]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Include/Library/NetLib.h
Add more comments for Netbuf* functions in NetLib.h
[mirror_edk2.git] / MdeModulePkg / Include / Library / NetLib.h
1 /** @file
2 This library provides basic function for UEFI network stack.
3
4 Copyright (c) 2005 - 2008, Intel Corporation
5 All rights reserved. This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #ifndef _NET_LIB_H_
16 #define _NET_LIB_H_
17
18 #include <Library/BaseMemoryLib.h>
19 #include <Library/MemoryAllocationLib.h>
20 #include <Protocol/DriverBinding.h>
21 #include <Protocol/ComponentName.h>
22 #include <Protocol/DriverConfiguration.h>
23 #include <Protocol/DriverDiagnostics.h>
24 #include <Protocol/Dpc.h>
25
26 typedef UINT32 IP4_ADDR;
27 typedef UINT32 TCP_SEQNO;
28 typedef UINT16 TCP_PORTNO;
29
30 typedef enum {
31 NET_ETHER_ADDR_LEN = 6,
32 NET_IFTYPE_ETHERNET = 0x01,
33
34 EFI_IP_PROTO_UDP = 0x11,
35 EFI_IP_PROTO_TCP = 0x06,
36 EFI_IP_PROTO_ICMP = 0x01,
37
38 //
39 // The address classification
40 //
41 IP4_ADDR_CLASSA = 1,
42 IP4_ADDR_CLASSB,
43 IP4_ADDR_CLASSC,
44 IP4_ADDR_CLASSD,
45 IP4_ADDR_CLASSE,
46
47 IP4_MASK_NUM = 33
48 } IP4_CLASS_TYPE;
49
50 #pragma pack(1)
51
52 //
53 // Ethernet head definition
54 //
55 typedef struct {
56 UINT8 DstMac [NET_ETHER_ADDR_LEN];
57 UINT8 SrcMac [NET_ETHER_ADDR_LEN];
58 UINT16 EtherType;
59 } ETHER_HEAD;
60
61
62 //
63 // The EFI_IP4_HEADER is hard to use because the source and
64 // destination address are defined as EFI_IPv4_ADDRESS, which
65 // is a structure. Two structures can't be compared or masked
66 // directly. This is why there is an internal representation.
67 //
68 typedef struct {
69 UINT8 HeadLen : 4;
70 UINT8 Ver : 4;
71 UINT8 Tos;
72 UINT16 TotalLen;
73 UINT16 Id;
74 UINT16 Fragment;
75 UINT8 Ttl;
76 UINT8 Protocol;
77 UINT16 Checksum;
78 IP4_ADDR Src;
79 IP4_ADDR Dst;
80 } IP4_HEAD;
81
82
83 //
84 // ICMP head definition. ICMP message is categoried as either an error
85 // message or query message. Two message types have their own head format.
86 //
87 typedef struct {
88 UINT8 Type;
89 UINT8 Code;
90 UINT16 Checksum;
91 } IP4_ICMP_HEAD;
92
93 typedef struct {
94 IP4_ICMP_HEAD Head;
95 UINT32 Fourth; // 4th filed of the head, it depends on Type.
96 IP4_HEAD IpHead;
97 } IP4_ICMP_ERROR_HEAD;
98
99 typedef struct {
100 IP4_ICMP_HEAD Head;
101 UINT16 Id;
102 UINT16 Seq;
103 } IP4_ICMP_QUERY_HEAD;
104
105
106 //
107 // UDP header definition
108 //
109 typedef struct {
110 UINT16 SrcPort;
111 UINT16 DstPort;
112 UINT16 Length;
113 UINT16 Checksum;
114 } EFI_UDP4_HEADER;
115
116
117 //
118 // TCP header definition
119 //
120 typedef struct {
121 TCP_PORTNO SrcPort;
122 TCP_PORTNO DstPort;
123 TCP_SEQNO Seq;
124 TCP_SEQNO Ack;
125 UINT8 Res : 4;
126 UINT8 HeadLen : 4;
127 UINT8 Flag;
128 UINT16 Wnd;
129 UINT16 Checksum;
130 UINT16 Urg;
131 } TCP_HEAD;
132
133 #pragma pack()
134
135 #define NET_MAC_EQUAL(pMac1, pMac2, Len) \
136 (CompareMem ((pMac1), (pMac2), Len) == 0)
137
138 #define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \
139 (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))
140
141 #define NTOHL(x) (UINT32)((((UINT32) (x) & 0xff) << 24) | \
142 (((UINT32) (x) & 0xff00) << 8) | \
143 (((UINT32) (x) & 0xff0000) >> 8) | \
144 (((UINT32) (x) & 0xff000000) >> 24))
145
146 #define HTONL(x) NTOHL(x)
147
148 #define NTOHS(x) (UINT16)((((UINT16) (x) & 0xff) << 8) | \
149 (((UINT16) (x) & 0xff00) >> 8))
150
151 #define HTONS(x) NTOHS(x)
152
153 //
154 // Test the IP's attribute, All the IPs are in host byte order.
155 //
156 #define IP4_IS_MULTICAST(Ip) (((Ip) & 0xF0000000) == 0xE0000000)
157 #define IP4_IS_LOCAL_BROADCAST(Ip) ((Ip) == 0xFFFFFFFF)
158 #define IP4_NET_EQUAL(Ip1, Ip2, NetMask) (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))
159 #define IP4_IS_VALID_NETMASK(Ip) (NetGetMaskLength (Ip) != IP4_MASK_NUM)
160
161 //
162 // Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.
