]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Include/Library/NetLib.h
1. Add EFI_COMPONENT_NAME2_PROTOCOL.GetControllerName() support.
[mirror_edk2.git] / MdeModulePkg / Include / Library / NetLib.h
1 /** @file
2 This library is only intended to be used by UEFI network stack modules.
3 It provides basic functions for the UEFI network stack.
4
5 Copyright (c) 2005 - 2012, Intel Corporation. All rights reserved.<BR>
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution. The full text of the license may be found at<BR>
9 http://opensource.org/licenses/bsd-license.php
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #ifndef _NET_LIB_H_
17 #define _NET_LIB_H_
18
19 #include <Protocol/Ip6.h>
20
21 #include <Library/BaseLib.h>
22 #include <Library/BaseMemoryLib.h>
23
24 typedef UINT32 IP4_ADDR;
25 typedef UINT32 TCP_SEQNO;
26 typedef UINT16 TCP_PORTNO;
27
28
29 #define NET_ETHER_ADDR_LEN 6
30 #define NET_IFTYPE_ETHERNET 0x01
31
32 #define NET_VLAN_TAG_LEN 4
33 #define ETHER_TYPE_VLAN 0x8100
34
35 #define EFI_IP_PROTO_UDP 0x11
36 #define EFI_IP_PROTO_TCP 0x06
37 #define EFI_IP_PROTO_ICMP 0x01
38 #define IP4_PROTO_IGMP 0x02
39 #define IP6_ICMP 58
40
41 //
42 // The address classification
43 //
44 #define IP4_ADDR_CLASSA 1
45 #define IP4_ADDR_CLASSB 2
46 #define IP4_ADDR_CLASSC 3
47 #define IP4_ADDR_CLASSD 4
48 #define IP4_ADDR_CLASSE 5
49
50 #define IP4_MASK_NUM 33
51 #define IP6_PREFIX_NUM 129
52
53 #define IP6_HOP_BY_HOP 0
54 #define IP6_DESTINATION 60
55 #define IP6_ROUTING 43
56 #define IP6_FRAGMENT 44
57 #define IP6_AH 51
58 #define IP6_ESP 50
59 #define IP6_NO_NEXT_HEADER 59
60
61 #define IP_VERSION_4 4
62 #define IP_VERSION_6 6
63
64 #define IP6_PREFIX_LENGTH 64
65
66 #pragma pack(1)
67
68 //
69 // Ethernet head definition
70 //
71 typedef struct {
72 UINT8 DstMac [NET_ETHER_ADDR_LEN];
73 UINT8 SrcMac [NET_ETHER_ADDR_LEN];
74 UINT16 EtherType;
75 } ETHER_HEAD;
76
77 //
78 // 802.1Q VLAN Tag Control Information
79 //
80 typedef union {
81 struct {
82 UINT16 Vid : 12; // Unique VLAN identifier (0 to 4094)
83 UINT16 Cfi : 1; // Canonical Format Indicator
84 UINT16 Priority : 3; // 802.1Q priority level (0 to 7)
85 } Bits;
86 UINT16 Uint16;
87 } VLAN_TCI;
88
89 #define VLAN_TCI_CFI_CANONICAL_MAC 0
90 #define VLAN_TCI_CFI_NON_CANONICAL_MAC 1
91
92 //
93 // The EFI_IP4_HEADER is hard to use because the source and
94 // destination address are defined as EFI_IPv4_ADDRESS, which
95 // is a structure. Two structures can't be compared or masked
96 // directly. This is why there is an internal representation.
97 //
98 typedef struct {
99 UINT8 HeadLen : 4;
100 UINT8 Ver : 4;
101 UINT8 Tos;
102 UINT16 TotalLen;
103 UINT16 Id;
104 UINT16 Fragment;
105 UINT8 Ttl;
106 UINT8 Protocol;
107 UINT16 Checksum;
108 IP4_ADDR Src;
109 IP4_ADDR Dst;
110 } IP4_HEAD;
111
112
113 //
114 // ICMP head definition. Each ICMP message is categorized as either an error
115 // message or query message. Two message types have their own head format.
116 //
117 typedef struct {
118 UINT8 Type;
119 UINT8 Code;
120 UINT16 Checksum;
121 } IP4_ICMP_HEAD;
122
123 typedef struct {
124 IP4_ICMP_HEAD Head;
125 UINT32 Fourth; // 4th filed of the head, it depends on Type.
126 IP4_HEAD IpHead;
127 } IP4_ICMP_ERROR_HEAD;
128
129 typedef struct {
130 IP4_ICMP_HEAD Head;
131 UINT16 Id;
132 UINT16 Seq;
133 } IP4_ICMP_QUERY_HEAD;
134
135 typedef struct {
136 UINT8 Type;
137 UINT8 Code;
138 UINT16 Checksum;
139 } IP6_ICMP_HEAD;
140
141 typedef struct {
142 IP6_ICMP_HEAD Head;
143 UINT32 Fourth;
144 EFI_IP6_HEADER IpHead;
145 } IP6_ICMP_ERROR_HEAD;
146
147 typedef struct {
148 IP6_ICMP_HEAD Head;
149 UINT32 Fourth;
150 } IP6_ICMP_INFORMATION_HEAD;
151
152 //
153 // UDP header definition
154 //
155 typedef struct {
156 UINT16 SrcPort;
157 UINT16 DstPort;
158 UINT16 Length;
159 UINT16 Checksum;
160 } EFI_UDP_HEADER;
161
162 //
163 // TCP header definition
164 //
165 typedef struct {
166 TCP_PORTNO SrcPort;
167 TCP_PORTNO DstPort;
168 TCP_SEQNO Seq;
169 TCP_SEQNO Ack;
170 UINT8 Res : 4;
171 UINT8 HeadLen : 4;
172 UINT8 Flag;
173 UINT16 Wnd;
174 UINT16 Checksum;
175 UINT16 Urg;
176 } TCP_HEAD;
177
178 #pragma pack()
179
180 #define NET_MAC_EQUAL(pMac1, pMac2, Len) \
181 (CompareMem ((pMac1), (pMac2), Len) == 0)
182
183 #define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \
184 (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))
185
186 #define NTOHL(x) SwapBytes32 (x)
187
188 #define HTONL(x) NTOHL(x)
189
190 #define NTOHS(x) SwapBytes16 (x)
191
192 #define HTONS(x) NTOHS(x)
193 #define NTOHLL(x) SwapBytes64 (x)
194 #define HTONLL(x) NTOHLL(x)
195 #define NTOHLLL(x) Ip6Swap128 (x)
196 #define HTONLLL(x) NTOHLLL(x)
197
198 //
199 // Test the IP's attribute, All the IPs are in host byte order.
200 //
201 #define IP4_IS_MULTICAST(Ip) (((Ip) & 0xF0000000) == 0xE0000000)
202 #define IP4_IS_LOCAL_BROADCAST(Ip) ((Ip) == 0xFFFFFFFF)
203 #define IP4_NET_EQUAL(Ip1, Ip2, NetMask) (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))
204 #define IP4_IS_VALID_NETMASK(Ip) (NetGetMaskLength (Ip) != IP4_MASK_NUM)
205
206 #define IP6_IS_MULTICAST(Ip6) (((Ip6)->Addr[0]) == 0xFF)
207
208 //
209 // Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.
210 //
211 #define EFI_IP4(EfiIpAddr) (*(IP4_ADDR *) ((EfiIpAddr).Addr))
212 #define EFI_NTOHL(EfiIp) (NTOHL (EFI_IP4 ((EfiIp))))
213 #define EFI_IP4_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)
214
215 #define EFI_IP6_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0)
216
217 #define IP4_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv4_ADDRESS)))
218 #define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS)))
219 #define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS)))
220
221 //
222 // The debug level definition. This value is also used as the
223 // syslog's servity level. Don't change it.
224 //
225 #define NETDEBUG_LEVEL_TRACE 5
226 #define NETDEBUG_LEVEL_WARNING 4
227 #define NETDEBUG_LEVEL_ERROR 3
228
229 //
230 // Network debug message is sent out as syslog packet.
231 //
232 #define NET_SYSLOG_FACILITY 16 // Syslog local facility local use
233 #define NET_SYSLOG_PACKET_LEN 512
234 #define NET_SYSLOG_TX_TIMEOUT (500 * 1000 * 10) // 500ms
235 #define NET_DEBUG_MSG_LEN 470 // 512 - (ether+ip4+udp4 head length)
236
237 //
238 // The debug output expects the ASCII format string, Use %a to print ASCII
239 // string, and %s to print UNICODE string. PrintArg must be enclosed in ().
