]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Include/Library/NetLib.h
MdeModulePkg/S3SmmInitDone.h: Fix copyright coding style error.
[mirror_edk2.git] / MdeModulePkg / Include / Library / NetLib.h
1 /** @file
2 This library is only intended to be used by UEFI network stack modules.
3 It provides basic functions for the UEFI network stack.
4
5 Copyright (c) 2005 - 2018, Intel Corporation. All rights reserved.<BR>
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution. The full text of the license may be found at<BR>
9 http://opensource.org/licenses/bsd-license.php
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #ifndef _NET_LIB_H_
17 #define _NET_LIB_H_
18
19 #include <Protocol/Ip6.h>
20
21 #include <Library/BaseLib.h>
22 #include <Library/BaseMemoryLib.h>
23
24 typedef UINT32 IP4_ADDR;
25 typedef UINT32 TCP_SEQNO;
26 typedef UINT16 TCP_PORTNO;
27
28
29 #define NET_ETHER_ADDR_LEN 6
30 #define NET_IFTYPE_ETHERNET 0x01
31
32 #define NET_VLAN_TAG_LEN 4
33 #define ETHER_TYPE_VLAN 0x8100
34
35 #define EFI_IP_PROTO_UDP 0x11
36 #define EFI_IP_PROTO_TCP 0x06
37 #define EFI_IP_PROTO_ICMP 0x01
38 #define IP4_PROTO_IGMP 0x02
39 #define IP6_ICMP 58
40 #define DNS_MAX_NAME_SIZE 255
41 #define DNS_MAX_MESSAGE_SIZE 512
42
43 //
44 // The address classification
45 //
46 #define IP4_ADDR_CLASSA 1 // Deprecated
47 #define IP4_ADDR_CLASSB 2 // Deprecated
48 #define IP4_ADDR_CLASSC 3 // Deprecated
49 #define IP4_ADDR_CLASSD 4
50 #define IP4_ADDR_CLASSE 5
51
52 #define IP4_MASK_NUM 33
53 #define IP6_PREFIX_NUM 129
54
55 #define IP4_MASK_MAX 32
56 #define IP6_PREFIX_MAX 128
57
58 #define IP6_HOP_BY_HOP 0
59 #define IP6_DESTINATION 60
60 #define IP6_ROUTING 43
61 #define IP6_FRAGMENT 44
62 #define IP6_AH 51
63 #define IP6_ESP 50
64 #define IP6_NO_NEXT_HEADER 59
65
66 #define IP_VERSION_4 4
67 #define IP_VERSION_6 6
68
69 #define IP6_PREFIX_LENGTH 64
70
71 //
72 // DNS QTYPE values
73 //
74 #define DNS_TYPE_A 1
75 #define DNS_TYPE_NS 2
76 #define DNS_TYPE_CNAME 5
77 #define DNS_TYPE_SOA 6
78 #define DNS_TYPE_WKS 11
79 #define DNS_TYPE_PTR 12
80 #define DNS_TYPE_HINFO 13
81 #define DNS_TYPE_MINFO 14
82 #define DNS_TYPE_MX 15
83 #define DNS_TYPE_TXT 16
84 #define DNS_TYPE_AAAA 28
85 #define DNS_TYPE_SRV_RR 33
86 #define DNS_TYPE_AXFR 252
87 #define DNS_TYPE_MAILB 253
88 #define DNS_TYPE_ANY 255
89
90 //
91 // DNS QCLASS values
92 //
93 #define DNS_CLASS_INET 1
94 #define DNS_CLASS_CH 3
95 #define DNS_CLASS_HS 4
96 #define DNS_CLASS_ANY 255
97
98 //
99 // Number of 100ns units time Interval for network media state detect
100 //
101 #define MEDIA_STATE_DETECT_TIME_INTERVAL 1000000U
102
103
104 #pragma pack(1)
105
106 //
107 // Ethernet head definition
108 //
109 typedef struct {
110 UINT8 DstMac [NET_ETHER_ADDR_LEN];
111 UINT8 SrcMac [NET_ETHER_ADDR_LEN];
112 UINT16 EtherType;
113 } ETHER_HEAD;
114
115 //
116 // 802.1Q VLAN Tag Control Information
117 //
118 typedef union {
119 struct {
120 UINT16 Vid : 12; // Unique VLAN identifier (0 to 4094)
121 UINT16 Cfi : 1; // Canonical Format Indicator
122 UINT16 Priority : 3; // 802.1Q priority level (0 to 7)
123 } Bits;
124 UINT16 Uint16;
125 } VLAN_TCI;
126
127 #define VLAN_TCI_CFI_CANONICAL_MAC 0
128 #define VLAN_TCI_CFI_NON_CANONICAL_MAC 1
129
130 //
131 // The EFI_IP4_HEADER is hard to use because the source and
132 // destination address are defined as EFI_IPv4_ADDRESS, which
133 // is a structure. Two structures can't be compared or masked
134 // directly. This is why there is an internal representation.
135 //
136 typedef struct {
137 UINT8 HeadLen : 4;
138 UINT8 Ver : 4;
139 UINT8 Tos;
140 UINT16 TotalLen;
141 UINT16 Id;
142 UINT16 Fragment;
143 UINT8 Ttl;
144 UINT8 Protocol;
145 UINT16 Checksum;
146 IP4_ADDR Src;
147 IP4_ADDR Dst;
148 } IP4_HEAD;
149
150
151 //
152 // ICMP head definition. Each ICMP message is categorized as either an error
153 // message or query message. Two message types have their own head format.
154 //
155 typedef struct {
156 UINT8 Type;
157 UINT8 Code;
158 UINT16 Checksum;
159 } IP4_ICMP_HEAD;
160
161 typedef struct {
162 IP4_ICMP_HEAD Head;
163 UINT32 Fourth; // 4th filed of the head, it depends on Type.
164 IP4_HEAD IpHead;
165 } IP4_ICMP_ERROR_HEAD;
166
167 typedef struct {
168 IP4_ICMP_HEAD Head;
169 UINT16 Id;
170 UINT16 Seq;
171 } IP4_ICMP_QUERY_HEAD;
172
173 typedef struct {
174 UINT8 Type;
175 UINT8 Code;
176 UINT16 Checksum;
177 } IP6_ICMP_HEAD;
178
179 typedef struct {
180 IP6_ICMP_HEAD Head;
181 UINT32 Fourth;
182 EFI_IP6_HEADER IpHead;
183 } IP6_ICMP_ERROR_HEAD;
184
185 typedef struct {
186 IP6_ICMP_HEAD Head;
187 UINT32 Fourth;
188 } IP6_ICMP_INFORMATION_HEAD;
189
190 //
191 // UDP header definition
192 //
193 typedef struct {
194 UINT16 SrcPort;
195 UINT16 DstPort;
196 UINT16 Length;
197 UINT16 Checksum;
198 } EFI_UDP_HEADER;
199
200 //
201 // TCP header definition
202 //
203 typedef struct {
204 TCP_PORTNO SrcPort;
205 TCP_PORTNO DstPort;
206 TCP_SEQNO Seq;
207 TCP_SEQNO Ack;
208 UINT8 Res : 4;
209 UINT8 HeadLen : 4;
210 UINT8 Flag;
211 UINT16 Wnd;
212 UINT16 Checksum;
213 UINT16 Urg;
214 } TCP_HEAD;
215
216 #pragma pack()
217
218 #define NET_MAC_EQUAL(pMac1, pMac2, Len) \
219 (CompareMem ((pMac1), (pMac2), Len) == 0)
220
221 #define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \
222 (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))
223
224 #define NTOHL(x) SwapBytes32 (x)
225
226 #define HTONL(x) NTOHL(x)
227
228 #define NTOHS(x) SwapBytes16 (x)
229
230 #define HTONS(x) NTOHS(x)
231 #define NTOHLL(x) SwapBytes64 (x)
232 #define HTONLL(x) NTOHLL(x)
233 #define NTOHLLL(x) Ip6Swap128 (x)
234 #define HTONLLL(x) NTOHLLL(x)
235
236 //
237 // Test the IP's attribute, All the IPs are in host byte order.
238 //
239 #define IP4_IS_MULTICAST(Ip) (((Ip) & 0xF0000000) == 0xE0000000)
240 #define IP4_IS_UNSPECIFIED(Ip) ((Ip) == 0)
241 #define IP4_IS_LOCAL_BROADCAST(Ip) ((Ip) == 0xFFFFFFFF)
242 #define IP4_NET_EQUAL(Ip1, Ip2, NetMask) (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))
243 #define IP4_IS_VALID_NETMASK(Ip) (NetGetMaskLength (Ip) != (IP4_MASK_MAX + 1))
244
245 #define IP6_IS_MULTICAST(Ip6) (((Ip6)->Addr[0]) == 0xFF)
246
247 //
248 // Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.
249 //
250 #define EFI_IP4(EfiIpAddr) (*(IP4_ADDR *) ((EfiIpAddr).Addr))
251 #define EFI_NTOHL(EfiIp) (NTOHL (EFI_IP4 ((EfiIp))))
252 #define EFI_IP4_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)
253
254 #define EFI_IP6_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0)
255
256 #define IP4_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv4_ADDRESS)))
257 #define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS)))
258 #define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS)))
259
260 //
261 // The debug level definition. This value is also used as the
262 // syslog's severity level. Don't change it.
263 //
264 #define NETDEBUG_LEVEL_TRACE 5
265 #define NETDEBUG_LEVEL_WARNING 4
266 #define NETDEBUG_LEVEL_ERROR 3
267
268 //
269 // Network debug message is sent out as syslog packet.
