINT8 *Buf,
526 IN UINT32 Data
527 );
528
529 /**
530 Initialize a random seed using current time.
531
532 Get current time first. Then initialize a random seed based on some basic
533 mathematical operations on the hour, day, minute, second, nanosecond and year
534 of the current time.
535
536 @return The random seed, initialized with current time.
537
538 **/
539 UINT32
540 EFIAPI
541 NetRandomInitSeed (
542 VOID
543 );
544
545
546 #define NET_LIST_USER_STRUCT(Entry, Type, Field) \
547 BASE_CR(Entry, Type, Field)
548
549 #define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig) \
550 CR(Entry, Type, Field, Sig)
551
552 //
553 // Iterate through the double linked list. It is NOT delete safe
554 //
555 #define NET_LIST_FOR_EACH(Entry, ListHead) \
556 for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)
557
558 //
559 // Iterate through the double linked list. This is delete-safe.
560 // Don't touch NextEntry. Also, don't use this macro if list
561 // entries other than the Entry may be deleted when processing
562 // the current Entry.
563 //
564 #define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \
565 for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \
566 Entry != (ListHead); \
567 Entry = NextEntry, NextEntry = Entry->ForwardLink \
568 )
569
570 //
571 // Make sure the list isn't empty before getting the first/last record.
572 //
573 #define NET_LIST_HEAD(ListHead, Type, Field) \
574 NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)
575
576 #define NET_LIST_TAIL(ListHead, Type, Field) \
577 NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)
578
579
580 /**
581 Remove the first node entry on the list, and return the removed node entry.
582
583 Removes the first node entry from a doubly linked list. It is up to the caller of
584 this function to release the memory used by the first node, if that is required. On
585 exit, the removed node is returned.
586
587 If Head is NULL, then ASSERT().
588 If Head was not initialized, then ASSERT().
589 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
590 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
591 then ASSERT().
592
593 @param[in, out] Head The list header.
594
595 @return The first node entry that is removed from the list, NULL if the list is empty.
596
597 **/
598 LIST_ENTRY *
599 EFIAPI
600 NetListRemoveHead (
601 IN OUT LIST_ENTRY *Head
602 );
603
604 /**
605 Remove the last node entry on the list and return the removed node entry.
606
607 Removes the last node entry from a doubly linked list. It is up to the caller of
608 this function to release the memory used by the first node, if that is required. On
609 exit, the removed node is returned.
610
611 If Head is NULL, then ASSERT().
612 If Head was not initialized, then ASSERT().
613 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
614 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
615 then ASSERT().
616
617 @param[in, out] Head The list head.
618
619 @return The last node entry that is removed from the list, NULL if the list is empty.
620
621 **/
622 LIST_ENTRY *
623 EFIAPI
624 NetListRemoveTail (
625 IN OUT LIST_ENTRY *Head
626 );
627
628 /**
629 Insert a new node entry after a designated node entry of a doubly linked list.
630
631 Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry
632 of the doubly linked list.
633
634 @param[in, out] PrevEntry The entry after which to insert.
635 @param[in, out] NewEntry The new entry to insert.
636
637 **/
638 VOID
639 EFIAPI
640 NetListInsertAfter (
641 IN OUT LIST_ENTRY *PrevEntry,
642 IN OUT LIST_ENTRY *NewEntry
643 );
644
645 /**
646 Insert a new node entry before a designated node entry of a doubly linked list.
647
648 Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry
649 of the doubly linked list.
650
651 @param[in, out] PostEntry The entry to insert before.
652 @param[in, out] NewEntry The new entry to insert.
653
654 **/
655 VOID
656 EFIAPI
657 NetListInsertBefore (
658 IN OUT LIST_ENTRY *PostEntry,
659 IN OUT LIST_ENTRY *NewEntry
660 );
661
662
663 //
664 // Object container: EFI network stack spec defines various kinds of
665 // tokens. The drivers can share code to manage those objects.
666 //
667 typedef struct {
668 LIST_ENTRY Link;
669 VOID *Key;
670 VOID *Value;
671 } NET_MAP_ITEM;
672
673 typedef struct {
674 LIST_ENTRY Used;
675 LIST_ENTRY Recycled;
676 UINTN Count;
677 } NET_MAP;
678
679 #define NET_MAP_INCREAMENT 64
680
681 /**
682 Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.
683
684 Initialize the forward and backward links of two head nodes donated by Map->Used
685 and Map->Recycled of two doubly linked lists.
686 Initializes the count of the <Key, Value> pairs in the netmap to zero.
687
688 If Map is NULL, then ASSERT().
689 If the address of Map->Used is NULL, then ASSERT().
690 If the address of Map->Recycled is NULl, then ASSERT().
691
692 @param[in, out] Map The netmap to initialize.
693
694 **/
695 VOID
696 EFIAPI
697 NetMapInit (
698 IN OUT NET_MAP *Map
699 );
700
701 /**
702 To clean up the netmap, that is, release allocated memories.
703
704 Removes all nodes of the Used doubly linked list and frees memory of all related netmap items.
705 Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.
706 The number of the <Key, Value> pairs in the netmap is set to zero.
707
708 If Map is NULL, then ASSERT().
709
710 @param[in, out] Map The netmap to clean up.
711
712 **/
713 VOID
714 EFIAPI
715 NetMapClean (
716 IN OUT NET_MAP *Map
717 );
718
719 /**
720 Test whether the netmap is empty and return true if it is.
721
722 If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.
723
724 If Map is NULL, then ASSERT().
725
726
727 @param[in] Map The net map to test.
728
729 @return TRUE if the netmap is empty, otherwise FALSE.
730
731 **/
732 BOOLEAN
733 EFIAPI
734 NetMapIsEmpty (
735 IN NET_MAP *Map
736 );
737
738 /**
739 Return the number of the <Key, Value> pairs in the netmap.
740
741 @param[in] Map The netmap to get the entry number.
742
743 @return The entry number in the netmap.
744
745 **/
746 UINTN
747 EFIAPI
748 NetMapGetCount (
749 IN NET_MAP *Map
750 );
751
752 /**
753 Allocate an item to save the <Key, Value> pair to the head of the netmap.
754
755 Allocate an item to save the <Key, Value> pair and add corresponding node entry
756 to the beginning of the Used doubly linked list. The number of the <Key, Value>
757 pairs in the netmap increase by 1.