240 // For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name));
241 //
242 #define NET_DEBUG_TRACE(Module, PrintArg) \
243 NetDebugOutput ( \
244 NETDEBUG_LEVEL_TRACE, \
245 Module, \
246 __FILE__, \
247 __LINE__, \
248 NetDebugASPrint PrintArg \
249 )
250
251 #define NET_DEBUG_WARNING(Module, PrintArg) \
252 NetDebugOutput ( \
253 NETDEBUG_LEVEL_WARNING, \
254 Module, \
255 __FILE__, \
256 __LINE__, \
257 NetDebugASPrint PrintArg \
258 )
259
260 #define NET_DEBUG_ERROR(Module, PrintArg) \
261 NetDebugOutput ( \
262 NETDEBUG_LEVEL_ERROR, \
263 Module, \
264 __FILE__, \
265 __LINE__, \
266 NetDebugASPrint PrintArg \
267 )
268
269 /**
270 Allocate a buffer, then format the message to it. This is a
271 help function for the NET_DEBUG_XXX macros. The PrintArg of
272 these macros treats the variable length print parameters as a
273 single parameter, and pass it to the NetDebugASPrint. For
274 example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))
275 if extracted to:
276
277 NetDebugOutput (
278 NETDEBUG_LEVEL_TRACE,
279 "Tcp",
280 __FILE__,
281 __LINE__,
282 NetDebugASPrint ("State transit to %a\n", Name)
283 )
284
285 @param Format The ASCII format string.
286 @param ... The variable length parameter whose format is determined
287 by the Format string.
288
289 @return The buffer containing the formatted message,
290 or NULL if memory allocation failed.
291
292 **/
293 CHAR8 *
294 EFIAPI
295 NetDebugASPrint (
296 IN CHAR8 *Format,
297 ...
298 );
299
300 /**
301 Builds an UDP4 syslog packet and send it using SNP.
302
303 This function will locate a instance of SNP then send the message through it.
304 Because it isn't open the SNP BY_DRIVER, apply caution when using it.
305
306 @param Level The servity level of the message.
307 @param Module The Moudle that generates the log.
308 @param File The file that contains the log.
309 @param Line The exact line that contains the log.
310 @param Message The user message to log.
311
312 @retval EFI_INVALID_PARAMETER Any input parameter is invalid.
313 @retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet
314 @retval EFI_SUCCESS The log is discard because that it is more verbose
315 than the mNetDebugLevelMax. Or, it has been sent out.
316 **/
317 EFI_STATUS
318 EFIAPI
319 NetDebugOutput (
320 IN UINT32 Level,
321 IN UINT8 *Module,
322 IN UINT8 *File,
323 IN UINT32 Line,
324 IN UINT8 *Message
325 );
326
327
328 /**
329 Return the length of the mask.
330
331 Return the length of the mask. Valid values are 0 to 32.
332 If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.
333 NetMask is in the host byte order.
334
335 @param[in] NetMask The netmask to get the length from.
336
337 @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid.
338
339 **/
340 INTN
341 EFIAPI
342 NetGetMaskLength (
343 IN IP4_ADDR NetMask
344 );
345
346 /**
347 Return the class of the IP address, such as class A, B, C.
348 Addr is in host byte order.
349
350 The address of class A starts with 0.
351 If the address belong to class A, return IP4_ADDR_CLASSA.
352 The address of class B starts with 10.
353 If the address belong to class B, return IP4_ADDR_CLASSB.
354 The address of class C starts with 110.
355 If the address belong to class C, return IP4_ADDR_CLASSC.
356 The address of class D starts with 1110.
357 If the address belong to class D, return IP4_ADDR_CLASSD.
358 The address of class E starts with 1111.
359 If the address belong to class E, return IP4_ADDR_CLASSE.
360
361
362 @param[in] Addr The address to get the class from.
363
364 @return IP address class, such as IP4_ADDR_CLASSA.
365
366 **/
367 INTN
368 EFIAPI
369 NetGetIpClass (
370 IN IP4_ADDR Addr
371 );
372
373 /**
374 Check whether the IP is a valid unicast address according to
375 the netmask. If NetMask is zero, use the IP address's class to get the default mask.
376
377 If Ip is 0, IP is not a valid unicast address.
378 Class D address is used for multicasting and class E address is reserved for future. If Ip
379 belongs to class D or class E, Ip is not a valid unicast address.
380 If all bits of the host address of Ip are 0 or 1, Ip is not a valid unicast address.
381
382 @param[in] Ip The IP to check against.
383 @param[in] NetMask The mask of the IP.
384
385 @return TRUE if Ip is a valid unicast address on the network, otherwise FALSE.
386
387 **/
388 BOOLEAN
389 EFIAPI
390 NetIp4IsUnicast (
391 IN IP4_ADDR Ip,
392 IN IP4_ADDR NetMask
393 );
394
395 /**
396 Check whether the incoming IPv6 address is a valid unicast address.
397
398 If the address is a multicast address has binary 0xFF at the start, it is not
399 a valid unicast address. If the address is unspecified ::, it is not a valid
400 unicast address to be assigned to any node. If the address is loopback address
401 ::1, it is also not a valid unicast address to be assigned to any physical
402 interface.
403
404 @param[in] Ip6 The IPv6 address to check against.
405
406 @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.
407
408 **/
409 BOOLEAN
410 EFIAPI
411 NetIp6IsValidUnicast (
412 IN EFI_IPv6_ADDRESS *Ip6
413 );
414
415
416 /**
417 Check whether the incoming Ipv6 address is the unspecified address or not.
418
419 @param[in] Ip6 - Ip6 address, in network order.
420
421 @retval TRUE - Yes, incoming Ipv6 address is the unspecified address.
422 @retval FALSE - The incoming Ipv6 address is not the unspecified address
423
424 **/
425 BOOLEAN
426 EFIAPI
427 NetIp6IsUnspecifiedAddr (
428 IN EFI_IPv6_ADDRESS *Ip6
429 );
430
431 /**
432 Check whether the incoming Ipv6 address is a link-local address.
433
434 @param[in] Ip6 - Ip6 address, in network order.
435
436 @retval TRUE - The incoming Ipv6 address is a link-local address.
437 @retval FALSE - The incoming Ipv6 address is not a link-local address.
438
439 **/
440 BOOLEAN
441 EFIAPI
442 NetIp6IsLinkLocalAddr (
443 IN EFI_IPv6_ADDRESS *Ip6
444 );
445
446 /**
447 Check whether the Ipv6 address1 and address2 are on the connected network.
448
449 @param[in] Ip1 - Ip6 address1, in network order.
450 @param[in] Ip2 - Ip6 address2, in network order.
451 @param[in] PrefixLength - The prefix length of the checking net.
452
453 @retval TRUE - Yes, the Ipv6 address1 and address2 are connected.
454 @retval FALSE - No the Ipv6 address1 and address2 are not connected.
455
456 **/
457 BOOLEAN
458 EFIAPI
459 NetIp6IsNetEqual (
460 EFI_IPv6_ADDRESS *Ip1,
461 EFI_IPv6_ADDRESS *Ip2,
462 UINT8 PrefixLength
463 );
464
465 /**
466 Switches the endianess of an IPv6 address.
467
468 This function swaps the bytes in a 128-bit IPv6 address to switch the value
469 from little endian to big endian or vice versa. The byte swapped value is
470 returned.
471
472 @param Ip6 Points to an IPv6 address.
473
474 @return The byte swapped IPv6 address.
475
476 **/
477 EFI_IPv6_ADDRESS *
478 EFIAPI
479 Ip6Swap128 (
480 EFI_IPv6_ADDRESS *Ip6
481 );
482
483 extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM];
484
485
486 extern EFI_IPv4_ADDRESS mZeroIp4Addr;
487
488 #define NET_IS_DIGIT(Ch) (('0' <= (Ch)) && ((Ch) <= '9'))
489 #define NET_ROUNDUP(size, unit) (((size) + (unit) - 1) & (~((unit) - 1)))
490 #define NET_IS_LOWER_CASE_CHAR(Ch) (('a' <= (Ch)) && ((Ch) <= 'z'))
491 #define NET_IS_UPPER_CASE_CHAR(Ch) (('A' <= (Ch)) && ((Ch) <= 'Z'))
492
493 #define TICKS_PER_MS 10000U
494 #define TICKS_PER_SECOND 10000000U
495
496 #define NET_RANDOM(Seed) ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)
497
498 /**
499 Extract a UINT32 from a byte stream.
500
501 This function copies a UINT32 from a byte stream, and then converts it from Network
502 byte order to host byte order. Use this function to avoid alignment error.
503
504 @param[in] Buf The buffer to extract the UINT32.
505
506 @return The UINT32 extracted.
507
508 **/
509 UINT32
510 EFIAPI
511 NetGetUint32 (
512 IN UINT8 *Buf
513 );
514
515 /**
516 Puts a UINT32 into the byte stream in network byte order.
517
518 Converts a UINT32 from host byte order to network byte order, then copies it to the
519 byte stream.
520
521 @param[in, out] Buf The buffer in which to put the UINT32.
522 @param[in] Data The data to be converted and put into the byte stream.
523
524 **/
525 VOID
526 EFIAPI
527 NetPutUint32 (
528 IN OUT UINT8 *Buf,
529 IN UINT32 Data
530 );
531
532 /**
533 Initialize a random seed using current time.
534
535 Get current time first. Then initialize a random seed based on some basic
536 mathematical operations on the hour, day, minute, second, nanosecond and year
537 of the current time.
