]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Include/Library/NetLib.h
add IPv4 address copy macro.
[mirror_edk2.git] / MdeModulePkg / Include / Library / NetLib.h
1 /** @file
2 This library is only intended to be used by UEFI network stack modules.
3 It provides basic functions for the UEFI network stack.
4
5 Copyright (c) 2005 - 2011, Intel Corporation. All rights reserved.<BR>
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution. The full text of the license may be found at<BR>
9 http://opensource.org/licenses/bsd-license.php
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #ifndef _NET_LIB_H_
17 #define _NET_LIB_H_
18
19 #include <Protocol/Ip6.h>
20
21 #include <Library/BaseLib.h>
22 #include <Library/BaseMemoryLib.h>
23
24 typedef UINT32 IP4_ADDR;
25 typedef UINT32 TCP_SEQNO;
26 typedef UINT16 TCP_PORTNO;
27
28
29 #define NET_ETHER_ADDR_LEN 6
30 #define NET_IFTYPE_ETHERNET 0x01
31
32 #define NET_VLAN_TAG_LEN 4
33 #define ETHER_TYPE_VLAN 0x8100
34
35 #define EFI_IP_PROTO_UDP 0x11
36 #define EFI_IP_PROTO_TCP 0x06
37 #define EFI_IP_PROTO_ICMP 0x01
38 #define IP4_PROTO_IGMP 0x02
39 #define IP6_ICMP 58
40
41 //
42 // The address classification
43 //
44 #define IP4_ADDR_CLASSA 1
45 #define IP4_ADDR_CLASSB 2
46 #define IP4_ADDR_CLASSC 3
47 #define IP4_ADDR_CLASSD 4
48 #define IP4_ADDR_CLASSE 5
49
50 #define IP4_MASK_NUM 33
51 #define IP6_PREFIX_NUM 129
52
53 #define IP6_HOP_BY_HOP 0
54 #define IP6_DESTINATION 60
55 #define IP6_ROUTING 43
56 #define IP6_FRAGMENT 44
57 #define IP6_AH 51
58 #define IP6_ESP 50
59 #define IP6_NO_NEXT_HEADER 59
60
61 #define IP_VERSION_4 4
62 #define IP_VERSION_6 6
63
64 #pragma pack(1)
65
66 //
67 // Ethernet head definition
68 //
69 typedef struct {
70 UINT8 DstMac [NET_ETHER_ADDR_LEN];
71 UINT8 SrcMac [NET_ETHER_ADDR_LEN];
72 UINT16 EtherType;
73 } ETHER_HEAD;
74
75 //
76 // 802.1Q VLAN Tag Control Information
77 //
78 typedef union {
79 struct {
80 UINT16 Vid : 12; // Unique VLAN identifier (0 to 4094)
81 UINT16 Cfi : 1; // Canonical Format Indicator
82 UINT16 Priority : 3; // 802.1Q priority level (0 to 7)
83 } Bits;
84 UINT16 Uint16;
85 } VLAN_TCI;
86
87 #define VLAN_TCI_CFI_CANONICAL_MAC 0
88 #define VLAN_TCI_CFI_NON_CANONICAL_MAC 1
89
90 //
91 // The EFI_IP4_HEADER is hard to use because the source and
92 // destination address are defined as EFI_IPv4_ADDRESS, which
93 // is a structure. Two structures can't be compared or masked
94 // directly. This is why there is an internal representation.
95 //
96 typedef struct {
97 UINT8 HeadLen : 4;
98 UINT8 Ver : 4;
99 UINT8 Tos;
100 UINT16 TotalLen;
101 UINT16 Id;
102 UINT16 Fragment;
103 UINT8 Ttl;
104 UINT8 Protocol;
105 UINT16 Checksum;
106 IP4_ADDR Src;
107 IP4_ADDR Dst;
108 } IP4_HEAD;
109
110
111 //
112 // ICMP head definition. Each ICMP message is categorized as either an error
113 // message or query message. Two message types have their own head format.
114 //
115 typedef struct {
116 UINT8 Type;
117 UINT8 Code;
118 UINT16 Checksum;
119 } IP4_ICMP_HEAD;
120
121 typedef struct {
122 IP4_ICMP_HEAD Head;
123 UINT32 Fourth; // 4th filed of the head, it depends on Type.
124 IP4_HEAD IpHead;
125 } IP4_ICMP_ERROR_HEAD;
126
127 typedef struct {
128 IP4_ICMP_HEAD Head;
129 UINT16 Id;
130 UINT16 Seq;
131 } IP4_ICMP_QUERY_HEAD;
132
133 typedef struct {
134 UINT8 Type;
135 UINT8 Code;
136 UINT16 Checksum;
137 } IP6_ICMP_HEAD;
138
139 typedef struct {
140 IP6_ICMP_HEAD Head;
141 UINT32 Fourth;
142 EFI_IP6_HEADER IpHead;
143 } IP6_ICMP_ERROR_HEAD;
144
145 typedef struct {
146 IP6_ICMP_HEAD Head;
147 UINT32 Fourth;
148 } IP6_ICMP_INFORMATION_HEAD;
149
150 //
151 // UDP header definition
152 //
153 typedef struct {
154 UINT16 SrcPort;
155 UINT16 DstPort;
156 UINT16 Length;
157 UINT16 Checksum;
158 } EFI_UDP_HEADER;
159
160 //
161 // TCP header definition
162 //
163 typedef struct {
164 TCP_PORTNO SrcPort;
165 TCP_PORTNO DstPort;
166 TCP_SEQNO Seq;
167 TCP_SEQNO Ack;
168 UINT8 Res : 4;
169 UINT8 HeadLen : 4;
170 UINT8 Flag;
171 UINT16 Wnd;
172 UINT16 Checksum;
173 UINT16 Urg;
174 } TCP_HEAD;
175
176 #pragma pack()
177
178 #define NET_MAC_EQUAL(pMac1, pMac2, Len) \
179 (CompareMem ((pMac1), (pMac2), Len) == 0)
180
181 #define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \
182 (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))
183
184 #define NTOHL(x) SwapBytes32 (x)
185
186 #define HTONL(x) NTOHL(x)
187
188 #define NTOHS(x) SwapBytes16 (x)
189
190 #define HTONS(x) NTOHS(x)
191 #define NTOHLL(x) SwapBytes64 (x)
192 #define HTONLL(x) NTOHLL(x)
193 #define NTOHLLL(x) Ip6Swap128 (x)
194 #define HTONLLL(x) NTOHLLL(x)
195
196 //
197 // Test the IP's attribute, All the IPs are in host byte order.
198 //
199 #define IP4_IS_MULTICAST(Ip) (((Ip) & 0xF0000000) == 0xE0000000)
200 #define IP4_IS_LOCAL_BROADCAST(Ip) ((Ip) == 0xFFFFFFFF)
201 #define IP4_NET_EQUAL(Ip1, Ip2, NetMask) (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))
202 #define IP4_IS_VALID_NETMASK(Ip) (NetGetMaskLength (Ip) != IP4_MASK_NUM)
203
204 #define IP6_IS_MULTICAST(Ip6) (((Ip6)->Addr[0]) == 0xFF)
205
206 //
207 // Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.
208 //
209 #define EFI_IP4(EfiIpAddr) (*(IP4_ADDR *) ((EfiIpAddr).Addr))
210 #define EFI_NTOHL(EfiIp) (NTOHL (EFI_IP4 ((EfiIp))))
211 #define EFI_IP4_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)
212
213 #define EFI_IP6_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0)
214
215 #define IP4_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv4_ADDRESS)))
216 #define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS)))
217 #define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS)))
218
219 //
220 // The debug level definition. This value is also used as the
221 // syslog's servity level. Don't change it.
222 //
223 #define NETDEBUG_LEVEL_TRACE 5
224 #define NETDEBUG_LEVEL_WARNING 4
225 #define NETDEBUG_LEVEL_ERROR 3
226
227 //
228 // Network debug message is sent out as syslog packet.
229 //
230 #define NET_SYSLOG_FACILITY 16 // Syslog local facility local use
231 #define NET_SYSLOG_PACKET_LEN 512
232 #define NET_SYSLOG_TX_TIMEOUT (500 * 1000 * 10) // 500ms
233 #define NET_DEBUG_MSG_LEN 470 // 512 - (ether+ip4+udp4 head length)
234
235 //
236 // The debug output expects the ASCII format string, Use %a to print ASCII
237 // string, and %s to print UNICODE string. PrintArg must be enclosed in ().
