]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Include/Library/NetLib.h
Update IPsec.h file to follow approved ECR which will be collected into future UEFI...
[mirror_edk2.git] / MdeModulePkg / Include / Library / NetLib.h
1 /** @file
2 This library is only intended to be used by UEFI network stack modules.
3 It provides basic functions for the UEFI network stack.
4
5 Copyright (c) 2005 - 2010, Intel Corporation. All rights reserved.<BR>
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution. The full text of the license may be found at<BR>
9 http://opensource.org/licenses/bsd-license.php
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #ifndef _NET_LIB_H_
17 #define _NET_LIB_H_
18
19 #include <Protocol/Ip6.h>
20
21 #include <Library/BaseLib.h>
22
23 typedef UINT32 IP4_ADDR;
24 typedef UINT32 TCP_SEQNO;
25 typedef UINT16 TCP_PORTNO;
26
27
28 #define NET_ETHER_ADDR_LEN 6
29 #define NET_IFTYPE_ETHERNET 0x01
30
31 #define NET_VLAN_TAG_LEN 4
32 #define ETHER_TYPE_VLAN 0x8100
33
34 #define EFI_IP_PROTO_UDP 0x11
35 #define EFI_IP_PROTO_TCP 0x06
36 #define EFI_IP_PROTO_ICMP 0x01
37 #define IP4_PROTO_IGMP 0x02
38 #define IP6_ICMP 58
39
40 //
41 // The address classification
42 //
43 #define IP4_ADDR_CLASSA 1
44 #define IP4_ADDR_CLASSB 2
45 #define IP4_ADDR_CLASSC 3
46 #define IP4_ADDR_CLASSD 4
47 #define IP4_ADDR_CLASSE 5
48
49 #define IP4_MASK_NUM 33
50 #define IP6_PREFIX_NUM 129
51
52 #define IP6_HOP_BY_HOP 0
53 #define IP6_DESTINATION 60
54 #define IP6_ROUTING 43
55 #define IP6_FRAGMENT 44
56 #define IP6_AH 51
57 #define IP6_ESP 50
58 #define IP6_NO_NEXT_HEADER 59
59
60 #define IP_VERSION_4 4
61 #define IP_VERSION_6 6
62
63 #pragma pack(1)
64
65 //
66 // Ethernet head definition
67 //
68 typedef struct {
69 UINT8 DstMac [NET_ETHER_ADDR_LEN];
70 UINT8 SrcMac [NET_ETHER_ADDR_LEN];
71 UINT16 EtherType;
72 } ETHER_HEAD;
73
74 //
75 // 802.1Q VLAN Tag Control Information
76 //
77 typedef union {
78 struct {
79 UINT16 Vid : 12; // Unique VLAN identifier (0 to 4094)
80 UINT16 Cfi : 1; // Canonical Format Indicator
81 UINT16 Priority : 3; // 802.1Q priority level (0 to 7)
82 } Bits;
83 UINT16 Uint16;
84 } VLAN_TCI;
85
86 #define VLAN_TCI_CFI_CANONICAL_MAC 0
87 #define VLAN_TCI_CFI_NON_CANONICAL_MAC 1
88
89 //
90 // The EFI_IP4_HEADER is hard to use because the source and
91 // destination address are defined as EFI_IPv4_ADDRESS, which
92 // is a structure. Two structures can't be compared or masked
93 // directly. This is why there is an internal representation.
94 //
95 typedef struct {
96 UINT8 HeadLen : 4;
97 UINT8 Ver : 4;
98 UINT8 Tos;
99 UINT16 TotalLen;
100 UINT16 Id;
101 UINT16 Fragment;
102 UINT8 Ttl;
103 UINT8 Protocol;
104 UINT16 Checksum;
105 IP4_ADDR Src;
106 IP4_ADDR Dst;
107 } IP4_HEAD;
108
109
110 //
111 // ICMP head definition. Each ICMP message is categorized as either an error
112 // message or query message. Two message types have their own head format.
113 //
114 typedef struct {
115 UINT8 Type;
116 UINT8 Code;
117 UINT16 Checksum;
118 } IP4_ICMP_HEAD;
119
120 typedef struct {
121 IP4_ICMP_HEAD Head;
122 UINT32 Fourth; // 4th filed of the head, it depends on Type.
123 IP4_HEAD IpHead;
124 } IP4_ICMP_ERROR_HEAD;
125
126 typedef struct {
127 IP4_ICMP_HEAD Head;
128 UINT16 Id;
129 UINT16 Seq;
130 } IP4_ICMP_QUERY_HEAD;
131
132 typedef struct {
133 UINT8 Type;
134 UINT8 Code;
135 UINT16 Checksum;
136 } IP6_ICMP_HEAD;
137
138 typedef struct {
139 IP6_ICMP_HEAD Head;
140 UINT32 Fourth;
141 EFI_IP6_HEADER IpHead;
142 } IP6_ICMP_ERROR_HEAD;
143
144 typedef struct {
145 IP6_ICMP_HEAD Head;
146 UINT32 Fourth;
147 } IP6_ICMP_INFORMATION_HEAD;
148
149 //
150 // UDP header definition
151 //
152 typedef struct {
153 UINT16 SrcPort;
154 UINT16 DstPort;
155 UINT16 Length;
156 UINT16 Checksum;
157 } EFI_UDP_HEADER;
158
159 //
160 // TCP header definition
161 //
162 typedef struct {
163 TCP_PORTNO SrcPort;
164 TCP_PORTNO DstPort;
165 TCP_SEQNO Seq;
166 TCP_SEQNO Ack;
167 UINT8 Res : 4;
168 UINT8 HeadLen : 4;
169 UINT8 Flag;
170 UINT16 Wnd;
171 UINT16 Checksum;
172 UINT16 Urg;
173 } TCP_HEAD;
174
175 #pragma pack()
176
177 #define NET_MAC_EQUAL(pMac1, pMac2, Len) \
178 (CompareMem ((pMac1), (pMac2), Len) == 0)
179
180 #define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \
181 (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))
182
183 #define NTOHL(x) SwapBytes32 (x)
184
185 #define HTONL(x) NTOHL(x)
186
187 #define NTOHS(x) SwapBytes16 (x)
188
189 #define HTONS(x) NTOHS(x)
190 #define NTOHLL(x) SwapBytes64 (x)
191 #define HTONLL(x) NTOHLL(x)
192 #define NTOHLLL(x) Ip6Swap128 (x)
193 #define HTONLLL(x) NTOHLLL(x)
194
195 //
196 // Test the IP's attribute, All the IPs are in host byte order.
197 //
198 #define IP4_IS_MULTICAST(Ip) (((Ip) & 0xF0000000) == 0xE0000000)
199 #define IP4_IS_LOCAL_BROADCAST(Ip) ((Ip) == 0xFFFFFFFF)
200 #define IP4_NET_EQUAL(Ip1, Ip2, NetMask) (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))
201 #define IP4_IS_VALID_NETMASK(Ip) (NetGetMaskLength (Ip) != IP4_MASK_NUM)
202
203 #define IP6_IS_MULTICAST(Ip6) (((Ip6)->Addr[0]) == 0xFF)
204
205 //
206 // Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.
207 //
208 #define EFI_IP4(EfiIpAddr) (*(IP4_ADDR *) ((EfiIpAddr).Addr))
209 #define EFI_NTOHL(EfiIp) (NTOHL (EFI_IP4 ((EfiIp))))
210 #define EFI_IP4_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)
211
212 #define EFI_IP6_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0)
213
214 #define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS)))
215 #define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS)))
216
217 //
218 // The debug level definition. This value is also used as the
219 // syslog's servity level. Don't change it.
220 //
221 #define NETDEBUG_LEVEL_TRACE 5
222 #define NETDEBUG_LEVEL_WARNING 4
223 #define NETDEBUG_LEVEL_ERROR 3
224
225 //
226 // Network debug message is sent out as syslog packet.
227 //
228 #define NET_SYSLOG_FACILITY 16 // Syslog local facility local use
229 #define NET_SYSLOG_PACKET_LEN 512
230 #define NET_SYSLOG_TX_TIMEOUT (500 * 1000 * 10) // 500ms
231 #define NET_DEBUG_MSG_LEN 470 // 512 - (ether+ip4+udp4 head length)
232
233 //
234 // The debug output expects the ASCII format string, Use %a to print ASCII
235 // string, and %s to print UNICODE string. PrintArg must be enclosed in ().