270 //
271 #define NET_SYSLOG_FACILITY 16 // Syslog local facility local use
272 #define NET_SYSLOG_PACKET_LEN 512
273 #define NET_SYSLOG_TX_TIMEOUT (500 * 1000 * 10) // 500ms
274 #define NET_DEBUG_MSG_LEN 470 // 512 - (ether+ip4+udp4 head length)
275
276 //
277 // The debug output expects the ASCII format string, Use %a to print ASCII
278 // string, and %s to print UNICODE string. PrintArg must be enclosed in ().
279 // For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name));
280 //
281 #define NET_DEBUG_TRACE(Module, PrintArg) \
282 NetDebugOutput ( \
283 NETDEBUG_LEVEL_TRACE, \
284 Module, \
285 __FILE__, \
286 __LINE__, \
287 NetDebugASPrint PrintArg \
288 )
289
290 #define NET_DEBUG_WARNING(Module, PrintArg) \
291 NetDebugOutput ( \
292 NETDEBUG_LEVEL_WARNING, \
293 Module, \
294 __FILE__, \
295 __LINE__, \
296 NetDebugASPrint PrintArg \
297 )
298
299 #define NET_DEBUG_ERROR(Module, PrintArg) \
300 NetDebugOutput ( \
301 NETDEBUG_LEVEL_ERROR, \
302 Module, \
303 __FILE__, \
304 __LINE__, \
305 NetDebugASPrint PrintArg \
306 )
307
308 /**
309 Allocate a buffer, then format the message to it. This is a
310 help function for the NET_DEBUG_XXX macros. The PrintArg of
311 these macros treats the variable length print parameters as a
312 single parameter, and pass it to the NetDebugASPrint. For
313 example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))
314 if extracted to:
315
316 NetDebugOutput (
317 NETDEBUG_LEVEL_TRACE,
318 "Tcp",
319 __FILE__,
320 __LINE__,
321 NetDebugASPrint ("State transit to %a\n", Name)
322 )
323
324 @param Format The ASCII format string.
325 @param ... The variable length parameter whose format is determined
326 by the Format string.
327
328 @return The buffer containing the formatted message,
329 or NULL if memory allocation failed.
330
331 **/
332 CHAR8 *
333 EFIAPI
334 NetDebugASPrint (
335 IN CHAR8 *Format,
336 ...
337 );
338
339 /**
340 Builds an UDP4 syslog packet and send it using SNP.
341
342 This function will locate a instance of SNP then send the message through it.
343 Because it isn't open the SNP BY_DRIVER, apply caution when using it.
344
345 @param Level The severity level of the message.
346 @param Module The Module that generates the log.
347 @param File The file that contains the log.
348 @param Line The exact line that contains the log.
349 @param Message The user message to log.
350
351 @retval EFI_INVALID_PARAMETER Any input parameter is invalid.
352 @retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet
353 @retval EFI_SUCCESS The log is discard because that it is more verbose
354 than the mNetDebugLevelMax. Or, it has been sent out.
355 **/
356 EFI_STATUS
357 EFIAPI
358 NetDebugOutput (
359 IN UINT32 Level,
360 IN UINT8 *Module,
361 IN UINT8 *File,
362 IN UINT32 Line,
363 IN UINT8 *Message
364 );
365
366
367 /**
368 Return the length of the mask.
369
370 Return the length of the mask. Valid values are 0 to 32.
371 If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.
372 NetMask is in the host byte order.
373
374 @param[in] NetMask The netmask to get the length from.
375
376 @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid.
377
378 **/
379 INTN
380 EFIAPI
381 NetGetMaskLength (
382 IN IP4_ADDR NetMask
383 );
384
385 /**
386 Return the class of the IP address, such as class A, B, C.
387 Addr is in host byte order.
388
389 [ATTENTION]
390 Classful addressing (IP class A/B/C) has been deprecated according to RFC4632.
391 Caller of this function could only check the returned value against
392 IP4_ADDR_CLASSD (multicast) or IP4_ADDR_CLASSE (reserved) now.
393
394 The address of class A starts with 0.
395 If the address belong to class A, return IP4_ADDR_CLASSA.
396 The address of class B starts with 10.
397 If the address belong to class B, return IP4_ADDR_CLASSB.
398 The address of class C starts with 110.
399 If the address belong to class C, return IP4_ADDR_CLASSC.
400 The address of class D starts with 1110.
401 If the address belong to class D, return IP4_ADDR_CLASSD.
402 The address of class E starts with 1111.
403 If the address belong to class E, return IP4_ADDR_CLASSE.
404
405
406 @param[in] Addr The address to get the class from.
407
408 @return IP address class, such as IP4_ADDR_CLASSA.
409
410 **/
411 INTN
412 EFIAPI
413 NetGetIpClass (
414 IN IP4_ADDR Addr
415 );
416
417 /**
418 Check whether the IP is a valid unicast address according to
419 the netmask.
420
421 ASSERT if NetMask is zero.
422
423 If all bits of the host address of IP are 0 or 1, IP is also not a valid unicast address,
424 except when the originator is one of the endpoints of a point-to-point link with a 31-bit
425 mask (RFC3021).
426
427 @param[in] Ip The IP to check against.
428 @param[in] NetMask The mask of the IP.
429
430 @return TRUE if IP is a valid unicast address on the network, otherwise FALSE.
431
432 **/
433 BOOLEAN
434 EFIAPI
435 NetIp4IsUnicast (
436 IN IP4_ADDR Ip,
437 IN IP4_ADDR NetMask
438 );
439
440 /**
441 Check whether the incoming IPv6 address is a valid unicast address.
442
443 ASSERT if Ip6 is NULL.
444
445 If the address is a multicast address has binary 0xFF at the start, it is not
446 a valid unicast address. If the address is unspecified ::, it is not a valid
447 unicast address to be assigned to any node. If the address is loopback address
448 ::1, it is also not a valid unicast address to be assigned to any physical
449 interface.
450
451 @param[in] Ip6 The IPv6 address to check against.
452
453 @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.
454
455 **/
456 BOOLEAN
457 EFIAPI
458 NetIp6IsValidUnicast (
459 IN EFI_IPv6_ADDRESS *Ip6
460 );
461
462
463 /**
464 Check whether the incoming Ipv6 address is the unspecified address or not.
465
466 ASSERT if Ip6 is NULL.
467
468 @param[in] Ip6 - Ip6 address, in network order.
469
470 @retval TRUE - Yes, incoming Ipv6 address is the unspecified address.
471 @retval FALSE - The incoming Ipv6 address is not the unspecified address
472
473 **/
474 BOOLEAN
475 EFIAPI
476 NetIp6IsUnspecifiedAddr (
477 IN EFI_IPv6_ADDRESS *Ip6
478 );
479
480 /**
481 Check whether the incoming Ipv6 address is a link-local address.
482
483 ASSERT if Ip6 is NULL.
484
485 @param[in] Ip6 - Ip6 address, in network order.
486
487 @retval TRUE - The incoming Ipv6 address is a link-local address.
488 @retval FALSE - The incoming Ipv6 address is not a link-local address.
489
490 **/
491 BOOLEAN
492 EFIAPI
493 NetIp6IsLinkLocalAddr (
494 IN EFI_IPv6_ADDRESS *Ip6
495 );
496
497 /**
498 Check whether the Ipv6 address1 and address2 are on the connected network.
499
500 ASSERT if Ip1 or Ip2 is NULL.
501 ASSERT if PrefixLength exceeds or equals to IP6_PREFIX_MAX.
502
503 @param[in] Ip1 - Ip6 address1, in network order.
504 @param[in] Ip2 - Ip6 address2, in network order.
505 @param[in] PrefixLength - The prefix length of the checking net.
506
507 @retval TRUE - Yes, the Ipv6 address1 and address2 are connected.
508 @retval FALSE - No the Ipv6 address1 and address2 are not connected.
509
510 **/
511 BOOLEAN
512 EFIAPI
513 NetIp6IsNetEqual (
514 EFI_IPv6_ADDRESS *Ip1,
515 EFI_IPv6_ADDRESS *Ip2,
516 UINT8 PrefixLength
517 );
518
519 /**
520 Switches the endianess of an IPv6 address.
521
522 ASSERT if Ip6 is NULL.
523
524 This function swaps the bytes in a 128-bit IPv6 address to switch the value
525 from little endian to big endian or vice versa. The byte swapped value is
526 returned.
527
528 @param Ip6 Points to an IPv6 address.
529
530 @return The byte swapped IPv6 address.
531
532 **/
533 EFI_IPv6_ADDRESS *
534 EFIAPI
535 Ip6Swap128 (
536 EFI_IPv6_ADDRESS *Ip6
537 );
538
539 extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM];
540
541
542 extern EFI_IPv4_ADDRESS mZeroIp4Addr;
543
544 #define NET_IS_DIGIT(Ch) (('0' <= (Ch)) && ((Ch) <= '9'))
545 #define NET_IS_HEX(Ch) ((('0' <= (Ch)) && ((Ch) <= '9')) || (('A' <= (Ch)) && ((Ch) <= 'F')) || (('a' <= (Ch)) && ((Ch) <= 'f')))
546 #define NET_ROUNDUP(size, unit) (((size) + (unit) - 1) & (~((unit) - 1)))
547 #define NET_IS_LOWER_CASE_CHAR(Ch) (('a' <= (Ch)) && ((Ch) <= 'z'))
548 #define NET_IS_UPPER_CASE_CHAR(Ch) (('A' <= (Ch)) && ((Ch) <= 'Z'))
549
550 #define TICKS_PER_MS 10000U
551 #define TICKS_PER_SECOND 10000000U
552
553 #define NET_RANDOM(Seed) ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)
554
555 /**
556 Extract a UINT32 from a byte stream.
557
558 ASSERT if Buf is NULL.
559
560 This function copies a UINT32 from a byte stream, and then converts it from Network
561 byte order to host byte order. Use this function to avoid alignment error.