238 // For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name));
239 //
240 #define NET_DEBUG_TRACE(Module, PrintArg) \
241 NetDebugOutput ( \
242 NETDEBUG_LEVEL_TRACE, \
243 Module, \
244 __FILE__, \
245 __LINE__, \
246 NetDebugASPrint PrintArg \
247 )
248
249 #define NET_DEBUG_WARNING(Module, PrintArg) \
250 NetDebugOutput ( \
251 NETDEBUG_LEVEL_WARNING, \
252 Module, \
253 __FILE__, \
254 __LINE__, \
255 NetDebugASPrint PrintArg \
256 )
257
258 #define NET_DEBUG_ERROR(Module, PrintArg) \
259 NetDebugOutput ( \
260 NETDEBUG_LEVEL_ERROR, \
261 Module, \
262 __FILE__, \
263 __LINE__, \
264 NetDebugASPrint PrintArg \
265 )
266
267 /**
268 Allocate a buffer, then format the message to it. This is a
269 help function for the NET_DEBUG_XXX macros. The PrintArg of
270 these macros treats the variable length print parameters as a
271 single parameter, and pass it to the NetDebugASPrint. For
272 example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))
273 if extracted to:
274
275 NetDebugOutput (
276 NETDEBUG_LEVEL_TRACE,
277 "Tcp",
278 __FILE__,
279 __LINE__,
280 NetDebugASPrint ("State transit to %a\n", Name)
281 )
282
283 @param Format The ASCII format string.
284 @param ... The variable length parameter whose format is determined
285 by the Format string.
286
287 @return The buffer containing the formatted message,
288 or NULL if memory allocation failed.
289
290 **/
291 CHAR8 *
292 EFIAPI
293 NetDebugASPrint (
294 IN CHAR8 *Format,
295 ...
296 );
297
298 /**
299 Builds an UDP4 syslog packet and send it using SNP.
300
301 This function will locate a instance of SNP then send the message through it.
302 Because it isn't open the SNP BY_DRIVER, apply caution when using it.
303
304 @param Level The servity level of the message.
305 @param Module The Moudle that generates the log.
306 @param File The file that contains the log.
307 @param Line The exact line that contains the log.
308 @param Message The user message to log.
309
310 @retval EFI_INVALID_PARAMETER Any input parameter is invalid.
311 @retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet
312 @retval EFI_SUCCESS The log is discard because that it is more verbose
313 than the mNetDebugLevelMax. Or, it has been sent out.
314 **/
315 EFI_STATUS
316 EFIAPI
317 NetDebugOutput (
318 IN UINT32 Level,
319 IN UINT8 *Module,
320 IN UINT8 *File,
321 IN UINT32 Line,
322 IN UINT8 *Message
323 );
324
325
326 /**
327 Return the length of the mask.
328
329 Return the length of the mask. Valid values are 0 to 32.
330 If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.
331 NetMask is in the host byte order.
332
333 @param[in] NetMask The netmask to get the length from.
334
335 @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid.
336
337 **/
338 INTN
339 EFIAPI
340 NetGetMaskLength (
341 IN IP4_ADDR NetMask
342 );
343
344 /**
345 Return the class of the IP address, such as class A, B, C.
346 Addr is in host byte order.
347
348 The address of class A starts with 0.
349 If the address belong to class A, return IP4_ADDR_CLASSA.
350 The address of class B starts with 10.
351 If the address belong to class B, return IP4_ADDR_CLASSB.
352 The address of class C starts with 110.
353 If the address belong to class C, return IP4_ADDR_CLASSC.
354 The address of class D starts with 1110.
355 If the address belong to class D, return IP4_ADDR_CLASSD.
356 The address of class E starts with 1111.
357 If the address belong to class E, return IP4_ADDR_CLASSE.
358
359
360 @param[in] Addr The address to get the class from.
361
362 @return IP address class, such as IP4_ADDR_CLASSA.
363
364 **/
365 INTN
366 EFIAPI
367 NetGetIpClass (
368 IN IP4_ADDR Addr
369 );
370
371 /**
372 Check whether the IP is a valid unicast address according to
373 the netmask. If NetMask is zero, use the IP address's class to get the default mask.
374
375 If Ip is 0, IP is not a valid unicast address.
376 Class D address is used for multicasting and class E address is reserved for future. If Ip
377 belongs to class D or class E, Ip is not a valid unicast address.
378 If all bits of the host address of Ip are 0 or 1, Ip is not a valid unicast address.
379
380 @param[in] Ip The IP to check against.
381 @param[in] NetMask The mask of the IP.
382
383 @return TRUE if Ip is a valid unicast address on the network, otherwise FALSE.
384
385 **/
386 BOOLEAN
387 EFIAPI
388 NetIp4IsUnicast (
389 IN IP4_ADDR Ip,
390 IN IP4_ADDR NetMask
391 );
392
393 /**
394 Check whether the incoming IPv6 address is a valid unicast address.
395
396 If the address is a multicast address has binary 0xFF at the start, it is not
397 a valid unicast address. If the address is unspecified ::, it is not a valid
398 unicast address to be assigned to any node. If the address is loopback address
399 ::1, it is also not a valid unicast address to be assigned to any physical
400 interface.
401
402 @param[in] Ip6 The IPv6 address to check against.
403
404 @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.
405
406 **/
407 BOOLEAN
408 EFIAPI
409 NetIp6IsValidUnicast (
410 IN EFI_IPv6_ADDRESS *Ip6
411 );
412
413
414 /**
415 Check whether the incoming Ipv6 address is the unspecified address or not.
416
417 @param[in] Ip6 - Ip6 address, in network order.
418
419 @retval TRUE - Yes, incoming Ipv6 address is the unspecified address.
420 @retval FALSE - The incoming Ipv6 address is not the unspecified address
421
422 **/
423 BOOLEAN
424 EFIAPI
425 NetIp6IsUnspecifiedAddr (
426 IN EFI_IPv6_ADDRESS *Ip6
427 );
428
429 /**
430 Check whether the incoming Ipv6 address is a link-local address.
431
432 @param[in] Ip6 - Ip6 address, in network order.
433
434 @retval TRUE - The incoming Ipv6 address is a link-local address.
435 @retval FALSE - The incoming Ipv6 address is not a link-local address.
436
437 **/
438 BOOLEAN
439 EFIAPI
440 NetIp6IsLinkLocalAddr (
441 IN EFI_IPv6_ADDRESS *Ip6
442 );
443
444 /**
445 Check whether the Ipv6 address1 and address2 are on the connected network.
446
447 @param[in] Ip1 - Ip6 address1, in network order.
448 @param[in] Ip2 - Ip6 address2, in network order.
449 @param[in] PrefixLength - The prefix length of the checking net.
450
451 @retval TRUE - Yes, the Ipv6 address1 and address2 are connected.
452 @retval FALSE - No the Ipv6 address1 and address2 are not connected.
453
454 **/
455 BOOLEAN
456 EFIAPI
457 NetIp6IsNetEqual (
458 EFI_IPv6_ADDRESS *Ip1,
459 EFI_IPv6_ADDRESS *Ip2,
460 UINT8 PrefixLength
461 );
462
463 /**
464 Switches the endianess of an IPv6 address.
465
466 This function swaps the bytes in a 128-bit IPv6 address to switch the value
467 from little endian to big endian or vice versa. The byte swapped value is
468 returned.
469
470 @param Ip6 Points to an IPv6 address.
471
472 @return The byte swapped IPv6 address.
473
474 **/
475 EFI_IPv6_ADDRESS *
476 EFIAPI
477 Ip6Swap128 (
478 EFI_IPv6_ADDRESS *Ip6
479 );
480
481 extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM];
482
483
484 extern EFI_IPv4_ADDRESS mZeroIp4Addr;
485
486 #define NET_IS_DIGIT(Ch) (('0' <= (Ch)) && ((Ch) <= '9'))
487 #define NET_ROUNDUP(size, unit) (((size) + (unit) - 1) & (~((unit) - 1)))
488 #define NET_IS_LOWER_CASE_CHAR(Ch) (('a' <= (Ch)) && ((Ch) <= 'z'))
489 #define NET_IS_UPPER_CASE_CHAR(Ch) (('A' <= (Ch)) && ((Ch) <= 'Z'))
490
491 #define TICKS_PER_MS 10000U
492 #define TICKS_PER_SECOND 10000000U
493
494 #define NET_RANDOM(Seed) ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)
495
496 /**
497 Extract a UINT32 from a byte stream.
498
499 This function copies a UINT32 from a byte stream, and then converts it from Network
500 byte order to host byte order. Use this function to avoid alignment error.