538
539 @return The random seed, initialized with current time.
540
541 **/
542 UINT32
543 EFIAPI
544 NetRandomInitSeed (
545 VOID
546 );
547
548
549 #define NET_LIST_USER_STRUCT(Entry, Type, Field) \
550 BASE_CR(Entry, Type, Field)
551
552 #define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig) \
553 CR(Entry, Type, Field, Sig)
554
555 //
556 // Iterate through the double linked list. It is NOT delete safe
557 //
558 #define NET_LIST_FOR_EACH(Entry, ListHead) \
559 for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)
560
561 //
562 // Iterate through the double linked list. This is delete-safe.
563 // Don't touch NextEntry. Also, don't use this macro if list
564 // entries other than the Entry may be deleted when processing
565 // the current Entry.
566 //
567 #define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \
568 for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \
569 Entry != (ListHead); \
570 Entry = NextEntry, NextEntry = Entry->ForwardLink \
571 )
572
573 //
574 // Make sure the list isn't empty before getting the first/last record.
575 //
576 #define NET_LIST_HEAD(ListHead, Type, Field) \
577 NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)
578
579 #define NET_LIST_TAIL(ListHead, Type, Field) \
580 NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)
581
582
583 /**
584 Remove the first node entry on the list, and return the removed node entry.
585
586 Removes the first node entry from a doubly linked list. It is up to the caller of
587 this function to release the memory used by the first node, if that is required. On
588 exit, the removed node is returned.
589
590 If Head is NULL, then ASSERT().
591 If Head was not initialized, then ASSERT().
592 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
593 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
594 then ASSERT().
595
596 @param[in, out] Head The list header.
597
598 @return The first node entry that is removed from the list, NULL if the list is empty.
599
600 **/
601 LIST_ENTRY *
602 EFIAPI
603 NetListRemoveHead (
604 IN OUT LIST_ENTRY *Head
605 );
606
607 /**
608 Remove the last node entry on the list and return the removed node entry.
609
610 Removes the last node entry from a doubly linked list. It is up to the caller of
611 this function to release the memory used by the first node, if that is required. On
612 exit, the removed node is returned.
613
614 If Head is NULL, then ASSERT().
615 If Head was not initialized, then ASSERT().
616 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
617 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
618 then ASSERT().
619
620 @param[in, out] Head The list head.
621
622 @return The last node entry that is removed from the list, NULL if the list is empty.
623
624 **/
625 LIST_ENTRY *
626 EFIAPI
627 NetListRemoveTail (
628 IN OUT LIST_ENTRY *Head
629 );
630
631 /**
632 Insert a new node entry after a designated node entry of a doubly linked list.
633
634 Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry
635 of the doubly linked list.
636
637 @param[in, out] PrevEntry The entry after which to insert.
638 @param[in, out] NewEntry The new entry to insert.
639
640 **/
641 VOID
642 EFIAPI
643 NetListInsertAfter (
644 IN OUT LIST_ENTRY *PrevEntry,
645 IN OUT LIST_ENTRY *NewEntry
646 );
647
648 /**
649 Insert a new node entry before a designated node entry of a doubly linked list.
650
651 Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry
652 of the doubly linked list.
653
654 @param[in, out] PostEntry The entry to insert before.
655 @param[in, out] NewEntry The new entry to insert.
656
657 **/
658 VOID
659 EFIAPI
660 NetListInsertBefore (
661 IN OUT LIST_ENTRY *PostEntry,
662 IN OUT LIST_ENTRY *NewEntry
663 );
664
665 /**
666 Callback function which provided by user to remove one node in NetDestroyLinkList process.
667
668 @param[in] Entry The entry to be removed.
669 @param[in] Context Pointer to the callback context corresponds to the Context in NetDestroyLinkList.
670
671 @retval EFI_SUCCESS The entry has been removed successfully.
672 @retval Others Fail to remove the entry.
673
674 **/
675 typedef
676 EFI_STATUS
677 (EFIAPI *NET_DESTROY_LINK_LIST_CALLBACK) (
678 IN LIST_ENTRY *Entry,
679 IN VOID *Context OPTIONAL
680 );
681
682 /**
683 Safe destroy nodes in a linked list, and return the length of the list after all possible operations finished.
684
685 Destroy network children list by list traversals is not safe due to graph dependencies between nodes.
686 This function performs a safe traversal to destroy these nodes by checking to see if the node being destroyed
687 has been removed from the list or not.
688 If it has been removed, then restart the traversal from the head.
689 If it hasn't been removed, then continue with the next node directly.
690 This function will end the iterate and return the CallBack's last return value if error happens,
691 or retrun EFI_SUCCESS if 2 complete passes are made with no changes in the number of children in the list.
692
693 @param[in] List The head of the list.
694 @param[in] CallBack Pointer to the callback function to destroy one node in the list.
695 @param[in] Context Pointer to the callback function's context: corresponds to the
696 parameter Context in NET_DESTROY_LINK_LIST_CALLBACK.
697 @param[out] ListLength The length of the link list if the function returns successfully.
698
699 @retval EFI_SUCCESS Two complete passes are made with no changes in the number of children.
700 @retval EFI_INVALID_PARAMETER The input parameter is invalid.
701 @retval Others Return the CallBack's last return value.
702
703 **/
704 EFI_STATUS
705 EFIAPI
706 NetDestroyLinkList (
707 IN LIST_ENTRY *List,
708 IN NET_DESTROY_LINK_LIST_CALLBACK CallBack,
709 IN VOID *Context, OPTIONAL
710 OUT UINTN *ListLength OPTIONAL
711 );
712
713 /**
714 This function checks the input Handle to see if it's one of these handles in ChildHandleBuffer.
715
716 @param[in] Handle Handle to be checked.
717 @param[in] NumberOfChildren Number of Handles in ChildHandleBuffer.
718 @param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL
719 if NumberOfChildren is 0.
720
721 @retval TURE Found the input Handle in ChildHandleBuffer.
722 @retval FALSE Can't find the input Handle in ChildHandleBuffer.
723
724 **/
725 BOOLEAN
726 NetIsInHandleBuffer (
727 IN EFI_HANDLE Handle,
728 IN UINTN NumberOfChildren,
729 IN EFI_HANDLE *ChildHandleBuffer OPTIONAL
730 );
731
732 //
733 // Object container: EFI network stack spec defines various kinds of
734 // tokens. The drivers can share code to manage those objects.
735 //
736 typedef struct {
737 LIST_ENTRY Link;
738 VOID *Key;
739 VOID *Value;
740 } NET_MAP_ITEM;
741
742 typedef struct {
743 LIST_ENTRY Used;
744 LIST_ENTRY Recycled;
745 UINTN Count;
746 } NET_MAP;
747
748 #define NET_MAP_INCREAMENT 64
749
750 /**
751 Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.
752
753 Initialize the forward and backward links of two head nodes donated by Map->Used
754 and Map->Recycled of two doubly linked lists.
755 Initializes the count of the <Key, Value> pairs in the netmap to zero.
756
757 If Map is NULL, then ASSERT().
758 If the address of Map->Used is NULL, then ASSERT().
759 If the address of Map->Recycled is NULl, then ASSERT().
760
761 @param[in, out] Map The netmap to initialize.
762
763 **/
764 VOID
765 EFIAPI
766 NetMapInit (
767 IN OUT NET_MAP *Map
768 );
769
770 /**
771 To clean up the netmap, that is, release allocated memories.
772
773 Removes all nodes of the Used doubly linked list and frees memory of all related netmap items.
774 Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.
775 The number of the <Key, Value> pairs in the netmap is set to zero.
776
777 If Map is NULL, then ASSERT().
778
779 @param[in, out] Map The netmap to clean up.
780
781 **/
782 VOID
783 EFIAPI
784 NetMapClean (
785 IN OUT NET_MAP *Map
786 );
787
788 /**
789 Test whether the netmap is empty and return true if it is.
790
791 If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.
792
793 If Map is NULL, then ASSERT().
794
795
796 @param[in] Map The net map to test.
797
798 @return TRUE if the netmap is empty, otherwise FALSE.
799
800 **/
801 BOOLEAN
802 EFIAPI
803 NetMapIsEmpty (
804 IN NET_MAP *Map
805 );
806
807 /**
808 Return the number of the <Key, Value> pairs in the netmap.
809
810 @param[in] Map The netmap to get the entry number.
811
812 @return The entry number in the netmap.
813
814 **/
815 UINTN
816 EFIAPI
817 NetMapGetCount (
818 IN NET_MAP *Map
819 );
820
821 /**
822 Allocate an item to save the <Key, Value> pair to the head of the netmap.
823
824 Allocate an item to save the <Key, Value> pair and add corresponding node entry
825 to the beginning of the Used doubly linked list. The number of the <Key, Value>
826 pairs in the netmap increase by 1.
827
828 If Map is NULL, then ASSERT().
829
830 @param[in, out] Map The netmap to insert into.
831 @param[in] Key The user's key.
832 @param[in] Value The user's value for the key.