163 //
164 #define EFI_IP4(EfiIpAddr) (*(IP4_ADDR *) ((EfiIpAddr).Addr))
165 #define EFI_NTOHL(EfiIp) (NTOHL (EFI_IP4 ((EfiIp))))
166 #define EFI_IP4_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)
167
168 /**
169 Return the length of the mask. If the mask is invalid,
170 return the invalid length 33, which is IP4_MASK_NUM.
171 NetMask is in the host byte order.
172
173 @param[in] NetMask The netmask to get the length from.
174
175 @return The length of the netmask, IP4_MASK_NUM if the mask isn't.
176
177 **/
178 INTN
179 EFIAPI
180 NetGetMaskLength (
181 IN IP4_ADDR NetMask
182 );
183
184 /**
185 Return the class of the address, such as class a, b, c.
186 Addr is in host byte order.
187
188 @param[in] Addr The address to get the class from.
189
190 @return IP address class, such as IP4_ADDR_CLASSA.
191
192 **/
193 INTN
194 EFIAPI
195 NetGetIpClass (
196 IN IP4_ADDR Addr
197 );
198
199 /**
200 Check whether the IP is a valid unicast address according to
201 the netmask. If NetMask is zero, use the IP address's class to
202 get the default mask.
203
204 @param[in] Ip The IP to check against.
205 @param[in] NetMask The mask of the IP.
206
207 @return TRUE if IP is a valid unicast address on the network, otherwise FALSE.
208
209 **/
210 BOOLEAN
211 EFIAPI
212 Ip4IsUnicast (
213 IN IP4_ADDR Ip,
214 IN IP4_ADDR NetMask
215 );
216
217 extern IP4_ADDR gIp4AllMasks [IP4_MASK_NUM];
218
219
220 extern EFI_IPv4_ADDRESS mZeroIp4Addr;
221
222 #define NET_IS_DIGIT(Ch) (('0' <= (Ch)) && ((Ch) <= '9'))
223 #define NET_ROUNDUP(size, unit) (((size) + (unit) - 1) & (~((unit) - 1)))
224 #define NET_IS_LOWER_CASE_CHAR(Ch) (('a' <= (Ch)) && ((Ch) <= 'z'))
225 #define NET_IS_UPPER_CASE_CHAR(Ch) (('A' <= (Ch)) && ((Ch) <= 'Z'))
226
227 #define TICKS_PER_MS 10000U
228 #define TICKS_PER_SECOND 10000000U
229
230 #define NET_RANDOM(Seed) ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)
231
232 /**
233 Extract a UINT32 from a byte stream, then convert it to host
234 byte order. Use this function to avoid alignment error.
235
236 @param[in] Buf The buffer to extract the UINT32.
237
238 @return The UINT32 extracted.
239
240 **/
241 UINT32
242 EFIAPI
243 NetGetUint32 (
244 IN UINT8 *Buf
245 );
246
247 /**
248 Put a UINT32 to the byte stream. Convert it from host byte order
249 to network byte order before putting.
250
251 @param[in, out] Buf The buffer to put the UINT32.
252 @param[in] Data The data to put.
253
254 **/
255 VOID
256 EFIAPI
257 NetPutUint32 (
258 IN OUT UINT8 *Buf,
259 IN UINT32 Data
260 );
261
262 /**
263 Initialize a random seed using current time.
264
265 @return The random seed initialized with current time.
266
267 **/
268 UINT32
269 EFIAPI
270 NetRandomInitSeed (
271 VOID
272 );
273
274
275 #define NET_LIST_USER_STRUCT(Entry, Type, Field) \
276 BASE_CR(Entry, Type, Field)
277
278 #define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig) \
279 CR(Entry, Type, Field, Sig)
280
281 //
282 // Iterate through the doule linked list. It is NOT delete safe
283 //
284 #define NET_LIST_FOR_EACH(Entry, ListHead) \
285 for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)
286
287 //
288 // Iterate through the doule linked list. This is delete-safe.
289 // Don't touch NextEntry. Also, don't use this macro if list
290 // entries other than the Entry may be deleted when processing
291 // the current Entry.
292 //
293 #define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \
294 for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \
295 Entry != (ListHead); \
296 Entry = NextEntry, NextEntry = Entry->ForwardLink \
297 )
298
299 //
300 // Make sure the list isn't empty before get the frist/last record.
301 //
302 #define NET_LIST_HEAD(ListHead, Type, Field) \
303 NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)
304
305 #define NET_LIST_TAIL(ListHead, Type, Field) \
306 NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)
307
308
309 /**
310 Remove the first entry on the list.
311
312 @param[in, out] Head The list header.
313
314 @return The entry that is removed from the list, NULL if the list is empty.
315
316 **/
317 LIST_ENTRY *
318 EFIAPI
319 NetListRemoveHead (
320 IN OUT LIST_ENTRY *Head
321 );
322
323 /**
324 Remove the last entry on the list.
325
326 @param[in, out] Head The list head.
327
328 @return The entry that is removed from the list, NULL if the list is empty.
329
330 **/
331 LIST_ENTRY *
332 EFIAPI
333 NetListRemoveTail (
334 IN OUT LIST_ENTRY *Head
335 );
336
337 /**
338 Insert the NewEntry after the PrevEntry.
339
340 @param[in, out] PrevEntry The previous entry to insert after.
341 @param[in, out] NewEntry The new entry to insert.
342
343 **/
344 VOID
345 EFIAPI
346 NetListInsertAfter (
347 IN OUT LIST_ENTRY *PrevEntry,
348 IN OUT LIST_ENTRY *NewEntry
349 );
350
351 /**
352 Insert the NewEntry before the PostEntry.
353
354 @param[in, out] PostEntry The entry to insert before.
355 @param[in, out] NewEntry The new entry to insert.