758
759 If Map is NULL, then ASSERT().
760
761 @param[in, out] Map The netmap to insert into.
762 @param[in] Key The user's key.
763 @param[in] Value The user's value for the key.
764
765 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
766 @retval EFI_SUCCESS The item is inserted to the head.
767
768 **/
769 EFI_STATUS
770 EFIAPI
771 NetMapInsertHead (
772 IN OUT NET_MAP *Map,
773 IN VOID *Key,
774 IN VOID *Value OPTIONAL
775 );
776
777 /**
778 Allocate an item to save the <Key, Value> pair to the tail of the netmap.
779
780 Allocate an item to save the <Key, Value> pair and add corresponding node entry
781 to the tail of the Used doubly linked list. The number of the <Key, Value>
782 pairs in the netmap increase by 1.
783
784 If Map is NULL, then ASSERT().
785
786 @param[in, out] Map The netmap to insert into.
787 @param[in] Key The user's key.
788 @param[in] Value The user's value for the key.
789
790 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
791 @retval EFI_SUCCESS The item is inserted to the tail.
792
793 **/
794 EFI_STATUS
795 EFIAPI
796 NetMapInsertTail (
797 IN OUT NET_MAP *Map,
798 IN VOID *Key,
799 IN VOID *Value OPTIONAL
800 );
801
802 /**
803 Finds the key in the netmap and returns the point to the item containing the Key.
804
805 Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every
806 item with the key to search. It returns the point to the item contains the Key if found.
807
808 If Map is NULL, then ASSERT().
809
810 @param[in] Map The netmap to search within.
811 @param[in] Key The key to search.
812
813 @return The point to the item contains the Key, or NULL if Key isn't in the map.
814
815 **/
816 NET_MAP_ITEM *
817 EFIAPI
818 NetMapFindKey (
819 IN NET_MAP *Map,
820 IN VOID *Key
821 );
822
823 /**
824 Remove the node entry of the item from the netmap and return the key of the removed item.
825
826 Remove the node entry of the item from the Used doubly linked list of the netmap.
827 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
828 entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,
829 Value will point to the value of the item. It returns the key of the removed item.
830
831 If Map is NULL, then ASSERT().
832 If Item is NULL, then ASSERT().
833 if item in not in the netmap, then ASSERT().
834
835 @param[in, out] Map The netmap to remove the item from.
836 @param[in, out] Item The item to remove.
837 @param[out] Value The variable to receive the value if not NULL.
838
839 @return The key of the removed item.
840
841 **/
842 VOID *
843 EFIAPI
844 NetMapRemoveItem (
845 IN OUT NET_MAP *Map,
846 IN OUT NET_MAP_ITEM *Item,
847 OUT VOID **Value OPTIONAL
848 );
849
850 /**
851 Remove the first node entry on the netmap and return the key of the removed item.
852
853 Remove the first node entry from the Used doubly linked list of the netmap.
854 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
855 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
856 parameter Value will point to the value of the item. It returns the key of the removed item.
857
858 If Map is NULL, then ASSERT().
859 If the Used doubly linked list is empty, then ASSERT().
860
861 @param[in, out] Map The netmap to remove the head from.
862 @param[out] Value The variable to receive the value if not NULL.
863
864 @return The key of the item removed.
865
866 **/
867 VOID *
868 EFIAPI
869 NetMapRemoveHead (
870 IN OUT NET_MAP *Map,
871 OUT VOID **Value OPTIONAL
872 );
873
874 /**
875 Remove the last node entry on the netmap and return the key of the removed item.
876
877 Remove the last node entry from the Used doubly linked list of the netmap.
878 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
879 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
880 parameter Value will point to the value of the item. It returns the key of the removed item.
881
882 If Map is NULL, then ASSERT().
883 If the Used doubly linked list is empty, then ASSERT().
884
885 @param[in, out] Map The netmap to remove the tail from.
886 @param[out] Value The variable to receive the value if not NULL.
887
888 @return The key of the item removed.
889
890 **/
891 VOID *
892 EFIAPI
893 NetMapRemoveTail (
894 IN OUT NET_MAP *Map,
895 OUT VOID **Value OPTIONAL
896 );
897
898 typedef
899 EFI_STATUS
900 (EFIAPI *NET_MAP_CALLBACK) (
901 IN NET_MAP *Map,
902 IN NET_MAP_ITEM *Item,
903 IN VOID *Arg
904 );
905
906 /**
907 Iterate through the netmap and call CallBack for each item.
908
909 It will contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break
910 from the loop. It returns the CallBack's last return value. This function is
911 delete safe for the current item.
912
913 If Map is NULL, then ASSERT().
914 If CallBack is NULL, then ASSERT().
915
916 @param[in] Map The Map to iterate through.
917 @param[in] CallBack The callback function to call for each item.
918 @param[in] Arg The opaque parameter to the callback.
919
920 @retval EFI_SUCCESS There is no item in the netmap, or CallBack for each item
921 returns EFI_SUCCESS.
922 @retval Others It returns the CallBack's last return value.
923
924 **/
925 EFI_STATUS
926 EFIAPI
927 NetMapIterate (
928 IN NET_MAP *Map,
929 IN NET_MAP_CALLBACK CallBack,
930 IN VOID *Arg OPTIONAL
931 );
932
933
934 //
935 // Helper functions to implement driver binding and service binding protocols.
936 //
937 /**
938 Create a child of the service that is identified by ServiceBindingGuid.
939
940 Get the ServiceBinding Protocol first, then use it to create a child.
941
942 If ServiceBindingGuid is NULL, then ASSERT().
943 If ChildHandle is NULL, then ASSERT().
944
945 @param[in] Controller The controller which has the service installed.
946 @param[in] Image The image handle used to open service.
947 @param[in] ServiceBindingGuid The service's Guid.
948 @param[in, out] ChildHandle The handle to receive the created child.
949
950 @retval EFI_SUCCESS The child was successfully created.
951 @retval Others Failed to create the child.
952
953 **/
954 EFI_STATUS
955 EFIAPI
956 NetLibCreateServiceChild (
957 IN EFI_HANDLE Controller,
958 IN EFI_HANDLE Image,
959 IN EFI_GUID *ServiceBindingGuid,
960 IN OUT EFI_HANDLE *ChildHandle
961 );
962
963 /**
964 Destroy a child of the service that is identified by ServiceBindingGuid.
965
966 Get the ServiceBinding Protocol first, then use it to destroy a child.
967
968 If ServiceBindingGuid is NULL, then ASSERT().
969
970 @param[in] Controller The controller which has the service installed.