833
834 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
835 @retval EFI_SUCCESS The item is inserted to the head.
836
837 **/
838 EFI_STATUS
839 EFIAPI
840 NetMapInsertHead (
841 IN OUT NET_MAP *Map,
842 IN VOID *Key,
843 IN VOID *Value OPTIONAL
844 );
845
846 /**
847 Allocate an item to save the <Key, Value> pair to the tail of the netmap.
848
849 Allocate an item to save the <Key, Value> pair and add corresponding node entry
850 to the tail of the Used doubly linked list. The number of the <Key, Value>
851 pairs in the netmap increase by 1.
852
853 If Map is NULL, then ASSERT().
854
855 @param[in, out] Map The netmap to insert into.
856 @param[in] Key The user's key.
857 @param[in] Value The user's value for the key.
858
859 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
860 @retval EFI_SUCCESS The item is inserted to the tail.
861
862 **/
863 EFI_STATUS
864 EFIAPI
865 NetMapInsertTail (
866 IN OUT NET_MAP *Map,
867 IN VOID *Key,
868 IN VOID *Value OPTIONAL
869 );
870
871 /**
872 Finds the key in the netmap and returns the point to the item containing the Key.
873
874 Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every
875 item with the key to search. It returns the point to the item contains the Key if found.
876
877 If Map is NULL, then ASSERT().
878
879 @param[in] Map The netmap to search within.
880 @param[in] Key The key to search.
881
882 @return The point to the item contains the Key, or NULL if Key isn't in the map.
883
884 **/
885 NET_MAP_ITEM *
886 EFIAPI
887 NetMapFindKey (
888 IN NET_MAP *Map,
889 IN VOID *Key
890 );
891
892 /**
893 Remove the node entry of the item from the netmap and return the key of the removed item.
894
895 Remove the node entry of the item from the Used doubly linked list of the netmap.
896 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
897 entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,
898 Value will point to the value of the item. It returns the key of the removed item.
899
900 If Map is NULL, then ASSERT().
901 If Item is NULL, then ASSERT().
902 if item in not in the netmap, then ASSERT().
903
904 @param[in, out] Map The netmap to remove the item from.
905 @param[in, out] Item The item to remove.
906 @param[out] Value The variable to receive the value if not NULL.
907
908 @return The key of the removed item.
909
910 **/
911 VOID *
912 EFIAPI
913 NetMapRemoveItem (
914 IN OUT NET_MAP *Map,
915 IN OUT NET_MAP_ITEM *Item,
916 OUT VOID **Value OPTIONAL
917 );
918
919 /**
920 Remove the first node entry on the netmap and return the key of the removed item.
921
922 Remove the first node entry from the Used doubly linked list of the netmap.
923 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
924 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
925 parameter Value will point to the value of the item. It returns the key of the removed item.
926
927 If Map is NULL, then ASSERT().
928 If the Used doubly linked list is empty, then ASSERT().
929
930 @param[in, out] Map The netmap to remove the head from.
931 @param[out] Value The variable to receive the value if not NULL.
932
933 @return The key of the item removed.
934
935 **/
936 VOID *
937 EFIAPI
938 NetMapRemoveHead (
939 IN OUT NET_MAP *Map,
940 OUT VOID **Value OPTIONAL
941 );
942
943 /**
944 Remove the last node entry on the netmap and return the key of the removed item.
945
946 Remove the last node entry from the Used doubly linked list of the netmap.
947 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
948 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
949 parameter Value will point to the value of the item. It returns the key of the removed item.
950
951 If Map is NULL, then ASSERT().
952 If the Used doubly linked list is empty, then ASSERT().
953
954 @param[in, out] Map The netmap to remove the tail from.
955 @param[out] Value The variable to receive the value if not NULL.
956
957 @return The key of the item removed.
958
959 **/
960 VOID *
961 EFIAPI
962 NetMapRemoveTail (
963 IN OUT NET_MAP *Map,
964 OUT VOID **Value OPTIONAL
965 );
966
967 typedef
968 EFI_STATUS
969 (EFIAPI *NET_MAP_CALLBACK) (
970 IN NET_MAP *Map,
971 IN NET_MAP_ITEM *Item,
972 IN VOID *Arg
973 );
974
975 /**
976 Iterate through the netmap and call CallBack for each item.
977
978 It will contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break
979 from the loop. It returns the CallBack's last return value. This function is
980 delete safe for the current item.
981
982 If Map is NULL, then ASSERT().
983 If CallBack is NULL, then ASSERT().
984
985 @param[in] Map The Map to iterate through.
986 @param[in] CallBack The callback function to call for each item.
987 @param[in] Arg The opaque parameter to the callback.
988
989 @retval EFI_SUCCESS There is no item in the netmap, or CallBack for each item
990 returns EFI_SUCCESS.
991 @retval Others It returns the CallBack's last return value.
992
993 **/
994 EFI_STATUS
995 EFIAPI
996 NetMapIterate (
997 IN NET_MAP *Map,
998 IN NET_MAP_CALLBACK CallBack,
999 IN VOID *Arg OPTIONAL
1000 );
1001
1002
1003 //
1004 // Helper functions to implement driver binding and service binding protocols.
1005 //
1006 /**
1007 Create a child of the service that is identified by ServiceBindingGuid.
1008
1009 Get the ServiceBinding Protocol first, then use it to create a child.
1010
1011 If ServiceBindingGuid is NULL, then ASSERT().
1012 If ChildHandle is NULL, then ASSERT().
1013
1014 @param[in] Controller The controller which has the service installed.
1015 @param[in] Image The image handle used to open service.
1016 @param[in] ServiceBindingGuid The service's Guid.
1017 @param[in, out] ChildHandle The handle to receive the created child.
1018
1019 @retval EFI_SUCCESS The child was successfully created.
1020 @retval Others Failed to create the child.
1021
1022 **/
1023 EFI_STATUS
1024 EFIAPI
1025 NetLibCreateServiceChild (
1026 IN EFI_HANDLE Controller,
1027 IN EFI_HANDLE Image,
1028 IN EFI_GUID *ServiceBindingGuid,
1029 IN OUT EFI_HANDLE *ChildHandle
1030 );
1031
1032 /**
1033 Destroy a child of the service that is identified by ServiceBindingGuid.
1034
1035 Get the ServiceBinding Protocol first, then use it to destroy a child.
1036
1037 If ServiceBindingGuid is NULL, then ASSERT().
1038
1039 @param[in] Controller The controller which has the service installed.
1040 @param[in] Image The image handle used to open service.
1041 @param[in] ServiceBindingGuid The service's Guid.
1042 @param[in] ChildHandle The child to destroy.
1043
1044 @retval EFI_SUCCESS The child was destroyed.
1045 @retval Others Failed to destroy the child.
1046
1047 **/
1048 EFI_STATUS
1049 EFIAPI
1050 NetLibDestroyServiceChild (
1051 IN EFI_HANDLE Controller,
1052 IN EFI_HANDLE Image,
1053 IN EFI_GUID *ServiceBindingGuid,
1054 IN EFI_HANDLE ChildHandle
1055 );
1056
1057 /**
1058 Get handle with Simple Network Protocol installed on it.
1059
1060 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1061 If Simple Network Protocol is already installed on the ServiceHandle, the
1062 ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,
1063 try to find its parent handle with SNP installed.
1064
1065 @param[in] ServiceHandle The handle where network service binding protocols are
1066 installed on.
1067 @param[out] Snp The pointer to store the address of the SNP instance.
1068 This is an optional parameter that may be NULL.
1069
1070 @return The SNP handle, or NULL if not found.
1071
1072 **/
1073 EFI_HANDLE
1074 EFIAPI
1075 NetLibGetSnpHandle (
1076 IN EFI_HANDLE ServiceHandle,
1077 OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL
1078 );
1079
1080 /**
1081 Retrieve VLAN ID of a VLAN device handle.
1082
1083 Search VLAN device path node in Device Path of specified ServiceHandle and
1084 return its VLAN ID. If no VLAN device path node found, then this ServiceHandle
1085 is not a VLAN device handle, and 0 will be returned.
1086
1087 @param[in] ServiceHandle The handle where network service binding protocols are
1088 installed on.
1089
1090 @return VLAN ID of the device handle, or 0 if not a VLAN device.
1091
1092 **/
1093 UINT16
1094 EFIAPI
1095 NetLibGetVlanId (
1096 IN EFI_HANDLE ServiceHandle
1097 );
1098
1099 /**
1100 Find VLAN device handle with specified VLAN ID.
1101
1102 The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.
1103 This function will append VLAN device path node to the parent device path,
1104 and then use LocateDevicePath() to find the correct VLAN device handle.
1105
1106 @param[in] ControllerHandle The handle where network service binding protocols are
1107 installed on.
1108 @param[in] VlanId The configured VLAN ID for the VLAN device.
1109
1110 @return The VLAN device handle, or NULL if not found.