356
357 **/
358 VOID
359 EFIAPI
360 NetListInsertBefore (
361 IN OUT LIST_ENTRY *PostEntry,
362 IN OUT LIST_ENTRY *NewEntry
363 );
364
365
366 //
367 // Object container: EFI network stack spec defines various kinds of
368 // tokens. The drivers can share code to manage those objects.
369 //
370 typedef struct {
371 LIST_ENTRY Link;
372 VOID *Key;
373 VOID *Value;
374 } NET_MAP_ITEM;
375
376 typedef struct {
377 LIST_ENTRY Used;
378 LIST_ENTRY Recycled;
379 UINTN Count;
380 } NET_MAP;
381
382 #define NET_MAP_INCREAMENT 64
383
384 /**
385 Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.
386
387 @param[in, out] Map The netmap to initialize.
388
389 **/
390 VOID
391 EFIAPI
392 NetMapInit (
393 IN OUT NET_MAP *Map
394 );
395
396 /**
397 To clean up the netmap, that is, release allocated memories.
398
399 @param[in, out] Map The netmap to clean up.
400
401 **/
402 VOID
403 EFIAPI
404 NetMapClean (
405 IN OUT NET_MAP *Map
406 );
407
408 /**
409 Test whether the netmap is empty.
410
411 @param[in] Map The net map to test.
412
413 @return TRUE if the netmap is empty, otherwise FALSE.
414
415 **/
416 BOOLEAN
417 EFIAPI
418 NetMapIsEmpty (
419 IN NET_MAP *Map
420 );
421
422 /**
423 Return the number of the <Key, Value> pairs in the netmap.
424
425 @param[in] Map The netmap to get the entry number.
426
427 @return The entry number in the netmap.
428
429 **/
430 UINTN
431 EFIAPI
432 NetMapGetCount (
433 IN NET_MAP *Map
434 );
435
436 /**
437 Allocate an item to save the <Key, Value> pair to the head of the netmap.
438
439 @param[in, out] Map The netmap to insert into.
440 @param[in] Key The user's key.
441 @param[in] Value The user's value for the key.
442
443 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
444 @retval EFI_SUCCESS The item is inserted to the head.
445
446 **/
447 EFI_STATUS
448 EFIAPI
449 NetMapInsertHead (
450 IN OUT NET_MAP *Map,
451 IN VOID *Key,
452 IN VOID *Value OPTIONAL
453 );
454
455 /**
456 Allocate an item to save the <Key, Value> pair to the tail of the netmap.
457
458 @param[in, out] Map The netmap to insert into.
459 @param[in] Key The user's key.
460 @param[in] Value The user's value for the key.
461
462 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
463 @retval EFI_SUCCESS The item is inserted to the tail.
464
465 **/
466 EFI_STATUS
467 EFIAPI
468 NetMapInsertTail (
469 IN OUT NET_MAP *Map,
470 IN VOID *Key,
471 IN VOID *Value OPTIONAL
472 );
473
474 /**
475 Find the key in the netmap.
476
477 @param[in] Map The netmap to search within.
478 @param[in] Key The key to search.
479
480 @return The point to the item contains the Key, or NULL if Key isn't in the map.
481
482 **/
483 NET_MAP_ITEM *
484 EFIAPI
485 NetMapFindKey (
486 IN NET_MAP *Map,
487 IN VOID *Key
488 );
489
490 /**
491 Remove the item from the netmap.
492
493 @param[in, out] Map The netmap to remove the item from.
494 @param[in, out] Item The item to remove.
495 @param[out] Value The variable to receive the value if not NULL.
496
497 @return The key of the removed item.
498
499 **/
500 VOID *
501 EFIAPI
502 NetMapRemoveItem (
503 IN OUT NET_MAP *Map,
504 IN OUT NET_MAP_ITEM *Item,
505 OUT VOID **Value OPTIONAL
506 );
507
508 /**
509 Remove the first entry on the netmap.
510
511 @param[in, out] Map The netmap to remove the head from.
512 @param[out] Value The variable to receive the value if not NULL.
513
514 @return The key of the item removed.
515
516 **/
517 VOID *
518 EFIAPI
519 NetMapRemoveHead (
520 IN OUT NET_MAP *Map,
521 OUT VOID **Value OPTIONAL
522 );
523
524 /**
525 Remove the last entry on the netmap.
526
527 @param[in, out] Map The netmap to remove the tail from.
528 @param[out] Value The variable to receive the value if not NULL.
529
530 @return The key of the item removed.
531
532 **/
533 VOID *
534 EFIAPI
535 NetMapRemoveTail (
536 IN OUT NET_MAP *Map,
537 OUT VOID **Value OPTIONAL
538 );
539
540 typedef
541 EFI_STATUS
542 (*NET_MAP_CALLBACK) (
543 IN NET_MAP *Map,
544 IN NET_MAP_ITEM *Item,
545 IN VOID *Arg
546 );
547
548 /**
549 Iterate through the netmap and call CallBack for each item. It will
550 contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break
551 from the loop. It returns the CallBack's last return value. This
552 function is delete safe for the current item.
553
554 @param[in] Map The Map to iterate through.
555 @param[in] CallBack The callback function to call for each item.
556 @param[in] Arg The opaque parameter to the callback.
557
558 @retval EFI_SUCCESS There is no item in the netmap or CallBack for each item
559 return EFI_SUCCESS.
560 @retval Others It returns the CallBack's last return value.
561
562 **/
563 EFI_STATUS
564 EFIAPI
565 NetMapIterate (
566 IN NET_MAP *Map,
567 IN NET_MAP_CALLBACK CallBack,
568 IN VOID *Arg
569 );
570
571
572 //
573 // Helper functions to implement driver binding and service binding protocols.