562
563 @param[in] Buf The buffer to extract the UINT32.
564
565 @return The UINT32 extracted.
566
567 **/
568 UINT32
569 EFIAPI
570 NetGetUint32 (
571 IN UINT8 *Buf
572 );
573
574 /**
575 Puts a UINT32 into the byte stream in network byte order.
576
577 ASSERT if Buf is NULL.
578
579 Converts a UINT32 from host byte order to network byte order, then copies it to the
580 byte stream.
581
582 @param[in, out] Buf The buffer in which to put the UINT32.
583 @param[in] Data The data to be converted and put into the byte stream.
584
585 **/
586 VOID
587 EFIAPI
588 NetPutUint32 (
589 IN OUT UINT8 *Buf,
590 IN UINT32 Data
591 );
592
593 /**
594 Initialize a random seed using current time and monotonic count.
595
596 Get current time and monotonic count first. Then initialize a random seed
597 based on some basic mathematics operation on the hour, day, minute, second,
598 nanosecond and year of the current time and the monotonic count value.
599
600 @return The random seed initialized with current time.
601
602 **/
603 UINT32
604 EFIAPI
605 NetRandomInitSeed (
606 VOID
607 );
608
609
610 #define NET_LIST_USER_STRUCT(Entry, Type, Field) \
611 BASE_CR(Entry, Type, Field)
612
613 #define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig) \
614 CR(Entry, Type, Field, Sig)
615
616 //
617 // Iterate through the double linked list. It is NOT delete safe
618 //
619 #define NET_LIST_FOR_EACH(Entry, ListHead) \
620 for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)
621
622 //
623 // Iterate through the double linked list. This is delete-safe.
624 // Don't touch NextEntry. Also, don't use this macro if list
625 // entries other than the Entry may be deleted when processing
626 // the current Entry.
627 //
628 #define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \
629 for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \
630 Entry != (ListHead); \
631 Entry = NextEntry, NextEntry = Entry->ForwardLink \
632 )
633
634 //
635 // Make sure the list isn't empty before getting the first/last record.
636 //
637 #define NET_LIST_HEAD(ListHead, Type, Field) \
638 NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)
639
640 #define NET_LIST_TAIL(ListHead, Type, Field) \
641 NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)
642
643
644 /**
645 Remove the first node entry on the list, and return the removed node entry.
646
647 Removes the first node entry from a doubly linked list. It is up to the caller of
648 this function to release the memory used by the first node, if that is required. On
649 exit, the removed node is returned.
650
651 If Head is NULL, then ASSERT().
652 If Head was not initialized, then ASSERT().
653 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
654 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
655 then ASSERT().
656
657 @param[in, out] Head The list header.
658
659 @return The first node entry that is removed from the list, NULL if the list is empty.
660
661 **/
662 LIST_ENTRY *
663 EFIAPI
664 NetListRemoveHead (
665 IN OUT LIST_ENTRY *Head
666 );
667
668 /**
669 Remove the last node entry on the list and return the removed node entry.
670
671 Removes the last node entry from a doubly linked list. It is up to the caller of
672 this function to release the memory used by the first node, if that is required. On
673 exit, the removed node is returned.
674
675 If Head is NULL, then ASSERT().
676 If Head was not initialized, then ASSERT().
677 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
678 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
679 then ASSERT().
680
681 @param[in, out] Head The list head.
682
683 @return The last node entry that is removed from the list, NULL if the list is empty.
684
685 **/
686 LIST_ENTRY *
687 EFIAPI
688 NetListRemoveTail (
689 IN OUT LIST_ENTRY *Head
690 );
691
692 /**
693 Insert a new node entry after a designated node entry of a doubly linked list.
694
695 ASSERT if PrevEntry or NewEntry is NULL.
696
697 Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry
698 of the doubly linked list.
699
700 @param[in, out] PrevEntry The entry after which to insert.
701 @param[in, out] NewEntry The new entry to insert.
702
703 **/
704 VOID
705 EFIAPI
706 NetListInsertAfter (
707 IN OUT LIST_ENTRY *PrevEntry,
708 IN OUT LIST_ENTRY *NewEntry
709 );
710
711 /**
712 Insert a new node entry before a designated node entry of a doubly linked list.
713
714 ASSERT if PostEntry or NewEntry is NULL.
715
716 Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry
717 of the doubly linked list.
718
719 @param[in, out] PostEntry The entry to insert before.
720 @param[in, out] NewEntry The new entry to insert.
721
722 **/
723 VOID
724 EFIAPI
725 NetListInsertBefore (
726 IN OUT LIST_ENTRY *PostEntry,
727 IN OUT LIST_ENTRY *NewEntry
728 );
729
730 /**
731 Callback function which provided by user to remove one node in NetDestroyLinkList process.
732
733 @param[in] Entry The entry to be removed.
734 @param[in] Context Pointer to the callback context corresponds to the Context in NetDestroyLinkList.
735
736 @retval EFI_SUCCESS The entry has been removed successfully.
737 @retval Others Fail to remove the entry.
738
739 **/
740 typedef
741 EFI_STATUS
742 (EFIAPI *NET_DESTROY_LINK_LIST_CALLBACK) (
743 IN LIST_ENTRY *Entry,
744 IN VOID *Context OPTIONAL
745 );
746
747 /**
748 Safe destroy nodes in a linked list, and return the length of the list after all possible operations finished.
749
750 Destroy network children list by list traversals is not safe due to graph dependencies between nodes.
751 This function performs a safe traversal to destroy these nodes by checking to see if the node being destroyed
752 has been removed from the list or not.
753 If it has been removed, then restart the traversal from the head.
754 If it hasn't been removed, then continue with the next node directly.
755 This function will end the iterate and return the CallBack's last return value if error happens,
756 or retrun EFI_SUCCESS if 2 complete passes are made with no changes in the number of children in the list.
757
758 @param[in] List The head of the list.
759 @param[in] CallBack Pointer to the callback function to destroy one node in the list.
760 @param[in] Context Pointer to the callback function's context: corresponds to the
761 parameter Context in NET_DESTROY_LINK_LIST_CALLBACK.
762 @param[out] ListLength The length of the link list if the function returns successfully.
763
764 @retval EFI_SUCCESS Two complete passes are made with no changes in the number of children.
765 @retval EFI_INVALID_PARAMETER The input parameter is invalid.
766 @retval Others Return the CallBack's last return value.
767
768 **/
769 EFI_STATUS
770 EFIAPI
771 NetDestroyLinkList (
772 IN LIST_ENTRY *List,
773 IN NET_DESTROY_LINK_LIST_CALLBACK CallBack,
774 IN VOID *Context, OPTIONAL
775 OUT UINTN *ListLength OPTIONAL
776 );
777
778 /**
779 This function checks the input Handle to see if it's one of these handles in ChildHandleBuffer.
780
781 @param[in] Handle Handle to be checked.
782 @param[in] NumberOfChildren Number of Handles in ChildHandleBuffer.
783 @param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL
784 if NumberOfChildren is 0.
785
786 @retval TRUE Found the input Handle in ChildHandleBuffer.
787 @retval FALSE Can't find the input Handle in ChildHandleBuffer.
788
789 **/
790 BOOLEAN
791 EFIAPI
792 NetIsInHandleBuffer (
793 IN EFI_HANDLE Handle,
794 IN UINTN NumberOfChildren,
795 IN EFI_HANDLE *ChildHandleBuffer OPTIONAL
796 );
797
798 //
799 // Object container: EFI network stack spec defines various kinds of
800 // tokens. The drivers can share code to manage those objects.
801 //
802 typedef struct {
803 LIST_ENTRY Link;
804 VOID *Key;
805 VOID *Value;
806 } NET_MAP_ITEM;
807
808 typedef struct {
809 LIST_ENTRY Used;
810 LIST_ENTRY Recycled;
811 UINTN Count;
812 } NET_MAP;
813
814 #define NET_MAP_INCREAMENT 64
815
816 /**
817 Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.
818
819 Initialize the forward and backward links of two head nodes donated by Map->Used
820 and Map->Recycled of two doubly linked lists.
821 Initializes the count of the <Key, Value> pairs in the netmap to zero.
822
823 If Map is NULL, then ASSERT().
824 If the address of Map->Used is NULL, then ASSERT().
825 If the address of Map->Recycled is NULl, then ASSERT().
826
827 @param[in, out] Map The netmap to initialize.
828
829 **/
830 VOID
831 EFIAPI
832 NetMapInit (
833 IN OUT NET_MAP *Map
834 );
835
836 /**
837 To clean up the netmap, that is, release allocated memories.
838
839 Removes all nodes of the Used doubly linked list and frees memory of all related netmap items.
840 Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.
841 The number of the <Key, Value> pairs in the netmap is set to zero.
842
843 If Map is NULL, then ASSERT().
844
845 @param[in, out] Map The netmap to clean up.
846
847 **/
848 VOID
849 EFIAPI
850 NetMapClean (
851 IN OUT NET_MAP *Map
852 );
853
854 /**
855 Test whether the netmap is empty and return true if it is.
856
857 If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.
858
859 If Map is NULL, then ASSERT().
860
861 @param[in] Map The net map to test.
862
863 @return TRUE if the netmap is empty, otherwise FALSE.
864
865 **/
866 BOOLEAN
867 EFIAPI
868 NetMapIsEmpty (
869 IN NET_MAP *Map
870 );
871
872 /**
873 Return the number of the <Key, Value> pairs in the netmap.
874
875 If Map is NULL, then ASSERT().
876
877 @param[in] Map The netmap to get the entry number.
878
879 @return The entry number in the netmap.
880
881 **/
882 UINTN
883 EFIAPI
884 NetMapGetCount (
885 IN NET_MAP *Map
886 );
887
888 /**
889 Allocate an item to save the <Key, Value> pair to the head of the netmap.
890
891 Allocate an item to save the <Key, Value> pair and add corresponding node entry
892 to the beginning of the Used doubly linked list. The number of the <Key, Value>
893 pairs in the netmap increase by 1.