1111
1112 **/
1113 EFI_HANDLE
1114 EFIAPI
1115 NetLibGetVlanHandle (
1116 IN EFI_HANDLE ControllerHandle,
1117 IN UINT16 VlanId
1118 );
1119
1120 /**
1121 Get MAC address associated with the network service handle.
1122
1123 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1124 If SNP is installed on the ServiceHandle or its parent handle, MAC address will
1125 be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.
1126
1127 @param[in] ServiceHandle The handle where network service binding protocols are
1128 installed on.
1129 @param[out] MacAddress The pointer to store the returned MAC address.
1130 @param[out] AddressSize The length of returned MAC address.
1131
1132 @retval EFI_SUCCESS MAC address was returned successfully.
1133 @retval Others Failed to get SNP mode data.
1134
1135 **/
1136 EFI_STATUS
1137 EFIAPI
1138 NetLibGetMacAddress (
1139 IN EFI_HANDLE ServiceHandle,
1140 OUT EFI_MAC_ADDRESS *MacAddress,
1141 OUT UINTN *AddressSize
1142 );
1143
1144 /**
1145 Convert MAC address of the NIC associated with specified Service Binding Handle
1146 to a unicode string. Callers are responsible for freeing the string storage.
1147
1148 Locate simple network protocol associated with the Service Binding Handle and
1149 get the mac address from SNP. Then convert the mac address into a unicode
1150 string. It takes 2 unicode characters to represent a 1 byte binary buffer.
1151 Plus one unicode character for the null-terminator.
1152
1153 @param[in] ServiceHandle The handle where network service binding protocol is
1154 installed.
1155 @param[in] ImageHandle The image handle used to act as the agent handle to
1156 get the simple network protocol. This parameter is
1157 optional and may be NULL.
1158 @param[out] MacString The pointer to store the address of the string
1159 representation of the mac address.
1160
1161 @retval EFI_SUCCESS Converted the mac address a unicode string successfully.
1162 @retval EFI_OUT_OF_RESOURCES There are not enough memory resources.
1163 @retval Others Failed to open the simple network protocol.
1164
1165 **/
1166 EFI_STATUS
1167 EFIAPI
1168 NetLibGetMacString (
1169 IN EFI_HANDLE ServiceHandle,
1170 IN EFI_HANDLE ImageHandle, OPTIONAL
1171 OUT CHAR16 **MacString
1172 );
1173
1174 /**
1175 Detect media status for specified network device.
1176
1177 The underlying UNDI driver may or may not support reporting media status from
1178 GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine
1179 will try to invoke Snp->GetStatus() to get the media status. If media is already
1180 present, it returns directly. If media is not present, it will stop SNP and then
1181 restart SNP to get the latest media status. This provides an opportunity to get
1182 the correct media status for old UNDI driver, which doesn't support reporting
1183 media status from GET_STATUS command.
1184 Note: there are two limitations for the current algorithm:
1185 1) For UNDI with this capability, when the cable is not attached, there will
1186 be an redundant Stop/Start() process.
1187 2) for UNDI without this capability, in case that network cable is attached when
1188 Snp->Initialize() is invoked while network cable is unattached later,
1189 NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer
1190 apps to wait for timeout time.
1191
1192 @param[in] ServiceHandle The handle where network service binding protocols are
1193 installed.
1194 @param[out] MediaPresent The pointer to store the media status.
1195
1196 @retval EFI_SUCCESS Media detection success.
1197 @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle.
1198 @retval EFI_UNSUPPORTED The network device does not support media detection.
1199 @retval EFI_DEVICE_ERROR SNP is in an unknown state.
1200
1201 **/
1202 EFI_STATUS
1203 EFIAPI
1204 NetLibDetectMedia (
1205 IN EFI_HANDLE ServiceHandle,
1206 OUT BOOLEAN *MediaPresent
1207 );
1208
1209 /**
1210 Create an IPv4 device path node.
1211
1212 The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.
1213 The header subtype of IPv4 device path node is MSG_IPv4_DP.
1214 The length of the IPv4 device path node in bytes is 19.
1215 Get other information from parameters to make up the whole IPv4 device path node.
1216
1217 @param[in, out] Node The pointer to the IPv4 device path node.
1218 @param[in] Controller The controller handle.
1219 @param[in] LocalIp The local IPv4 address.
1220 @param[in] LocalPort The local port.
1221 @param[in] RemoteIp The remote IPv4 address.
1222 @param[in] RemotePort The remote port.
1223 @param[in] Protocol The protocol type in the IP header.
1224 @param[in] UseDefaultAddress Whether this instance is using default address or not.
1225
1226 **/
1227 VOID
1228 EFIAPI
1229 NetLibCreateIPv4DPathNode (
1230 IN OUT IPv4_DEVICE_PATH *Node,
1231 IN EFI_HANDLE Controller,
1232 IN IP4_ADDR LocalIp,
1233 IN UINT16 LocalPort,
1234 IN IP4_ADDR RemoteIp,
1235 IN UINT16 RemotePort,
1236 IN UINT16 Protocol,
1237 IN BOOLEAN UseDefaultAddress
1238 );
1239
1240 /**
1241 Create an IPv6 device path node.
1242
1243 The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.
1244 The header subtype of IPv6 device path node is MSG_IPv6_DP.
1245 The length of the IPv6 device path node in bytes is 43.
1246 Get other information from parameters to make up the whole IPv6 device path node.
1247
1248 @param[in, out] Node The pointer to the IPv6 device path node.
1249 @param[in] Controller The controller handle.
1250 @param[in] LocalIp The local IPv6 address.
1251 @param[in] LocalPort The local port.
1252 @param[in] RemoteIp The remote IPv6 address.
1253 @param[in] RemotePort The remote port.
1254 @param[in] Protocol The protocol type in the IP header.
1255
1256 **/
1257 VOID
1258 EFIAPI
1259 NetLibCreateIPv6DPathNode (
1260 IN OUT IPv6_DEVICE_PATH *Node,
1261 IN EFI_HANDLE Controller,
1262 IN EFI_IPv6_ADDRESS *LocalIp,
1263 IN UINT16 LocalPort,
1264 IN EFI_IPv6_ADDRESS *RemoteIp,
1265 IN UINT16 RemotePort,
1266 IN UINT16 Protocol
1267 );
1268
1269
1270 /**
1271 Find the UNDI/SNP handle from controller and protocol GUID.
1272
1273 For example, IP will open an MNP child to transmit/receive
1274 packets. When MNP is stopped, IP should also be stopped. IP
1275 needs to find its own private data that is related the IP's
1276 service binding instance that is installed on the UNDI/SNP handle.
1277 The controller is then either an MNP or an ARP child handle. Note that
1278 IP opens these handles using BY_DRIVER. Use that infomation to get the
1279 UNDI/SNP handle.
1280
1281 @param[in] Controller The protocol handle to check.
1282 @param[in] ProtocolGuid The protocol that is related with the handle.
1283
1284 @return The UNDI/SNP handle or NULL for errors.
1285
1286 **/
1287 EFI_HANDLE
1288 EFIAPI
1289 NetLibGetNicHandle (
1290 IN EFI_HANDLE Controller,
1291 IN EFI_GUID *ProtocolGuid
1292 );
1293
1294 /**
1295 This is the default unload handle for all the network drivers.
1296
1297 Disconnect the driver specified by ImageHandle from all the devices in the handle database.
1298 Uninstall all the protocols installed in the driver entry point.
1299
1300 @param[in] ImageHandle The drivers' driver image.
1301
1302 @retval EFI_SUCCESS The image is unloaded.
1303 @retval Others Failed to unload the image.
1304
1305 **/
1306 EFI_STATUS
1307 EFIAPI
1308 NetLibDefaultUnload (
1309 IN EFI_HANDLE ImageHandle
1310 );
1311
1312 /**
1313 Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.
1314
1315 @param[in] String The pointer to the Ascii string.
1316 @param[out] Ip4Address The pointer to the converted IPv4 address.
1317
1318 @retval EFI_SUCCESS Converted to an IPv4 address successfully.
1319 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip4Address is NULL.
1320
1321 **/
1322 EFI_STATUS
1323 EFIAPI
1324 NetLibAsciiStrToIp4 (
1325 IN CONST CHAR8 *String,
1326 OUT EFI_IPv4_ADDRESS *Ip4Address
1327 );
1328
1329 /**
1330 Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the
1331 string is defined in RFC 4291 - Text Pepresentation of Addresses.
1332
1333 @param[in] String The pointer to the Ascii string.
1334 @param[out] Ip6Address The pointer to the converted IPv6 address.
1335
1336 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1337 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip6Address is NULL.
1338
1339 **/
1340 EFI_STATUS
1341 EFIAPI
1342 NetLibAsciiStrToIp6 (
1343 IN CONST CHAR8 *String,
1344 OUT EFI_IPv6_ADDRESS *Ip6Address
1345 );
1346
1347 /**
1348 Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.
1349
1350 @param[in] String The pointer to the Ascii string.
1351 @param[out] Ip4Address The pointer to the converted IPv4 address.
1352
1353 @retval EFI_SUCCESS Converted to an IPv4 address successfully.
1354 @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip4Address is NULL.
1355 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to lack of resources.