971 @param[in] Image The image handle used to open service.
972 @param[in] ServiceBindingGuid The service's Guid.
973 @param[in] ChildHandle The child to destroy.
974
975 @retval EFI_SUCCESS The child was destroyed.
976 @retval Others Failed to destroy the child.
977
978 **/
979 EFI_STATUS
980 EFIAPI
981 NetLibDestroyServiceChild (
982 IN EFI_HANDLE Controller,
983 IN EFI_HANDLE Image,
984 IN EFI_GUID *ServiceBindingGuid,
985 IN EFI_HANDLE ChildHandle
986 );
987
988 /**
989 Get handle with Simple Network Protocol installed on it.
990
991 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
992 If Simple Network Protocol is already installed on the ServiceHandle, the
993 ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,
994 try to find its parent handle with SNP installed.
995
996 @param[in] ServiceHandle The handle where network service binding protocols are
997 installed on.
998 @param[out] Snp The pointer to store the address of the SNP instance.
999 This is an optional parameter that may be NULL.
1000
1001 @return The SNP handle, or NULL if not found.
1002
1003 **/
1004 EFI_HANDLE
1005 EFIAPI
1006 NetLibGetSnpHandle (
1007 IN EFI_HANDLE ServiceHandle,
1008 OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL
1009 );
1010
1011 /**
1012 Retrieve VLAN ID of a VLAN device handle.
1013
1014 Search VLAN device path node in Device Path of specified ServiceHandle and
1015 return its VLAN ID. If no VLAN device path node found, then this ServiceHandle
1016 is not a VLAN device handle, and 0 will be returned.
1017
1018 @param[in] ServiceHandle The handle where network service binding protocols are
1019 installed on.
1020
1021 @return VLAN ID of the device handle, or 0 if not a VLAN device.
1022
1023 **/
1024 UINT16
1025 EFIAPI
1026 NetLibGetVlanId (
1027 IN EFI_HANDLE ServiceHandle
1028 );
1029
1030 /**
1031 Find VLAN device handle with specified VLAN ID.
1032
1033 The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.
1034 This function will append VLAN device path node to the parent device path,
1035 and then use LocateDevicePath() to find the correct VLAN device handle.
1036
1037 @param[in] ControllerHandle The handle where network service binding protocols are
1038 installed on.
1039 @param[in] VlanId The configured VLAN ID for the VLAN device.
1040
1041 @return The VLAN device handle, or NULL if not found.
1042
1043 **/
1044 EFI_HANDLE
1045 EFIAPI
1046 NetLibGetVlanHandle (
1047 IN EFI_HANDLE ControllerHandle,
1048 IN UINT16 VlanId
1049 );
1050
1051 /**
1052 Get MAC address associated with the network service handle.
1053
1054 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1055 If SNP is installed on the ServiceHandle or its parent handle, MAC address will
1056 be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.
1057
1058 @param[in] ServiceHandle The handle where network service binding protocols are
1059 installed on.
1060 @param[out] MacAddress The pointer to store the returned MAC address.
1061 @param[out] AddressSize The length of returned MAC address.
1062
1063 @retval EFI_SUCCESS MAC address was returned successfully.
1064 @retval Others Failed to get SNP mode data.
1065
1066 **/
1067 EFI_STATUS
1068 EFIAPI
1069 NetLibGetMacAddress (
1070 IN EFI_HANDLE ServiceHandle,
1071 OUT EFI_MAC_ADDRESS *MacAddress,
1072 OUT UINTN *AddressSize
1073 );
1074
1075 /**
1076 Convert MAC address of the NIC associated with specified Service Binding Handle
1077 to a unicode string. Callers are responsible for freeing the string storage.
1078
1079 Locate simple network protocol associated with the Service Binding Handle and
1080 get the mac address from SNP. Then convert the mac address into a unicode
1081 string. It takes 2 unicode characters to represent a 1 byte binary buffer.
1082 Plus one unicode character for the null-terminator.
1083
1084 @param[in] ServiceHandle The handle where network service binding protocol is
1085 installed.
1086 @param[in] ImageHandle The image handle used to act as the agent handle to
1087 get the simple network protocol.
1088 @param[out] MacString The pointer to store the address of the string
1089 representation of the mac address.
1090
1091 @retval EFI_SUCCESS Converted the mac address a unicode string successfully.
1092 @retval EFI_OUT_OF_RESOURCES There are not enough memory resources.
1093 @retval Others Failed to open the simple network protocol.
1094
1095 **/
1096 EFI_STATUS
1097 EFIAPI
1098 NetLibGetMacString (
1099 IN EFI_HANDLE ServiceHandle,
1100 IN EFI_HANDLE ImageHandle,
1101 OUT CHAR16 **MacString
1102 );
1103
1104 /**
1105 Detect media status for specified network device.
1106
1107 The underlying UNDI driver may or may not support reporting media status from
1108 GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine
1109 will try to invoke Snp->GetStatus() to get the media status. If media is already
1110 present, it returns directly. If media is not present, it will stop SNP and then
1111 restart SNP to get the latest media status. This provides an opportunity to get
1112 the correct media status for old UNDI driver, which doesn't support reporting
1113 media status from GET_STATUS command.
1114 Note: there are two limitations for the current algorithm:
1115 1) For UNDI with this capability, when the cable is not attached, there will
1116 be an redundant Stop/Start() process.
1117 2) for UNDI without this capability, in case that network cable is attached when
1118 Snp->Initialize() is invoked while network cable is unattached later,
1119 NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer
1120 apps to wait for timeout time.
1121
1122 @param[in] ServiceHandle The handle where network service binding protocols are
1123 installed.
1124 @param[out] MediaPresent The pointer to store the media status.
1125
1126 @retval EFI_SUCCESS Media detection success.
1127 @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle.
1128 @retval EFI_UNSUPPORTED The network device does not support media detection.
1129 @retval EFI_DEVICE_ERROR SNP is in an unknown state.