574 //
575 /**
576 Create a child of the service that is identified by ServiceBindingGuid.
577
578 @param[in] Controller The controller which has the service installed.
579 @param[in] Image The image handle used to open service.
580 @param[in] ServiceBindingGuid The service's Guid.
581 @param[in, out] ChildHandle The handle to receive the create child
582
583 @retval EFI_SUCCESS The child is successfully created.
584 @retval Others Failed to create the child.
585
586 **/
587 EFI_STATUS
588 EFIAPI
589 NetLibCreateServiceChild (
590 IN EFI_HANDLE Controller,
591 IN EFI_HANDLE Image,
592 IN EFI_GUID *ServiceBindingGuid,
593 IN OUT EFI_HANDLE *ChildHandle
594 );
595
596 /**
597 Destory a child of the service that is identified by ServiceBindingGuid.
598
599 @param[in] Controller The controller which has the service installed.
600 @param[in] Image The image handle used to open service.
601 @param[in] ServiceBindingGuid The service's Guid.
602 @param[in] ChildHandle The child to destory
603
604 @retval EFI_SUCCESS The child is successfully destoried.
605 @retval Others Failed to destory the child.
606
607 **/
608 EFI_STATUS
609 EFIAPI
610 NetLibDestroyServiceChild (
611 IN EFI_HANDLE Controller,
612 IN EFI_HANDLE Image,
613 IN EFI_GUID *ServiceBindingGuid,
614 IN EFI_HANDLE ChildHandle
615 );
616
617 /**
618 Convert the mac address of the simple network protocol installed on
619 SnpHandle to a unicode string. Callers are responsible for freeing the
620 string storage.
621
622 @param[in] SnpHandle The handle where the simple network protocol is
623 installed on.
624 @param[in] ImageHandle The image handle used to act as the agent handle to
625 get the simple network protocol.
626 @param[out] MacString The pointer to store the address of the string
627 representation of the mac address.
628
629 @retval EFI_SUCCESS Convert the mac address a unicode string successfully.
630 @retval EFI_OUT_OF_RESOURCES There are not enough memory resource.
631 @retval Others Failed to open the simple network protocol.
632
633 **/
634 EFI_STATUS
635 EFIAPI
636 NetLibGetMacString (
637 IN EFI_HANDLE SnpHandle,
638 IN EFI_HANDLE ImageHandle,
639 OUT CHAR16 **MacString
640 );
641
642 /**
643 Create an IPv4 device path node.
644
645 @param[in, out] Node Pointer to the IPv4 device path node.
646 @param[in] Controller The handle where the NIC IP4 config protocol resides.
647 @param[in] LocalIp The local IPv4 address.
648 @param[in] LocalPort The local port.
649 @param[in] RemoteIp The remote IPv4 address.
650 @param[in] RemotePort The remote port.
651 @param[in] Protocol The protocol type in the IP header.
652 @param[in] UseDefaultAddress Whether this instance is using default address or not.
653
654 **/
655 VOID
656 EFIAPI
657 NetLibCreateIPv4DPathNode (
658 IN OUT IPv4_DEVICE_PATH *Node,
659 IN EFI_HANDLE Controller,
660 IN IP4_ADDR LocalIp,
661 IN UINT16 LocalPort,
662 IN IP4_ADDR RemoteIp,
663 IN UINT16 RemotePort,
664 IN UINT16 Protocol,
665 IN BOOLEAN UseDefaultAddress
666 );
667
668 /**
669 Find the UNDI/SNP handle from controller and protocol GUID.
670 For example, IP will open a MNP child to transmit/receive
671 packets, when MNP is stopped, IP should also be stopped. IP
672 needs to find its own private data which is related the IP's
673 service binding instance that is install on UNDI/SNP handle.
674 Now, the controller is either a MNP or ARP child handle. But
675 IP opens these handle BY_DRIVER, use that info, we can get the
676 UNDI/SNP handle.
677
678 @param[in] Controller Then protocol handle to check.
679 @param[in] ProtocolGuid The protocol that is related with the handle.
680
681 @return The UNDI/SNP handle or NULL for errors.
682
683 **/
684 EFI_HANDLE
685 EFIAPI
686 NetLibGetNicHandle (
687 IN EFI_HANDLE Controller,
688 IN EFI_GUID *ProtocolGuid
689 );
690
691 /**
692 Add a Deferred Procedure Call to the end of the DPC queue.
693
694 @param[in] DpcTpl The EFI_TPL that the DPC should be invoked.
695 @param[in] DpcProcedure Pointer to the DPC's function.
696 @param[in] DpcContext Pointer to the DPC's context. Passed to DpcProcedure
697 when DpcProcedure is invoked.
698
699 @retval EFI_SUCCESS The DPC was queued.
700 @retval EFI_INVALID_PARAMETER DpcTpl is not a valid EFI_TPL, or DpcProcedure
701 is NULL.
702 @retval EFI_OUT_OF_RESOURCES There are not enough resources available to
703 add the DPC to the queue.
704
705 **/
706 EFI_STATUS
707 EFIAPI
708 NetLibQueueDpc (
709 IN EFI_TPL DpcTpl,
710 IN EFI_DPC_PROCEDURE DpcProcedure,
711 IN VOID *DpcContext OPTIONAL
712 );
713
714 /**
715 Dispatch the queue of DPCs. ALL DPCs that have been queued with a DpcTpl
716 value greater than or equal to the current TPL are invoked in the order that
717 they were queued. DPCs with higher DpcTpl values are invoked before DPCs with
718 lower DpcTpl values.
719
720 @retval EFI_SUCCESS One or more DPCs were invoked.