501
502 @param[in] Buf The buffer to extract the UINT32.
503
504 @return The UINT32 extracted.
505
506 **/
507 UINT32
508 EFIAPI
509 NetGetUint32 (
510 IN UINT8 *Buf
511 );
512
513 /**
514 Puts a UINT32 into the byte stream in network byte order.
515
516 Converts a UINT32 from host byte order to network byte order, then copies it to the
517 byte stream.
518
519 @param[in, out] Buf The buffer in which to put the UINT32.
520 @param[in] Data The data to be converted and put into the byte stream.
521
522 **/
523 VOID
524 EFIAPI
525 NetPutUint32 (
526 IN OUT UINT8 *Buf,
527 IN UINT32 Data
528 );
529
530 /**
531 Initialize a random seed using current time.
532
533 Get current time first. Then initialize a random seed based on some basic
534 mathematical operations on the hour, day, minute, second, nanosecond and year
535 of the current time.
536
537 @return The random seed, initialized with current time.
538
539 **/
540 UINT32
541 EFIAPI
542 NetRandomInitSeed (
543 VOID
544 );
545
546
547 #define NET_LIST_USER_STRUCT(Entry, Type, Field) \
548 BASE_CR(Entry, Type, Field)
549
550 #define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig) \
551 CR(Entry, Type, Field, Sig)
552
553 //
554 // Iterate through the double linked list. It is NOT delete safe
555 //
556 #define NET_LIST_FOR_EACH(Entry, ListHead) \
557 for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)
558
559 //
560 // Iterate through the double linked list. This is delete-safe.
561 // Don't touch NextEntry. Also, don't use this macro if list
562 // entries other than the Entry may be deleted when processing
563 // the current Entry.
564 //
565 #define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \
566 for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \
567 Entry != (ListHead); \
568 Entry = NextEntry, NextEntry = Entry->ForwardLink \
569 )
570
571 //
572 // Make sure the list isn't empty before getting the first/last record.
573 //
574 #define NET_LIST_HEAD(ListHead, Type, Field) \
575 NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)
576
577 #define NET_LIST_TAIL(ListHead, Type, Field) \
578 NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)
579
580
581 /**
582 Remove the first node entry on the list, and return the removed node entry.
583
584 Removes the first node entry from a doubly linked list. It is up to the caller of
585 this function to release the memory used by the first node, if that is required. On
586 exit, the removed node is returned.
587
588 If Head is NULL, then ASSERT().
589 If Head was not initialized, then ASSERT().
590 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
591 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
592 then ASSERT().
593
594 @param[in, out] Head The list header.
595
596 @return The first node entry that is removed from the list, NULL if the list is empty.
597
598 **/
599 LIST_ENTRY *
600 EFIAPI
601 NetListRemoveHead (
602 IN OUT LIST_ENTRY *Head
603 );
604
605 /**
606 Remove the last node entry on the list and return the removed node entry.
607
608 Removes the last node entry from a doubly linked list. It is up to the caller of
609 this function to release the memory used by the first node, if that is required. On
610 exit, the removed node is returned.
611
612 If Head is NULL, then ASSERT().
613 If Head was not initialized, then ASSERT().
614 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
615 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
616 then ASSERT().
617
618 @param[in, out] Head The list head.
619
620 @return The last node entry that is removed from the list, NULL if the list is empty.
621
622 **/
623 LIST_ENTRY *
624 EFIAPI
625 NetListRemoveTail (
626 IN OUT LIST_ENTRY *Head
627 );
628
629 /**
630 Insert a new node entry after a designated node entry of a doubly linked list.
631
632 Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry
633 of the doubly linked list.
634
635 @param[in, out] PrevEntry The entry after which to insert.
636 @param[in, out] NewEntry The new entry to insert.
637
638 **/
639 VOID
640 EFIAPI
641 NetListInsertAfter (
642 IN OUT LIST_ENTRY *PrevEntry,
643 IN OUT LIST_ENTRY *NewEntry
644 );
645
646 /**
647 Insert a new node entry before a designated node entry of a doubly linked list.
648
649 Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry
650 of the doubly linked list.
651
652 @param[in, out] PostEntry The entry to insert before.
653 @param[in, out] NewEntry The new entry to insert.
654
655 **/
656 VOID
657 EFIAPI
658 NetListInsertBefore (
659 IN OUT LIST_ENTRY *PostEntry,
660 IN OUT LIST_ENTRY *NewEntry
661 );
662
663
664 //
665 // Object container: EFI network stack spec defines various kinds of
666 // tokens. The drivers can share code to manage those objects.
667 //
668 typedef struct {
669 LIST_ENTRY Link;
670 VOID *Key;
671 VOID *Value;
672 } NET_MAP_ITEM;
673
674 typedef struct {
675 LIST_ENTRY Used;
676 LIST_ENTRY Recycled;
677 UINTN Count;
678 } NET_MAP;
679
680 #define NET_MAP_INCREAMENT 64
681
682 /**
683 Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.
684
685 Initialize the forward and backward links of two head nodes donated by Map->Used
686 and Map->Recycled of two doubly linked lists.
687 Initializes the count of the <Key, Value> pairs in the netmap to zero.
688
689 If Map is NULL, then ASSERT().
690 If the address of Map->Used is NULL, then ASSERT().
691 If the address of Map->Recycled is NULl, then ASSERT().
692
693 @param[in, out] Map The netmap to initialize.
694
695 **/
696 VOID
697 EFIAPI
698 NetMapInit (
699 IN OUT NET_MAP *Map
700 );
701
702 /**
703 To clean up the netmap, that is, release allocated memories.
704
705 Removes all nodes of the Used doubly linked list and frees memory of all related netmap items.
706 Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.
707 The number of the <Key, Value> pairs in the netmap is set to zero.
708
709 If Map is NULL, then ASSERT().
710
711 @param[in, out] Map The netmap to clean up.
712
713 **/
714 VOID
715 EFIAPI
716 NetMapClean (
717 IN OUT NET_MAP *Map
718 );
719
720 /**
721 Test whether the netmap is empty and return true if it is.
722
723 If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.
724
725 If Map is NULL, then ASSERT().
726
727
728 @param[in] Map The net map to test.
729
730 @return TRUE if the netmap is empty, otherwise FALSE.
731
732 **/
733 BOOLEAN
734 EFIAPI
735 NetMapIsEmpty (
736 IN NET_MAP *Map
737 );
738
739 /**
740 Return the number of the <Key, Value> pairs in the netmap.
741
742 @param[in] Map The netmap to get the entry number.
743
744 @return The entry number in the netmap.
745
746 **/
747 UINTN
748 EFIAPI
749 NetMapGetCount (
750 IN NET_MAP *Map
751 );
752
753 /**
754 Allocate an item to save the <Key, Value> pair to the head of the netmap.
755
756 Allocate an item to save the <Key, Value> pair and add corresponding node entry
757 to the beginning of the Used doubly linked list. The number of the <Key, Value>
758 pairs in the netmap increase by 1.
759
760 If Map is NULL, then ASSERT().
761
762 @param[in, out] Map The netmap to insert into.
763 @param[in] Key The user's key.
764 @param[in] Value The user's value for the key.
765
766 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
767 @retval EFI_SUCCESS The item is inserted to the head.
768
769 **/
770 EFI_STATUS
771 EFIAPI
772 NetMapInsertHead (
773 IN OUT NET_MAP *Map,
774 IN VOID *Key,
775 IN VOID *Value OPTIONAL
776 );
777
778 /**
779 Allocate an item to save the <Key, Value> pair to the tail of the netmap.
780
781 Allocate an item to save the <Key, Value> pair and add corresponding node entry
782 to the tail of the Used doubly linked list. The number of the <Key, Value>
783 pairs in the netmap increase by 1.
784
785 If Map is NULL, then ASSERT().
786
787 @param[in, out] Map The netmap to insert into.
788 @param[in] Key The user's key.
789 @param[in] Value The user's value for the key.
790
791 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
792 @retval EFI_SUCCESS The item is inserted to the tail.
793
794 **/
795 EFI_STATUS
796 EFIAPI
797 NetMapInsertTail (
798 IN OUT NET_MAP *Map,
799 IN VOID *Key,
800 IN VOID *Value OPTIONAL
801 );
802
803 /**
804 Finds the key in the netmap and returns the point to the item containing the Key.
805
806 Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every
807 item with the key to search. It returns the point to the item contains the Key if found.
808
809 If Map is NULL, then ASSERT().
810
811 @param[in] Map The netmap to search within.
812 @param[in] Key The key to search.