1130
1131 **/
1132 EFI_STATUS
1133 EFIAPI
1134 NetLibDetectMedia (
1135 IN EFI_HANDLE ServiceHandle,
1136 OUT BOOLEAN *MediaPresent
1137 );
1138
1139 /**
1140 Create an IPv4 device path node.
1141
1142 The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.
1143 The header subtype of IPv4 device path node is MSG_IPv4_DP.
1144 The length of the IPv4 device path node in bytes is 19.
1145 Get other information from parameters to make up the whole IPv4 device path node.
1146
1147 @param[in, out] Node The pointer to the IPv4 device path node.
1148 @param[in] Controller The controller handle.
1149 @param[in] LocalIp The local IPv4 address.
1150 @param[in] LocalPort The local port.
1151 @param[in] RemoteIp The remote IPv4 address.
1152 @param[in] RemotePort The remote port.
1153 @param[in] Protocol The protocol type in the IP header.
1154 @param[in] UseDefaultAddress Whether this instance is using default address or not.
1155
1156 **/
1157 VOID
1158 EFIAPI
1159 NetLibCreateIPv4DPathNode (
1160 IN OUT IPv4_DEVICE_PATH *Node,
1161 IN EFI_HANDLE Controller,
1162 IN IP4_ADDR LocalIp,
1163 IN UINT16 LocalPort,
1164 IN IP4_ADDR RemoteIp,
1165 IN UINT16 RemotePort,
1166 IN UINT16 Protocol,
1167 IN BOOLEAN UseDefaultAddress
1168 );
1169
1170 /**
1171 Create an IPv6 device path node.
1172
1173 The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.
1174 The header subtype of IPv6 device path node is MSG_IPv6_DP.
1175 The length of the IPv6 device path node in bytes is 43.
1176 Get other information from parameters to make up the whole IPv6 device path node.
1177
1178 @param[in, out] Node The pointer to the IPv6 device path node.
1179 @param[in] Controller The controller handle.
1180 @param[in] LocalIp The local IPv6 address.
1181 @param[in] LocalPort The local port.
1182 @param[in] RemoteIp The remote IPv6 address.
1183 @param[in] RemotePort The remote port.
1184 @param[in] Protocol The protocol type in the IP header.
1185
1186 **/
1187 VOID
1188 EFIAPI
1189 NetLibCreateIPv6DPathNode (
1190 IN OUT IPv6_DEVICE_PATH *Node,
1191 IN EFI_HANDLE Controller,
1192 IN EFI_IPv6_ADDRESS *LocalIp,
1193 IN UINT16 LocalPort,
1194 IN EFI_IPv6_ADDRESS *RemoteIp,
1195 IN UINT16 RemotePort,
1196 IN UINT16 Protocol
1197 );
1198
1199
1200 /**
1201 Find the UNDI/SNP handle from controller and protocol GUID.
1202
1203 For example, IP will open an MNP child to transmit/receive
1204 packets. When MNP is stopped, IP should also be stopped. IP
1205 needs to find its own private data that is related the IP's
1206 service binding instance that is installed on the UNDI/SNP handle.
1207 The controller is then either an MNP or an ARP child handle. Note that
1208 IP opens these handles using BY_DRIVER. Use that infomation to get the
1209 UNDI/SNP handle.
1210
1211 @param[in] Controller The protocol handle to check.
1212 @param[in] ProtocolGuid The protocol that is related with the handle.
1213
1214 @return The UNDI/SNP handle or NULL for errors.
1215
1216 **/
1217 EFI_HANDLE
1218 EFIAPI
1219 NetLibGetNicHandle (
1220 IN EFI_HANDLE Controller,
1221 IN EFI_GUID *ProtocolGuid
1222 );
1223
1224 /**
1225 This is the default unload handle for all the network drivers.
1226
1227 Disconnect the driver specified by ImageHandle from all the devices in the handle database.
1228 Uninstall all the protocols installed in the driver entry point.
1229
1230 @param[in] ImageHandle The drivers' driver image.
1231
1232 @retval EFI_SUCCESS The image is unloaded.
1233 @retval Others Failed to unload the image.
1234
1235 **/
1236 EFI_STATUS
1237 EFIAPI
1238 NetLibDefaultUnload (
1239 IN EFI_HANDLE ImageHandle
1240 );
1241
1242 /**
1243 Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.
1244
1245 @param[in] String The pointer to the Ascii string.
1246 @param[out] Ip4Address The pointer to the converted IPv4 address.
1247
1248 @retval EFI_SUCCESS Converted to an IPv4 address successfully.
1249 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip4Address is NULL.
1250
1251 **/
1252 EFI_STATUS
1253 EFIAPI
1254 NetLibAsciiStrToIp4 (
1255 IN CONST CHAR8 *String,
1256 OUT EFI_IPv4_ADDRESS *Ip4Address
1257 );
1258
1259 /**
1260 Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the
1261 string is defined in RFC 4291 - Text Pepresentation of Addresses.
1262
1263 @param[in] String The pointer to the Ascii string.
1264 @param[out] Ip6Address The pointer to the converted IPv6 address.
1265
1266 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1267 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip6Address is NULL.
1268
1269 **/
1270 EFI_STATUS
1271 EFIAPI
1272 NetLibAsciiStrToIp6 (
1273 IN CONST CHAR8 *String,
1274 OUT EFI_IPv6_ADDRESS *Ip6Address
1275 );
1276
1277 /**
1278 Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.
1279
1280 @param[in] String The pointer to the Ascii string.
1281 @param[out] Ip4Address The pointer to the converted IPv4 address.
1282
1283 @retval EFI_SUCCESS Converted to an IPv4 address successfully.
1284 @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip4Address is NULL.
1285 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to lack of resources.
1286
1287 **/
1288 EFI_STATUS
1289 EFIAPI
1290 NetLibStrToIp4 (
1291 IN CONST CHAR16 *String,
1292 OUT EFI_IPv4_ADDRESS *Ip4Address
1293 );
1294
1295 /**
1296 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS. The format of
1297 the string is defined in RFC 4291 - Text Pepresentation of Addresses.
1298
1299 @param[in] String The pointer to the Ascii string.
1300 @param[out] Ip6Address The pointer to the converted IPv6 address.
1301
1302 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1303 @retval EFI_INVALID_PARAMETER The string is malformated or Ip6Address is NULL.
1304 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to a lack of resources.
1305
1306 **/
1307 EFI_STATUS
1308 EFIAPI
1309 NetLibStrToIp6 (
1310 IN CONST CHAR16 *String,
1311 OUT EFI_IPv6_ADDRESS *Ip6Address
1312 );
1313
1314 /**
1315 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.