894
895 If Map is NULL, then ASSERT().
896 If Key is NULL, then ASSERT().
897
898 @param[in, out] Map The netmap to insert into.
899 @param[in] Key The user's key.
900 @param[in] Value The user's value for the key.
901
902 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
903 @retval EFI_SUCCESS The item is inserted to the head.
904
905 **/
906 EFI_STATUS
907 EFIAPI
908 NetMapInsertHead (
909 IN OUT NET_MAP *Map,
910 IN VOID *Key,
911 IN VOID *Value OPTIONAL
912 );
913
914 /**
915 Allocate an item to save the <Key, Value> pair to the tail of the netmap.
916
917 Allocate an item to save the <Key, Value> pair and add corresponding node entry
918 to the tail of the Used doubly linked list. The number of the <Key, Value>
919 pairs in the netmap increase by 1.
920
921 If Map is NULL, then ASSERT().
922 If Key is NULL, then ASSERT().
923
924 @param[in, out] Map The netmap to insert into.
925 @param[in] Key The user's key.
926 @param[in] Value The user's value for the key.
927
928 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
929 @retval EFI_SUCCESS The item is inserted to the tail.
930
931 **/
932 EFI_STATUS
933 EFIAPI
934 NetMapInsertTail (
935 IN OUT NET_MAP *Map,
936 IN VOID *Key,
937 IN VOID *Value OPTIONAL
938 );
939
940 /**
941 Finds the key in the netmap and returns the point to the item containing the Key.
942
943 Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every
944 item with the key to search. It returns the point to the item contains the Key if found.
945
946 If Map is NULL, then ASSERT().
947 If Key is NULL, then ASSERT().
948
949 @param[in] Map The netmap to search within.
950 @param[in] Key The key to search.
951
952 @return The point to the item contains the Key, or NULL if Key isn't in the map.
953
954 **/
955 NET_MAP_ITEM *
956 EFIAPI
957 NetMapFindKey (
958 IN NET_MAP *Map,
959 IN VOID *Key
960 );
961
962 /**
963 Remove the node entry of the item from the netmap and return the key of the removed item.
964
965 Remove the node entry of the item from the Used doubly linked list of the netmap.
966 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
967 entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,
968 Value will point to the value of the item. It returns the key of the removed item.
969
970 If Map is NULL, then ASSERT().
971 If Item is NULL, then ASSERT().
972 if item in not in the netmap, then ASSERT().
973
974 @param[in, out] Map The netmap to remove the item from.
975 @param[in, out] Item The item to remove.
976 @param[out] Value The variable to receive the value if not NULL.
977
978 @return The key of the removed item.
979
980 **/
981 VOID *
982 EFIAPI
983 NetMapRemoveItem (
984 IN OUT NET_MAP *Map,
985 IN OUT NET_MAP_ITEM *Item,
986 OUT VOID **Value OPTIONAL
987 );
988
989 /**
990 Remove the first node entry on the netmap and return the key of the removed item.
991
992 Remove the first node entry from the Used doubly linked list of the netmap.
993 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
994 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
995 parameter Value will point to the value of the item. It returns the key of the removed item.
996
997 If Map is NULL, then ASSERT().
998 If the Used doubly linked list is empty, then ASSERT().
999
1000 @param[in, out] Map The netmap to remove the head from.
1001 @param[out] Value The variable to receive the value if not NULL.
1002
1003 @return The key of the item removed.
1004
1005 **/
1006 VOID *
1007 EFIAPI
1008 NetMapRemoveHead (
1009 IN OUT NET_MAP *Map,
1010 OUT VOID **Value OPTIONAL
1011 );
1012
1013 /**
1014 Remove the last node entry on the netmap and return the key of the removed item.
1015
1016 Remove the last node entry from the Used doubly linked list of the netmap.
1017 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
1018 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
1019 parameter Value will point to the value of the item. It returns the key of the removed item.
1020
1021 If Map is NULL, then ASSERT().
1022 If the Used doubly linked list is empty, then ASSERT().
1023
1024 @param[in, out] Map The netmap to remove the tail from.
1025 @param[out] Value The variable to receive the value if not NULL.
1026
1027 @return The key of the item removed.
1028
1029 **/
1030 VOID *
1031 EFIAPI
1032 NetMapRemoveTail (
1033 IN OUT NET_MAP *Map,
1034 OUT VOID **Value OPTIONAL
1035 );
1036
1037 typedef
1038 EFI_STATUS
1039 (EFIAPI *NET_MAP_CALLBACK) (
1040 IN NET_MAP *Map,
1041 IN NET_MAP_ITEM *Item,
1042 IN VOID *Arg
1043 );
1044
1045 /**
1046 Iterate through the netmap and call CallBack for each item.
1047
1048 It will continue the traverse if CallBack returns EFI_SUCCESS, otherwise, break
1049 from the loop. It returns the CallBack's last return value. This function is
1050 delete safe for the current item.
1051
1052 If Map is NULL, then ASSERT().
1053 If CallBack is NULL, then ASSERT().
1054
1055 @param[in] Map The Map to iterate through.
1056 @param[in] CallBack The callback function to call for each item.
1057 @param[in] Arg The opaque parameter to the callback.
1058
1059 @retval EFI_SUCCESS There is no item in the netmap, or CallBack for each item
1060 returns EFI_SUCCESS.
1061 @retval Others It returns the CallBack's last return value.
1062
1063 **/
1064 EFI_STATUS
1065 EFIAPI
1066 NetMapIterate (
1067 IN NET_MAP *Map,
1068 IN NET_MAP_CALLBACK CallBack,
1069 IN VOID *Arg OPTIONAL
1070 );
1071
1072
1073 //
1074 // Helper functions to implement driver binding and service binding protocols.
1075 //
1076 /**
1077 Create a child of the service that is identified by ServiceBindingGuid.
1078
1079 Get the ServiceBinding Protocol first, then use it to create a child.
1080
1081 If ServiceBindingGuid is NULL, then ASSERT().
1082 If ChildHandle is NULL, then ASSERT().
1083
1084 @param[in] Controller The controller which has the service installed.
1085 @param[in] Image The image handle used to open service.
1086 @param[in] ServiceBindingGuid The service's Guid.
1087 @param[in, out] ChildHandle The handle to receive the created child.
1088
1089 @retval EFI_SUCCESS The child was successfully created.
1090 @retval Others Failed to create the child.
1091
1092 **/
1093 EFI_STATUS
1094 EFIAPI
1095 NetLibCreateServiceChild (
1096 IN EFI_HANDLE Controller,
1097 IN EFI_HANDLE Image,
1098 IN EFI_GUID *ServiceBindingGuid,
1099 IN OUT EFI_HANDLE *ChildHandle
1100 );
1101
1102 /**
1103 Destroy a child of the service that is identified by ServiceBindingGuid.
1104
1105 Get the ServiceBinding Protocol first, then use it to destroy a child.
1106
1107 If ServiceBindingGuid is NULL, then ASSERT().
1108
1109 @param[in] Controller The controller which has the service installed.
1110 @param[in] Image The image handle used to open service.
1111 @param[in] ServiceBindingGuid The service's Guid.
1112 @param[in] ChildHandle The child to destroy.
1113
1114 @retval EFI_SUCCESS The child was destroyed.
1115 @retval Others Failed to destroy the child.
1116
1117 **/
1118 EFI_STATUS
1119 EFIAPI
1120 NetLibDestroyServiceChild (
1121 IN EFI_HANDLE Controller,
1122 IN EFI_HANDLE Image,
1123 IN EFI_GUID *ServiceBindingGuid,
1124 IN EFI_HANDLE ChildHandle
1125 );
1126
1127 /**
1128 Get handle with Simple Network Protocol installed on it.
1129
1130 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1131 If Simple Network Protocol is already installed on the ServiceHandle, the
1132 ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,
1133 try to find its parent handle with SNP installed.
1134
1135 @param[in] ServiceHandle The handle where network service binding protocols are
1136 installed on.
1137 @param[out] Snp The pointer to store the address of the SNP instance.
1138 This is an optional parameter that may be NULL.
1139
1140 @return The SNP handle, or NULL if not found.
1141
1142 **/
1143 EFI_HANDLE
1144 EFIAPI
1145 NetLibGetSnpHandle (
1146 IN EFI_HANDLE ServiceHandle,
1147 OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL
1148 );
1149
1150 /**
1151 Retrieve VLAN ID of a VLAN device handle.
1152
1153 Search VLAN device path node in Device Path of specified ServiceHandle and
1154 return its VLAN ID. If no VLAN device path node found, then this ServiceHandle
1155 is not a VLAN device handle, and 0 will be returned.
1156
1157 @param[in] ServiceHandle The handle where network service binding protocols are
1158 installed on.
1159
1160 @return VLAN ID of the device handle, or 0 if not a VLAN device.
1161
1162 **/
1163 UINT16
1164 EFIAPI
1165 NetLibGetVlanId (
1166 IN EFI_HANDLE ServiceHandle
1167 );
1168
1169 /**
1170 Find VLAN device handle with specified VLAN ID.
1171
1172 The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.
1173 This function will append VLAN device path node to the parent device path,
1174 and then use LocateDevicePath() to find the correct VLAN device handle.
1175
1176 @param[in] ControllerHandle The handle where network service binding protocols are
1177 installed on.
1178 @param[in] VlanId The configured VLAN ID for the VLAN device.
1179
1180 @return The VLAN device handle, or NULL if not found.