813
814 @return The point to the item contains the Key, or NULL if Key isn't in the map.
815
816 **/
817 NET_MAP_ITEM *
818 EFIAPI
819 NetMapFindKey (
820 IN NET_MAP *Map,
821 IN VOID *Key
822 );
823
824 /**
825 Remove the node entry of the item from the netmap and return the key of the removed item.
826
827 Remove the node entry of the item from the Used doubly linked list of the netmap.
828 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
829 entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,
830 Value will point to the value of the item. It returns the key of the removed item.
831
832 If Map is NULL, then ASSERT().
833 If Item is NULL, then ASSERT().
834 if item in not in the netmap, then ASSERT().
835
836 @param[in, out] Map The netmap to remove the item from.
837 @param[in, out] Item The item to remove.
838 @param[out] Value The variable to receive the value if not NULL.
839
840 @return The key of the removed item.
841
842 **/
843 VOID *
844 EFIAPI
845 NetMapRemoveItem (
846 IN OUT NET_MAP *Map,
847 IN OUT NET_MAP_ITEM *Item,
848 OUT VOID **Value OPTIONAL
849 );
850
851 /**
852 Remove the first node entry on the netmap and return the key of the removed item.
853
854 Remove the first node entry from the Used doubly linked list of the netmap.
855 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
856 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
857 parameter Value will point to the value of the item. It returns the key of the removed item.
858
859 If Map is NULL, then ASSERT().
860 If the Used doubly linked list is empty, then ASSERT().
861
862 @param[in, out] Map The netmap to remove the head from.
863 @param[out] Value The variable to receive the value if not NULL.
864
865 @return The key of the item removed.
866
867 **/
868 VOID *
869 EFIAPI
870 NetMapRemoveHead (
871 IN OUT NET_MAP *Map,
872 OUT VOID **Value OPTIONAL
873 );
874
875 /**
876 Remove the last node entry on the netmap and return the key of the removed item.
877
878 Remove the last node entry from the Used doubly linked list of the netmap.
879 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
880 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
881 parameter Value will point to the value of the item. It returns the key of the removed item.
882
883 If Map is NULL, then ASSERT().
884 If the Used doubly linked list is empty, then ASSERT().
885
886 @param[in, out] Map The netmap to remove the tail from.
887 @param[out] Value The variable to receive the value if not NULL.
888
889 @return The key of the item removed.
890
891 **/
892 VOID *
893 EFIAPI
894 NetMapRemoveTail (
895 IN OUT NET_MAP *Map,
896 OUT VOID **Value OPTIONAL
897 );
898
899 typedef
900 EFI_STATUS
901 (EFIAPI *NET_MAP_CALLBACK) (
902 IN NET_MAP *Map,
903 IN NET_MAP_ITEM *Item,
904 IN VOID *Arg
905 );
906
907 /**
908 Iterate through the netmap and call CallBack for each item.
909
910 It will contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break
911 from the loop. It returns the CallBack's last return value. This function is
912 delete safe for the current item.
913
914 If Map is NULL, then ASSERT().
915 If CallBack is NULL, then ASSERT().
916
917 @param[in] Map The Map to iterate through.
918 @param[in] CallBack The callback function to call for each item.
919 @param[in] Arg The opaque parameter to the callback.
920
921 @retval EFI_SUCCESS There is no item in the netmap, or CallBack for each item
922 returns EFI_SUCCESS.
923 @retval Others It returns the CallBack's last return value.
924
925 **/
926 EFI_STATUS
927 EFIAPI
928 NetMapIterate (
929 IN NET_MAP *Map,
930 IN NET_MAP_CALLBACK CallBack,
931 IN VOID *Arg OPTIONAL
932 );
933
934
935 //
936 // Helper functions to implement driver binding and service binding protocols.
937 //
938 /**
939 Create a child of the service that is identified by ServiceBindingGuid.
940
941 Get the ServiceBinding Protocol first, then use it to create a child.
942
943 If ServiceBindingGuid is NULL, then ASSERT().
944 If ChildHandle is NULL, then ASSERT().
945
946 @param[in] Controller The controller which has the service installed.
947 @param[in] Image The image handle used to open service.
948 @param[in] ServiceBindingGuid The service's Guid.
949 @param[in, out] ChildHandle The handle to receive the created child.
950
951 @retval EFI_SUCCESS The child was successfully created.
952 @retval Others Failed to create the child.
953
954 **/
955 EFI_STATUS
956 EFIAPI
957 NetLibCreateServiceChild (
958 IN EFI_HANDLE Controller,
959 IN EFI_HANDLE Image,
960 IN EFI_GUID *ServiceBindingGuid,
961 IN OUT EFI_HANDLE *ChildHandle
962 );
963
964 /**
965 Destroy a child of the service that is identified by ServiceBindingGuid.
966
967 Get the ServiceBinding Protocol first, then use it to destroy a child.
968
969 If ServiceBindingGuid is NULL, then ASSERT().
970
971 @param[in] Controller The controller which has the service installed.
972 @param[in] Image The image handle used to open service.
973 @param[in] ServiceBindingGuid The service's Guid.
974 @param[in] ChildHandle The child to destroy.
975
976 @retval EFI_SUCCESS The child was destroyed.
977 @retval Others Failed to destroy the child.
978
979 **/
980 EFI_STATUS
981 EFIAPI
982 NetLibDestroyServiceChild (
983 IN EFI_HANDLE Controller,
984 IN EFI_HANDLE Image,
985 IN EFI_GUID *ServiceBindingGuid,
986 IN EFI_HANDLE ChildHandle
987 );
988
989 /**
990 Get handle with Simple Network Protocol installed on it.
991
992 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
993 If Simple Network Protocol is already installed on the ServiceHandle, the
994 ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,
995 try to find its parent handle with SNP installed.
996
997 @param[in] ServiceHandle The handle where network service binding protocols are
998 installed on.
999 @param[out] Snp The pointer to store the address of the SNP instance.
1000 This is an optional parameter that may be NULL.
1001
1002 @return The SNP handle, or NULL if not found.
1003
1004 **/
1005 EFI_HANDLE
1006 EFIAPI
1007 NetLibGetSnpHandle (
1008 IN EFI_HANDLE ServiceHandle,
1009 OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL
1010 );
1011
1012 /**
1013 Retrieve VLAN ID of a VLAN device handle.
1014
1015 Search VLAN device path node in Device Path of specified ServiceHandle and
1016 return its VLAN ID. If no VLAN device path node found, then this ServiceHandle
1017 is not a VLAN device handle, and 0 will be returned.
1018
1019 @param[in] ServiceHandle The handle where network service binding protocols are
1020 installed on.
1021
1022 @return VLAN ID of the device handle, or 0 if not a VLAN device.
1023
1024 **/
1025 UINT16
1026 EFIAPI
1027 NetLibGetVlanId (
1028 IN EFI_HANDLE ServiceHandle
1029 );
1030
1031 /**
1032 Find VLAN device handle with specified VLAN ID.
1033
1034 The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.
1035 This function will append VLAN device path node to the parent device path,
1036 and then use LocateDevicePath() to find the correct VLAN device handle.
1037
1038 @param[in] ControllerHandle The handle where network service binding protocols are
1039 installed on.
1040 @param[in] VlanId The configured VLAN ID for the VLAN device.
1041
1042 @return The VLAN device handle, or NULL if not found.
1043
1044 **/
1045 EFI_HANDLE
1046 EFIAPI
1047 NetLibGetVlanHandle (
1048 IN EFI_HANDLE ControllerHandle,
1049 IN UINT16 VlanId
1050 );
1051
1052 /**
1053 Get MAC address associated with the network service handle.
1054
1055 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1056 If SNP is installed on the ServiceHandle or its parent handle, MAC address will
1057 be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.
1058
1059 @param[in] ServiceHandle The handle where network service binding protocols are
1060 installed on.
1061 @param[out] MacAddress The pointer to store the returned MAC address.
1062 @param[out] AddressSize The length of returned MAC address.
1063
1064 @retval EFI_SUCCESS MAC address was returned successfully.
1065 @retval Others Failed to get SNP mode data.
1066
1067 **/
1068 EFI_STATUS
1069 EFIAPI
1070 NetLibGetMacAddress (
1071 IN EFI_HANDLE ServiceHandle,
1072 OUT EFI_MAC_ADDRESS *MacAddress,
1073 OUT UINTN *AddressSize
1074 );
1075
1076 /**
1077 Convert MAC address of the NIC associated with specified Service Binding Handle
1078 to a unicode string. Callers are responsible for freeing the string storage.