1316 The format of the string is defined in RFC 4291 - Text Pepresentation of Addresses
1317 Prefixes: ipv6-address/prefix-length.
1318
1319 @param[in] String The pointer to the Ascii string.
1320 @param[out] Ip6Address The pointer to the converted IPv6 address.
1321 @param[out] PrefixLength The pointer to the converted prefix length.
1322
1323 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1324 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip6Address is NULL.
1325 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to a lack of resources.
1326
1327 **/
1328 EFI_STATUS
1329 EFIAPI
1330 NetLibStrToIp6andPrefix (
1331 IN CONST CHAR16 *String,
1332 OUT EFI_IPv6_ADDRESS *Ip6Address,
1333 OUT UINT8 *PrefixLength
1334 );
1335
1336 //
1337 // Various signatures
1338 //
1339 #define NET_BUF_SIGNATURE SIGNATURE_32 ('n', 'b', 'u', 'f')
1340 #define NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c')
1341 #define NET_QUE_SIGNATURE SIGNATURE_32 ('n', 'b', 'q', 'u')
1342
1343
1344 #define NET_PROTO_DATA 64 // Opaque buffer for protocols
1345 #define NET_BUF_HEAD 1 // Trim or allocate space from head
1346 #define NET_BUF_TAIL 0 // Trim or allocate space from tail
1347 #define NET_VECTOR_OWN_FIRST 0x01 // We allocated the 1st block in the vector
1348
1349 #define NET_CHECK_SIGNATURE(PData, SIGNATURE) \
1350 ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))
1351
1352 //
1353 // Single memory block in the vector.
1354 //
1355 typedef struct {
1356 UINT32 Len; // The block's length
1357 UINT8 *Bulk; // The block's Data
1358 } NET_BLOCK;
1359
1360 typedef VOID (EFIAPI *NET_VECTOR_EXT_FREE) (VOID *Arg);
1361
1362 //
1363 //NET_VECTOR contains several blocks to hold all packet's
1364 //fragments and other house-keeping stuff for sharing. It
1365 //doesn't specify the where actual packet fragment begins.
1366 //
1367 typedef struct {
1368 UINT32 Signature;
1369 INTN RefCnt; // Reference count to share NET_VECTOR.
1370 NET_VECTOR_EXT_FREE Free; // external function to free NET_VECTOR
1371 VOID *Arg; // opeque argument to Free
1372 UINT32 Flag; // Flags, NET_VECTOR_OWN_FIRST
1373 UINT32 Len; // Total length of the assocated BLOCKs
1374
1375 UINT32 BlockNum;
1376 NET_BLOCK Block[1];
1377 } NET_VECTOR;
1378
1379 //
1380 //NET_BLOCK_OP operates on the NET_BLOCK. It specifies
1381 //where the actual fragment begins and ends
1382 //
1383 typedef struct {
1384 UINT8 *BlockHead; // Block's head, or the smallest valid Head
1385 UINT8 *BlockTail; // Block's tail. BlockTail-BlockHead=block length
1386 UINT8 *Head; // 1st byte of the data in the block
1387 UINT8 *Tail; // Tail of the data in the block, Tail-Head=Size
1388 UINT32 Size; // The size of the data
1389 } NET_BLOCK_OP;
1390
1391 typedef union {
1392 IP4_HEAD *Ip4;
1393 EFI_IP6_HEADER *Ip6;
1394 } NET_IP_HEAD;
1395
1396 //
1397 //NET_BUF is the buffer manage structure used by the
1398 //network stack. Every network packet may be fragmented. The Vector points to
1399 //memory blocks used by each fragment, and BlockOp
1400 //specifies where each fragment begins and ends.
1401 //
1402 //It also contains an opaque area for the protocol to store
1403 //per-packet information. Protocol must be careful not
1404 //to overwrite the members after that.
1405 //
1406 typedef struct {
1407 UINT32 Signature;
1408 INTN RefCnt;
1409 LIST_ENTRY List; // The List this NET_BUF is on
1410
1411 NET_IP_HEAD Ip; // Network layer header, for fast access
1412 TCP_HEAD *Tcp; // Transport layer header, for fast access
1413 EFI_UDP_HEADER *Udp; // User Datagram Protocol header
1414 UINT8 ProtoData [NET_PROTO_DATA]; //Protocol specific data
1415
1416 NET_VECTOR *Vector; // The vector containing the packet
1417
1418 UINT32 BlockOpNum; // Total number of BlockOp in the buffer
1419 UINT32 TotalSize; // Total size of the actual packet
1420 NET_BLOCK_OP BlockOp[1]; // Specify the position of actual packet
1421 } NET_BUF;
1422
1423 //
1424 //A queue of NET_BUFs. It is a thin extension of
1425 //NET_BUF functions.
1426 //
1427 typedef struct {
1428 UINT32 Signature;
1429 INTN RefCnt;
1430 LIST_ENTRY List; // The List this buffer queue is on
1431
1432 LIST_ENTRY BufList; // list of queued buffers
1433 UINT32 BufSize; // total length of DATA in the buffers
1434 UINT32 BufNum; // total number of buffers on the chain
1435 } NET_BUF_QUEUE;
1436
1437 //
1438 // Pseudo header for TCP and UDP checksum
1439 //
1440 #pragma pack(1)
1441 typedef struct {
1442 IP4_ADDR SrcIp;
1443 IP4_ADDR DstIp;
1444 UINT8 Reserved;
1445 UINT8 Protocol;
1446 UINT16 Len;
1447 } NET_PSEUDO_HDR;
1448
1449 typedef struct {
1450 EFI_IPv6_ADDRESS SrcIp;
1451 EFI_IPv6_ADDRESS DstIp;
1452 UINT32 Len;
1453 UINT32 Reserved:24;
1454 UINT32 NextHeader:8;
1455 } NET_IP6_PSEUDO_HDR;
1456 #pragma pack()
1457
1458 //
1459 // The fragment entry table used in network interfaces. This is
1460 // the same as NET_BLOCK now. Use two different to distinguish
1461 // the two in case that NET_BLOCK be enhanced later.