721 @retval EFI_NOT_FOUND No DPCs were invoked.
722
723 **/
724 EFI_STATUS
725 EFIAPI
726 NetLibDispatchDpc (
727 VOID
728 );
729
730 /**
731 This is the default unload handle for all the network drivers.
732
733 @param[in] ImageHandle The drivers' driver image.
734
735 @retval EFI_SUCCESS The image is unloaded.
736 @retval Others Failed to unload the image.
737
738 **/
739 EFI_STATUS
740 EFIAPI
741 NetLibDefaultUnload (
742 IN EFI_HANDLE ImageHandle
743 );
744
745 typedef enum {
746 //
747 //Various signatures
748 //
749 NET_BUF_SIGNATURE = SIGNATURE_32 ('n', 'b', 'u', 'f'),
750 NET_VECTOR_SIGNATURE = SIGNATURE_32 ('n', 'v', 'e', 'c'),
751 NET_QUE_SIGNATURE = SIGNATURE_32 ('n', 'b', 'q', 'u'),
752
753
754 NET_PROTO_DATA = 64, // Opaque buffer for protocols
755 NET_BUF_HEAD = 1, // Trim or allocate space from head
756 NET_BUF_TAIL = 0, // Trim or allocate space from tail
757 NET_VECTOR_OWN_FIRST = 0x01 // We allocated the 1st block in the vector
758 } NET_SIGNATURE_TYPE;
759
760 #define NET_CHECK_SIGNATURE(PData, SIGNATURE) \
761 ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))
762
763 #define NET_SWAP_SHORT(Value) \
764 ((((Value) & 0xff) << 8) | (((Value) >> 8) & 0xff))
765
766 //
767 // Single memory block in the vector.
768 //
769 typedef struct {
770 UINT32 Len; // The block's length
771 UINT8 *Bulk; // The block's Data
772 } NET_BLOCK;
773
774 typedef VOID (*NET_VECTOR_EXT_FREE) (VOID *Arg);
775
776 //
777 //NET_VECTOR contains several blocks to hold all packet's
778 //fragments and other house-keeping stuff for sharing. It
779 //doesn't specify the where actual packet fragment begins.
780 //
781 typedef struct {
782 UINT32 Signature;
783 INTN RefCnt; // Reference count to share NET_VECTOR.
784 NET_VECTOR_EXT_FREE Free; // external function to free NET_VECTOR
785 VOID *Arg; // opeque argument to Free
786 UINT32 Flag; // Flags, NET_VECTOR_OWN_FIRST
787 UINT32 Len; // Total length of the assocated BLOCKs
788
789 UINT32 BlockNum;
790 NET_BLOCK Block[1];
791 } NET_VECTOR;
792
793 //
794 //NET_BLOCK_OP operate on the NET_BLOCK, It specifies
795 //where the actual fragment begins and where it ends
796 //
797 typedef struct {
798 UINT8 *BlockHead; // Block's head, or the smallest valid Head
799 UINT8 *BlockTail; // Block's tail. BlockTail-BlockHead=block length
800 UINT8 *Head; // 1st byte of the data in the block
801 UINT8 *Tail; // Tail of the data in the block, Tail-Head=Size
802 UINT32 Size; // The size of the data
803 } NET_BLOCK_OP;
804
805
806 //
807 //NET_BUF is the buffer manage structure used by the
808 //network stack. Every network packet may be fragmented,
809 //and contains multiple fragments. The Vector points to
810 //memory blocks used by the each fragment, and BlockOp
811 //specifies where each fragment begins and ends.
812 //
813 //It also contains a opaque area for protocol to store
814 //per-packet informations. Protocol must be caution not
815 //to overwrite the members after that.
816 //
817 typedef struct {
818 UINT32 Signature;
819 INTN RefCnt;
820 LIST_ENTRY List; // The List this NET_BUF is on
821
822 IP4_HEAD *Ip; // Network layer header, for fast access
823 TCP_HEAD *Tcp; // Transport layer header, for fast access
824 UINT8 ProtoData [NET_PROTO_DATA]; //Protocol specific data
825
826 NET_VECTOR *Vector; // The vector containing the packet
827
828 UINT32 BlockOpNum; // Total number of BlockOp in the buffer
829 UINT32 TotalSize; // Total size of the actual packet
830 NET_BLOCK_OP BlockOp[1]; // Specify the position of actual packet
831 } NET_BUF;
832
833
834 //
835 //A queue of NET_BUFs, It is just a thin extension of
836 //NET_BUF functions.
837 //
838 typedef struct {
839 UINT32 Signature;
840 INTN RefCnt;
841 LIST_ENTRY List; // The List this buffer queue is on
842
843 LIST_ENTRY BufList; // list of queued buffers
844 UINT32 BufSize; // total length of DATA in the buffers
845 UINT32 BufNum; // total number of buffers on the chain
846 } NET_BUF_QUEUE;
847
848 //
849 // Pseudo header for TCP and UDP checksum
850 //
851 #pragma pack(1)
852 typedef struct {
853 IP4_ADDR SrcIp;
854 IP4_ADDR DstIp;
855 UINT8 Reserved;
856 UINT8 Protocol;
857 UINT16 Len;
858 } NET_PSEUDO_HDR;
859 #pragma pack()
860
861 //
862 // The fragment entry table used in network interfaces. This is
863 // the same as NET_BLOCK now. Use two different to distinguish
864 // the two in case that NET_BLOCK be enhanced later.