1079
1080 Locate simple network protocol associated with the Service Binding Handle and
1081 get the mac address from SNP. Then convert the mac address into a unicode
1082 string. It takes 2 unicode characters to represent a 1 byte binary buffer.
1083 Plus one unicode character for the null-terminator.
1084
1085 @param[in] ServiceHandle The handle where network service binding protocol is
1086 installed.
1087 @param[in] ImageHandle The image handle used to act as the agent handle to
1088 get the simple network protocol.
1089 @param[out] MacString The pointer to store the address of the string
1090 representation of the mac address.
1091
1092 @retval EFI_SUCCESS Converted the mac address a unicode string successfully.
1093 @retval EFI_OUT_OF_RESOURCES There are not enough memory resources.
1094 @retval Others Failed to open the simple network protocol.
1095
1096 **/
1097 EFI_STATUS
1098 EFIAPI
1099 NetLibGetMacString (
1100 IN EFI_HANDLE ServiceHandle,
1101 IN EFI_HANDLE ImageHandle,
1102 OUT CHAR16 **MacString
1103 );
1104
1105 /**
1106 Detect media status for specified network device.
1107
1108 The underlying UNDI driver may or may not support reporting media status from
1109 GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine
1110 will try to invoke Snp->GetStatus() to get the media status. If media is already
1111 present, it returns directly. If media is not present, it will stop SNP and then
1112 restart SNP to get the latest media status. This provides an opportunity to get
1113 the correct media status for old UNDI driver, which doesn't support reporting
1114 media status from GET_STATUS command.
1115 Note: there are two limitations for the current algorithm:
1116 1) For UNDI with this capability, when the cable is not attached, there will
1117 be an redundant Stop/Start() process.
1118 2) for UNDI without this capability, in case that network cable is attached when
1119 Snp->Initialize() is invoked while network cable is unattached later,
1120 NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer
1121 apps to wait for timeout time.
1122
1123 @param[in] ServiceHandle The handle where network service binding protocols are
1124 installed.
1125 @param[out] MediaPresent The pointer to store the media status.
1126
1127 @retval EFI_SUCCESS Media detection success.
1128 @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle.
1129 @retval EFI_UNSUPPORTED The network device does not support media detection.
1130 @retval EFI_DEVICE_ERROR SNP is in an unknown state.
1131
1132 **/
1133 EFI_STATUS
1134 EFIAPI
1135 NetLibDetectMedia (
1136 IN EFI_HANDLE ServiceHandle,
1137 OUT BOOLEAN *MediaPresent
1138 );
1139
1140 /**
1141 Create an IPv4 device path node.
1142
1143 The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.
1144 The header subtype of IPv4 device path node is MSG_IPv4_DP.
1145 The length of the IPv4 device path node in bytes is 19.
1146 Get other information from parameters to make up the whole IPv4 device path node.
1147
1148 @param[in, out] Node The pointer to the IPv4 device path node.
1149 @param[in] Controller The controller handle.
1150 @param[in] LocalIp The local IPv4 address.
1151 @param[in] LocalPort The local port.
1152 @param[in] RemoteIp The remote IPv4 address.
1153 @param[in] RemotePort The remote port.
1154 @param[in] Protocol The protocol type in the IP header.
1155 @param[in] UseDefaultAddress Whether this instance is using default address or not.
1156
1157 **/
1158 VOID
1159 EFIAPI
1160 NetLibCreateIPv4DPathNode (
1161 IN OUT IPv4_DEVICE_PATH *Node,
1162 IN EFI_HANDLE Controller,
1163 IN IP4_ADDR LocalIp,
1164 IN UINT16 LocalPort,
1165 IN IP4_ADDR RemoteIp,
1166 IN UINT16 RemotePort,
1167 IN UINT16 Protocol,
1168 IN BOOLEAN UseDefaultAddress
1169 );
1170
1171 /**
1172 Create an IPv6 device path node.
1173
1174 The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.
1175 The header subtype of IPv6 device path node is MSG_IPv6_DP.
1176 The length of the IPv6 device path node in bytes is 43.
1177 Get other information from parameters to make up the whole IPv6 device path node.
1178
1179 @param[in, out] Node The pointer to the IPv6 device path node.
1180 @param[in] Controller The controller handle.
1181 @param[in] LocalIp The local IPv6 address.
1182 @param[in] LocalPort The local port.
1183 @param[in] RemoteIp The remote IPv6 address.
1184 @param[in] RemotePort The remote port.
1185 @param[in] Protocol The protocol type in the IP header.
1186
1187 **/
1188 VOID
1189 EFIAPI
1190 NetLibCreateIPv6DPathNode (
1191 IN OUT IPv6_DEVICE_PATH *Node,
1192 IN EFI_HANDLE Controller,
1193 IN EFI_IPv6_ADDRESS *LocalIp,
1194 IN UINT16 LocalPort,
1195 IN EFI_IPv6_ADDRESS *RemoteIp,
1196 IN UINT16 RemotePort,
1197 IN UINT16 Protocol
1198 );
1199
1200
1201 /**
1202 Find the UNDI/SNP handle from controller and protocol GUID.
1203
1204 For example, IP will open an MNP child to transmit/receive
1205 packets. When MNP is stopped, IP should also be stopped. IP
1206 needs to find its own private data that is related the IP's
1207 service binding instance that is installed on the UNDI/SNP handle.
1208 The controller is then either an MNP or an ARP child handle. Note that
1209 IP opens these handles using BY_DRIVER. Use that infomation to get the
1210 UNDI/SNP handle.
1211
1212 @param[in] Controller The protocol handle to check.
1213 @param[in] ProtocolGuid The protocol that is related with the handle.
1214
1215 @return The UNDI/SNP handle or NULL for errors.
1216
1217 **/
1218 EFI_HANDLE
1219 EFIAPI
1220 NetLibGetNicHandle (
1221 IN EFI_HANDLE Controller,
1222 IN EFI_GUID *ProtocolGuid
1223 );
1224
1225 /**
1226 This is the default unload handle for all the network drivers.
1227
1228 Disconnect the driver specified by ImageHandle from all the devices in the handle database.
1229 Uninstall all the protocols installed in the driver entry point.
1230
1231 @param[in] ImageHandle The drivers' driver image.
1232
1233 @retval EFI_SUCCESS The image is unloaded.
1234 @retval Others Failed to unload the image.
1235
1236 **/
1237 EFI_STATUS
1238 EFIAPI
1239 NetLibDefaultUnload (
1240 IN EFI_HANDLE ImageHandle
1241 );
1242
1243 /**
1244 Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.
1245
1246 @param[in] String The pointer to the Ascii string.
1247 @param[out] Ip4Address The pointer to the converted IPv4 address.
1248
1249 @retval EFI_SUCCESS Converted to an IPv4 address successfully.
1250 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip4Address is NULL.
1251
1252 **/
1253 EFI_STATUS
1254 EFIAPI
1255 NetLibAsciiStrToIp4 (
1256 IN CONST CHAR8 *String,
1257 OUT EFI_IPv4_ADDRESS *Ip4Address
1258 );
1259
1260 /**
1261 Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the
1262 string is defined in RFC 4291 - Text Pepresentation of Addresses.
1263
1264 @param[in] String The pointer to the Ascii string.
1265 @param[out] Ip6Address The pointer to the converted IPv6 address.
1266
1267 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1268 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip6Address is NULL.
1269
1270 **/
1271 EFI_STATUS
1272 EFIAPI
1273 NetLibAsciiStrToIp6 (
1274 IN CONST CHAR8 *String,
1275 OUT EFI_IPv6_ADDRESS *Ip6Address
1276 );
1277
1278 /**
1279 Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.
1280
1281 @param[in] String The pointer to the Ascii string.
1282 @param[out] Ip4Address The pointer to the converted IPv4 address.
1283
1284 @retval EFI_SUCCESS Converted to an IPv4 address successfully.
1285 @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip4Address is NULL.
1286 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to lack of resources.
1287
1288 **/
1289 EFI_STATUS
1290 EFIAPI
1291 NetLibStrToIp4 (
1292 IN CONST CHAR16 *String,
1293 OUT EFI_IPv4_ADDRESS *Ip4Address
1294 );
1295
1296 /**
1297 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS. The format of
1298 the string is defined in RFC 4291 - Text Pepresentation of Addresses.
1299
1300 @param[in] String The pointer to the Ascii string.
1301 @param[out] Ip6Address The pointer to the converted IPv6 address.
1302
1303 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1304 @retval EFI_INVALID_PARAMETER The string is malformated or Ip6Address is NULL.