1356
1357 **/
1358 EFI_STATUS
1359 EFIAPI
1360 NetLibStrToIp4 (
1361 IN CONST CHAR16 *String,
1362 OUT EFI_IPv4_ADDRESS *Ip4Address
1363 );
1364
1365 /**
1366 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS. The format of
1367 the string is defined in RFC 4291 - Text Pepresentation of Addresses.
1368
1369 @param[in] String The pointer to the Ascii string.
1370 @param[out] Ip6Address The pointer to the converted IPv6 address.
1371
1372 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1373 @retval EFI_INVALID_PARAMETER The string is malformated or Ip6Address is NULL.
1374 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to a lack of resources.
1375
1376 **/
1377 EFI_STATUS
1378 EFIAPI
1379 NetLibStrToIp6 (
1380 IN CONST CHAR16 *String,
1381 OUT EFI_IPv6_ADDRESS *Ip6Address
1382 );
1383
1384 /**
1385 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.
1386 The format of the string is defined in RFC 4291 - Text Pepresentation of Addresses
1387 Prefixes: ipv6-address/prefix-length.
1388
1389 @param[in] String The pointer to the Ascii string.
1390 @param[out] Ip6Address The pointer to the converted IPv6 address.
1391 @param[out] PrefixLength The pointer to the converted prefix length.
1392
1393 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1394 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip6Address is NULL.
1395 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to a lack of resources.
1396
1397 **/
1398 EFI_STATUS
1399 EFIAPI
1400 NetLibStrToIp6andPrefix (
1401 IN CONST CHAR16 *String,
1402 OUT EFI_IPv6_ADDRESS *Ip6Address,
1403 OUT UINT8 *PrefixLength
1404 );
1405
1406 /**
1407
1408 Convert one EFI_IPv6_ADDRESS to Null-terminated Unicode string.
1409 The text representation of address is defined in RFC 4291.
1410
1411 @param[in] Ip6Address The pointer to the IPv6 address.
1412 @param[out] String The buffer to return the converted string.
1413 @param[in] StringSize The length in bytes of the input String.
1414
1415 @retval EFI_SUCCESS Convert to string successfully.
1416 @retval EFI_INVALID_PARAMETER The input parameter is invalid.
1417 @retval EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result. BufferSize has been
1418 updated with the size needed to complete the request.
1419 **/
1420 EFI_STATUS
1421 EFIAPI
1422 NetLibIp6ToStr (
1423 IN EFI_IPv6_ADDRESS *Ip6Address,
1424 OUT CHAR16 *String,
1425 IN UINTN StringSize
1426 );
1427
1428 //
1429 // Various signatures
1430 //
1431 #define NET_BUF_SIGNATURE SIGNATURE_32 ('n', 'b', 'u', 'f')
1432 #define NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c')
1433 #define NET_QUE_SIGNATURE SIGNATURE_32 ('n', 'b', 'q', 'u')
1434
1435
1436 #define NET_PROTO_DATA 64 // Opaque buffer for protocols
1437 #define NET_BUF_HEAD 1 // Trim or allocate space from head
1438 #define NET_BUF_TAIL 0 // Trim or allocate space from tail
1439 #define NET_VECTOR_OWN_FIRST 0x01 // We allocated the 1st block in the vector
1440
1441 #define NET_CHECK_SIGNATURE(PData, SIGNATURE) \
1442 ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))
1443
1444 //
1445 // Single memory block in the vector.
1446 //
1447 typedef struct {
1448 UINT32 Len; // The block's length
1449 UINT8 *Bulk; // The block's Data
1450 } NET_BLOCK;
1451
1452 typedef VOID (EFIAPI *NET_VECTOR_EXT_FREE) (VOID *Arg);
1453
1454 //
1455 //NET_VECTOR contains several blocks to hold all packet's
1456 //fragments and other house-keeping stuff for sharing. It
1457 //doesn't specify the where actual packet fragment begins.
1458 //
1459 typedef struct {
1460 UINT32 Signature;
1461 INTN RefCnt; // Reference count to share NET_VECTOR.
1462 NET_VECTOR_EXT_FREE Free; // external function to free NET_VECTOR
1463 VOID *Arg; // opeque argument to Free
1464 UINT32 Flag; // Flags, NET_VECTOR_OWN_FIRST
1465 UINT32 Len; // Total length of the assocated BLOCKs
1466
1467 UINT32 BlockNum;
1468 NET_BLOCK Block[1];
1469 } NET_VECTOR;
1470
1471 //
1472 //NET_BLOCK_OP operates on the NET_BLOCK. It specifies
1473 //where the actual fragment begins and ends
1474 //
1475 typedef struct {
1476 UINT8 *BlockHead; // Block's head, or the smallest valid Head
1477 UINT8 *BlockTail; // Block's tail. BlockTail-BlockHead=block length
1478 UINT8 *Head; // 1st byte of the data in the block
1479 UINT8 *Tail; // Tail of the data in the block, Tail-Head=Size
1480 UINT32 Size; // The size of the data
1481 } NET_BLOCK_OP;
1482
1483 typedef union {
1484 IP4_HEAD *Ip4;
1485 EFI_IP6_HEADER *Ip6;
1486 } NET_IP_HEAD;
1487
1488 //
1489 //NET_BUF is the buffer manage structure used by the
1490 //network stack. Every network packet may be fragmented. The Vector points to
1491 //memory blocks used by each fragment, and BlockOp
1492 //specifies where each fragment begins and ends.
1493 //
1494 //It also contains an opaque area for the protocol to store
1495 //per-packet information. Protocol must be careful not
1496 //to overwrite the members after that.
1497 //
1498 typedef struct {
1499 UINT32 Signature;
1500 INTN RefCnt;
1501 LIST_ENTRY List; // The List this NET_BUF is on
1502
1503 NET_IP_HEAD Ip; // Network layer header, for fast access
1504 TCP_HEAD *Tcp; // Transport layer header, for fast access
1505 EFI_UDP_HEADER *Udp; // User Datagram Protocol header
1506 UINT8 ProtoData [NET_PROTO_DATA]; //Protocol specific data
1507
1508 NET_VECTOR *Vector; // The vector containing the packet
1509
1510 UINT32 BlockOpNum; // Total number of BlockOp in the buffer
1511 UINT32 TotalSize; // Total size of the actual packet
1512 NET_BLOCK_OP BlockOp[1]; // Specify the position of actual packet
1513 } NET_BUF;
1514
1515 //
1516 //A queue of NET_BUFs. It is a thin extension of
1517 //NET_BUF functions.
1518 //
1519 typedef struct {
1520 UINT32 Signature;
1521 INTN RefCnt;
1522 LIST_ENTRY List; // The List this buffer queue is on
1523
1524 LIST_ENTRY BufList; // list of queued buffers
1525 UINT32 BufSize; // total length of DATA in the buffers
1526 UINT32 BufNum; // total number of buffers on the chain
1527 } NET_BUF_QUEUE;
1528
1529 //
1530 // Pseudo header for TCP and UDP checksum
1531 //
1532 #pragma pack(1)
1533 typedef struct {
1534 IP4_ADDR SrcIp;
1535 IP4_ADDR DstIp;
1536 UINT8 Reserved;
1537 UINT8 Protocol;
1538 UINT16 Len;
1539 } NET_PSEUDO_HDR;
1540
1541 typedef struct {
1542 EFI_IPv6_ADDRESS SrcIp;
1543 EFI_IPv6_ADDRESS DstIp;
1544 UINT32 Len;
1545 UINT32 Reserved:24;
1546 UINT32 NextHeader:8;
1547 } NET_IP6_PSEUDO_HDR;
1548 #pragma pack()
1549
1550 //
1551 // The fragment entry table used in network interfaces. This is
1552 // the same as NET_BLOCK now. Use two different to distinguish
1553 // the two in case that NET_BLOCK be enhanced later.
1554 //
1555 typedef struct {
1556 UINT32 Len;
1557 UINT8 *Bulk;
1558 } NET_FRAGMENT;
1559
1560 #define NET_GET_REF(PData) ((PData)->RefCnt++)
1561 #define NET_PUT_REF(PData) ((PData)->RefCnt--)
1562 #define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)
1563
1564 #define NET_BUF_SHARED(Buf) \
1565 (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))
1566
1567 #define NET_VECTOR_SIZE(BlockNum) \
1568 (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))
1569
1570 #define NET_BUF_SIZE(BlockOpNum) \
1571 (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))
1572
1573 #define NET_HEADSPACE(BlockOp) \
1574 (UINTN)((BlockOp)->Head - (BlockOp)->BlockHead)
1575
1576 #define NET_TAILSPACE(BlockOp) \
1577 (UINTN)((BlockOp)->BlockTail - (BlockOp)->Tail)
1578
1579 /**
1580 Allocate a single block NET_BUF. Upon allocation, all the
1581 free space is in the tail room.
1582
1583 @param[in] Len The length of the block.
1584
1585 @return The pointer to the allocated NET_BUF, or NULL if the
1586 allocation failed due to resource limitations.