865 //
866 typedef struct {
867 UINT32 Len;
868 UINT8 *Bulk;
869 } NET_FRAGMENT;
870
871 #define NET_GET_REF(PData) ((PData)->RefCnt++)
872 #define NET_PUT_REF(PData) ((PData)->RefCnt--)
873 #define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)
874
875 #define NET_BUF_SHARED(Buf) \
876 (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))
877
878 #define NET_VECTOR_SIZE(BlockNum) \
879 (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))
880
881 #define NET_BUF_SIZE(BlockOpNum) \
882 (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))
883
884 #define NET_HEADSPACE(BlockOp) \
885 (UINTN)((BlockOp)->Head - (BlockOp)->BlockHead)
886
887 #define NET_TAILSPACE(BlockOp) \
888 (UINTN)((BlockOp)->BlockTail - (BlockOp)->Tail)
889
890 /**
891 Allocate a single block NET_BUF. Upon allocation, all the
892 free space is in the tail room.
893
894 @param[in] Len The length of the block.
895
896 @return Pointer to the allocated NET_BUF, or NULL if the
897 allocation failed due to resource limit.
898
899 **/
900 NET_BUF *
901 EFIAPI
902 NetbufAlloc (
903 IN UINT32 Len
904 );
905
906 /**
907 Free the net buffer and its associated NET_VECTOR.
908
909 Decrease the reference count of the net buffer by one. Free the associated net
910 vector and itself if the reference count of the net buffer is decreased to 0.
911 The net vector free operation just decrease the reference count of the net
912 vector by one and do the real resource free operation when the reference count
913 of the net vector is 0.
914
915 @param[in] Nbuf Pointer to the NET_BUF to be freed.
916
917 **/
918 VOID
919 EFIAPI
920 NetbufFree (
921 IN NET_BUF *Nbuf
922 );
923
924 /**
925 Get the index of NET_BLOCK_OP that contains the byte at Offset in the net
926 buffer.
927
928 This can be used to, for example, retrieve the IP header in the packet. It
929 also can be used to get the fragment that contains the byte which is used
930 mainly by the library implementation itself.
931
932 @param[in] Nbuf Pointer to the net buffer.
933 @param[in] Offset The offset of the byte.
934 @param[out] Index Index of the NET_BLOCK_OP that contains the byte at
935 Offset.
936
937 @return Pointer to the Offset'th byte of data in the net buffer, or NULL
938 if there is no such data in the net buffer.
939
940 **/
941 UINT8 *
942 EFIAPI
943 NetbufGetByte (
944 IN NET_BUF *Nbuf,
945 IN UINT32 Offset,
946 OUT UINT32 *Index OPTIONAL
947 );
948
949 /**
950 Create a copy of the net buffer that shares the associated net vector.
951
952 The reference count of the newly created net buffer is set to 1. The reference
953 count of the associated net vector is increased by one.
954
955 @param[in] Nbuf Pointer to the net buffer to be cloned.
956
957 @return Pointer to the cloned net buffer, or NULL if the
958 allocation failed due to resource limit.
959
960 **/
961 NET_BUF *
962 EFIAPI
963 NetbufClone (
964 IN NET_BUF *Nbuf
965 );
966
967 /**
968 Create a duplicated copy of the net buffer with data copied and HeadSpace
969 bytes of head space reserved.
970
971 The duplicated net buffer will allocate its own memory to hold the data of the
972 source net buffer.
973
974 @param[in] Nbuf Pointer to the net buffer to be duplicated from.
975 @param[in, out] Duplicate Pointer to the net buffer to duplicate to, if
976 NULL a new net buffer is allocated.
977 @param[in] HeadSpace Length of the head space to reserve.
978
979 @return Pointer to the duplicated net buffer, or NULL if
980 the allocation failed due to resource limit.
981
982 **/
983 NET_BUF *
984 EFIAPI
985 NetbufDuplicate (
986 IN NET_BUF *Nbuf,
987 IN OUT NET_BUF *Duplicate OPTIONAL,
988 IN UINT32 HeadSpace
989 );
990
991 /**
992 Create a NET_BUF structure which contains Len byte data of Nbuf starting from
993 Offset.
994
995 A new NET_BUF structure will be created but the associated data in NET_VECTOR
996 is shared. This function exists to do IP packet fragmentation.
997
998 @param[in] Nbuf Pointer to the net buffer to be extracted.
999 @param[in] Offset Starting point of the data to be included in the new
1000 net buffer.
1001 @param[in] Len Bytes of data to be included in the new net buffer.
1002 @param[in] HeadSpace Bytes of head space to reserve for protocol header.
1003
1004 @return Pointer to the cloned net buffer, or NULL if the
1005 allocation failed due to resource limit.
1006
1007 **/
1008 NET_BUF *
1009 EFIAPI
1010 NetbufGetFragment (
1011 IN NET_BUF *Nbuf,
1012 IN UINT32 Offset,
1013 IN UINT32 Len,
1014 IN UINT32 HeadSpace
1015 );
1016
1017 /**
1018 Reserve some space in the header room of the net buffer.
1019
1020 Upon allocation, all the space are in the tail room of the buffer. Call this
1021 function to move some space to the header room. This function is quite limited
1022 in that it can only reserve space from the first block of an empty NET_BUF not
1023 built from the external. But it should be enough for the network stack.
1024
1025 @param[in, out] Nbuf Pointer to the net buffer.
1026 @param[in] Len The length of buffer to be reserved from the header.
1027
1028 **/
1029 VOID
1030 EFIAPI
1031 NetbufReserve (
1032 IN OUT NET_BUF *Nbuf,
1033 IN UINT32 Len
1034 );
1035
1036 /**
1037 Allocate Len bytes of space from the header or tail of the buffer.
1038
1039 @param[in, out] Nbuf Pointer to the net buffer.
1040 @param[in] Len The length of the buffer to be allocated.