236 // For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name));
237 //
238 #define NET_DEBUG_TRACE(Module, PrintArg) \
239 NetDebugOutput ( \
240 NETDEBUG_LEVEL_TRACE, \
241 Module, \
242 __FILE__, \
243 __LINE__, \
244 NetDebugASPrint PrintArg \
245 )
246
247 #define NET_DEBUG_WARNING(Module, PrintArg) \
248 NetDebugOutput ( \
249 NETDEBUG_LEVEL_WARNING, \
250 Module, \
251 __FILE__, \
252 __LINE__, \
253 NetDebugASPrint PrintArg \
254 )
255
256 #define NET_DEBUG_ERROR(Module, PrintArg) \
257 NetDebugOutput ( \
258 NETDEBUG_LEVEL_ERROR, \
259 Module, \
260 __FILE__, \
261 __LINE__, \
262 NetDebugASPrint PrintArg \
263 )
264
265 /**
266 Allocate a buffer, then format the message to it. This is a
267 help function for the NET_DEBUG_XXX macros. The PrintArg of
268 these macros treats the variable length print parameters as a
269 single parameter, and pass it to the NetDebugASPrint. For
270 example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))
271 if extracted to:
272
273 NetDebugOutput (
274 NETDEBUG_LEVEL_TRACE,
275 "Tcp",
276 __FILE__,
277 __LINE__,
278 NetDebugASPrint ("State transit to %a\n", Name)
279 )
280
281 @param Format The ASCII format string.
282 @param ... The variable length parameter whose format is determined
283 by the Format string.
284
285 @return The buffer containing the formatted message,
286 or NULL if memory allocation failed.
287
288 **/
289 CHAR8 *
290 EFIAPI
291 NetDebugASPrint (
292 IN CHAR8 *Format,
293 ...
294 );
295
296 /**
297 Builds an UDP4 syslog packet and send it using SNP.
298
299 This function will locate a instance of SNP then send the message through it.
300 Because it isn't open the SNP BY_DRIVER, apply caution when using it.
301
302 @param Level The servity level of the message.
303 @param Module The Moudle that generates the log.
304 @param File The file that contains the log.
305 @param Line The exact line that contains the log.
306 @param Message The user message to log.
307
308 @retval EFI_INVALID_PARAMETER Any input parameter is invalid.
309 @retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet
310 @retval EFI_SUCCESS The log is discard because that it is more verbose
311 than the mNetDebugLevelMax. Or, it has been sent out.
312 **/
313 EFI_STATUS
314 EFIAPI
315 NetDebugOutput (
316 IN UINT32 Level,
317 IN UINT8 *Module,
318 IN UINT8 *File,
319 IN UINT32 Line,
320 IN UINT8 *Message
321 );
322
323
324 /**
325 Return the length of the mask.
326
327 Return the length of the mask. Valid values are 0 to 32.
328 If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.
329 NetMask is in the host byte order.
330
331 @param[in] NetMask The netmask to get the length from.
332
333 @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid.
334
335 **/
336 INTN
337 EFIAPI
338 NetGetMaskLength (
339 IN IP4_ADDR NetMask
340 );
341
342 /**
343 Return the class of the IP address, such as class A, B, C.
344 Addr is in host byte order.
345
346 The address of class A starts with 0.
347 If the address belong to class A, return IP4_ADDR_CLASSA.
348 The address of class B starts with 10.
349 If the address belong to class B, return IP4_ADDR_CLASSB.
350 The address of class C starts with 110.
351 If the address belong to class C, return IP4_ADDR_CLASSC.
352 The address of class D starts with 1110.
353 If the address belong to class D, return IP4_ADDR_CLASSD.
354 The address of class E starts with 1111.
355 If the address belong to class E, return IP4_ADDR_CLASSE.
356
357
358 @param[in] Addr The address to get the class from.
359
360 @return IP address class, such as IP4_ADDR_CLASSA.
361
362 **/
363 INTN
364 EFIAPI
365 NetGetIpClass (
366 IN IP4_ADDR Addr
367 );
368
369 /**
370 Check whether the IP is a valid unicast address according to
371 the netmask. If NetMask is zero, use the IP address's class to get the default mask.
372
373 If Ip is 0, IP is not a valid unicast address.
374 Class D address is used for multicasting and class E address is reserved for future. If Ip
375 belongs to class D or class E, Ip is not a valid unicast address.
376 If all bits of the host address of Ip are 0 or 1, Ip is not a valid unicast address.
377
378 @param[in] Ip The IP to check against.
379 @param[in] NetMask The mask of the IP.
380
381 @return TRUE if Ip is a valid unicast address on the network, otherwise FALSE.
382
383 **/
384 BOOLEAN
385 EFIAPI
386 NetIp4IsUnicast (
387 IN IP4_ADDR Ip,
388 IN IP4_ADDR NetMask
389 );
390
391 /**
392 Check whether the incoming IPv6 address is a valid unicast address.
393
394 If the address is a multicast address has binary 0xFF at the start, it is not
395 a valid unicast address. If the address is unspecified ::, it is not a valid
396 unicast address to be assigned to any node. If the address is loopback address
397 ::1, it is also not a valid unicast address to be assigned to any physical
398 interface.
399
400 @param[in] Ip6 The IPv6 address to check against.
401
402 @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.
403
404 **/
405 BOOLEAN
406 EFIAPI
407 NetIp6IsValidUnicast (
408 IN EFI_IPv6_ADDRESS *Ip6
409 );
410
411
412 /**
413 Check whether the incoming Ipv6 address is the unspecified address or not.
414
415 @param[in] Ip6 - Ip6 address, in network order.
416
417 @retval TRUE - Yes, incoming Ipv6 address is the unspecified address.
418 @retval FALSE - The incoming Ipv6 address is not the unspecified address
419
420 **/
421 BOOLEAN
422 EFIAPI
423 NetIp6IsUnspecifiedAddr (
424 IN EFI_IPv6_ADDRESS *Ip6
425 );
426
427 /**
428 Check whether the incoming Ipv6 address is a link-local address.
429
430 @param[in] Ip6 - Ip6 address, in network order.
431
432 @retval TRUE - The incoming Ipv6 address is a link-local address.
433 @retval FALSE - The incoming Ipv6 address is not a link-local address.
434
435 **/
436 BOOLEAN
437 EFIAPI
438 NetIp6IsLinkLocalAddr (
439 IN EFI_IPv6_ADDRESS *Ip6
440 );
441
442 /**
443 Check whether the Ipv6 address1 and address2 are on the connected network.
444
445 @param[in] Ip1 - Ip6 address1, in network order.
446 @param[in] Ip2 - Ip6 address2, in network order.
447 @param[in] PrefixLength - The prefix length of the checking net.
448
449 @retval TRUE - Yes, the Ipv6 address1 and address2 are connected.
450 @retval FALSE - No the Ipv6 address1 and address2 are not connected.
451
452 **/
453 BOOLEAN
454 EFIAPI
455 NetIp6IsNetEqual (
456 EFI_IPv6_ADDRESS *Ip1,
457 EFI_IPv6_ADDRESS *Ip2,
458 UINT8 PrefixLength
459 );
460
461 /**
462 Switches the endianess of an IPv6 address.
463
464 This function swaps the bytes in a 128-bit IPv6 address to switch the value
465 from little endian to big endian or vice versa. The byte swapped value is
466 returned.
467
468 @param Ip6 Points to an IPv6 address.
469
470 @return The byte swapped IPv6 address.
471
472 **/
473 EFI_IPv6_ADDRESS *
474 EFIAPI
475 Ip6Swap128 (
476 EFI_IPv6_ADDRESS *Ip6
477 );
478
479 extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM];
480
481
482 extern EFI_IPv4_ADDRESS mZeroIp4Addr;
483
484 #define NET_IS_DIGIT(Ch) (('0' <= (Ch)) && ((Ch) <= '9'))
485 #define NET_ROUNDUP(size, unit) (((size) + (unit) - 1) & (~((unit) - 1)))
486 #define NET_IS_LOWER_CASE_CHAR(Ch) (('a' <= (Ch)) && ((Ch) <= 'z'))
487 #define NET_IS_UPPER_CASE_CHAR(Ch) (('A' <= (Ch)) && ((Ch) <= 'Z'))
488
489 #define TICKS_PER_MS 10000U
490 #define TICKS_PER_SECOND 10000000U
491
492 #define NET_RANDOM(Seed) ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)
493
494 /**
495 Extract a UINT32 from a byte stream.
496
497 This function copies a UINT32 from a byte stream, and then converts it from Network
498 byte order to host byte order. Use this function to avoid alignment error.