1181
1182 **/
1183 EFI_HANDLE
1184 EFIAPI
1185 NetLibGetVlanHandle (
1186 IN EFI_HANDLE ControllerHandle,
1187 IN UINT16 VlanId
1188 );
1189
1190 /**
1191 Get MAC address associated with the network service handle.
1192
1193 If MacAddress is NULL, then ASSERT().
1194 If AddressSize is NULL, then ASSERT().
1195
1196 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1197 If SNP is installed on the ServiceHandle or its parent handle, MAC address will
1198 be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.
1199
1200 @param[in] ServiceHandle The handle where network service binding protocols are
1201 installed on.
1202 @param[out] MacAddress The pointer to store the returned MAC address.
1203 @param[out] AddressSize The length of returned MAC address.
1204
1205 @retval EFI_SUCCESS MAC address was returned successfully.
1206 @retval Others Failed to get SNP mode data.
1207
1208 **/
1209 EFI_STATUS
1210 EFIAPI
1211 NetLibGetMacAddress (
1212 IN EFI_HANDLE ServiceHandle,
1213 OUT EFI_MAC_ADDRESS *MacAddress,
1214 OUT UINTN *AddressSize
1215 );
1216
1217 /**
1218 Convert MAC address of the NIC associated with specified Service Binding Handle
1219 to a unicode string. Callers are responsible for freeing the string storage.
1220
1221 If MacString is NULL, then ASSERT().
1222
1223 Locate simple network protocol associated with the Service Binding Handle and
1224 get the mac address from SNP. Then convert the mac address into a unicode
1225 string. It takes 2 unicode characters to represent a 1 byte binary buffer.
1226 Plus one unicode character for the null-terminator.
1227
1228 @param[in] ServiceHandle The handle where network service binding protocol is
1229 installed.
1230 @param[in] ImageHandle The image handle used to act as the agent handle to
1231 get the simple network protocol. This parameter is
1232 optional and may be NULL.
1233 @param[out] MacString The pointer to store the address of the string
1234 representation of the mac address.
1235
1236 @retval EFI_SUCCESS Converted the mac address a unicode string successfully.
1237 @retval EFI_OUT_OF_RESOURCES There are not enough memory resources.
1238 @retval Others Failed to open the simple network protocol.
1239
1240 **/
1241 EFI_STATUS
1242 EFIAPI
1243 NetLibGetMacString (
1244 IN EFI_HANDLE ServiceHandle,
1245 IN EFI_HANDLE ImageHandle, OPTIONAL
1246 OUT CHAR16 **MacString
1247 );
1248
1249 /**
1250 Detect media status for specified network device.
1251
1252 If MediaPresent is NULL, then ASSERT().
1253
1254 The underlying UNDI driver may or may not support reporting media status from
1255 GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine
1256 will try to invoke Snp->GetStatus() to get the media status. If media is already
1257 present, it returns directly. If media is not present, it will stop SNP and then
1258 restart SNP to get the latest media status. This provides an opportunity to get
1259 the correct media status for old UNDI driver, which doesn't support reporting
1260 media status from GET_STATUS command.
1261 Note: there are two limitations for the current algorithm:
1262 1) For UNDI with this capability, when the cable is not attached, there will
1263 be an redundant Stop/Start() process.
1264 2) for UNDI without this capability, in case that network cable is attached when
1265 Snp->Initialize() is invoked while network cable is unattached later,
1266 NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer
1267 apps to wait for timeout time.
1268
1269 @param[in] ServiceHandle The handle where network service binding protocols are
1270 installed.
1271 @param[out] MediaPresent The pointer to store the media status.
1272
1273 @retval EFI_SUCCESS Media detection success.
1274 @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle.
1275 @retval EFI_UNSUPPORTED The network device does not support media detection.
1276 @retval EFI_DEVICE_ERROR SNP is in an unknown state.
1277
1278 **/
1279 EFI_STATUS
1280 EFIAPI
1281 NetLibDetectMedia (
1282 IN EFI_HANDLE ServiceHandle,
1283 OUT BOOLEAN *MediaPresent
1284 );
1285
1286 /**
1287 Detect media state for a network device. This routine will wait for a period of time at
1288 a specified checking interval when a certain network is under connecting until connection
1289 process finishes or timeout. If Aip protocol is supported by low layer drivers, three kinds
1290 of media states can be detected: EFI_SUCCESS, EFI_NOT_READY and EFI_NO_MEDIA, represents
1291 connected state, connecting state and no media state respectively. When function detects
1292 the current state is EFI_NOT_READY, it will loop to wait for next time's check until state
1293 turns to be EFI_SUCCESS or EFI_NO_MEDIA. If Aip protocol is not supported, function will
1294 call NetLibDetectMedia() and return state directly.
1295
1296 @param[in] ServiceHandle The handle where network service binding protocols are
1297 installed on.
1298 @param[in] Timeout The maximum number of 100ns units to wait when network
1299 is connecting. Zero value means detect once and return
1300 immediately.
1301 @param[out] MediaState The pointer to the detected media state.
1302
1303 @retval EFI_SUCCESS Media detection success.
1304 @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle or
1305 MediaState pointer is NULL.
1306 @retval EFI_DEVICE_ERROR A device error occurred.
1307 @retval EFI_TIMEOUT Network is connecting but timeout.
1308
1309 **/
1310 EFI_STATUS
1311 EFIAPI
1312 NetLibDetectMediaWaitTimeout (
1313 IN EFI_HANDLE ServiceHandle,
1314 IN UINT64 Timeout,
1315 OUT EFI_STATUS *MediaState
1316 );
1317
1318
1319 /**
1320 Create an IPv4 device path node.
1321
1322 If Node is NULL, then ASSERT().
1323
1324 The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.
1325 The header subtype of IPv4 device path node is MSG_IPv4_DP.
1326 The length of the IPv4 device path node in bytes is 19.
1327 Get other information from parameters to make up the whole IPv4 device path node.
1328
1329 @param[in, out] Node The pointer to the IPv4 device path node.
1330 @param[in] Controller The controller handle.
1331 @param[in] LocalIp The local IPv4 address.
1332 @param[in] LocalPort The local port.
1333 @param[in] RemoteIp The remote IPv4 address.
1334 @param[in] RemotePort The remote port.
1335 @param[in] Protocol The protocol type in the IP header.
1336 @param[in] UseDefaultAddress Whether this instance is using default address or not.
1337
1338 **/
1339 VOID
1340 EFIAPI
1341 NetLibCreateIPv4DPathNode (
1342 IN OUT IPv4_DEVICE_PATH *Node,
1343 IN EFI_HANDLE Controller,
1344 IN IP4_ADDR LocalIp,
1345 IN UINT16 LocalPort,
1346 IN IP4_ADDR RemoteIp,
1347 IN UINT16 RemotePort,
1348 IN UINT16 Protocol,
1349 IN BOOLEAN UseDefaultAddress
1350 );
1351
1352 /**
1353 Create an IPv6 device path node.
1354
1355 If Node is NULL, then ASSERT().
1356 If LocalIp is NULL, then ASSERT().
1357 If RemoteIp is NULL, then ASSERT().
1358
1359 The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.
1360 The header subtype of IPv6 device path node is MSG_IPv6_DP.
1361 The length of the IPv6 device path node in bytes is 43.
1362 Get other information from parameters to make up the whole IPv6 device path node.
1363
1364 @param[in, out] Node The pointer to the IPv6 device path node.
1365 @param[in] Controller The controller handle.
1366 @param[in] LocalIp The local IPv6 address.
1367 @param[in] LocalPort The local port.
1368 @param[in] RemoteIp The remote IPv6 address.
1369 @param[in] RemotePort The remote port.
1370 @param[in] Protocol The protocol type in the IP header.
1371
1372 **/
1373 VOID
1374 EFIAPI
1375 NetLibCreateIPv6DPathNode (
1376 IN OUT IPv6_DEVICE_PATH *Node,
1377 IN EFI_HANDLE Controller,
1378 IN EFI_IPv6_ADDRESS *LocalIp,
1379 IN UINT16 LocalPort,
1380 IN EFI_IPv6_ADDRESS *RemoteIp,
1381 IN UINT16 RemotePort,
1382 IN UINT16 Protocol
1383 );
1384
1385
1386 /**
1387 Find the UNDI/SNP handle from controller and protocol GUID.
1388
1389 If ProtocolGuid is NULL, then ASSERT().
1390
1391 For example, IP will open an MNP child to transmit/receive
1392 packets. When MNP is stopped, IP should also be stopped. IP
1393 needs to find its own private data that is related the IP's
1394 service binding instance that is installed on the UNDI/SNP handle.
1395 The controller is then either an MNP or an ARP child handle. Note that
1396 IP opens these handles using BY_DRIVER. Use that information to get the
1397 UNDI/SNP handle.
1398
1399 @param[in] Controller The protocol handle to check.
1400 @param[in] ProtocolGuid The protocol that is related with the handle.
1401
1402 @return The UNDI/SNP handle or NULL for errors.
1403
1404 **/
1405 EFI_HANDLE
1406 EFIAPI
1407 NetLibGetNicHandle (
1408 IN EFI_HANDLE Controller,
1409 IN EFI_GUID *ProtocolGuid
1410 );
1411
1412 /**
1413 This is the default unload handle for all the network drivers.
1414
1415 Disconnect the driver specified by ImageHandle from all the devices in the handle database.
1416 Uninstall all the protocols installed in the driver entry point.
1417
1418 @param[in] ImageHandle The drivers' driver image.
1419
1420 @retval EFI_SUCCESS The image is unloaded.
1421 @retval Others Failed to unload the image.
1422
1423 **/
1424 EFI_STATUS
1425 EFIAPI
1426 NetLibDefaultUnload (
1427 IN EFI_HANDLE ImageHandle
1428 );
1429
1430 /**
1431 Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.
1432
1433 @param[in] String The pointer to the Ascii string.