1041 @param[in] FromHead The flag to indicate whether reserve the data
1042 from head (TRUE) or tail (FALSE).
1043
1044 @return Pointer to the first byte of the allocated buffer,
1045 or NULL if there is no sufficient space.
1046
1047 **/
1048 UINT8*
1049 EFIAPI
1050 NetbufAllocSpace (
1051 IN OUT NET_BUF *Nbuf,
1052 IN UINT32 Len,
1053 IN BOOLEAN FromHead
1054 );
1055
1056 /**
1057 Trim Len bytes from the header or tail of the net buffer.
1058
1059 @param[in, out] Nbuf Pointer to the net buffer.
1060 @param[in] Len The length of the data to be trimmed.
1061 @param[in] FromHead The flag to indicate whether trim data from head
1062 (TRUE) or tail (FALSE).
1063
1064 @return Length of the actually trimmed data, which is possible to be less
1065 than Len because the TotalSize of Nbuf is less than Len.
1066
1067 **/
1068 UINT32
1069 EFIAPI
1070 NetbufTrim (
1071 IN OUT NET_BUF *Nbuf,
1072 IN UINT32 Len,
1073 IN BOOLEAN FromHead
1074 );
1075
1076 /**
1077 Copy Len bytes of data from the specific offset of the net buffer to the
1078 destination memory.
1079
1080 The Len bytes of data may cross the several fragments of the net buffer.
1081
1082 @param[in] Nbuf Pointer to the net buffer.
1083 @param[in] Offset The sequence number of the first byte to copy.
1084 @param[in] Len Length of the data to copy.
1085 @param[in] Dest The destination of the data to copy to.
1086
1087 @return The length of the actual copied data, or 0 if the offset
1088 specified exceeds exceeds the total size of net buffer.
1089
1090 **/
1091 UINT32
1092 EFIAPI
1093 NetbufCopy (
1094 IN NET_BUF *Nbuf,
1095 IN UINT32 Offset,
1096 IN UINT32 Len,
1097 IN UINT8 *Dest
1098 );
1099
1100 /**
1101 Build a NET_BUF from external blocks.
1102
1103 A new NET_BUF structure will be created from external blocks. Additional block
1104 of memory will be allocated to hold reserved HeadSpace bytes of header room
1105 and existing HeadLen bytes of header but the external blocks are shared by the
1106 net buffer to avoid data copying.
1107
1108 @param[in] ExtFragment Pointer to the data block.
1109 @param[in] ExtNum The number of the data blocks.
1110 @param[in] HeadSpace The head space to be reserved.
1111 @param[in] HeadLen The length of the protocol header, This function
1112 will pull that number of data into a linear block.
1113 @param[in] ExtFree Pointer to the caller provided free function.
1114 @param[in] Arg The argument passed to ExtFree when ExtFree is
1115 called.
1116
1117 @return Pointer to the net buffer built from the data blocks,
1118 or NULL if the allocation failed due to resource
1119 limit.
1120
1121 **/
1122 NET_BUF *
1123 EFIAPI
1124 NetbufFromExt (
1125 IN NET_FRAGMENT *ExtFragment,
1126 IN UINT32 ExtNum,
1127 IN UINT32 HeadSpace,
1128 IN UINT32 HeadLen,
1129 IN NET_VECTOR_EXT_FREE ExtFree,
1130 IN VOID *Arg OPTIONAL
1131 );
1132
1133 /**
1134 Build a fragment table to contain the fragments in the net buffer. This is the
1135 opposite operation of the NetbufFromExt.
1136
1137 @param[in] Nbuf Point to the net buffer.
1138 @param[in, out] ExtFragment Pointer to the data block.
1139 @param[in, out] ExtNum The number of the data blocks.
1140
1141 @retval EFI_BUFFER_TOO_SMALL The number of non-empty block is bigger than
1142 ExtNum.
1143 @retval EFI_SUCCESS Fragment table is built successfully.
1144
1145 **/
1146 EFI_STATUS
1147 EFIAPI
1148 NetbufBuildExt (
1149 IN NET_BUF *Nbuf,
1150 IN OUT NET_FRAGMENT *ExtFragment,
1151 IN OUT UINT32 *ExtNum
1152 );
1153
1154 /**
1155 Build a net buffer from a list of net buffers.
1156
1157 All the fragments will be collected from the list of NEW_BUF and then a new
1158 net buffer will be created through NetbufFromExt.
1159
1160 @param[in] BufList A List of the net buffer.
1161 @param[in] HeadSpace The head space to be reserved.
1162 @param[in] HeaderLen The length of the protocol header, This function
1163 will pull that number of data into a linear block.
1164 @param[in] ExtFree Pointer to the caller provided free function.
1165 @param[in] Arg The argument passed to ExtFree when ExtFree is called.
1166
1167 @return Pointer to the net buffer built from the list of net
1168 buffers.
1169
1170 **/
1171 NET_BUF *
1172 EFIAPI
1173 NetbufFromBufList (
1174 IN LIST_ENTRY *BufList,
1175 IN UINT32 HeadSpace,
1176 IN UINT32 HeaderLen,
1177 IN NET_VECTOR_EXT_FREE ExtFree,
1178 IN VOID *Arg OPTIONAL
1179 );
1180
1181 /**
1182 Free a list of net buffers.
1183
1184 @param[in, out] Head Pointer to the head of linked net buffers.
1185
1186 **/
1187 VOID
1188 EFIAPI
1189 NetbufFreeList (
1190 IN OUT LIST_ENTRY *Head
1191 );
1192
1193 /**
1194 Initiate the net buffer queue.
1195
1196 @param[in, out] NbufQue Pointer to the net buffer queue to be initialized.