499
500 @param[in] Buf The buffer to extract the UINT32.
501
502 @return The UINT32 extracted.
503
504 **/
505 UINT32
506 EFIAPI
507 NetGetUint32 (
508 IN UINT8 *Buf
509 );
510
511 /**
512 Puts a UINT32 into the byte stream in network byte order.
513
514 Converts a UINT32 from host byte order to network byte order, then copies it to the
515 byte stream.
516
517 @param[in, out] Buf The buffer in which to put the UINT32.
518 @param[in] Data The data to be converted and put into the byte stream.
519
520 **/
521 VOID
522 EFIAPI
523 NetPutUint32 (
524 IN OUT UINT8 *Buf,
525 IN UINT32 Data
526 );
527
528 /**
529 Initialize a random seed using current time.
530
531 Get current time first. Then initialize a random seed based on some basic
532 mathematical operations on the hour, day, minute, second, nanosecond and year
533 of the current time.
534
535 @return The random seed, initialized with current time.
536
537 **/
538 UINT32
539 EFIAPI
540 NetRandomInitSeed (
541 VOID
542 );
543
544
545 #define NET_LIST_USER_STRUCT(Entry, Type, Field) \
546 BASE_CR(Entry, Type, Field)
547
548 #define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig) \
549 CR(Entry, Type, Field, Sig)
550
551 //
552 // Iterate through the double linked list. It is NOT delete safe
553 //
554 #define NET_LIST_FOR_EACH(Entry, ListHead) \
555 for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)
556
557 //
558 // Iterate through the double linked list. This is delete-safe.
559 // Don't touch NextEntry. Also, don't use this macro if list
560 // entries other than the Entry may be deleted when processing
561 // the current Entry.
562 //
563 #define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \
564 for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \
565 Entry != (ListHead); \
566 Entry = NextEntry, NextEntry = Entry->ForwardLink \
567 )
568
569 //
570 // Make sure the list isn't empty before getting the first/last record.
571 //
572 #define NET_LIST_HEAD(ListHead, Type, Field) \
573 NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)
574
575 #define NET_LIST_TAIL(ListHead, Type, Field) \
576 NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)
577
578
579 /**
580 Remove the first node entry on the list, and return the removed node entry.
581
582 Removes the first node entry from a doubly linked list. It is up to the caller of
583 this function to release the memory used by the first node, if that is required. On
584 exit, the removed node is returned.
585
586 If Head is NULL, then ASSERT().
587 If Head was not initialized, then ASSERT().
588 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
589 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
590 then ASSERT().
591
592 @param[in, out] Head The list header.
593
594 @return The first node entry that is removed from the list, NULL if the list is empty.
595
596 **/
597 LIST_ENTRY *
598 EFIAPI
599 NetListRemoveHead (
600 IN OUT LIST_ENTRY *Head
601 );
602
603 /**
604 Remove the last node entry on the list and return the removed node entry.
605
606 Removes the last node entry from a doubly linked list. It is up to the caller of
607 this function to release the memory used by the first node, if that is required. On
608 exit, the removed node is returned.
609
610 If Head is NULL, then ASSERT().
611 If Head was not initialized, then ASSERT().
612 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
613 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
614 then ASSERT().
615
616 @param[in, out] Head The list head.
617
618 @return The last node entry that is removed from the list, NULL if the list is empty.
619
620 **/
621 LIST_ENTRY *
622 EFIAPI
623 NetListRemoveTail (
624 IN OUT LIST_ENTRY *Head
625 );
626
627 /**
628 Insert a new node entry after a designated node entry of a doubly linked list.
629
630 Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry
631 of the doubly linked list.
632
633 @param[in, out] PrevEntry The entry after which to insert.
634 @param[in, out] NewEntry The new entry to insert.
635
636 **/
637 VOID
638 EFIAPI
639 NetListInsertAfter (
640 IN OUT LIST_ENTRY *PrevEntry,
641 IN OUT LIST_ENTRY *NewEntry
642 );
643
644 /**
645 Insert a new node entry before a designated node entry of a doubly linked list.
646
647 Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry
648 of the doubly linked list.
649
650 @param[in, out] PostEntry The entry to insert before.
651 @param[in, out] NewEntry The new entry to insert.
652
653 **/
654 VOID
655 EFIAPI
656 NetListInsertBefore (
657 IN OUT LIST_ENTRY *PostEntry,
658 IN OUT LIST_ENTRY *NewEntry
659 );
660
661
662 //
663 // Object container: EFI network stack spec defines various kinds of
664 // tokens. The drivers can share code to manage those objects.
665 //
666 typedef struct {
667 LIST_ENTRY Link;
668 VOID *Key;
669 VOID *Value;
670 } NET_MAP_ITEM;
671
672 typedef struct {
673 LIST_ENTRY Used;
674 LIST_ENTRY Recycled;
675 UINTN Count;
676 } NET_MAP;
677
678 #define NET_MAP_INCREAMENT 64
679
680 /**
681 Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.
682
683 Initialize the forward and backward links of two head nodes donated by Map->Used
684 and Map->Recycled of two doubly linked lists.
685 Initializes the count of the <Key, Value> pairs in the netmap to zero.
686
687 If Map is NULL, then ASSERT().
688 If the address of Map->Used is NULL, then ASSERT().
689 If the address of Map->Recycled is NULl, then ASSERT().
690
691 @param[in, out] Map The netmap to initialize.
692
693 **/
694 VOID
695 EFIAPI
696 NetMapInit (
697 IN OUT NET_MAP *Map
698 );
699
700 /**
701 To clean up the netmap, that is, release allocated memories.
702
703 Removes all nodes of the Used doubly linked list and frees memory of all related netmap items.
704 Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.
705 The number of the <Key, Value> pairs in the netmap is set to zero.
706
707 If Map is NULL, then ASSERT().
708
709 @param[in, out] Map The netmap to clean up.
710
711 **/
712 VOID
713 EFIAPI
714 NetMapClean (
715 IN OUT NET_MAP *Map
716 );
717
718 /**
719 Test whether the netmap is empty and return true if it is.
720
721 If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.
722
723 If Map is NULL, then ASSERT().
724
725
726 @param[in] Map The net map to test.
727
728 @return TRUE if the netmap is empty, otherwise FALSE.
729
730 **/
731 BOOLEAN
732 EFIAPI
733 NetMapIsEmpty (
734 IN NET_MAP *Map
735 );
736
737 /**
738 Return the number of the <Key, Value> pairs in the netmap.
739
740 @param[in] Map The netmap to get the entry number.
741
742 @return The entry number in the netmap.
743
744 **/
745 UINTN
746 EFIAPI
747 NetMapGetCount (
748 IN NET_MAP *Map
749 );
750
751 /**
752 Allocate an item to save the <Key, Value> pair to the head of the netmap.
753
754 Allocate an item to save the <Key, Value> pair and add corresponding node entry
755 to the beginning of the Used doubly linked list. The number of the <Key, Value>
756 pairs in the netmap increase by 1.
757
758 If Map is NULL, then ASSERT().
759
760 @param[in, out] Map The netmap to insert into.
761 @param[in] Key The user's key.
762 @param[in] Value The user's value for the key.
763
764 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
765 @retval EFI_SUCCESS The item is inserted to the head.
766
767 **/
768 EFI_STATUS
769 EFIAPI
770 NetMapInsertHead (
771 IN OUT NET_MAP *Map,
772 IN VOID *Key,
773 IN VOID *Value OPTIONAL
774 );
775
776 /**
777 Allocate an item to save the <Key, Value> pair to the tail of the netmap.
778
779 Allocate an item to save the <Key, Value> pair and add corresponding node entry
780 to the tail of the Used doubly linked list. The number of the <Key, Value>
781 pairs in the netmap increase by 1.
782
783 If Map is NULL, then ASSERT().
784
785 @param[in, out] Map The netmap to insert into.
786 @param[in] Key The user's key.
787 @param[in] Value The user's value for the key.
788
789 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
790 @retval EFI_SUCCESS The item is inserted to the tail.
791
792 **/
793 EFI_STATUS
794 EFIAPI
795 NetMapInsertTail (
796 IN OUT NET_MAP *Map,
797 IN VOID *Key,
798 IN VOID *Value OPTIONAL
799 );
800
801 /**
802 Finds the key in the netmap and returns the point to the item containing the Key.
803
804 Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every
805 item with the key to search. It returns the point to the item contains the Key if found.