1462 //
1463 typedef struct {
1464 UINT32 Len;
1465 UINT8 *Bulk;
1466 } NET_FRAGMENT;
1467
1468 #define NET_GET_REF(PData) ((PData)->RefCnt++)
1469 #define NET_PUT_REF(PData) ((PData)->RefCnt--)
1470 #define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)
1471
1472 #define NET_BUF_SHARED(Buf) \
1473 (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))
1474
1475 #define NET_VECTOR_SIZE(BlockNum) \
1476 (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))
1477
1478 #define NET_BUF_SIZE(BlockOpNum) \
1479 (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))
1480
1481 #define NET_HEADSPACE(BlockOp) \
1482 (UINTN)((BlockOp)->Head - (BlockOp)->BlockHead)
1483
1484 #define NET_TAILSPACE(BlockOp) \
1485 (UINTN)((BlockOp)->BlockTail - (BlockOp)->Tail)
1486
1487 /**
1488 Allocate a single block NET_BUF. Upon allocation, all the
1489 free space is in the tail room.
1490
1491 @param[in] Len The length of the block.
1492
1493 @return The pointer to the allocated NET_BUF, or NULL if the
1494 allocation failed due to resource limitations.
1495
1496 **/
1497 NET_BUF *
1498 EFIAPI
1499 NetbufAlloc (
1500 IN UINT32 Len
1501 );
1502
1503 /**
1504 Free the net buffer and its associated NET_VECTOR.
1505
1506 Decrease the reference count of the net buffer by one. Free the associated net
1507 vector and itself if the reference count of the net buffer is decreased to 0.
1508 The net vector free operation decreases the reference count of the net
1509 vector by one, and performs the resource free operation when the reference count
1510 of the net vector is 0.
1511
1512 @param[in] Nbuf The pointer to the NET_BUF to be freed.
1513
1514 **/
1515 VOID
1516 EFIAPI
1517 NetbufFree (
1518 IN NET_BUF *Nbuf
1519 );
1520
1521 /**
1522 Get the index of NET_BLOCK_OP that contains the byte at Offset in the net
1523 buffer.
1524
1525 For example, this function can be used to retrieve the IP header in the packet. It
1526 also can be used to get the fragment that contains the byte used
1527 mainly by the library implementation itself.
1528
1529 @param[in] Nbuf The pointer to the net buffer.
1530 @param[in] Offset The offset of the byte.
1531 @param[out] Index Index of the NET_BLOCK_OP that contains the byte at
1532 Offset.
1533
1534 @return The pointer to the Offset'th byte of data in the net buffer, or NULL
1535 if there is no such data in the net buffer.
1536
1537 **/
1538 UINT8 *
1539 EFIAPI
1540 NetbufGetByte (
1541 IN NET_BUF *Nbuf,
1542 IN UINT32 Offset,
1543 OUT UINT32 *Index OPTIONAL
1544 );
1545
1546 /**
1547 Create a copy of the net buffer that shares the associated net vector.
1548
1549 The reference count of the newly created net buffer is set to 1. The reference
1550 count of the associated net vector is increased by one.
1551
1552 @param[in] Nbuf The pointer to the net buffer to be cloned.
1553
1554 @return The pointer to the cloned net buffer, or NULL if the
1555 allocation failed due to resource limitations.
1556
1557 **/
1558 NET_BUF *
1559 EFIAPI
1560 NetbufClone (
1561 IN NET_BUF *Nbuf
1562 );
1563
1564 /**
1565 Create a duplicated copy of the net buffer with data copied and HeadSpace
1566 bytes of head space reserved.
1567
1568 The duplicated net buffer will allocate its own memory to hold the data of the
1569 source net buffer.
1570
1571 @param[in] Nbuf The pointer to the net buffer to be duplicated from.
1572 @param[in, out] Duplicate The pointer to the net buffer to duplicate to. If
1573 NULL, a new net buffer is allocated.
1574 @param[in] HeadSpace The length of the head space to reserve.
1575
1576 @return The pointer to the duplicated net buffer, or NULL if
1577 the allocation failed due to resource limitations.
1578
1579 **/
1580 NET_BUF *
1581 EFIAPI
1582 NetbufDuplicate (
1583 IN NET_BUF *Nbuf,
1584 IN OUT NET_BUF *Duplicate OPTIONAL,
1585 IN UINT32 HeadSpace
1586 );
1587
1588 /**
1589 Create a NET_BUF structure which contains Len byte data of Nbuf starting from
1590 Offset.
1591
1592 A new NET_BUF structure will be created but the associated data in NET_VECTOR
1593 is shared. This function exists to perform IP packet fragmentation.
1594
1595 @param[in] Nbuf The pointer to the net buffer to be extracted.
1596 @param[in] Offset Starting point of the data to be included in the new
1597 net buffer.
1598 @param[in] Len The bytes of data to be included in the new net buffer.
1599 @param[in] HeadSpace The bytes of the head space to reserve for the protocol header.
1600
1601 @return The pointer to the cloned net buffer, or NULL if the
1602 allocation failed due to resource limitations.
1603
1604 **/
1605 NET_BUF *
1606 EFIAPI
1607 NetbufGetFragment (
1608 IN NET_BUF *Nbuf,
1609 IN UINT32 Offset,
1610 IN UINT32 Len,
1611 IN UINT32 HeadSpace
1612 );
1613
1614 /**
1615 Reserve some space in the header room of the net buffer.
1616
1617 Upon allocation, all the space is in the tail room of the buffer. Call this
1618 function to move space to the header room. This function is quite limited
1619 in that it can only reserve space from the first block of an empty NET_BUF not
1620 built from the external. However, it should be enough for the network stack.
1621
1622 @param[in, out] Nbuf The pointer to the net buffer.
1623 @param[in] Len The length of buffer to be reserved from the header.
1624
1625 **/
1626 VOID
1627 EFIAPI
1628 NetbufReserve (
1629 IN OUT NET_BUF *Nbuf,
1630 IN UINT32 Len
1631 );
1632
1633 /**
1634 Allocate Len bytes of space from the header or tail of the buffer.
1635
1636 @param[in, out] Nbuf The pointer to the net buffer.
1637 @param[in] Len The length of the buffer to be allocated.
1638 @param[in] FromHead The flag to indicate whether to reserve the data
1639 from head (TRUE) or tail (FALSE).
1640
1641 @return The pointer to the first byte of the allocated buffer,
1642 or NULL, if there is no sufficient space.
1643
1644 **/
1645 UINT8*
1646 EFIAPI
1647 NetbufAllocSpace (
1648 IN OUT NET_BUF *Nbuf,
1649 IN UINT32 Len,
1650 IN BOOLEAN FromHead
1651 );
1652
1653 /**
1654 Trim Len bytes from the header or the tail of the net buffer.
1655
1656 @param[in, out] Nbuf The pointer to the net buffer.