1587
1588 **/
1589 NET_BUF *
1590 EFIAPI
1591 NetbufAlloc (
1592 IN UINT32 Len
1593 );
1594
1595 /**
1596 Free the net buffer and its associated NET_VECTOR.
1597
1598 Decrease the reference count of the net buffer by one. Free the associated net
1599 vector and itself if the reference count of the net buffer is decreased to 0.
1600 The net vector free operation decreases the reference count of the net
1601 vector by one, and performs the resource free operation when the reference count
1602 of the net vector is 0.
1603
1604 @param[in] Nbuf The pointer to the NET_BUF to be freed.
1605
1606 **/
1607 VOID
1608 EFIAPI
1609 NetbufFree (
1610 IN NET_BUF *Nbuf
1611 );
1612
1613 /**
1614 Get the index of NET_BLOCK_OP that contains the byte at Offset in the net
1615 buffer.
1616
1617 For example, this function can be used to retrieve the IP header in the packet. It
1618 also can be used to get the fragment that contains the byte used
1619 mainly by the library implementation itself.
1620
1621 @param[in] Nbuf The pointer to the net buffer.
1622 @param[in] Offset The offset of the byte.
1623 @param[out] Index Index of the NET_BLOCK_OP that contains the byte at
1624 Offset.
1625
1626 @return The pointer to the Offset'th byte of data in the net buffer, or NULL
1627 if there is no such data in the net buffer.
1628
1629 **/
1630 UINT8 *
1631 EFIAPI
1632 NetbufGetByte (
1633 IN NET_BUF *Nbuf,
1634 IN UINT32 Offset,
1635 OUT UINT32 *Index OPTIONAL
1636 );
1637
1638 /**
1639 Create a copy of the net buffer that shares the associated net vector.
1640
1641 The reference count of the newly created net buffer is set to 1. The reference
1642 count of the associated net vector is increased by one.
1643
1644 @param[in] Nbuf The pointer to the net buffer to be cloned.
1645
1646 @return The pointer to the cloned net buffer, or NULL if the
1647 allocation failed due to resource limitations.
1648
1649 **/
1650 NET_BUF *
1651 EFIAPI
1652 NetbufClone (
1653 IN NET_BUF *Nbuf
1654 );
1655
1656 /**
1657 Create a duplicated copy of the net buffer with data copied and HeadSpace
1658 bytes of head space reserved.
1659
1660 The duplicated net buffer will allocate its own memory to hold the data of the
1661 source net buffer.
1662
1663 @param[in] Nbuf The pointer to the net buffer to be duplicated from.
1664 @param[in, out] Duplicate The pointer to the net buffer to duplicate to. If
1665 NULL, a new net buffer is allocated.
1666 @param[in] HeadSpace The length of the head space to reserve.
1667
1668 @return The pointer to the duplicated net buffer, or NULL if
1669 the allocation failed due to resource limitations.
1670
1671 **/
1672 NET_BUF *
1673 EFIAPI
1674 NetbufDuplicate (
1675 IN NET_BUF *Nbuf,
1676 IN OUT NET_BUF *Duplicate OPTIONAL,
1677 IN UINT32 HeadSpace
1678 );
1679
1680 /**
1681 Create a NET_BUF structure which contains Len byte data of Nbuf starting from
1682 Offset.
1683
1684 A new NET_BUF structure will be created but the associated data in NET_VECTOR
1685 is shared. This function exists to perform IP packet fragmentation.
1686
1687 @param[in] Nbuf The pointer to the net buffer to be extracted.
1688 @param[in] Offset Starting point of the data to be included in the new
1689 net buffer.
1690 @param[in] Len The bytes of data to be included in the new net buffer.
1691 @param[in] HeadSpace The bytes of the head space to reserve for the protocol header.
1692
1693 @return The pointer to the cloned net buffer, or NULL if the
1694 allocation failed due to resource limitations.
1695
1696 **/
1697 NET_BUF *
1698 EFIAPI
1699 NetbufGetFragment (
1700 IN NET_BUF *Nbuf,
1701 IN UINT32 Offset,
1702 IN UINT32 Len,
1703 IN UINT32 HeadSpace
1704 );
1705
1706 /**
1707 Reserve some space in the header room of the net buffer.
1708
1709 Upon allocation, all the space is in the tail room of the buffer. Call this
1710 function to move space to the header room. This function is quite limited
1711 in that it can only reserve space from the first block of an empty NET_BUF not
1712 built from the external. However, it should be enough for the network stack.
1713
1714 @param[in, out] Nbuf The pointer to the net buffer.
1715 @param[in] Len The length of buffer to be reserved from the header.
1716
1717 **/
1718 VOID
1719 EFIAPI
1720 NetbufReserve (
1721 IN OUT NET_BUF *Nbuf,
1722 IN UINT32 Len
1723 );
1724
1725 /**
1726 Allocate Len bytes of space from the header or tail of the buffer.
1727
1728 @param[in, out] Nbuf The pointer to the net buffer.
1729 @param[in] Len The length of the buffer to be allocated.
1730 @param[in] FromHead The flag to indicate whether to reserve the data
1731 from head (TRUE) or tail (FALSE).
1732
1733 @return The pointer to the first byte of the allocated buffer,
1734 or NULL, if there is no sufficient space.
1735
1736 **/
1737 UINT8*
1738 EFIAPI
1739 NetbufAllocSpace (
1740 IN OUT NET_BUF *Nbuf,
1741 IN UINT32 Len,
1742 IN BOOLEAN FromHead
1743 );
1744
1745 /**
1746 Trim Len bytes from the header or the tail of the net buffer.
1747
1748 @param[in, out] Nbuf The pointer to the net buffer.
1749 @param[in] Len The length of the data to be trimmed.
1750 @param[in] FromHead The flag to indicate whether trim data is from the
1751 head (TRUE) or the tail (FALSE).
1752
1753 @return The length of the actual trimmed data, which may be less
1754 than Len if the TotalSize of Nbuf is less than Len.
1755
1756 **/
1757 UINT32
1758 EFIAPI
1759 NetbufTrim (
1760 IN OUT NET_BUF *Nbuf,
1761 IN UINT32 Len,
1762 IN BOOLEAN FromHead
1763 );
1764
1765 /**
1766 Copy Len bytes of data from the specific offset of the net buffer to the
1767 destination memory.
1768
1769 The Len bytes of data may cross several fragments of the net buffer.
1770
1771 @param[in] Nbuf The pointer to the net buffer.
1772 @param[in] Offset The sequence number of the first byte to copy.
1773 @param[in] Len The length of the data to copy.
1774 @param[in] Dest The destination of the data to copy to.
1775
1776 @return The length of the actual copied data, or 0 if the offset
1777 specified exceeds the total size of net buffer.
1778
1779 **/
1780 UINT32
1781 EFIAPI
1782 NetbufCopy (
1783 IN NET_BUF *Nbuf,
1784 IN UINT32 Offset,
1785 IN UINT32 Len,
1786 IN UINT8 *Dest
1787 );
1788
1789 /**
1790 Build a NET_BUF from external blocks.
1791
1792 A new NET_BUF structure will be created from external blocks. An additional block
1793 of memory will be allocated to hold reserved HeadSpace bytes of header room
1794 and existing HeadLen bytes of header, but the external blocks are shared by the
1795 net buffer to avoid data copying.
1796
1797 @param[in] ExtFragment The pointer to the data block.
1798 @param[in] ExtNum The number of the data blocks.
1799 @param[in] HeadSpace The head space to be reserved.
1800 @param[in] HeadLen The length of the protocol header. The function
1801 pulls this amount of data into a linear block.
1802 @param[in] ExtFree The pointer to the caller-provided free function.
1803 @param[in] Arg The argument passed to ExtFree when ExtFree is
1804 called.
1805
1806 @return The pointer to the net buffer built from the data blocks,
1807 or NULL if the allocation failed due to resource
1808 limit.
1809
1810 **/
1811 NET_BUF *
1812 EFIAPI
1813 NetbufFromExt (
1814 IN NET_FRAGMENT *ExtFragment,
1815 IN UINT32 ExtNum,
1816 IN UINT32 HeadSpace,
1817 IN UINT32 HeadLen,
1818 IN NET_VECTOR_EXT_FREE ExtFree,
1819 IN VOID *Arg OPTIONAL
1820 );
1821
1822 /**
1823 Build a fragment table to contain the fragments in the net buffer. This is the
1824 opposite operation of the NetbufFromExt.
1825
1826 @param[in] Nbuf Points to the net buffer.
1827 @param[in, out] ExtFragment The pointer to the data block.
1828 @param[in, out] ExtNum The number of the data blocks.
1829
1830 @retval EFI_BUFFER_TOO_SMALL The number of non-empty blocks is bigger than
1831 ExtNum.
1832 @retval EFI_SUCCESS The fragment table was built successfully.