806
807 If Map is NULL, then ASSERT().
808
809 @param[in] Map The netmap to search within.
810 @param[in] Key The key to search.
811
812 @return The point to the item contains the Key, or NULL if Key isn't in the map.
813
814 **/
815 NET_MAP_ITEM *
816 EFIAPI
817 NetMapFindKey (
818 IN NET_MAP *Map,
819 IN VOID *Key
820 );
821
822 /**
823 Remove the node entry of the item from the netmap and return the key of the removed item.
824
825 Remove the node entry of the item from the Used doubly linked list of the netmap.
826 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
827 entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,
828 Value will point to the value of the item. It returns the key of the removed item.
829
830 If Map is NULL, then ASSERT().
831 If Item is NULL, then ASSERT().
832 if item in not in the netmap, then ASSERT().
833
834 @param[in, out] Map The netmap to remove the item from.
835 @param[in, out] Item The item to remove.
836 @param[out] Value The variable to receive the value if not NULL.
837
838 @return The key of the removed item.
839
840 **/
841 VOID *
842 EFIAPI
843 NetMapRemoveItem (
844 IN OUT NET_MAP *Map,
845 IN OUT NET_MAP_ITEM *Item,
846 OUT VOID **Value OPTIONAL
847 );
848
849 /**
850 Remove the first node entry on the netmap and return the key of the removed item.
851
852 Remove the first node entry from the Used doubly linked list of the netmap.
853 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
854 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
855 parameter Value will point to the value of the item. It returns the key of the removed item.
856
857 If Map is NULL, then ASSERT().
858 If the Used doubly linked list is empty, then ASSERT().
859
860 @param[in, out] Map The netmap to remove the head from.
861 @param[out] Value The variable to receive the value if not NULL.
862
863 @return The key of the item removed.
864
865 **/
866 VOID *
867 EFIAPI
868 NetMapRemoveHead (
869 IN OUT NET_MAP *Map,
870 OUT VOID **Value OPTIONAL
871 );
872
873 /**
874 Remove the last node entry on the netmap and return the key of the removed item.
875
876 Remove the last node entry from the Used doubly linked list of the netmap.
877 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
878 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
879 parameter Value will point to the value of the item. It returns the key of the removed item.
880
881 If Map is NULL, then ASSERT().
882 If the Used doubly linked list is empty, then ASSERT().
883
884 @param[in, out] Map The netmap to remove the tail from.
885 @param[out] Value The variable to receive the value if not NULL.
886
887 @return The key of the item removed.
888
889 **/
890 VOID *
891 EFIAPI
892 NetMapRemoveTail (
893 IN OUT NET_MAP *Map,
894 OUT VOID **Value OPTIONAL
895 );
896
897 typedef
898 EFI_STATUS
899 (EFIAPI *NET_MAP_CALLBACK) (
900 IN NET_MAP *Map,
901 IN NET_MAP_ITEM *Item,
902 IN VOID *Arg
903 );
904
905 /**
906 Iterate through the netmap and call CallBack for each item.
907
908 It will contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break
909 from the loop. It returns the CallBack's last return value. This function is
910 delete safe for the current item.
911
912 If Map is NULL, then ASSERT().
913 If CallBack is NULL, then ASSERT().
914
915 @param[in] Map The Map to iterate through.
916 @param[in] CallBack The callback function to call for each item.
917 @param[in] Arg The opaque parameter to the callback.
918
919 @retval EFI_SUCCESS There is no item in the netmap, or CallBack for each item
920 returns EFI_SUCCESS.
921 @retval Others It returns the CallBack's last return value.
922
923 **/
924 EFI_STATUS
925 EFIAPI
926 NetMapIterate (
927 IN NET_MAP *Map,
928 IN NET_MAP_CALLBACK CallBack,
929 IN VOID *Arg OPTIONAL
930 );
931
932
933 //
934 // Helper functions to implement driver binding and service binding protocols.
935 //
936 /**
937 Create a child of the service that is identified by ServiceBindingGuid.
938
939 Get the ServiceBinding Protocol first, then use it to create a child.
940
941 If ServiceBindingGuid is NULL, then ASSERT().
942 If ChildHandle is NULL, then ASSERT().
943
944 @param[in] Controller The controller which has the service installed.
945 @param[in] Image The image handle used to open service.
946 @param[in] ServiceBindingGuid The service's Guid.
947 @param[in, out] ChildHandle The handle to receive the created child.
948
949 @retval EFI_SUCCESS The child was successfully created.
950 @retval Others Failed to create the child.
951
952 **/
953 EFI_STATUS
954 EFIAPI
955 NetLibCreateServiceChild (
956 IN EFI_HANDLE Controller,
957 IN EFI_HANDLE Image,
958 IN EFI_GUID *ServiceBindingGuid,
959 IN OUT EFI_HANDLE *ChildHandle
960 );
961
962 /**
963 Destroy a child of the service that is identified by ServiceBindingGuid.
964
965 Get the ServiceBinding Protocol first, then use it to destroy a child.
966
967 If ServiceBindingGuid is NULL, then ASSERT().
968
969 @param[in] Controller The controller which has the service installed.
970 @param[in] Image The image handle used to open service.
971 @param[in] ServiceBindingGuid The service's Guid.
972 @param[in] ChildHandle The child to destroy.
973
974 @retval EFI_SUCCESS The child was destroyed.
975 @retval Others Failed to destroy the child.
976
977 **/
978 EFI_STATUS
979 EFIAPI
980 NetLibDestroyServiceChild (
981 IN EFI_HANDLE Controller,
982 IN EFI_HANDLE Image,
983 IN EFI_GUID *ServiceBindingGuid,
984 IN EFI_HANDLE ChildHandle
985 );
986
987 /**
988 Get handle with Simple Network Protocol installed on it.
989
990 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
991 If Simple Network Protocol is already installed on the ServiceHandle, the
992 ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,
993 try to find its parent handle with SNP installed.
994
995 @param[in] ServiceHandle The handle where network service binding protocols are
996 installed on.
997 @param[out] Snp The pointer to store the address of the SNP instance.
998 This is an optional parameter that may be NULL.
999
1000 @return The SNP handle, or NULL if not found.
1001
1002 **/
1003 EFI_HANDLE
1004 EFIAPI
1005 NetLibGetSnpHandle (
1006 IN EFI_HANDLE ServiceHandle,
1007 OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL
1008 );
1009
1010 /**
1011 Retrieve VLAN ID of a VLAN device handle.
1012
1013 Search VLAN device path node in Device Path of specified ServiceHandle and
1014 return its VLAN ID. If no VLAN device path node found, then this ServiceHandle
1015 is not a VLAN device handle, and 0 will be returned.
1016
1017 @param[in] ServiceHandle The handle where network service binding protocols are
1018 installed on.
1019
1020 @return VLAN ID of the device handle, or 0 if not a VLAN device.
1021
1022 **/
1023 UINT16
1024 EFIAPI
1025 NetLibGetVlanId (
1026 IN EFI_HANDLE ServiceHandle
1027 );
1028
1029 /**
1030 Find VLAN device handle with specified VLAN ID.
1031
1032 The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.
1033 This function will append VLAN device path node to the parent device path,
1034 and then use LocateDevicePath() to find the correct VLAN device handle.
1035
1036 @param[in] ControllerHandle The handle where network service binding protocols are
1037 installed on.
1038 @param[in] VlanId The configured VLAN ID for the VLAN device.
1039
1040 @return The VLAN device handle, or NULL if not found.
1041
1042 **/
1043 EFI_HANDLE
1044 EFIAPI
1045 NetLibGetVlanHandle (
1046 IN EFI_HANDLE ControllerHandle,
1047 IN UINT16 VlanId
1048 );
1049
1050 /**
1051 Get MAC address associated with the network service handle.
1052
1053 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1054 If SNP is installed on the ServiceHandle or its parent handle, MAC address will
1055 be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.
1056
1057 @param[in] ServiceHandle The handle where network service binding protocols are
1058 installed on.
1059 @param[out] MacAddress The pointer to store the returned MAC address.
1060 @param[out] AddressSize The length of returned MAC address.
1061
1062 @retval EFI_SUCCESS MAC address was returned successfully.
1063 @retval Others Failed to get SNP mode data.
1064
1065 **/
1066 EFI_STATUS
1067 EFIAPI
1068 NetLibGetMacAddress (
1069 IN EFI_HANDLE ServiceHandle,
1070 OUT EFI_MAC_ADDRESS *MacAddress,
1071 OUT UINTN *AddressSize
1072 );
1073
1074 /**
1075 Convert MAC address of the NIC associated with specified Service Binding Handle
1076 to a unicode string. Callers are responsible for freeing the string storage.