1434 @param[out] Ip4Address The pointer to the converted IPv4 address.
1435
1436 @retval EFI_SUCCESS Converted to an IPv4 address successfully.
1437 @retval EFI_INVALID_PARAMETER The string is malformatted, or Ip4Address is NULL.
1438
1439 **/
1440 EFI_STATUS
1441 EFIAPI
1442 NetLibAsciiStrToIp4 (
1443 IN CONST CHAR8 *String,
1444 OUT EFI_IPv4_ADDRESS *Ip4Address
1445 );
1446
1447 /**
1448 Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the
1449 string is defined in RFC 4291 - Text Representation of Addresses.
1450
1451 @param[in] String The pointer to the Ascii string.
1452 @param[out] Ip6Address The pointer to the converted IPv6 address.
1453
1454 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1455 @retval EFI_INVALID_PARAMETER The string is malformatted, or Ip6Address is NULL.
1456
1457 **/
1458 EFI_STATUS
1459 EFIAPI
1460 NetLibAsciiStrToIp6 (
1461 IN CONST CHAR8 *String,
1462 OUT EFI_IPv6_ADDRESS *Ip6Address
1463 );
1464
1465 /**
1466 Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.
1467
1468 @param[in] String The pointer to the Ascii string.
1469 @param[out] Ip4Address The pointer to the converted IPv4 address.
1470
1471 @retval EFI_SUCCESS Converted to an IPv4 address successfully.
1472 @retval EFI_INVALID_PARAMETER The string is mal-formatted or Ip4Address is NULL.
1473
1474 **/
1475 EFI_STATUS
1476 EFIAPI
1477 NetLibStrToIp4 (
1478 IN CONST CHAR16 *String,
1479 OUT EFI_IPv4_ADDRESS *Ip4Address
1480 );
1481
1482 /**
1483 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS. The format of
1484 the string is defined in RFC 4291 - Text Representation of Addresses.
1485
1486 @param[in] String The pointer to the Ascii string.
1487 @param[out] Ip6Address The pointer to the converted IPv6 address.
1488
1489 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1490 @retval EFI_INVALID_PARAMETER The string is malformatted or Ip6Address is NULL.
1491
1492 **/
1493 EFI_STATUS
1494 EFIAPI
1495 NetLibStrToIp6 (
1496 IN CONST CHAR16 *String,
1497 OUT EFI_IPv6_ADDRESS *Ip6Address
1498 );
1499
1500 /**
1501 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.
1502 The format of the string is defined in RFC 4291 - Text Representation of Addresses
1503 Prefixes: ipv6-address/prefix-length.
1504
1505 @param[in] String The pointer to the Ascii string.
1506 @param[out] Ip6Address The pointer to the converted IPv6 address.
1507 @param[out] PrefixLength The pointer to the converted prefix length.
1508
1509 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1510 @retval EFI_INVALID_PARAMETER The string is malformatted, or Ip6Address is NULL.
1511
1512 **/
1513 EFI_STATUS
1514 EFIAPI
1515 NetLibStrToIp6andPrefix (
1516 IN CONST CHAR16 *String,
1517 OUT EFI_IPv6_ADDRESS *Ip6Address,
1518 OUT UINT8 *PrefixLength
1519 );
1520
1521 /**
1522
1523 Convert one EFI_IPv6_ADDRESS to Null-terminated Unicode string.
1524 The text representation of address is defined in RFC 4291.
1525
1526 @param[in] Ip6Address The pointer to the IPv6 address.
1527 @param[out] String The buffer to return the converted string.
1528 @param[in] StringSize The length in bytes of the input String.
1529
1530 @retval EFI_SUCCESS Convert to string successfully.
1531 @retval EFI_INVALID_PARAMETER The input parameter is invalid.
1532 @retval EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result. BufferSize has been
1533 updated with the size needed to complete the request.
1534 **/
1535 EFI_STATUS
1536 EFIAPI
1537 NetLibIp6ToStr (
1538 IN EFI_IPv6_ADDRESS *Ip6Address,
1539 OUT CHAR16 *String,
1540 IN UINTN StringSize
1541 );
1542
1543 //
1544 // Various signatures
1545 //
1546 #define NET_BUF_SIGNATURE SIGNATURE_32 ('n', 'b', 'u', 'f')
1547 #define NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c')
1548 #define NET_QUE_SIGNATURE SIGNATURE_32 ('n', 'b', 'q', 'u')
1549
1550
1551 #define NET_PROTO_DATA 64 // Opaque buffer for protocols
1552 #define NET_BUF_HEAD 1 // Trim or allocate space from head
1553 #define NET_BUF_TAIL 0 // Trim or allocate space from tail
1554 #define NET_VECTOR_OWN_FIRST 0x01 // We allocated the 1st block in the vector
1555
1556 #define NET_CHECK_SIGNATURE(PData, SIGNATURE) \
1557 ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))
1558
1559 //
1560 // Single memory block in the vector.
1561 //
1562 typedef struct {
1563 UINT32 Len; // The block's length
1564 UINT8 *Bulk; // The block's Data
1565 } NET_BLOCK;
1566
1567 typedef VOID (EFIAPI *NET_VECTOR_EXT_FREE) (VOID *Arg);
1568
1569 //
1570 //NET_VECTOR contains several blocks to hold all packet's
1571 //fragments and other house-keeping stuff for sharing. It
1572 //doesn't specify the where actual packet fragment begins.
1573 //
1574 typedef struct {
1575 UINT32 Signature;
1576 INTN RefCnt; // Reference count to share NET_VECTOR.
1577 NET_VECTOR_EXT_FREE Free; // external function to free NET_VECTOR
1578 VOID *Arg; // opaque argument to Free
1579 UINT32 Flag; // Flags, NET_VECTOR_OWN_FIRST
1580 UINT32 Len; // Total length of the associated BLOCKs
1581
1582 UINT32 BlockNum;
1583 NET_BLOCK Block[1];
1584 } NET_VECTOR;
1585
1586 //
1587 //NET_BLOCK_OP operates on the NET_BLOCK. It specifies
1588 //where the actual fragment begins and ends
1589 //
1590 typedef struct {
1591 UINT8 *BlockHead; // Block's head, or the smallest valid Head
1592 UINT8 *BlockTail; // Block's tail. BlockTail-BlockHead=block length
1593 UINT8 *Head; // 1st byte of the data in the block
1594 UINT8 *Tail; // Tail of the data in the block, Tail-Head=Size
1595 UINT32 Size; // The size of the data
1596 } NET_BLOCK_OP;
1597
1598 typedef union {
1599 IP4_HEAD *Ip4;
1600 EFI_IP6_HEADER *Ip6;
1601 } NET_IP_HEAD;
1602
1603 //
1604 //NET_BUF is the buffer manage structure used by the
1605 //network stack. Every network packet may be fragmented. The Vector points to
1606 //memory blocks used by each fragment, and BlockOp
1607 //specifies where each fragment begins and ends.
1608 //
1609 //It also contains an opaque area for the protocol to store
1610 //per-packet information. Protocol must be careful not
1611 //to overwrite the members after that.
1612 //
1613 typedef struct {
1614 UINT32 Signature;
1615 INTN RefCnt;
1616 LIST_ENTRY List; // The List this NET_BUF is on
1617
1618 NET_IP_HEAD Ip; // Network layer header, for fast access
1619 TCP_HEAD *Tcp; // Transport layer header, for fast access
1620 EFI_UDP_HEADER *Udp; // User Datagram Protocol header
1621 UINT8 ProtoData [NET_PROTO_DATA]; //Protocol specific data
1622
1623 NET_VECTOR *Vector; // The vector containing the packet
1624
1625 UINT32 BlockOpNum; // Total number of BlockOp in the buffer
1626 UINT32 TotalSize; // Total size of the actual packet
1627 NET_BLOCK_OP BlockOp[1]; // Specify the position of actual packet
1628 } NET_BUF;
1629
1630 //
1631 //A queue of NET_BUFs. It is a thin extension of
1632 //NET_BUF functions.
1633 //
1634 typedef struct {
1635 UINT32 Signature;
1636 INTN RefCnt;
1637 LIST_ENTRY List; // The List this buffer queue is on
1638
1639 LIST_ENTRY BufList; // list of queued buffers
1640 UINT32 BufSize; // total length of DATA in the buffers
1641 UINT32 BufNum; // total number of buffers on the chain
1642 } NET_BUF_QUEUE;
1643
1644 //
1645 // Pseudo header for TCP and UDP checksum
1646 //
1647 #pragma pack(1)
1648 typedef struct {
1649 IP4_ADDR SrcIp;
1650 IP4_ADDR DstIp;
1651 UINT8 Reserved;
1652 UINT8 Protocol;
1653 UINT16 Len;
1654 } NET_PSEUDO_HDR;
1655
1656 typedef struct {
1657 EFI_IPv6_ADDRESS SrcIp;
1658 EFI_IPv6_ADDRESS DstIp;
1659 UINT32 Len;
1660 UINT32 Reserved:24;
1661 UINT32 NextHeader:8;
1662 } NET_IP6_PSEUDO_HDR;
1663 #pragma pack()
1664
1665 //
1666 // The fragment entry table used in network interfaces. This is
1667 // the same as NET_BLOCK now. Use two different to distinguish
1668 // the two in case that NET_BLOCK be enhanced later.