1305 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to a lack of resources.
1306
1307 **/
1308 EFI_STATUS
1309 EFIAPI
1310 NetLibStrToIp6 (
1311 IN CONST CHAR16 *String,
1312 OUT EFI_IPv6_ADDRESS *Ip6Address
1313 );
1314
1315 /**
1316 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.
1317 The format of the string is defined in RFC 4291 - Text Pepresentation of Addresses
1318 Prefixes: ipv6-address/prefix-length.
1319
1320 @param[in] String The pointer to the Ascii string.
1321 @param[out] Ip6Address The pointer to the converted IPv6 address.
1322 @param[out] PrefixLength The pointer to the converted prefix length.
1323
1324 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1325 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip6Address is NULL.
1326 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to a lack of resources.
1327
1328 **/
1329 EFI_STATUS
1330 EFIAPI
1331 NetLibStrToIp6andPrefix (
1332 IN CONST CHAR16 *String,
1333 OUT EFI_IPv6_ADDRESS *Ip6Address,
1334 OUT UINT8 *PrefixLength
1335 );
1336
1337 //
1338 // Various signatures
1339 //
1340 #define NET_BUF_SIGNATURE SIGNATURE_32 ('n', 'b', 'u', 'f')
1341 #define NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c')
1342 #define NET_QUE_SIGNATURE SIGNATURE_32 ('n', 'b', 'q', 'u')
1343
1344
1345 #define NET_PROTO_DATA 64 // Opaque buffer for protocols
1346 #define NET_BUF_HEAD 1 // Trim or allocate space from head
1347 #define NET_BUF_TAIL 0 // Trim or allocate space from tail
1348 #define NET_VECTOR_OWN_FIRST 0x01 // We allocated the 1st block in the vector
1349
1350 #define NET_CHECK_SIGNATURE(PData, SIGNATURE) \
1351 ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))
1352
1353 //
1354 // Single memory block in the vector.
1355 //
1356 typedef struct {
1357 UINT32 Len; // The block's length
1358 UINT8 *Bulk; // The block's Data
1359 } NET_BLOCK;
1360
1361 typedef VOID (EFIAPI *NET_VECTOR_EXT_FREE) (VOID *Arg);
1362
1363 //
1364 //NET_VECTOR contains several blocks to hold all packet's
1365 //fragments and other house-keeping stuff for sharing. It
1366 //doesn't specify the where actual packet fragment begins.
1367 //
1368 typedef struct {
1369 UINT32 Signature;
1370 INTN RefCnt; // Reference count to share NET_VECTOR.
1371 NET_VECTOR_EXT_FREE Free; // external function to free NET_VECTOR
1372 VOID *Arg; // opeque argument to Free
1373 UINT32 Flag; // Flags, NET_VECTOR_OWN_FIRST
1374 UINT32 Len; // Total length of the assocated BLOCKs
1375
1376 UINT32 BlockNum;
1377 NET_BLOCK Block[1];
1378 } NET_VECTOR;
1379
1380 //
1381 //NET_BLOCK_OP operates on the NET_BLOCK. It specifies
1382 //where the actual fragment begins and ends
1383 //
1384 typedef struct {
1385 UINT8 *BlockHead; // Block's head, or the smallest valid Head
1386 UINT8 *BlockTail; // Block's tail. BlockTail-BlockHead=block length
1387 UINT8 *Head; // 1st byte of the data in the block
1388 UINT8 *Tail; // Tail of the data in the block, Tail-Head=Size
1389 UINT32 Size; // The size of the data
1390 } NET_BLOCK_OP;
1391
1392 typedef union {
1393 IP4_HEAD *Ip4;
1394 EFI_IP6_HEADER *Ip6;
1395 } NET_IP_HEAD;
1396
1397 //
1398 //NET_BUF is the buffer manage structure used by the
1399 //network stack. Every network packet may be fragmented. The Vector points to
1400 //memory blocks used by each fragment, and BlockOp
1401 //specifies where each fragment begins and ends.
1402 //
1403 //It also contains an opaque area for the protocol to store
1404 //per-packet information. Protocol must be careful not
1405 //to overwrite the members after that.
1406 //
1407 typedef struct {
1408 UINT32 Signature;
1409 INTN RefCnt;
1410 LIST_ENTRY List; // The List this NET_BUF is on
1411
1412 NET_IP_HEAD Ip; // Network layer header, for fast access
1413 TCP_HEAD *Tcp; // Transport layer header, for fast access
1414 EFI_UDP_HEADER *Udp; // User Datagram Protocol header
1415 UINT8 ProtoData [NET_PROTO_DATA]; //Protocol specific data
1416
1417 NET_VECTOR *Vector; // The vector containing the packet
1418
1419 UINT32 BlockOpNum; // Total number of BlockOp in the buffer
1420 UINT32 TotalSize; // Total size of the actual packet
1421 NET_BLOCK_OP BlockOp[1]; // Specify the position of actual packet
1422 } NET_BUF;
1423
1424 //
1425 //A queue of NET_BUFs. It is a thin extension of
1426 //NET_BUF functions.
1427 //
1428 typedef struct {
1429 UINT32 Signature;
1430 INTN RefCnt;
1431 LIST_ENTRY List; // The List this buffer queue is on
1432
1433 LIST_ENTRY BufList; // list of queued buffers
1434 UINT32 BufSize; // total length of DATA in the buffers
1435 UINT32 BufNum; // total number of buffers on the chain
1436 } NET_BUF_QUEUE;
1437
1438 //
1439 // Pseudo header for TCP and UDP checksum
1440 //
1441 #pragma pack(1)
1442 typedef struct {
1443 IP4_ADDR SrcIp;
1444 IP4_ADDR DstIp;
1445 UINT8 Reserved;
1446 UINT8 Protocol;
1447 UINT16 Len;
1448 } NET_PSEUDO_HDR;
1449
1450 typedef struct {
1451 EFI_IPv6_ADDRESS SrcIp;
1452 EFI_IPv6_ADDRESS DstIp;
1453 UINT32 Len;
1454 UINT32 Reserved:24;
1455 UINT32 NextHeader:8;
1456 } NET_IP6_PSEUDO_HDR;
1457 #pragma pack()
1458
1459 //
1460 // The fragment entry table used in network interfaces. This is
1461 // the same as NET_BLOCK now. Use two different to distinguish
1462 // the two in case that NET_BLOCK be enhanced later.
1463 //
1464 typedef struct {
1465 UINT32 Len;
1466 UINT8 *Bulk;
1467 } NET_FRAGMENT;
1468
1469 #define NET_GET_REF(PData) ((PData)->RefCnt++)
1470 #define NET_PUT_REF(PData) ((PData)->RefCnt--)
1471 #define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)
1472
1473 #define NET_BUF_SHARED(Buf) \
1474 (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))
1475
1476 #define NET_VECTOR_SIZE(BlockNum) \
1477 (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))
1478
1479 #define NET_BUF_SIZE(BlockOpNum) \
1480 (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))
1481
1482 #define NET_HEADSPACE(BlockOp) \
1483 (UINTN)((BlockOp)->Head - (BlockOp)->BlockHead)
1484
1485 #define NET_TAILSPACE(BlockOp) \
1486 (UINTN)((BlockOp)->BlockTail - (BlockOp)->Tail)
1487
1488 /**
1489 Allocate a single block NET_BUF. Upon allocation, all the
1490 free space is in the tail room.
1491
1492 @param[in] Len The length of the block.
1493
1494 @return The pointer to the allocated NET_BUF, or NULL if the
1495 allocation failed due to resource limitations.
1496
1497 **/
1498 NET_BUF *
1499 EFIAPI
1500 NetbufAlloc (
1501 IN UINT32 Len
1502 );
1503
1504 /**
1505 Free the net buffer and its associated NET_VECTOR.
1506
1507 Decrease the reference count of the net buffer by one. Free the associated net
1508 vector and itself if the reference count of the net buffer is decreased to 0.
1509 The net vector free operation decreases the reference count of the net
1510 vector by one, and performs the resource free operation when the reference count
1511 of the net vector is 0.
1512
1513 @param[in] Nbuf The pointer to the NET_BUF to be freed.
1514
1515 **/
1516 VOID
1517 EFIAPI
1518 NetbufFree (
1519 IN NET_BUF *Nbuf
1520 );
1521
1522 /**
1523 Get the index of NET_BLOCK_OP that contains the byte at Offset in the net
1524 buffer.
1525
1526 For example, this function can be used to retrieve the IP header in the packet. It
1527 also can be used to get the fragment that contains the byte used
1528 mainly by the library implementation itself.