1077
1078 Locate simple network protocol associated with the Service Binding Handle and
1079 get the mac address from SNP. Then convert the mac address into a unicode
1080 string. It takes 2 unicode characters to represent a 1 byte binary buffer.
1081 Plus one unicode character for the null-terminator.
1082
1083 @param[in] ServiceHandle The handle where network service binding protocol is
1084 installed.
1085 @param[in] ImageHandle The image handle used to act as the agent handle to
1086 get the simple network protocol.
1087 @param[out] MacString The pointer to store the address of the string
1088 representation of the mac address.
1089
1090 @retval EFI_SUCCESS Converted the mac address a unicode string successfully.
1091 @retval EFI_OUT_OF_RESOURCES There are not enough memory resources.
1092 @retval Others Failed to open the simple network protocol.
1093
1094 **/
1095 EFI_STATUS
1096 EFIAPI
1097 NetLibGetMacString (
1098 IN EFI_HANDLE ServiceHandle,
1099 IN EFI_HANDLE ImageHandle,
1100 OUT CHAR16 **MacString
1101 );
1102
1103 /**
1104 Detect media status for specified network device.
1105
1106 The underlying UNDI driver may or may not support reporting media status from
1107 GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine
1108 will try to invoke Snp->GetStatus() to get the media status. If media is already
1109 present, it returns directly. If media is not present, it will stop SNP and then
1110 restart SNP to get the latest media status. This provides an opportunity to get
1111 the correct media status for old UNDI driver, which doesn't support reporting
1112 media status from GET_STATUS command.
1113 Note: there are two limitations for the current algorithm:
1114 1) For UNDI with this capability, when the cable is not attached, there will
1115 be an redundant Stop/Start() process.
1116 2) for UNDI without this capability, in case that network cable is attached when
1117 Snp->Initialize() is invoked while network cable is unattached later,
1118 NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer
1119 apps to wait for timeout time.
1120
1121 @param[in] ServiceHandle The handle where network service binding protocols are
1122 installed.
1123 @param[out] MediaPresent The pointer to store the media status.
1124
1125 @retval EFI_SUCCESS Media detection success.
1126 @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle.
1127 @retval EFI_UNSUPPORTED The network device does not support media detection.
1128 @retval EFI_DEVICE_ERROR SNP is in an unknown state.
1129
1130 **/
1131 EFI_STATUS
1132 EFIAPI
1133 NetLibDetectMedia (
1134 IN EFI_HANDLE ServiceHandle,
1135 OUT BOOLEAN *MediaPresent
1136 );
1137
1138 /**
1139 Create an IPv4 device path node.
1140
1141 The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.
1142 The header subtype of IPv4 device path node is MSG_IPv4_DP.
1143 The length of the IPv4 device path node in bytes is 19.
1144 Get other information from parameters to make up the whole IPv4 device path node.
1145
1146 @param[in, out] Node The pointer to the IPv4 device path node.
1147 @param[in] Controller The controller handle.
1148 @param[in] LocalIp The local IPv4 address.
1149 @param[in] LocalPort The local port.
1150 @param[in] RemoteIp The remote IPv4 address.
1151 @param[in] RemotePort The remote port.
1152 @param[in] Protocol The protocol type in the IP header.
1153 @param[in] UseDefaultAddress Whether this instance is using default address or not.
1154
1155 **/
1156 VOID
1157 EFIAPI
1158 NetLibCreateIPv4DPathNode (
1159 IN OUT IPv4_DEVICE_PATH *Node,
1160 IN EFI_HANDLE Controller,
1161 IN IP4_ADDR LocalIp,
1162 IN UINT16 LocalPort,
1163 IN IP4_ADDR RemoteIp,
1164 IN UINT16 RemotePort,
1165 IN UINT16 Protocol,
1166 IN BOOLEAN UseDefaultAddress
1167 );
1168
1169 /**
1170 Create an IPv6 device path node.
1171
1172 The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.
1173 The header subtype of IPv6 device path node is MSG_IPv6_DP.
1174 The length of the IPv6 device path node in bytes is 43.
1175 Get other information from parameters to make up the whole IPv6 device path node.
1176
1177 @param[in, out] Node The pointer to the IPv6 device path node.
1178 @param[in] Controller The controller handle.
1179 @param[in] LocalIp The local IPv6 address.
1180 @param[in] LocalPort The local port.
1181 @param[in] RemoteIp The remote IPv6 address.
1182 @param[in] RemotePort The remote port.
1183 @param[in] Protocol The protocol type in the IP header.
1184
1185 **/
1186 VOID
1187 EFIAPI
1188 NetLibCreateIPv6DPathNode (
1189 IN OUT IPv6_DEVICE_PATH *Node,
1190 IN EFI_HANDLE Controller,
1191 IN EFI_IPv6_ADDRESS *LocalIp,
1192 IN UINT16 LocalPort,
1193 IN EFI_IPv6_ADDRESS *RemoteIp,
1194 IN UINT16 RemotePort,
1195 IN UINT16 Protocol
1196 );
1197
1198
1199 /**
1200 Find the UNDI/SNP handle from controller and protocol GUID.
1201
1202 For example, IP will open an MNP child to transmit/receive
1203 packets. When MNP is stopped, IP should also be stopped. IP
1204 needs to find its own private data that is related the IP's
1205 service binding instance that is installed on the UNDI/SNP handle.
1206 The controller is then either an MNP or an ARP child handle. Note that
1207 IP opens these handles using BY_DRIVER. Use that infomation to get the
1208 UNDI/SNP handle.
1209
1210 @param[in] Controller The protocol handle to check.
1211 @param[in] ProtocolGuid The protocol that is related with the handle.
1212
1213 @return The UNDI/SNP handle or NULL for errors.
1214
1215 **/
1216 EFI_HANDLE
1217 EFIAPI
1218 NetLibGetNicHandle (
1219 IN EFI_HANDLE Controller,
1220 IN EFI_GUID *ProtocolGuid
1221 );
1222
1223 /**
1224 This is the default unload handle for all the network drivers.
1225
1226 Disconnect the driver specified by ImageHandle from all the devices in the handle database.
1227 Uninstall all the protocols installed in the driver entry point.
1228
1229 @param[in] ImageHandle The drivers' driver image.
1230
1231 @retval EFI_SUCCESS The image is unloaded.
1232 @retval Others Failed to unload the image.
1233
1234 **/
1235 EFI_STATUS
1236 EFIAPI
1237 NetLibDefaultUnload (
1238 IN EFI_HANDLE ImageHandle
1239 );
1240
1241 /**
1242 Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.
1243
1244 @param[in] String The pointer to the Ascii string.
1245 @param[out] Ip4Address The pointer to the converted IPv4 address.
1246
1247 @retval EFI_SUCCESS Converted to an IPv4 address successfully.
1248 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip4Address is NULL.
1249
1250 **/
1251 EFI_STATUS
1252 EFIAPI
1253 NetLibAsciiStrToIp4 (
1254 IN CONST CHAR8 *String,
1255 OUT EFI_IPv4_ADDRESS *Ip4Address
1256 );
1257
1258 /**
1259 Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the
1260 string is defined in RFC 4291 - Text Pepresentation of Addresses.
1261
1262 @param[in] String The pointer to the Ascii string.
1263 @param[out] Ip6Address The pointer to the converted IPv6 address.
1264
1265 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1266 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip6Address is NULL.
1267
1268 **/
1269 EFI_STATUS
1270 EFIAPI
1271 NetLibAsciiStrToIp6 (
1272 IN CONST CHAR8 *String,
1273 OUT EFI_IPv6_ADDRESS *Ip6Address
1274 );
1275
1276 /**
1277 Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.
1278
1279 @param[in] String The pointer to the Ascii string.
1280 @param[out] Ip4Address The pointer to the converted IPv4 address.
1281
1282 @retval EFI_SUCCESS Converted to an IPv4 address successfully.
1283 @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip4Address is NULL.
1284 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to lack of resources.
1285
1286 **/
1287 EFI_STATUS
1288 EFIAPI
1289 NetLibStrToIp4 (
1290 IN CONST CHAR16 *String,
1291 OUT EFI_IPv4_ADDRESS *Ip4Address
1292 );
1293
1294 /**
1295 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS. The format of
1296 the string is defined in RFC 4291 - Text Pepresentation of Addresses.