1669 //
1670 typedef struct {
1671 UINT32 Len;
1672 UINT8 *Bulk;
1673 } NET_FRAGMENT;
1674
1675 #define NET_GET_REF(PData) ((PData)->RefCnt++)
1676 #define NET_PUT_REF(PData) ((PData)->RefCnt--)
1677 #define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)
1678
1679 #define NET_BUF_SHARED(Buf) \
1680 (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))
1681
1682 #define NET_VECTOR_SIZE(BlockNum) \
1683 (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))
1684
1685 #define NET_BUF_SIZE(BlockOpNum) \
1686 (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))
1687
1688 #define NET_HEADSPACE(BlockOp) \
1689 ((UINTN)((BlockOp)->Head) - (UINTN)((BlockOp)->BlockHead))
1690
1691 #define NET_TAILSPACE(BlockOp) \
1692 ((UINTN)((BlockOp)->BlockTail) - (UINTN)((BlockOp)->Tail))
1693
1694 /**
1695 Allocate a single block NET_BUF. Upon allocation, all the
1696 free space is in the tail room.
1697
1698 @param[in] Len The length of the block.
1699
1700 @return The pointer to the allocated NET_BUF, or NULL if the
1701 allocation failed due to resource limitations.
1702
1703 **/
1704 NET_BUF *
1705 EFIAPI
1706 NetbufAlloc (
1707 IN UINT32 Len
1708 );
1709
1710 /**
1711 Free the net buffer and its associated NET_VECTOR.
1712
1713 Decrease the reference count of the net buffer by one. Free the associated net
1714 vector and itself if the reference count of the net buffer is decreased to 0.
1715 The net vector free operation decreases the reference count of the net
1716 vector by one, and performs the resource free operation when the reference count
1717 of the net vector is 0.
1718
1719 @param[in] Nbuf The pointer to the NET_BUF to be freed.
1720
1721 **/
1722 VOID
1723 EFIAPI
1724 NetbufFree (
1725 IN NET_BUF *Nbuf
1726 );
1727
1728 /**
1729 Get the index of NET_BLOCK_OP that contains the byte at Offset in the net
1730 buffer.
1731
1732 For example, this function can be used to retrieve the IP header in the packet. It
1733 also can be used to get the fragment that contains the byte used
1734 mainly by the library implementation itself.
1735
1736 @param[in] Nbuf The pointer to the net buffer.
1737 @param[in] Offset The offset of the byte.
1738 @param[out] Index Index of the NET_BLOCK_OP that contains the byte at
1739 Offset.
1740
1741 @return The pointer to the Offset'th byte of data in the net buffer, or NULL
1742 if there is no such data in the net buffer.
1743
1744 **/
1745 UINT8 *
1746 EFIAPI
1747 NetbufGetByte (
1748 IN NET_BUF *Nbuf,
1749 IN UINT32 Offset,
1750 OUT UINT32 *Index OPTIONAL
1751 );
1752
1753 /**
1754 Create a copy of the net buffer that shares the associated net vector.
1755
1756 The reference count of the newly created net buffer is set to 1. The reference
1757 count of the associated net vector is increased by one.
1758
1759 @param[in] Nbuf The pointer to the net buffer to be cloned.
1760
1761 @return The pointer to the cloned net buffer, or NULL if the
1762 allocation failed due to resource limitations.
1763
1764 **/
1765 NET_BUF *
1766 EFIAPI
1767 NetbufClone (
1768 IN NET_BUF *Nbuf
1769 );
1770
1771 /**
1772 Create a duplicated copy of the net buffer with data copied and HeadSpace
1773 bytes of head space reserved.
1774
1775 The duplicated net buffer will allocate its own memory to hold the data of the
1776 source net buffer.
1777
1778 @param[in] Nbuf The pointer to the net buffer to be duplicated from.
1779 @param[in, out] Duplicate The pointer to the net buffer to duplicate to. If
1780 NULL, a new net buffer is allocated.
1781 @param[in] HeadSpace The length of the head space to reserve.
1782
1783 @return The pointer to the duplicated net buffer, or NULL if
1784 the allocation failed due to resource limitations.
1785
1786 **/
1787 NET_BUF *
1788 EFIAPI
1789 NetbufDuplicate (
1790 IN NET_BUF *Nbuf,
1791 IN OUT NET_BUF *Duplicate OPTIONAL,
1792 IN UINT32 HeadSpace
1793 );
1794
1795 /**
1796 Create a NET_BUF structure which contains Len byte data of Nbuf starting from
1797 Offset.
1798
1799 A new NET_BUF structure will be created but the associated data in NET_VECTOR
1800 is shared. This function exists to perform IP packet fragmentation.
1801
1802 @param[in] Nbuf The pointer to the net buffer to be extracted.
1803 @param[in] Offset Starting point of the data to be included in the new
1804 net buffer.
1805 @param[in] Len The bytes of data to be included in the new net buffer.
1806 @param[in] HeadSpace The bytes of the head space to reserve for the protocol header.
1807
1808 @return The pointer to the cloned net buffer, or NULL if the
1809 allocation failed due to resource limitations.
1810
1811 **/
1812 NET_BUF *
1813 EFIAPI
1814 NetbufGetFragment (
1815 IN NET_BUF *Nbuf,
1816 IN UINT32 Offset,
1817 IN UINT32 Len,
1818 IN UINT32 HeadSpace
1819 );
1820
1821 /**
1822 Reserve some space in the header room of the net buffer.
1823
1824 Upon allocation, all the space is in the tail room of the buffer. Call this
1825 function to move space to the header room. This function is quite limited
1826 in that it can only reserve space from the first block of an empty NET_BUF not
1827 built from the external. However, it should be enough for the network stack.
1828
1829 @param[in, out] Nbuf The pointer to the net buffer.
1830 @param[in] Len The length of buffer to be reserved from the header.
1831
1832 **/
1833 VOID
1834 EFIAPI
1835 NetbufReserve (
1836 IN OUT NET_BUF *Nbuf,
1837 IN UINT32 Len
1838 );
1839
1840 /**
1841 Allocate Len bytes of space from the header or tail of the buffer.
1842
1843 @param[in, out] Nbuf The pointer to the net buffer.
1844 @param[in] Len The length of the buffer to be allocated.
1845 @param[in] FromHead The flag to indicate whether to reserve the data
1846 from head (TRUE) or tail (FALSE).
1847
1848 @return The pointer to the first byte of the allocated buffer,
1849 or NULL, if there is no sufficient space.
1850
1851 **/
1852 UINT8*
1853 EFIAPI
1854 NetbufAllocSpace (
1855 IN OUT NET_BUF *Nbuf,
1856 IN UINT32 Len,
1857 IN BOOLEAN FromHead
1858 );
1859
1860 /**
1861 Trim Len bytes from the header or the tail of the net buffer.
1862
1863 @param[in, out] Nbuf The pointer to the net buffer.
1864 @param[in] Len The length of the data to be trimmed.
1865 @param[in] FromHead The flag to indicate whether trim data is from the
1866 head (TRUE) or the tail (FALSE).
1867
1868 @return The length of the actual trimmed data, which may be less
1869 than Len if the TotalSize of Nbuf is less than Len.
1870
1871 **/
1872 UINT32
1873 EFIAPI
1874 NetbufTrim (
1875 IN OUT NET_BUF *Nbuf,
1876 IN UINT32 Len,
1877 IN BOOLEAN FromHead
1878 );
1879
1880 /**
1881 Copy Len bytes of data from the specific offset of the net buffer to the
1882 destination memory.
1883
1884 The Len bytes of data may cross several fragments of the net buffer.
1885
1886 @param[in] Nbuf The pointer to the net buffer.
1887 @param[in] Offset The sequence number of the first byte to copy.
1888 @param[in] Len The length of the data to copy.
1889 @param[in] Dest The destination of the data to copy to.
1890
1891 @return The length of the actual copied data, or 0 if the offset
1892 specified exceeds the total size of net buffer.
1893
1894 **/
1895 UINT32
1896 EFIAPI
1897 NetbufCopy (
1898 IN NET_BUF *Nbuf,
1899 IN UINT32 Offset,
1900 IN UINT32 Len,
1901 IN UINT8 *Dest
1902 );
1903
1904 /**
1905 Build a NET_BUF from external blocks.
1906
1907 A new NET_BUF structure will be created from external blocks. An additional block
1908 of memory will be allocated to hold reserved HeadSpace bytes of header room
1909 and existing HeadLen bytes of header, but the external blocks are shared by the
1910 net buffer to avoid data copying.
1911
1912 @param[in] ExtFragment The pointer to the data block.
1913 @param[in] ExtNum The number of the data blocks.
1914 @param[in] HeadSpace The head space to be reserved.
1915 @param[in] HeadLen The length of the protocol header. The function
1916 pulls this amount of data into a linear block.
1917 @param[in] ExtFree The pointer to the caller-provided free function.
1918 @param[in] Arg The argument passed to ExtFree when ExtFree is
1919 called.
1920
1921 @return The pointer to the net buffer built from the data blocks,
1922 or NULL if the allocation failed due to resource
1923 limit.
1924
1925 **/
1926 NET_BUF *
1927 EFIAPI
1928 NetbufFromExt (
1929 IN NET_FRAGMENT *ExtFragment,
1930 IN UINT32 ExtNum,
1931 IN UINT32 HeadSpace,
1932 IN UINT32 HeadLen,
1933 IN NET_VECTOR_EXT_FREE ExtFree,
1934 IN VOID *Arg OPTIONAL
1935 );
1936
1937 /**
1938 Build a fragment table to contain the fragments in the net buffer. This is the
1939 opposite operation of the NetbufFromExt.
1940
1941 @param[in] Nbuf Points to the net buffer.
1942 @param[in, out] ExtFragment The pointer to the data block.
1943 @param[in, out] ExtNum The number of the data blocks.
1944
1945 @retval EFI_BUFFER_TOO_SMALL The number of non-empty blocks is bigger than
1946 ExtNum.
1947 @retval EFI_SUCCESS The fragment table was built successfully.