1833
1834 **/
1835 EFI_STATUS
1836 EFIAPI
1837 NetbufBuildExt (
1838 IN NET_BUF *Nbuf,
1839 IN OUT NET_FRAGMENT *ExtFragment,
1840 IN OUT UINT32 *ExtNum
1841 );
1842
1843 /**
1844 Build a net buffer from a list of net buffers.
1845
1846 All the fragments will be collected from the list of NEW_BUF, and then a new
1847 net buffer will be created through NetbufFromExt.
1848
1849 @param[in] BufList A List of the net buffer.
1850 @param[in] HeadSpace The head space to be reserved.
1851 @param[in] HeaderLen The length of the protocol header. The function
1852 pulls this amount of data into a linear block.
1853 @param[in] ExtFree The pointer to the caller provided free function.
1854 @param[in] Arg The argument passed to ExtFree when ExtFree is called.
1855
1856 @return The pointer to the net buffer built from the list of net
1857 buffers.
1858
1859 **/
1860 NET_BUF *
1861 EFIAPI
1862 NetbufFromBufList (
1863 IN LIST_ENTRY *BufList,
1864 IN UINT32 HeadSpace,
1865 IN UINT32 HeaderLen,
1866 IN NET_VECTOR_EXT_FREE ExtFree,
1867 IN VOID *Arg OPTIONAL
1868 );
1869
1870 /**
1871 Free a list of net buffers.
1872
1873 @param[in, out] Head The pointer to the head of linked net buffers.
1874
1875 **/
1876 VOID
1877 EFIAPI
1878 NetbufFreeList (
1879 IN OUT LIST_ENTRY *Head
1880 );
1881
1882 /**
1883 Initiate the net buffer queue.
1884
1885 @param[in, out] NbufQue The pointer to the net buffer queue to be initialized.
1886
1887 **/
1888 VOID
1889 EFIAPI
1890 NetbufQueInit (
1891 IN OUT NET_BUF_QUEUE *NbufQue
1892 );
1893
1894 /**
1895 Allocate and initialize a net buffer queue.
1896
1897 @return The pointer to the allocated net buffer queue, or NULL if the
1898 allocation failed due to resource limit.
1899
1900 **/
1901 NET_BUF_QUEUE *
1902 EFIAPI
1903 NetbufQueAlloc (
1904 VOID
1905 );
1906
1907 /**
1908 Free a net buffer queue.
1909
1910 Decrease the reference count of the net buffer queue by one. The real resource
1911 free operation isn't performed until the reference count of the net buffer
1912 queue is decreased to 0.
1913
1914 @param[in] NbufQue The pointer to the net buffer queue to be freed.
1915
1916 **/
1917 VOID
1918 EFIAPI
1919 NetbufQueFree (
1920 IN NET_BUF_QUEUE *NbufQue
1921 );
1922
1923 /**
1924 Remove a net buffer from the head in the specific queue and return it.
1925
1926 @param[in, out] NbufQue The pointer to the net buffer queue.
1927
1928 @return The pointer to the net buffer removed from the specific queue,
1929 or NULL if there is no net buffer in the specific queue.
1930
1931 **/
1932 NET_BUF *
1933 EFIAPI
1934 NetbufQueRemove (
1935 IN OUT NET_BUF_QUEUE *NbufQue
1936 );
1937
1938 /**
1939 Append a net buffer to the net buffer queue.
1940
1941 @param[in, out] NbufQue The pointer to the net buffer queue.
1942 @param[in, out] Nbuf The pointer to the net buffer to be appended.
1943
1944 **/
1945 VOID
1946 EFIAPI
1947 NetbufQueAppend (
1948 IN OUT NET_BUF_QUEUE *NbufQue,
1949 IN OUT NET_BUF *Nbuf
1950 );
1951
1952 /**
1953 Copy Len bytes of data from the net buffer queue at the specific offset to the
1954 destination memory.
1955
1956 The copying operation is the same as NetbufCopy, but applies to the net buffer
1957 queue instead of the net buffer.
1958
1959 @param[in] NbufQue The pointer to the net buffer queue.
1960 @param[in] Offset The sequence number of the first byte to copy.
1961 @param[in] Len The length of the data to copy.
1962 @param[out] Dest The destination of the data to copy to.
1963
1964 @return The length of the actual copied data, or 0 if the offset
1965 specified exceeds the total size of net buffer queue.
1966
1967 **/
1968 UINT32
1969 EFIAPI
1970 NetbufQueCopy (
1971 IN NET_BUF_QUEUE *NbufQue,
1972 IN UINT32 Offset,
1973 IN UINT32 Len,
1974 OUT UINT8 *Dest
1975 );
1976
1977 /**
1978 Trim Len bytes of data from the buffer queue and free any net buffer
1979 that is completely trimmed.
1980
1981 The trimming operation is the same as NetbufTrim but applies to the net buffer
1982 queue instead of the net buffer.
1983
1984 @param[in, out] NbufQue The pointer to the net buffer queue.
1985 @param[in] Len The length of the data to trim.
1986
1987 @return The actual length of the data trimmed.
1988
1989 **/
1990 UINT32
1991 EFIAPI
1992 NetbufQueTrim (
1993 IN OUT NET_BUF_QUEUE *NbufQue,
1994 IN UINT32 Len
1995 );
1996
1997
1998 /**
1999 Flush the net buffer queue.
2000
2001 @param[in, out] NbufQue The pointer to the queue to be flushed.
2002
2003 **/
2004 VOID
2005 EFIAPI
2006 NetbufQueFlush (
2007 IN OUT NET_BUF_QUEUE *NbufQue
2008 );
2009
2010 /**
2011 Compute the checksum for a bulk of data.
2012
2013 @param[in] Bulk The pointer to the data.
2014 @param[in] Len The length of the data, in bytes.
2015
2016 @return The computed checksum.
2017
2018 **/
2019 UINT16
2020 EFIAPI
2021 NetblockChecksum (
2022 IN UINT8 *Bulk,
2023 IN UINT32 Len
2024 );
2025
2026 /**
2027 Add two checksums.
2028
2029 @param[in] Checksum1 The first checksum to be added.
2030 @param[in] Checksum2 The second checksum to be added.
2031
2032 @return The new checksum.
2033
2034 **/
2035 UINT16
2036 EFIAPI
2037 NetAddChecksum (
2038 IN UINT16 Checksum1,
2039 IN UINT16 Checksum2
2040 );
2041
2042 /**
2043 Compute the checksum for a NET_BUF.
2044
2045 @param[in] Nbuf The pointer to the net buffer.
2046
2047 @return The computed checksum.
2048
2049 **/
2050 UINT16
2051 EFIAPI
2052 NetbufChecksum (
2053 IN NET_BUF *Nbuf
2054 );
2055
2056 /**
2057 Compute the checksum for TCP/UDP pseudo header.
2058
2059 Src and Dst are in network byte order, and Len is in host byte order.
2060
2061 @param[in] Src The source address of the packet.
2062 @param[in] Dst The destination address of the packet.
2063 @param[in] Proto The protocol type of the packet.
2064 @param[in] Len The length of the packet.
2065
2066 @return The computed checksum.
2067
2068 **/
2069 UINT16
2070 EFIAPI
2071 NetPseudoHeadChecksum (
2072 IN IP4_ADDR Src,
2073 IN IP4_ADDR Dst,
2074 IN UINT8 Proto,
2075 IN UINT16 Len
2076 );
2077
2078 /**
2079 Compute the checksum for the TCP6/UDP6 pseudo header.
2080
2081 Src and Dst are in network byte order, and Len is in host byte order.
2082
2083 @param[in] Src The source address of the packet.
2084 @param[in] Dst The destination address of the packet.
2085 @param[in] NextHeader The protocol type of the packet.
2086 @param[in] Len The length of the packet.
2087
2088 @return The computed checksum.
2089
2090 **/
2091 UINT16
2092 EFIAPI
2093 NetIp6PseudoHeadChecksum (
2094 IN EFI_IPv6_ADDRESS *Src,
2095 IN EFI_IPv6_ADDRESS *Dst,
2096 IN UINT8 NextHeader,
2097 IN UINT32 Len
2098 );
2099
2100 /**
2101 The function frees the net buffer which allocated by the IP protocol. It releases
2102 only the net buffer and doesn't call the external free function.
2103
2104 This function should be called after finishing the process of mIpSec->ProcessExt()
2105 for outbound traffic. The (EFI_IPSEC2_PROTOCOL)->ProcessExt() allocates a new
2106 buffer for the ESP, so there needs a function to free the old net buffer.
2107
2108 @param[in] Nbuf The network buffer to be freed.
2109
2110 **/
2111 VOID
2112 NetIpSecNetbufFree (
2113 NET_BUF *Nbuf
2114 );
2115
2116 /**
2117 This function obtains the system guid from the smbios table.
2118
2119 @param[out] SystemGuid The pointer of the returned system guid.
2120
2121 @retval EFI_SUCCESS Successfully obtained the system guid.
2122 @retval EFI_NOT_FOUND Did not find the SMBIOS table.
2123
2124 **/
2125 EFI_STATUS
2126 EFIAPI
2127 NetLibGetSystemGuid (
2128 OUT EFI_GUID *SystemGuid
2129 );
2130
2131 #endif