1297
1298 @param[in] String The pointer to the Ascii string.
1299 @param[out] Ip6Address The pointer to the converted IPv6 address.
1300
1301 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1302 @retval EFI_INVALID_PARAMETER The string is malformated or Ip6Address is NULL.
1303 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to a lack of resources.
1304
1305 **/
1306 EFI_STATUS
1307 EFIAPI
1308 NetLibStrToIp6 (
1309 IN CONST CHAR16 *String,
1310 OUT EFI_IPv6_ADDRESS *Ip6Address
1311 );
1312
1313 /**
1314 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.
1315 The format of the string is defined in RFC 4291 - Text Pepresentation of Addresses
1316 Prefixes: ipv6-address/prefix-length.
1317
1318 @param[in] String The pointer to the Ascii string.
1319 @param[out] Ip6Address The pointer to the converted IPv6 address.
1320 @param[out] PrefixLength The pointer to the converted prefix length.
1321
1322 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1323 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip6Address is NULL.
1324 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to a lack of resources.
1325
1326 **/
1327 EFI_STATUS
1328 EFIAPI
1329 NetLibStrToIp6andPrefix (
1330 IN CONST CHAR16 *String,
1331 OUT EFI_IPv6_ADDRESS *Ip6Address,
1332 OUT UINT8 *PrefixLength
1333 );
1334
1335 //
1336 // Various signatures
1337 //
1338 #define NET_BUF_SIGNATURE SIGNATURE_32 ('n', 'b', 'u', 'f')
1339 #define NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c')
1340 #define NET_QUE_SIGNATURE SIGNATURE_32 ('n', 'b', 'q', 'u')
1341
1342
1343 #define NET_PROTO_DATA 64 // Opaque buffer for protocols
1344 #define NET_BUF_HEAD 1 // Trim or allocate space from head
1345 #define NET_BUF_TAIL 0 // Trim or allocate space from tail
1346 #define NET_VECTOR_OWN_FIRST 0x01 // We allocated the 1st block in the vector
1347
1348 #define NET_CHECK_SIGNATURE(PData, SIGNATURE) \
1349 ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))
1350
1351 //
1352 // Single memory block in the vector.
1353 //
1354 typedef struct {
1355 UINT32 Len; // The block's length
1356 UINT8 *Bulk; // The block's Data
1357 } NET_BLOCK;
1358
1359 typedef VOID (EFIAPI *NET_VECTOR_EXT_FREE) (VOID *Arg);
1360
1361 //
1362 //NET_VECTOR contains several blocks to hold all packet's
1363 //fragments and other house-keeping stuff for sharing. It
1364 //doesn't specify the where actual packet fragment begins.
1365 //
1366 typedef struct {
1367 UINT32 Signature;
1368 INTN RefCnt; // Reference count to share NET_VECTOR.
1369 NET_VECTOR_EXT_FREE Free; // external function to free NET_VECTOR
1370 VOID *Arg; // opeque argument to Free
1371 UINT32 Flag; // Flags, NET_VECTOR_OWN_FIRST
1372 UINT32 Len; // Total length of the assocated BLOCKs
1373
1374 UINT32 BlockNum;
1375 NET_BLOCK Block[1];
1376 } NET_VECTOR;
1377
1378 //
1379 //NET_BLOCK_OP operates on the NET_BLOCK. It specifies
1380 //where the actual fragment begins and ends
1381 //
1382 typedef struct {
1383 UINT8 *BlockHead; // Block's head, or the smallest valid Head
1384 UINT8 *BlockTail; // Block's tail. BlockTail-BlockHead=block length
1385 UINT8 *Head; // 1st byte of the data in the block
1386 UINT8 *Tail; // Tail of the data in the block, Tail-Head=Size
1387 UINT32 Size; // The size of the data
1388 } NET_BLOCK_OP;
1389
1390 typedef union {
1391 IP4_HEAD *Ip4;
1392 EFI_IP6_HEADER *Ip6;
1393 } NET_IP_HEAD;
1394
1395 //
1396 //NET_BUF is the buffer manage structure used by the
1397 //network stack. Every network packet may be fragmented. The Vector points to
1398 //memory blocks used by each fragment, and BlockOp
1399 //specifies where each fragment begins and ends.
1400 //
1401 //It also contains an opaque area for the protocol to store
1402 //per-packet information. Protocol must be careful not
1403 //to overwrite the members after that.
1404 //
1405 typedef struct {
1406 UINT32 Signature;
1407 INTN RefCnt;
1408 LIST_ENTRY List; // The List this NET_BUF is on
1409
1410 NET_IP_HEAD Ip; // Network layer header, for fast access
1411 TCP_HEAD *Tcp; // Transport layer header, for fast access
1412 EFI_UDP_HEADER *Udp; // User Datagram Protocol header
1413 UINT8 ProtoData [NET_PROTO_DATA]; //Protocol specific data
1414
1415 NET_VECTOR *Vector; // The vector containing the packet
1416
1417 UINT32 BlockOpNum; // Total number of BlockOp in the buffer
1418 UINT32 TotalSize; // Total size of the actual packet
1419 NET_BLOCK_OP BlockOp[1]; // Specify the position of actual packet
1420 } NET_BUF;
1421
1422 //
1423 //A queue of NET_BUFs. It is a thin extension of
1424 //NET_BUF functions.
1425 //
1426 typedef struct {
1427 UINT32 Signature;
1428 INTN RefCnt;
1429 LIST_ENTRY List; // The List this buffer queue is on
1430
1431 LIST_ENTRY BufList; // list of queued buffers
1432 UINT32 BufSize; // total length of DATA in the buffers
1433 UINT32 BufNum; // total number of buffers on the chain
1434 } NET_BUF_QUEUE;
1435
1436 //
1437 // Pseudo header for TCP and UDP checksum
1438 //
1439 #pragma pack(1)
1440 typedef struct {
1441 IP4_ADDR SrcIp;
1442 IP4_ADDR DstIp;
1443 UINT8 Reserved;
1444 UINT8 Protocol;
1445 UINT16 Len;
1446 } NET_PSEUDO_HDR;
1447
1448 typedef struct {
1449 EFI_IPv6_ADDRESS SrcIp;
1450 EFI_IPv6_ADDRESS DstIp;
1451 UINT32 Len;
1452 UINT32 Reserved:24;
1453 UINT32 NextHeader:8;
1454 } NET_IP6_PSEUDO_HDR;
1455 #pragma pack()
1456
1457 //
1458 // The fragment entry table used in network interfaces. This is
1459 // the same as NET_BLOCK now. Use two different to distinguish
1460 // the two in case that NET_BLOCK be enhanced later.
1461 //
1462 typedef struct {
1463 UINT32 Len;
1464 UINT8 *Bulk;
1465 } NET_FRAGMENT;
1466
1467 #define NET_GET_REF(PData) ((PData)->RefCnt++)
1468 #define NET_PUT_REF(PData) ((PData)->RefCnt--)
1469 #define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)
1470
1471 #define NET_BUF_SHARED(Buf) \
1472 (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))
1473
1474 #define NET_VECTOR_SIZE(BlockNum) \
1475 (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))
1476
1477 #define NET_BUF_SIZE(BlockOpNum) \
1478 (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))
1479
1480 #define NET_HEADSPACE(BlockOp) \
1481 (UINTN)((BlockOp)->Head - (BlockOp)->BlockHead)
1482
1483 #define NET_TAILSPACE(BlockOp) \
1484 (UINTN)((BlockOp)->BlockTail - (BlockOp)->Tail)
1485
1486 /**
1487 Allocate a single block NET_BUF. Upon allocation, all the
1488 free space is in the tail room.
1489
1490 @param[in] Len The length of the block.
1491
1492 @return The pointer to the allocated NET_BUF, or NULL if the
1493 allocation failed due to resource limitations.
1494
1495 **/
1496 NET_BUF *
1497 EFIAPI
1498 NetbufAlloc (
1499 IN UINT32 Len
1500 );
1501
1502 /**
1503 Free the net buffer and its associated NET_VECTOR.
1504
1505 Decrease the reference count of the net buffer by one. Free the associated net
1506 vector and itself if the reference count of the net buffer is decreased to 0.
1507 The net vector free operation decreases the reference count of the net
1508 vector by one, and performs the resource free operation when the reference count
1509 of the net vector is 0.
1510
1511 @param[in] Nbuf The pointer to the NET_BUF to be freed.