1948
1949 **/
1950 EFI_STATUS
1951 EFIAPI
1952 NetbufBuildExt (
1953 IN NET_BUF *Nbuf,
1954 IN OUT NET_FRAGMENT *ExtFragment,
1955 IN OUT UINT32 *ExtNum
1956 );
1957
1958 /**
1959 Build a net buffer from a list of net buffers.
1960
1961 All the fragments will be collected from the list of NEW_BUF, and then a new
1962 net buffer will be created through NetbufFromExt.
1963
1964 @param[in] BufList A List of the net buffer.
1965 @param[in] HeadSpace The head space to be reserved.
1966 @param[in] HeaderLen The length of the protocol header. The function
1967 pulls this amount of data into a linear block.
1968 @param[in] ExtFree The pointer to the caller provided free function.
1969 @param[in] Arg The argument passed to ExtFree when ExtFree is called.
1970
1971 @return The pointer to the net buffer built from the list of net
1972 buffers.
1973
1974 **/
1975 NET_BUF *
1976 EFIAPI
1977 NetbufFromBufList (
1978 IN LIST_ENTRY *BufList,
1979 IN UINT32 HeadSpace,
1980 IN UINT32 HeaderLen,
1981 IN NET_VECTOR_EXT_FREE ExtFree,
1982 IN VOID *Arg OPTIONAL
1983 );
1984
1985 /**
1986 Free a list of net buffers.
1987
1988 @param[in, out] Head The pointer to the head of linked net buffers.
1989
1990 **/
1991 VOID
1992 EFIAPI
1993 NetbufFreeList (
1994 IN OUT LIST_ENTRY *Head
1995 );
1996
1997 /**
1998 Initiate the net buffer queue.
1999
2000 @param[in, out] NbufQue The pointer to the net buffer queue to be initialized.
2001
2002 **/
2003 VOID
2004 EFIAPI
2005 NetbufQueInit (
2006 IN OUT NET_BUF_QUEUE *NbufQue
2007 );
2008
2009 /**
2010 Allocate and initialize a net buffer queue.
2011
2012 @return The pointer to the allocated net buffer queue, or NULL if the
2013 allocation failed due to resource limit.
2014
2015 **/
2016 NET_BUF_QUEUE *
2017 EFIAPI
2018 NetbufQueAlloc (
2019 VOID
2020 );
2021
2022 /**
2023 Free a net buffer queue.
2024
2025 Decrease the reference count of the net buffer queue by one. The real resource
2026 free operation isn't performed until the reference count of the net buffer
2027 queue is decreased to 0.
2028
2029 @param[in] NbufQue The pointer to the net buffer queue to be freed.
2030
2031 **/
2032 VOID
2033 EFIAPI
2034 NetbufQueFree (
2035 IN NET_BUF_QUEUE *NbufQue
2036 );
2037
2038 /**
2039 Remove a net buffer from the head in the specific queue and return it.
2040
2041 @param[in, out] NbufQue The pointer to the net buffer queue.
2042
2043 @return The pointer to the net buffer removed from the specific queue,
2044 or NULL if there is no net buffer in the specific queue.
2045
2046 **/
2047 NET_BUF *
2048 EFIAPI
2049 NetbufQueRemove (
2050 IN OUT NET_BUF_QUEUE *NbufQue
2051 );
2052
2053 /**
2054 Append a net buffer to the net buffer queue.
2055
2056 @param[in, out] NbufQue The pointer to the net buffer queue.
2057 @param[in, out] Nbuf The pointer to the net buffer to be appended.
2058
2059 **/
2060 VOID
2061 EFIAPI
2062 NetbufQueAppend (
2063 IN OUT NET_BUF_QUEUE *NbufQue,
2064 IN OUT NET_BUF *Nbuf
2065 );
2066
2067 /**
2068 Copy Len bytes of data from the net buffer queue at the specific offset to the
2069 destination memory.
2070
2071 The copying operation is the same as NetbufCopy, but applies to the net buffer
2072 queue instead of the net buffer.
2073
2074 @param[in] NbufQue The pointer to the net buffer queue.
2075 @param[in] Offset The sequence number of the first byte to copy.
2076 @param[in] Len The length of the data to copy.
2077 @param[out] Dest The destination of the data to copy to.
2078
2079 @return The length of the actual copied data, or 0 if the offset
2080 specified exceeds the total size of net buffer queue.
2081
2082 **/
2083 UINT32
2084 EFIAPI
2085 NetbufQueCopy (
2086 IN NET_BUF_QUEUE *NbufQue,
2087 IN UINT32 Offset,
2088 IN UINT32 Len,
2089 OUT UINT8 *Dest
2090 );
2091
2092 /**
2093 Trim Len bytes of data from the buffer queue and free any net buffer
2094 that is completely trimmed.
2095
2096 The trimming operation is the same as NetbufTrim but applies to the net buffer
2097 queue instead of the net buffer.
2098
2099 @param[in, out] NbufQue The pointer to the net buffer queue.
2100 @param[in] Len The length of the data to trim.
2101
2102 @return The actual length of the data trimmed.
2103
2104 **/
2105 UINT32
2106 EFIAPI
2107 NetbufQueTrim (
2108 IN OUT NET_BUF_QUEUE *NbufQue,
2109 IN UINT32 Len
2110 );
2111
2112
2113 /**
2114 Flush the net buffer queue.
2115
2116 @param[in, out] NbufQue The pointer to the queue to be flushed.
2117
2118 **/
2119 VOID
2120 EFIAPI
2121 NetbufQueFlush (
2122 IN OUT NET_BUF_QUEUE *NbufQue
2123 );
2124
2125 /**
2126 Compute the checksum for a bulk of data.
2127
2128 @param[in] Bulk The pointer to the data.
2129 @param[in] Len The length of the data, in bytes.
2130
2131 @return The computed checksum.
2132
2133 **/
2134 UINT16
2135 EFIAPI
2136 NetblockChecksum (
2137 IN UINT8 *Bulk,
2138 IN UINT32 Len
2139 );
2140
2141 /**
2142 Add two checksums.
2143
2144 @param[in] Checksum1 The first checksum to be added.
2145 @param[in] Checksum2 The second checksum to be added.
2146
2147 @return The new checksum.
2148
2149 **/
2150 UINT16
2151 EFIAPI
2152 NetAddChecksum (
2153 IN UINT16 Checksum1,
2154 IN UINT16 Checksum2
2155 );
2156
2157 /**
2158 Compute the checksum for a NET_BUF.
2159
2160 @param[in] Nbuf The pointer to the net buffer.
2161
2162 @return The computed checksum.
2163
2164 **/
2165 UINT16
2166 EFIAPI
2167 NetbufChecksum (
2168 IN NET_BUF *Nbuf
2169 );
2170
2171 /**
2172 Compute the checksum for TCP/UDP pseudo header.
2173
2174 Src and Dst are in network byte order, and Len is in host byte order.
2175
2176 @param[in] Src The source address of the packet.
2177 @param[in] Dst The destination address of the packet.
2178 @param[in] Proto The protocol type of the packet.
2179 @param[in] Len The length of the packet.
2180
2181 @return The computed checksum.
2182
2183 **/
2184 UINT16
2185 EFIAPI
2186 NetPseudoHeadChecksum (
2187 IN IP4_ADDR Src,
2188 IN IP4_ADDR Dst,
2189 IN UINT8 Proto,
2190 IN UINT16 Len
2191 );
2192
2193 /**
2194 Compute the checksum for the TCP6/UDP6 pseudo header.
2195
2196 Src and Dst are in network byte order, and Len is in host byte order.
2197
2198 @param[in] Src The source address of the packet.
2199 @param[in] Dst The destination address of the packet.
2200 @param[in] NextHeader The protocol type of the packet.
2201 @param[in] Len The length of the packet.
2202
2203 @return The computed checksum.
2204
2205 **/
2206 UINT16
2207 EFIAPI
2208 NetIp6PseudoHeadChecksum (
2209 IN EFI_IPv6_ADDRESS *Src,
2210 IN EFI_IPv6_ADDRESS *Dst,
2211 IN UINT8 NextHeader,
2212 IN UINT32 Len
2213 );
2214
2215 /**
2216 The function frees the net buffer which allocated by the IP protocol. It releases
2217 only the net buffer and doesn't call the external free function.
2218
2219 This function should be called after finishing the process of mIpSec->ProcessExt()
2220 for outbound traffic. The (EFI_IPSEC2_PROTOCOL)->ProcessExt() allocates a new
2221 buffer for the ESP, so there needs a function to free the old net buffer.
2222
2223 @param[in] Nbuf The network buffer to be freed.
2224
2225 **/
2226 VOID
2227 NetIpSecNetbufFree (
2228 NET_BUF *Nbuf
2229 );
2230
2231 /**
2232 This function obtains the system guid from the smbios table.
2233
2234 If SystemGuid is NULL, then ASSERT().
2235
2236 @param[out] SystemGuid The pointer of the returned system guid.
2237
2238 @retval EFI_SUCCESS Successfully obtained the system guid.
2239 @retval EFI_NOT_FOUND Did not find the SMBIOS table.
2240
2241 **/
2242 EFI_STATUS
2243 EFIAPI
2244 NetLibGetSystemGuid (
2245 OUT EFI_GUID *SystemGuid
2246 );
2247
2248 /**
2249 Create Dns QName according the queried domain name.
2250
2251 If DomainName is NULL, then ASSERT().
2252
2253 QName is a domain name represented as a sequence of labels,
2254 where each label consists of a length octet followed by that
2255 number of octets. The QName terminates with the zero
2256 length octet for the null label of the root. Caller should
2257 take responsibility to free the buffer in returned pointer.
2258
2259 @param DomainName The pointer to the queried domain name string.
2260
2261 @retval NULL Failed to fill QName.
2262 @return QName filled successfully.
2263
2264 **/
2265 CHAR8 *
2266 EFIAPI
2267 NetLibCreateDnsQName (
2268 IN CHAR16 *DomainName
2269 );
2270
2271 #endif