1657 @param[in] Len The length of the data to be trimmed.
1658 @param[in] FromHead The flag to indicate whether trim data is from the
1659 head (TRUE) or the tail (FALSE).
1660
1661 @return The length of the actual trimmed data, which may be less
1662 than Len if the TotalSize of Nbuf is less than Len.
1663
1664 **/
1665 UINT32
1666 EFIAPI
1667 NetbufTrim (
1668 IN OUT NET_BUF *Nbuf,
1669 IN UINT32 Len,
1670 IN BOOLEAN FromHead
1671 );
1672
1673 /**
1674 Copy Len bytes of data from the specific offset of the net buffer to the
1675 destination memory.
1676
1677 The Len bytes of data may cross several fragments of the net buffer.
1678
1679 @param[in] Nbuf The pointer to the net buffer.
1680 @param[in] Offset The sequence number of the first byte to copy.
1681 @param[in] Len The length of the data to copy.
1682 @param[in] Dest The destination of the data to copy to.
1683
1684 @return The length of the actual copied data, or 0 if the offset
1685 specified exceeds the total size of net buffer.
1686
1687 **/
1688 UINT32
1689 EFIAPI
1690 NetbufCopy (
1691 IN NET_BUF *Nbuf,
1692 IN UINT32 Offset,
1693 IN UINT32 Len,
1694 IN UINT8 *Dest
1695 );
1696
1697 /**
1698 Build a NET_BUF from external blocks.
1699
1700 A new NET_BUF structure will be created from external blocks. An additional block
1701 of memory will be allocated to hold reserved HeadSpace bytes of header room
1702 and existing HeadLen bytes of header, but the external blocks are shared by the
1703 net buffer to avoid data copying.
1704
1705 @param[in] ExtFragment The pointer to the data block.
1706 @param[in] ExtNum The number of the data blocks.
1707 @param[in] HeadSpace The head space to be reserved.
1708 @param[in] HeadLen The length of the protocol header. The function
1709 pulls this amount of data into a linear block.
1710 @param[in] ExtFree The pointer to the caller-provided free function.
1711 @param[in] Arg The argument passed to ExtFree when ExtFree is
1712 called.
1713
1714 @return The pointer to the net buffer built from the data blocks,
1715 or NULL if the allocation failed due to resource
1716 limit.
1717
1718 **/
1719 NET_BUF *
1720 EFIAPI
1721 NetbufFromExt (
1722 IN NET_FRAGMENT *ExtFragment,
1723 IN UINT32 ExtNum,
1724 IN UINT32 HeadSpace,
1725 IN UINT32 HeadLen,
1726 IN NET_VECTOR_EXT_FREE ExtFree,
1727 IN VOID *Arg OPTIONAL
1728 );
1729
1730 /**
1731 Build a fragment table to contain the fragments in the net buffer. This is the
1732 opposite operation of the NetbufFromExt.
1733
1734 @param[in] Nbuf Points to the net buffer.
1735 @param[in, out] ExtFragment The pointer to the data block.
1736 @param[in, out] ExtNum The number of the data blocks.
1737
1738 @retval EFI_BUFFER_TOO_SMALL The number of non-empty blocks is bigger than
1739 ExtNum.
1740 @retval EFI_SUCCESS The fragment table was built successfully.
1741
1742 **/
1743 EFI_STATUS
1744 EFIAPI
1745 NetbufBuildExt (
1746 IN NET_BUF *Nbuf,
1747 IN OUT NET_FRAGMENT *ExtFragment,
1748 IN OUT UINT32 *ExtNum
1749 );
1750
1751 /**
1752 Build a net buffer from a list of net buffers.
1753
1754 All the fragments will be collected from the list of NEW_BUF, and then a new
1755 net buffer will be created through NetbufFromExt.
1756
1757 @param[in] BufList A List of the net buffer.
1758 @param[in] HeadSpace The head space to be reserved.
1759 @param[in] HeaderLen The length of the protocol header. The function
1760 pulls this amount of data into a linear block.
1761 @param[in] ExtFree The pointer to the caller provided free function.
1762 @param[in] Arg The argument passed to ExtFree when ExtFree is called.
1763
1764 @return The pointer to the net buffer built from the list of net
1765 buffers.
1766
1767 **/
1768 NET_BUF *
1769 EFIAPI
1770 NetbufFromBufList (
1771 IN LIST_ENTRY *BufList,
1772 IN UINT32 HeadSpace,
1773 IN UINT32 HeaderLen,
1774 IN NET_VECTOR_EXT_FREE ExtFree,
1775 IN VOID *Arg OPTIONAL
1776 );
1777
1778 /**
1779 Free a list of net buffers.
1780
1781 @param[in, out] Head The pointer to the head of linked net buffers.
1782
1783 **/
1784 VOID
1785 EFIAPI
1786 NetbufFreeList (
1787 IN OUT LIST_ENTRY *Head
1788 );
1789
1790 /**
1791 Initiate the net buffer queue.
1792
1793 @param[in, out] NbufQue The pointer to the net buffer queue to be initialized.
1794
1795 **/
1796 VOID
1797 EFIAPI
1798 NetbufQueInit (
1799 IN OUT NET_BUF_QUEUE *NbufQue
1800 );
1801
1802 /**
1803 Allocate and initialize a net buffer queue.
1804
1805 @return The pointer to the allocated net buffer queue, or NULL if the
1806 allocation failed due to resource limit.
1807
1808 **/
1809 NET_BUF_QUEUE *
1810 EFIAPI
1811 NetbufQueAlloc (
1812 VOID
1813 );
1814
1815 /**
1816 Free a net buffer queue.
1817
1818 Decrease the reference count of the net buffer queue by one. The real resource
1819 free operation isn't performed until the reference count of the net buffer
1820 queue is decreased to 0.
1821
1822 @param[in] NbufQue The pointer to the net buffer queue to be freed.
1823
1824 **/
1825 VOID
1826 EFIAPI
1827 NetbufQueFree (
1828 IN NET_BUF_QUEUE *NbufQue
1829 );
1830
1831 /**
1832 Remove a net buffer from the head in the specific queue and return it.
1833
1834 @param[in, out] NbufQue The pointer to the net buffer queue.