1197
1198 **/
1199 VOID
1200 EFIAPI
1201 NetbufQueInit (
1202 IN OUT NET_BUF_QUEUE *NbufQue
1203 );
1204
1205 /**
1206 Allocate and initialize a net buffer queue.
1207
1208 @return Pointer to the allocated net buffer queue, or NULL if the
1209 allocation failed due to resource limit.
1210
1211 **/
1212 NET_BUF_QUEUE *
1213 EFIAPI
1214 NetbufQueAlloc (
1215 VOID
1216 );
1217
1218 /**
1219 Free a net buffer queue.
1220
1221 Decrease the reference count of the net buffer queue by one. The real resource
1222 free operation isn't performed until the reference count of the net buffer
1223 queue is decreased to 0.
1224
1225 @param[in] NbufQue Pointer to the net buffer queue to be freed.
1226
1227 **/
1228 VOID
1229 EFIAPI
1230 NetbufQueFree (
1231 IN NET_BUF_QUEUE *NbufQue
1232 );
1233
1234 /**
1235 Remove a net buffer from the head in the specific queue and return it.
1236
1237 @param[in, out] NbufQue Pointer to the net buffer queue.
1238
1239 @return Pointer to the net buffer removed from the specific queue,
1240 or NULL if there is no net buffer in the specific queue.
1241
1242 **/
1243 NET_BUF *
1244 EFIAPI
1245 NetbufQueRemove (
1246 IN OUT NET_BUF_QUEUE *NbufQue
1247 );
1248
1249 /**
1250 Append a net buffer to the net buffer queue.
1251
1252 @param[in, out] NbufQue Pointer to the net buffer queue.
1253 @param[in, out] Nbuf Pointer to the net buffer to be appended.
1254
1255 **/
1256 VOID
1257 EFIAPI
1258 NetbufQueAppend (
1259 IN OUT NET_BUF_QUEUE *NbufQue,
1260 IN OUT NET_BUF *Nbuf
1261 );
1262
1263 /**
1264 Copy Len bytes of data from the net buffer queue at the specific offset to the
1265 destination memory.
1266
1267 The copying operation is the same as NetbufCopy but applies to the net buffer
1268 queue instead of the net buffer.
1269
1270 @param[in] NbufQue Pointer to the net buffer queue.
1271 @param[in] Offset The sequence number of the first byte to copy.
1272 @param[in] Len Length of the data to copy.
1273 @param[out] Dest The destination of the data to copy to.
1274
1275 @return The length of the actual copied data, or 0 if the offset
1276 specified exceeds the total size of net buffer queue.
1277
1278 **/
1279 UINT32
1280 EFIAPI
1281 NetbufQueCopy (
1282 IN NET_BUF_QUEUE *NbufQue,
1283 IN UINT32 Offset,
1284 IN UINT32 Len,
1285 OUT UINT8 *Dest
1286 );
1287
1288 /**
1289 Trim Len bytes of data from the queue header, release any of the net buffer
1290 whom is trimmed wholely.
1291
1292 The trimming operation is the same as NetbufTrim but applies to the net buffer
1293 queue instead of the net buffer.
1294
1295 @param[in, out] NbufQue Pointer to the net buffer queue.
1296 @param[in] Len Length of the data to trim.
1297
1298 @return The actual length of the data trimmed.
1299
1300 **/
1301 UINT32
1302 EFIAPI
1303 NetbufQueTrim (
1304 IN OUT NET_BUF_QUEUE *NbufQue,
1305 IN UINT32 Len
1306 );
1307
1308
1309 /**
1310 Flush the net buffer queue.
1311
1312 @param[in, out] NbufQue Pointer to the queue to be flushed.
1313
1314 **/
1315 VOID
1316 EFIAPI
1317 NetbufQueFlush (
1318 IN OUT NET_BUF_QUEUE *NbufQue
1319 );
1320
1321 /**
1322 Compute the checksum for a bulk of data.
1323
1324 @param[in] Bulk Pointer to the data.
1325 @param[in] Len Length of the data, in bytes.
1326
1327 @return The computed checksum.
1328
1329 **/
1330 UINT16
1331 EFIAPI
1332 NetblockChecksum (
1333 IN UINT8 *Bulk,
1334 IN UINT32 Len
1335 );
1336
1337 /**
1338 Add two checksums.
1339
1340 @param[in] Checksum1 The first checksum to be added.
1341 @param[in] Checksum2 The second checksum to be added.
1342
1343 @return The new checksum.
1344
1345 **/
1346 UINT16
1347 EFIAPI
1348 NetAddChecksum (
1349 IN UINT16 Checksum1,
1350 IN UINT16 Checksum2
1351 );
1352
1353 /**
1354 Compute the checksum for a NET_BUF.
1355
1356 @param[in] Nbuf Pointer to the net buffer.
1357
1358 @return The computed checksum.
1359
1360 **/
1361 UINT16
1362 EFIAPI
1363 NetbufChecksum (
1364 IN NET_BUF *Nbuf
1365 );
1366
1367 /**
1368 Compute the checksum for TCP/UDP pseudo header.
1369
1370 Src and Dst are in network byte order, and Len is in host byte order.
1371
1372 @param[in] Src The source address of the packet.
1373 @param[in] Dst The destination address of the packet.
1374 @param[in] Proto The protocol type of the packet.
1375 @param[in] Len The length of the packet.
1376
1377 @return The computed checksum.
1378
1379 **/
1380 UINT16
1381 EFIAPI
1382 NetPseudoHeadChecksum (
1383 IN IP4_ADDR Src,
1384 IN IP4_ADDR Dst,
1385 IN UINT8 Proto,
1386 IN UINT16 Len
1387 );
1388
1389 #endif