1529
1530 @param[in] Nbuf The pointer to the net buffer.
1531 @param[in] Offset The offset of the byte.
1532 @param[out] Index Index of the NET_BLOCK_OP that contains the byte at
1533 Offset.
1534
1535 @return The pointer to the Offset'th byte of data in the net buffer, or NULL
1536 if there is no such data in the net buffer.
1537
1538 **/
1539 UINT8 *
1540 EFIAPI
1541 NetbufGetByte (
1542 IN NET_BUF *Nbuf,
1543 IN UINT32 Offset,
1544 OUT UINT32 *Index OPTIONAL
1545 );
1546
1547 /**
1548 Create a copy of the net buffer that shares the associated net vector.
1549
1550 The reference count of the newly created net buffer is set to 1. The reference
1551 count of the associated net vector is increased by one.
1552
1553 @param[in] Nbuf The pointer to the net buffer to be cloned.
1554
1555 @return The pointer to the cloned net buffer, or NULL if the
1556 allocation failed due to resource limitations.
1557
1558 **/
1559 NET_BUF *
1560 EFIAPI
1561 NetbufClone (
1562 IN NET_BUF *Nbuf
1563 );
1564
1565 /**
1566 Create a duplicated copy of the net buffer with data copied and HeadSpace
1567 bytes of head space reserved.
1568
1569 The duplicated net buffer will allocate its own memory to hold the data of the
1570 source net buffer.
1571
1572 @param[in] Nbuf The pointer to the net buffer to be duplicated from.
1573 @param[in, out] Duplicate The pointer to the net buffer to duplicate to. If
1574 NULL, a new net buffer is allocated.
1575 @param[in] HeadSpace The length of the head space to reserve.
1576
1577 @return The pointer to the duplicated net buffer, or NULL if
1578 the allocation failed due to resource limitations.
1579
1580 **/
1581 NET_BUF *
1582 EFIAPI
1583 NetbufDuplicate (
1584 IN NET_BUF *Nbuf,
1585 IN OUT NET_BUF *Duplicate OPTIONAL,
1586 IN UINT32 HeadSpace
1587 );
1588
1589 /**
1590 Create a NET_BUF structure which contains Len byte data of Nbuf starting from
1591 Offset.
1592
1593 A new NET_BUF structure will be created but the associated data in NET_VECTOR
1594 is shared. This function exists to perform IP packet fragmentation.
1595
1596 @param[in] Nbuf The pointer to the net buffer to be extracted.
1597 @param[in] Offset Starting point of the data to be included in the new
1598 net buffer.
1599 @param[in] Len The bytes of data to be included in the new net buffer.
1600 @param[in] HeadSpace The bytes of the head space to reserve for the protocol header.
1601
1602 @return The pointer to the cloned net buffer, or NULL if the
1603 allocation failed due to resource limitations.
1604
1605 **/
1606 NET_BUF *
1607 EFIAPI
1608 NetbufGetFragment (
1609 IN NET_BUF *Nbuf,
1610 IN UINT32 Offset,
1611 IN UINT32 Len,
1612 IN UINT32 HeadSpace
1613 );
1614
1615 /**
1616 Reserve some space in the header room of the net buffer.
1617
1618 Upon allocation, all the space is in the tail room of the buffer. Call this
1619 function to move space to the header room. This function is quite limited
1620 in that it can only reserve space from the first block of an empty NET_BUF not
1621 built from the external. However, it should be enough for the network stack.
1622
1623 @param[in, out] Nbuf The pointer to the net buffer.
1624 @param[in] Len The length of buffer to be reserved from the header.
1625
1626 **/
1627 VOID
1628 EFIAPI
1629 NetbufReserve (
1630 IN OUT NET_BUF *Nbuf,
1631 IN UINT32 Len
1632 );
1633
1634 /**
1635 Allocate Len bytes of space from the header or tail of the buffer.
1636
1637 @param[in, out] Nbuf The pointer to the net buffer.
1638 @param[in] Len The length of the buffer to be allocated.
1639 @param[in] FromHead The flag to indicate whether to reserve the data
1640 from head (TRUE) or tail (FALSE).
1641
1642 @return The pointer to the first byte of the allocated buffer,
1643 or NULL, if there is no sufficient space.
1644
1645 **/
1646 UINT8*
1647 EFIAPI
1648 NetbufAllocSpace (
1649 IN OUT NET_BUF *Nbuf,
1650 IN UINT32 Len,
1651 IN BOOLEAN FromHead
1652 );
1653
1654 /**
1655 Trim Len bytes from the header or the tail of the net buffer.
1656
1657 @param[in, out] Nbuf The pointer to the net buffer.
1658 @param[in] Len The length of the data to be trimmed.
1659 @param[in] FromHead The flag to indicate whether trim data is from the
1660 head (TRUE) or the tail (FALSE).
1661
1662 @return The length of the actual trimmed data, which may be less
1663 than Len if the TotalSize of Nbuf is less than Len.
1664
1665 **/
1666 UINT32
1667 EFIAPI
1668 NetbufTrim (
1669 IN OUT NET_BUF *Nbuf,
1670 IN UINT32 Len,
1671 IN BOOLEAN FromHead
1672 );
1673
1674 /**
1675 Copy Len bytes of data from the specific offset of the net buffer to the
1676 destination memory.
1677
1678 The Len bytes of data may cross several fragments of the net buffer.
1679
1680 @param[in] Nbuf The pointer to the net buffer.
1681 @param[in] Offset The sequence number of the first byte to copy.
1682 @param[in] Len The length of the data to copy.
1683 @param[in] Dest The destination of the data to copy to.
1684
1685 @return The length of the actual copied data, or 0 if the offset
1686 specified exceeds the total size of net buffer.
1687
1688 **/
1689 UINT32
1690 EFIAPI
1691 NetbufCopy (
1692 IN NET_BUF *Nbuf,
1693 IN UINT32 Offset,
1694 IN UINT32 Len,
1695 IN UINT8 *Dest
1696 );
1697
1698 /**
1699 Build a NET_BUF from external blocks.
1700
1701 A new NET_BUF structure will be created from external blocks. An additional block
1702 of memory will be allocated to hold reserved HeadSpace bytes of header room
1703 and existing HeadLen bytes of header, but the external blocks are shared by the
1704 net buffer to avoid data copying.
1705
1706 @param[in] ExtFragment The pointer to the data block.
1707 @param[in] ExtNum The number of the data blocks.
1708 @param[in] HeadSpace The head space to be reserved.
1709 @param[in] HeadLen The length of the protocol header. The function
1710 pulls this amount of data into a linear block.
1711 @param[in] ExtFree The pointer to the caller-provided free function.
1712 @param[in] Arg The argument passed to ExtFree when ExtFree is
1713 called.
1714
1715 @return The pointer to the net buffer built from the data blocks,
1716 or NULL if the allocation failed due to resource
1717 limit.
1718
1719 **/
1720 NET_BUF *
1721 EFIAPI
1722 NetbufFromExt (
1723 IN NET_FRAGMENT *ExtFragment,
1724 IN UINT32 ExtNum,
1725 IN UINT32 HeadSpace,
1726 IN UINT32 HeadLen,
1727 IN NET_VECTOR_EXT_FREE ExtFree,
1728 IN VOID *Arg OPTIONAL
1729 );
1730
1731 /**
1732 Build a fragment table to contain the fragments in the net buffer. This is the
1733 opposite operation of the NetbufFromExt.
1734
1735 @param[in] Nbuf Points to the net buffer.
1736 @param[in, out] ExtFragment The pointer to the data block.
1737 @param[in, out] ExtNum The number of the data blocks.
1738
1739 @retval EFI_BUFFER_TOO_SMALL The number of non-empty blocks is bigger than
1740 ExtNum.
1741 @retval EFI_SUCCESS The fragment table was built successfully.
1742
1743 **/
1744 EFI_STATUS
1745 EFIAPI
1746 NetbufBuildExt (
1747 IN NET_BUF *Nbuf,
1748 IN OUT NET_FRAGMENT *ExtFragment,
1749 IN OUT UINT32 *ExtNum
1750 );
1751
1752 /**
1753 Build a net buffer from a list of net buffers.
1754
1755 All the fragments will be collected from the list of NEW_BUF, and then a new
1756 net buffer will be created through NetbufFromExt.
1757
1758 @param[in] BufList A List of the net buffer.
1759 @param[in] HeadSpace The head space to be reserved.
1760 @param[in] HeaderLen The length of the protocol header. The function
1761 pulls this amount of data into a linear block.