1512
1513 **/
1514 VOID
1515 EFIAPI
1516 NetbufFree (
1517 IN NET_BUF *Nbuf
1518 );
1519
1520 /**
1521 Get the index of NET_BLOCK_OP that contains the byte at Offset in the net
1522 buffer.
1523
1524 For example, this function can be used to retrieve the IP header in the packet. It
1525 also can be used to get the fragment that contains the byte used
1526 mainly by the library implementation itself.
1527
1528 @param[in] Nbuf The pointer to the net buffer.
1529 @param[in] Offset The offset of the byte.
1530 @param[out] Index Index of the NET_BLOCK_OP that contains the byte at
1531 Offset.
1532
1533 @return The pointer to the Offset'th byte of data in the net buffer, or NULL
1534 if there is no such data in the net buffer.
1535
1536 **/
1537 UINT8 *
1538 EFIAPI
1539 NetbufGetByte (
1540 IN NET_BUF *Nbuf,
1541 IN UINT32 Offset,
1542 OUT UINT32 *Index OPTIONAL
1543 );
1544
1545 /**
1546 Create a copy of the net buffer that shares the associated net vector.
1547
1548 The reference count of the newly created net buffer is set to 1. The reference
1549 count of the associated net vector is increased by one.
1550
1551 @param[in] Nbuf The pointer to the net buffer to be cloned.
1552
1553 @return The pointer to the cloned net buffer, or NULL if the
1554 allocation failed due to resource limitations.
1555
1556 **/
1557 NET_BUF *
1558 EFIAPI
1559 NetbufClone (
1560 IN NET_BUF *Nbuf
1561 );
1562
1563 /**
1564 Create a duplicated copy of the net buffer with data copied and HeadSpace
1565 bytes of head space reserved.
1566
1567 The duplicated net buffer will allocate its own memory to hold the data of the
1568 source net buffer.
1569
1570 @param[in] Nbuf The pointer to the net buffer to be duplicated from.
1571 @param[in, out] Duplicate The pointer to the net buffer to duplicate to. If
1572 NULL, a new net buffer is allocated.
1573 @param[in] HeadSpace The length of the head space to reserve.
1574
1575 @return The pointer to the duplicated net buffer, or NULL if
1576 the allocation failed due to resource limitations.
1577
1578 **/
1579 NET_BUF *
1580 EFIAPI
1581 NetbufDuplicate (
1582 IN NET_BUF *Nbuf,
1583 IN OUT NET_BUF *Duplicate OPTIONAL,
1584 IN UINT32 HeadSpace
1585 );
1586
1587 /**
1588 Create a NET_BUF structure which contains Len byte data of Nbuf starting from
1589 Offset.
1590
1591 A new NET_BUF structure will be created but the associated data in NET_VECTOR
1592 is shared. This function exists to perform IP packet fragmentation.
1593
1594 @param[in] Nbuf The pointer to the net buffer to be extracted.
1595 @param[in] Offset Starting point of the data to be included in the new
1596 net buffer.
1597 @param[in] Len The bytes of data to be included in the new net buffer.
1598 @param[in] HeadSpace The bytes of the head space to reserve for the protocol header.
1599
1600 @return The pointer to the cloned net buffer, or NULL if the
1601 allocation failed due to resource limitations.
1602
1603 **/
1604 NET_BUF *
1605 EFIAPI
1606 NetbufGetFragment (
1607 IN NET_BUF *Nbuf,
1608 IN UINT32 Offset,
1609 IN UINT32 Len,
1610 IN UINT32 HeadSpace
1611 );
1612
1613 /**
1614 Reserve some space in the header room of the net buffer.
1615
1616 Upon allocation, all the space is in the tail room of the buffer. Call this
1617 function to move space to the header room. This function is quite limited
1618 in that it can only reserve space from the first block of an empty NET_BUF not
1619 built from the external. However, it should be enough for the network stack.
1620
1621 @param[in, out] Nbuf The pointer to the net buffer.
1622 @param[in] Len The length of buffer to be reserved from the header.
1623
1624 **/
1625 VOID
1626 EFIAPI
1627 NetbufReserve (
1628 IN OUT NET_BUF *Nbuf,
1629 IN UINT32 Len
1630 );
1631
1632 /**
1633 Allocate Len bytes of space from the header or tail of the buffer.
1634
1635 @param[in, out] Nbuf The pointer to the net buffer.
1636 @param[in] Len The length of the buffer to be allocated.
1637 @param[in] FromHead The flag to indicate whether to reserve the data
1638 from head (TRUE) or tail (FALSE).
1639
1640 @return The pointer to the first byte of the allocated buffer,
1641 or NULL, if there is no sufficient space.
1642
1643 **/
1644 UINT8*
1645 EFIAPI
1646 NetbufAllocSpace (
1647 IN OUT NET_BUF *Nbuf,
1648 IN UINT32 Len,
1649 IN BOOLEAN FromHead
1650 );
1651
1652 /**
1653 Trim Len bytes from the header or the tail of the net buffer.
1654
1655 @param[in, out] Nbuf The pointer to the net buffer.
1656 @param[in] Len The length of the data to be trimmed.
1657 @param[in] FromHead The flag to indicate whether trim data is from the
1658 head (TRUE) or the tail (FALSE).
1659
1660 @return The length of the actual trimmed data, which may be less
1661 than Len if the TotalSize of Nbuf is less than Len.
1662
1663 **/
1664 UINT32
1665 EFIAPI
1666 NetbufTrim (
1667 IN OUT NET_BUF *Nbuf,
1668 IN UINT32 Len,
1669 IN BOOLEAN FromHead
1670 );
1671
1672 /**
1673 Copy Len bytes of data from the specific offset of the net buffer to the
1674 destination memory.
1675
1676 The Len bytes of data may cross several fragments of the net buffer.
1677
1678 @param[in] Nbuf The pointer to the net buffer.
1679 @param[in] Offset The sequence number of the first byte to copy.
1680 @param[in] Len The length of the data to copy.
1681 @param[in] Dest The destination of the data to copy to.
1682
1683 @return The length of the actual copied data, or 0 if the offset
1684 specified exceeds the total size of net buffer.
1685
1686 **/
1687 UINT32
1688 EFIAPI
1689 NetbufCopy (
1690 IN NET_BUF *Nbuf,
1691 IN UINT32 Offset,
1692 IN UINT32 Len,
1693 IN UINT8 *Dest
1694 );
1695
1696 /**
1697 Build a NET_BUF from external blocks.
1698
1699 A new NET_BUF structure will be created from external blocks. An additional block
1700 of memory will be allocated to hold reserved HeadSpace bytes of header room
1701 and existing HeadLen bytes of header, but the external blocks are shared by the
1702 net buffer to avoid data copying.
1703
1704 @param[in] ExtFragment The pointer to the data block.
1705 @param[in] ExtNum The number of the data blocks.
1706 @param[in] HeadSpace The head space to be reserved.
1707 @param[in] HeadLen The length of the protocol header. The function
1708 pulls this amount of data into a linear block.
1709 @param[in] ExtFree The pointer to the caller-provided free function.
1710 @param[in] Arg The argument passed to ExtFree when ExtFree is
1711 called.
1712
1713 @return The pointer to the net buffer built from the data blocks,
1714 or NULL if the allocation failed due to resource
1715 limit.
1716
1717 **/
1718 NET_BUF *
1719 EFIAPI
1720 NetbufFromExt (
1721 IN NET_FRAGMENT *ExtFragment,
1722 IN UINT32 ExtNum,
1723 IN UINT32 HeadSpace,
1724 IN UINT32 HeadLen,
1725 IN NET_VECTOR_EXT_FREE ExtFree,
1726 IN VOID *Arg OPTIONAL
1727 );
1728
1729 /**
1730 Build a fragment table to contain the fragments in the net buffer. This is the
1731 opposite operation of the NetbufFromExt.
1732
1733 @param[in] Nbuf Points to the net buffer.
1734 @param[in, out] ExtFragment The pointer to the data block.
1735 @param[in, out] ExtNum The number of the data blocks.
1736
1737 @retval EFI_BUFFER_TOO_SMALL The number of non-empty blocks is bigger than
1738 ExtNum.
1739 @retval EFI_SUCCESS The fragment table was built successfully.
1740
1741 **/
1742 EFI_STATUS
1743 EFIAPI
1744 NetbufBuildExt (
1745 IN NET_BUF *Nbuf,
1746 IN OUT NET_FRAGMENT *ExtFragment,
1747 IN OUT UINT32 *ExtNum
1748 );
1749
1750 /**
1751 Build a net buffer from a list of net buffers.
1752
1753 All the fragments will be collected from the list of NEW_BUF, and then a new
1754 net buffer will be created through NetbufFromExt.