1835
1836 @return The pointer to the net buffer removed from the specific queue,
1837 or NULL if there is no net buffer in the specific queue.
1838
1839 **/
1840 NET_BUF *
1841 EFIAPI
1842 NetbufQueRemove (
1843 IN OUT NET_BUF_QUEUE *NbufQue
1844 );
1845
1846 /**
1847 Append a net buffer to the net buffer queue.
1848
1849 @param[in, out] NbufQue The pointer to the net buffer queue.
1850 @param[in, out] Nbuf The pointer to the net buffer to be appended.
1851
1852 **/
1853 VOID
1854 EFIAPI
1855 NetbufQueAppend (
1856 IN OUT NET_BUF_QUEUE *NbufQue,
1857 IN OUT NET_BUF *Nbuf
1858 );
1859
1860 /**
1861 Copy Len bytes of data from the net buffer queue at the specific offset to the
1862 destination memory.
1863
1864 The copying operation is the same as NetbufCopy, but applies to the net buffer
1865 queue instead of the net buffer.
1866
1867 @param[in] NbufQue The pointer to the net buffer queue.
1868 @param[in] Offset The sequence number of the first byte to copy.
1869 @param[in] Len The length of the data to copy.
1870 @param[out] Dest The destination of the data to copy to.
1871
1872 @return The length of the actual copied data, or 0 if the offset
1873 specified exceeds the total size of net buffer queue.
1874
1875 **/
1876 UINT32
1877 EFIAPI
1878 NetbufQueCopy (
1879 IN NET_BUF_QUEUE *NbufQue,
1880 IN UINT32 Offset,
1881 IN UINT32 Len,
1882 OUT UINT8 *Dest
1883 );
1884
1885 /**
1886 Trim Len bytes of data from the buffer queue and free any net buffer
1887 that is completely trimmed.
1888
1889 The trimming operation is the same as NetbufTrim but applies to the net buffer
1890 queue instead of the net buffer.
1891
1892 @param[in, out] NbufQue The pointer to the net buffer queue.
1893 @param[in] Len The length of the data to trim.
1894
1895 @return The actual length of the data trimmed.
1896
1897 **/
1898 UINT32
1899 EFIAPI
1900 NetbufQueTrim (
1901 IN OUT NET_BUF_QUEUE *NbufQue,
1902 IN UINT32 Len
1903 );
1904
1905
1906 /**
1907 Flush the net buffer queue.
1908
1909 @param[in, out] NbufQue The pointer to the queue to be flushed.
1910
1911 **/
1912 VOID
1913 EFIAPI
1914 NetbufQueFlush (
1915 IN OUT NET_BUF_QUEUE *NbufQue
1916 );
1917
1918 /**
1919 Compute the checksum for a bulk of data.
1920
1921 @param[in] Bulk The pointer to the data.
1922 @param[in] Len The length of the data, in bytes.
1923
1924 @return The computed checksum.
1925
1926 **/
1927 UINT16
1928 EFIAPI
1929 NetblockChecksum (
1930 IN UINT8 *Bulk,
1931 IN UINT32 Len
1932 );
1933
1934 /**
1935 Add two checksums.
1936
1937 @param[in] Checksum1 The first checksum to be added.
1938 @param[in] Checksum2 The second checksum to be added.
1939
1940 @return The new checksum.
1941
1942 **/
1943 UINT16
1944 EFIAPI
1945 NetAddChecksum (
1946 IN UINT16 Checksum1,
1947 IN UINT16 Checksum2
1948 );
1949
1950 /**
1951 Compute the checksum for a NET_BUF.
1952
1953 @param[in] Nbuf The pointer to the net buffer.
1954
1955 @return The computed checksum.
1956
1957 **/
1958 UINT16
1959 EFIAPI
1960 NetbufChecksum (
1961 IN NET_BUF *Nbuf
1962 );
1963
1964 /**
1965 Compute the checksum for TCP/UDP pseudo header.
1966
1967 Src and Dst are in network byte order, and Len is in host byte order.
1968
1969 @param[in] Src The source address of the packet.
1970 @param[in] Dst The destination address of the packet.
1971 @param[in] Proto The protocol type of the packet.
1972 @param[in] Len The length of the packet.
1973
1974 @return The computed checksum.
1975
1976 **/
1977 UINT16
1978 EFIAPI
1979 NetPseudoHeadChecksum (
1980 IN IP4_ADDR Src,
1981 IN IP4_ADDR Dst,
1982 IN UINT8 Proto,
1983 IN UINT16 Len
1984 );
1985
1986 /**
1987 Compute the checksum for the TCP6/UDP6 pseudo header.
1988
1989 Src and Dst are in network byte order, and Len is in host byte order.
1990
1991 @param[in] Src The source address of the packet.
1992 @param[in] Dst The destination address of the packet.
1993 @param[in] NextHeader The protocol type of the packet.
1994 @param[in] Len The length of the packet.
1995
1996 @return The computed checksum.
1997
1998 **/
1999 UINT16
2000 EFIAPI
2001 NetIp6PseudoHeadChecksum (
2002 IN EFI_IPv6_ADDRESS *Src,
2003 IN EFI_IPv6_ADDRESS *Dst,
2004 IN UINT8 NextHeader,
2005 IN UINT32 Len
2006 );
2007
2008 /**
2009 The function frees the net buffer which allocated by the IP protocol. It releases
2010 only the net buffer and doesn't call the external free function.
2011
2012 This function should be called after finishing the process of mIpSec->ProcessExt()
2013 for outbound traffic. The (EFI_IPSEC2_PROTOCOL)->ProcessExt() allocates a new
2014 buffer for the ESP, so there needs a function to free the old net buffer.
2015
2016 @param[in] Nbuf The network buffer to be freed.
2017
2018 **/
2019 VOID
2020 NetIpSecNetbufFree (
2021 NET_BUF *Nbuf
2022 );
2023
2024 /**
2025 This function obtains the system guid from the smbios table.
2026
2027 @param[out] SystemGuid The pointer of the returned system guid.
2028
2029 @retval EFI_SUCCESS Successfully obtained the system guid.
2030 @retval EFI_NOT_FOUND Did not find the SMBIOS table.
2031
2032 **/
2033 EFI_STATUS
2034 EFIAPI
2035 NetLibGetSystemGuid (
2036 OUT EFI_GUID *SystemGuid
2037 );
2038
2039 #endif