1762 @param[in] ExtFree The pointer to the caller provided free function.
1763 @param[in] Arg The argument passed to ExtFree when ExtFree is called.
1764
1765 @return The pointer to the net buffer built from the list of net
1766 buffers.
1767
1768 **/
1769 NET_BUF *
1770 EFIAPI
1771 NetbufFromBufList (
1772 IN LIST_ENTRY *BufList,
1773 IN UINT32 HeadSpace,
1774 IN UINT32 HeaderLen,
1775 IN NET_VECTOR_EXT_FREE ExtFree,
1776 IN VOID *Arg OPTIONAL
1777 );
1778
1779 /**
1780 Free a list of net buffers.
1781
1782 @param[in, out] Head The pointer to the head of linked net buffers.
1783
1784 **/
1785 VOID
1786 EFIAPI
1787 NetbufFreeList (
1788 IN OUT LIST_ENTRY *Head
1789 );
1790
1791 /**
1792 Initiate the net buffer queue.
1793
1794 @param[in, out] NbufQue The pointer to the net buffer queue to be initialized.
1795
1796 **/
1797 VOID
1798 EFIAPI
1799 NetbufQueInit (
1800 IN OUT NET_BUF_QUEUE *NbufQue
1801 );
1802
1803 /**
1804 Allocate and initialize a net buffer queue.
1805
1806 @return The pointer to the allocated net buffer queue, or NULL if the
1807 allocation failed due to resource limit.
1808
1809 **/
1810 NET_BUF_QUEUE *
1811 EFIAPI
1812 NetbufQueAlloc (
1813 VOID
1814 );
1815
1816 /**
1817 Free a net buffer queue.
1818
1819 Decrease the reference count of the net buffer queue by one. The real resource
1820 free operation isn't performed until the reference count of the net buffer
1821 queue is decreased to 0.
1822
1823 @param[in] NbufQue The pointer to the net buffer queue to be freed.
1824
1825 **/
1826 VOID
1827 EFIAPI
1828 NetbufQueFree (
1829 IN NET_BUF_QUEUE *NbufQue
1830 );
1831
1832 /**
1833 Remove a net buffer from the head in the specific queue and return it.
1834
1835 @param[in, out] NbufQue The pointer to the net buffer queue.
1836
1837 @return The pointer to the net buffer removed from the specific queue,
1838 or NULL if there is no net buffer in the specific queue.
1839
1840 **/
1841 NET_BUF *
1842 EFIAPI
1843 NetbufQueRemove (
1844 IN OUT NET_BUF_QUEUE *NbufQue
1845 );
1846
1847 /**
1848 Append a net buffer to the net buffer queue.
1849
1850 @param[in, out] NbufQue The pointer to the net buffer queue.
1851 @param[in, out] Nbuf The pointer to the net buffer to be appended.
1852
1853 **/
1854 VOID
1855 EFIAPI
1856 NetbufQueAppend (
1857 IN OUT NET_BUF_QUEUE *NbufQue,
1858 IN OUT NET_BUF *Nbuf
1859 );
1860
1861 /**
1862 Copy Len bytes of data from the net buffer queue at the specific offset to the
1863 destination memory.
1864
1865 The copying operation is the same as NetbufCopy, but applies to the net buffer
1866 queue instead of the net buffer.
1867
1868 @param[in] NbufQue The pointer to the net buffer queue.
1869 @param[in] Offset The sequence number of the first byte to copy.
1870 @param[in] Len The length of the data to copy.
1871 @param[out] Dest The destination of the data to copy to.
1872
1873 @return The length of the actual copied data, or 0 if the offset
1874 specified exceeds the total size of net buffer queue.
1875
1876 **/
1877 UINT32
1878 EFIAPI
1879 NetbufQueCopy (
1880 IN NET_BUF_QUEUE *NbufQue,
1881 IN UINT32 Offset,
1882 IN UINT32 Len,
1883 OUT UINT8 *Dest
1884 );
1885
1886 /**
1887 Trim Len bytes of data from the buffer queue and free any net buffer
1888 that is completely trimmed.
1889
1890 The trimming operation is the same as NetbufTrim but applies to the net buffer
1891 queue instead of the net buffer.
1892
1893 @param[in, out] NbufQue The pointer to the net buffer queue.
1894 @param[in] Len The length of the data to trim.
1895
1896 @return The actual length of the data trimmed.
1897
1898 **/
1899 UINT32
1900 EFIAPI
1901 NetbufQueTrim (
1902 IN OUT NET_BUF_QUEUE *NbufQue,
1903 IN UINT32 Len
1904 );
1905
1906
1907 /**
1908 Flush the net buffer queue.
1909
1910 @param[in, out] NbufQue The pointer to the queue to be flushed.
1911
1912 **/
1913 VOID
1914 EFIAPI
1915 NetbufQueFlush (
1916 IN OUT NET_BUF_QUEUE *NbufQue
1917 );
1918
1919 /**
1920 Compute the checksum for a bulk of data.
1921
1922 @param[in] Bulk The pointer to the data.
1923 @param[in] Len The length of the data, in bytes.
1924
1925 @return The computed checksum.
1926
1927 **/
1928 UINT16
1929 EFIAPI
1930 NetblockChecksum (
1931 IN UINT8 *Bulk,
1932 IN UINT32 Len
1933 );
1934
1935 /**
1936 Add two checksums.
1937
1938 @param[in] Checksum1 The first checksum to be added.
1939 @param[in] Checksum2 The second checksum to be added.
1940
1941 @return The new checksum.
1942
1943 **/
1944 UINT16
1945 EFIAPI
1946 NetAddChecksum (
1947 IN UINT16 Checksum1,
1948 IN UINT16 Checksum2
1949 );
1950
1951 /**
1952 Compute the checksum for a NET_BUF.
1953
1954 @param[in] Nbuf The pointer to the net buffer.
1955
1956 @return The computed checksum.
1957
1958 **/
1959 UINT16
1960 EFIAPI
1961 NetbufChecksum (
1962 IN NET_BUF *Nbuf
1963 );
1964
1965 /**
1966 Compute the checksum for TCP/UDP pseudo header.
1967
1968 Src and Dst are in network byte order, and Len is in host byte order.
1969
1970 @param[in] Src The source address of the packet.
1971 @param[in] Dst The destination address of the packet.
1972 @param[in] Proto The protocol type of the packet.
1973 @param[in] Len The length of the packet.
1974
1975 @return The computed checksum.
1976
1977 **/
1978 UINT16
1979 EFIAPI
1980 NetPseudoHeadChecksum (
1981 IN IP4_ADDR Src,
1982 IN IP4_ADDR Dst,
1983 IN UINT8 Proto,
1984 IN UINT16 Len
1985 );
1986
1987 /**
1988 Compute the checksum for the TCP6/UDP6 pseudo header.
1989
1990 Src and Dst are in network byte order, and Len is in host byte order.
1991
1992 @param[in] Src The source address of the packet.
1993 @param[in] Dst The destination address of the packet.
1994 @param[in] NextHeader The protocol type of the packet.
1995 @param[in] Len The length of the packet.
1996
1997 @return The computed checksum.
1998
1999 **/
2000 UINT16
2001 EFIAPI
2002 NetIp6PseudoHeadChecksum (
2003 IN EFI_IPv6_ADDRESS *Src,
2004 IN EFI_IPv6_ADDRESS *Dst,
2005 IN UINT8 NextHeader,
2006 IN UINT32 Len
2007 );
2008
2009 /**
2010 The function frees the net buffer which allocated by the IP protocol. It releases
2011 only the net buffer and doesn't call the external free function.
2012
2013 This function should be called after finishing the process of mIpSec->ProcessExt()
2014 for outbound traffic. The (EFI_IPSEC2_PROTOCOL)->ProcessExt() allocates a new
2015 buffer for the ESP, so there needs a function to free the old net buffer.
2016
2017 @param[in] Nbuf The network buffer to be freed.
2018
2019 **/
2020 VOID
2021 NetIpSecNetbufFree (
2022 NET_BUF *Nbuf
2023 );
2024
2025 /**
2026 This function obtains the system guid from the smbios table.
2027
2028 @param[out] SystemGuid The pointer of the returned system guid.
2029
2030 @retval EFI_SUCCESS Successfully obtained the system guid.
2031 @retval EFI_NOT_FOUND Did not find the SMBIOS table.
2032
2033 **/
2034 EFI_STATUS
2035 EFIAPI
2036 NetLibGetSystemGuid (
2037 OUT EFI_GUID *SystemGuid
2038 );
2039
2040 #endif