1755
1756 @param[in] BufList A List of the net buffer.
1757 @param[in] HeadSpace The head space to be reserved.
1758 @param[in] HeaderLen The length of the protocol header. The function
1759 pulls this amount of data into a linear block.
1760 @param[in] ExtFree The pointer to the caller provided free function.
1761 @param[in] Arg The argument passed to ExtFree when ExtFree is called.
1762
1763 @return The pointer to the net buffer built from the list of net
1764 buffers.
1765
1766 **/
1767 NET_BUF *
1768 EFIAPI
1769 NetbufFromBufList (
1770 IN LIST_ENTRY *BufList,
1771 IN UINT32 HeadSpace,
1772 IN UINT32 HeaderLen,
1773 IN NET_VECTOR_EXT_FREE ExtFree,
1774 IN VOID *Arg OPTIONAL
1775 );
1776
1777 /**
1778 Free a list of net buffers.
1779
1780 @param[in, out] Head The pointer to the head of linked net buffers.
1781
1782 **/
1783 VOID
1784 EFIAPI
1785 NetbufFreeList (
1786 IN OUT LIST_ENTRY *Head
1787 );
1788
1789 /**
1790 Initiate the net buffer queue.
1791
1792 @param[in, out] NbufQue The pointer to the net buffer queue to be initialized.
1793
1794 **/
1795 VOID
1796 EFIAPI
1797 NetbufQueInit (
1798 IN OUT NET_BUF_QUEUE *NbufQue
1799 );
1800
1801 /**
1802 Allocate and initialize a net buffer queue.
1803
1804 @return The pointer to the allocated net buffer queue, or NULL if the
1805 allocation failed due to resource limit.
1806
1807 **/
1808 NET_BUF_QUEUE *
1809 EFIAPI
1810 NetbufQueAlloc (
1811 VOID
1812 );
1813
1814 /**
1815 Free a net buffer queue.
1816
1817 Decrease the reference count of the net buffer queue by one. The real resource
1818 free operation isn't performed until the reference count of the net buffer
1819 queue is decreased to 0.
1820
1821 @param[in] NbufQue The pointer to the net buffer queue to be freed.
1822
1823 **/
1824 VOID
1825 EFIAPI
1826 NetbufQueFree (
1827 IN NET_BUF_QUEUE *NbufQue
1828 );
1829
1830 /**
1831 Remove a net buffer from the head in the specific queue and return it.
1832
1833 @param[in, out] NbufQue The pointer to the net buffer queue.
1834
1835 @return The pointer to the net buffer removed from the specific queue,
1836 or NULL if there is no net buffer in the specific queue.
1837
1838 **/
1839 NET_BUF *
1840 EFIAPI
1841 NetbufQueRemove (
1842 IN OUT NET_BUF_QUEUE *NbufQue
1843 );
1844
1845 /**
1846 Append a net buffer to the net buffer queue.
1847
1848 @param[in, out] NbufQue The pointer to the net buffer queue.
1849 @param[in, out] Nbuf The pointer to the net buffer to be appended.
1850
1851 **/
1852 VOID
1853 EFIAPI
1854 NetbufQueAppend (
1855 IN OUT NET_BUF_QUEUE *NbufQue,
1856 IN OUT NET_BUF *Nbuf
1857 );
1858
1859 /**
1860 Copy Len bytes of data from the net buffer queue at the specific offset to the
1861 destination memory.
1862
1863 The copying operation is the same as NetbufCopy, but applies to the net buffer
1864 queue instead of the net buffer.
1865
1866 @param[in] NbufQue The pointer to the net buffer queue.
1867 @param[in] Offset The sequence number of the first byte to copy.
1868 @param[in] Len The length of the data to copy.
1869 @param[out] Dest The destination of the data to copy to.
1870
1871 @return The length of the actual copied data, or 0 if the offset
1872 specified exceeds the total size of net buffer queue.
1873
1874 **/
1875 UINT32
1876 EFIAPI
1877 NetbufQueCopy (
1878 IN NET_BUF_QUEUE *NbufQue,
1879 IN UINT32 Offset,
1880 IN UINT32 Len,
1881 OUT UINT8 *Dest
1882 );
1883
1884 /**
1885 Trim Len bytes of data from the buffer queue and free any net buffer
1886 that is completely trimmed.
1887
1888 The trimming operation is the same as NetbufTrim but applies to the net buffer
1889 queue instead of the net buffer.
1890
1891 @param[in, out] NbufQue The pointer to the net buffer queue.
1892 @param[in] Len The length of the data to trim.
1893
1894 @return The actual length of the data trimmed.
1895
1896 **/
1897 UINT32
1898 EFIAPI
1899 NetbufQueTrim (
1900 IN OUT NET_BUF_QUEUE *NbufQue,
1901 IN UINT32 Len
1902 );
1903
1904
1905 /**
1906 Flush the net buffer queue.
1907
1908 @param[in, out] NbufQue The pointer to the queue to be flushed.
1909
1910 **/
1911 VOID
1912 EFIAPI
1913 NetbufQueFlush (
1914 IN OUT NET_BUF_QUEUE *NbufQue
1915 );
1916
1917 /**
1918 Compute the checksum for a bulk of data.
1919
1920 @param[in] Bulk The pointer to the data.
1921 @param[in] Len The length of the data, in bytes.
1922
1923 @return The computed checksum.
1924
1925 **/
1926 UINT16
1927 EFIAPI
1928 NetblockChecksum (
1929 IN UINT8 *Bulk,
1930 IN UINT32 Len
1931 );
1932
1933 /**
1934 Add two checksums.
1935
1936 @param[in] Checksum1 The first checksum to be added.
1937 @param[in] Checksum2 The second checksum to be added.
1938
1939 @return The new checksum.
1940
1941 **/
1942 UINT16
1943 EFIAPI
1944 NetAddChecksum (
1945 IN UINT16 Checksum1,
1946 IN UINT16 Checksum2
1947 );
1948
1949 /**
1950 Compute the checksum for a NET_BUF.
1951
1952 @param[in] Nbuf The pointer to the net buffer.
1953
1954 @return The computed checksum.
1955
1956 **/
1957 UINT16
1958 EFIAPI
1959 NetbufChecksum (
1960 IN NET_BUF *Nbuf
1961 );
1962
1963 /**
1964 Compute the checksum for TCP/UDP pseudo header.
1965
1966 Src and Dst are in network byte order, and Len is in host byte order.
1967
1968 @param[in] Src The source address of the packet.
1969 @param[in] Dst The destination address of the packet.
1970 @param[in] Proto The protocol type of the packet.
1971 @param[in] Len The length of the packet.
1972
1973 @return The computed checksum.
1974
1975 **/
1976 UINT16
1977 EFIAPI
1978 NetPseudoHeadChecksum (
1979 IN IP4_ADDR Src,
1980 IN IP4_ADDR Dst,
1981 IN UINT8 Proto,
1982 IN UINT16 Len
1983 );
1984
1985 /**
1986 Compute the checksum for the TCP6/UDP6 pseudo header.
1987
1988 Src and Dst are in network byte order, and Len is in host byte order.
1989
1990 @param[in] Src The source address of the packet.
1991 @param[in] Dst The destination address of the packet.
1992 @param[in] NextHeader The protocol type of the packet.
1993 @param[in] Len The length of the packet.
1994
1995 @return The computed checksum.
1996
1997 **/
1998 UINT16
1999 EFIAPI
2000 NetIp6PseudoHeadChecksum (
2001 IN EFI_IPv6_ADDRESS *Src,
2002 IN EFI_IPv6_ADDRESS *Dst,
2003 IN UINT8 NextHeader,
2004 IN UINT32 Len
2005 );
2006
2007 /**
2008 The function frees the net buffer which allocated by the IP protocol. It releases
2009 only the net buffer and doesn't call the external free function.
2010
2011 This function should be called after finishing the process of mIpSec->ProcessExt()
2012 for outbound traffic. The (EFI_IPSEC2_PROTOCOL)->ProcessExt() allocates a new
2013 buffer for the ESP, so there needs a function to free the old net buffer.
2014
2015 @param[in] Nbuf The network buffer to be freed.
2016
2017 **/
2018 VOID
2019 NetIpSecNetbufFree (
2020 NET_BUF *Nbuf
2021 );
2022 #endif