]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Include/Library/NetLib.h
MdeModulePkg: Refine type cast for pointer subtraction
[mirror_edk2.git] / MdeModulePkg / Include / Library / NetLib.h
1 /** @file
2 This library is only intended to be used by UEFI network stack modules.
3 It provides basic functions for the UEFI network stack.
4
5 Copyright (c) 2005 - 2017, Intel Corporation. All rights reserved.<BR>
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution. The full text of the license may be found at<BR>
9 http://opensource.org/licenses/bsd-license.php
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #ifndef _NET_LIB_H_
17 #define _NET_LIB_H_
18
19 #include <Protocol/Ip6.h>
20
21 #include <Library/BaseLib.h>
22 #include <Library/BaseMemoryLib.h>
23
24 typedef UINT32 IP4_ADDR;
25 typedef UINT32 TCP_SEQNO;
26 typedef UINT16 TCP_PORTNO;
27
28
29 #define NET_ETHER_ADDR_LEN 6
30 #define NET_IFTYPE_ETHERNET 0x01
31
32 #define NET_VLAN_TAG_LEN 4
33 #define ETHER_TYPE_VLAN 0x8100
34
35 #define EFI_IP_PROTO_UDP 0x11
36 #define EFI_IP_PROTO_TCP 0x06
37 #define EFI_IP_PROTO_ICMP 0x01
38 #define IP4_PROTO_IGMP 0x02
39 #define IP6_ICMP 58
40 #define DNS_MAX_NAME_SIZE 255
41 #define DNS_MAX_MESSAGE_SIZE 512
42
43 //
44 // The address classification
45 //
46 #define IP4_ADDR_CLASSA 1 // Deprecated
47 #define IP4_ADDR_CLASSB 2 // Deprecated
48 #define IP4_ADDR_CLASSC 3 // Deprecated
49 #define IP4_ADDR_CLASSD 4
50 #define IP4_ADDR_CLASSE 5
51
52 #define IP4_MASK_NUM 33
53 #define IP6_PREFIX_NUM 129
54
55 #define IP4_MASK_MAX 32
56 #define IP6_PREFIX_MAX 128
57
58 #define IP6_HOP_BY_HOP 0
59 #define IP6_DESTINATION 60
60 #define IP6_ROUTING 43
61 #define IP6_FRAGMENT 44
62 #define IP6_AH 51
63 #define IP6_ESP 50
64 #define IP6_NO_NEXT_HEADER 59
65
66 #define IP_VERSION_4 4
67 #define IP_VERSION_6 6
68
69 #define IP6_PREFIX_LENGTH 64
70
71 //
72 // DNS QTYPE values
73 //
74 #define DNS_TYPE_A 1
75 #define DNS_TYPE_NS 2
76 #define DNS_TYPE_CNAME 5
77 #define DNS_TYPE_SOA 6
78 #define DNS_TYPE_WKS 11
79 #define DNS_TYPE_PTR 12
80 #define DNS_TYPE_HINFO 13
81 #define DNS_TYPE_MINFO 14
82 #define DNS_TYPE_MX 15
83 #define DNS_TYPE_TXT 16
84 #define DNS_TYPE_AAAA 28
85 #define DNS_TYPE_SRV_RR 33
86 #define DNS_TYPE_AXFR 252
87 #define DNS_TYPE_MAILB 253
88 #define DNS_TYPE_ANY 255
89
90 //
91 // DNS QCLASS values
92 //
93 #define DNS_CLASS_INET 1
94 #define DNS_CLASS_CH 3
95 #define DNS_CLASS_HS 4
96 #define DNS_CLASS_ANY 255
97
98 #pragma pack(1)
99
100 //
101 // Ethernet head definition
102 //
103 typedef struct {
104 UINT8 DstMac [NET_ETHER_ADDR_LEN];
105 UINT8 SrcMac [NET_ETHER_ADDR_LEN];
106 UINT16 EtherType;
107 } ETHER_HEAD;
108
109 //
110 // 802.1Q VLAN Tag Control Information
111 //
112 typedef union {
113 struct {
114 UINT16 Vid : 12; // Unique VLAN identifier (0 to 4094)
115 UINT16 Cfi : 1; // Canonical Format Indicator
116 UINT16 Priority : 3; // 802.1Q priority level (0 to 7)
117 } Bits;
118 UINT16 Uint16;
119 } VLAN_TCI;
120
121 #define VLAN_TCI_CFI_CANONICAL_MAC 0
122 #define VLAN_TCI_CFI_NON_CANONICAL_MAC 1
123
124 //
125 // The EFI_IP4_HEADER is hard to use because the source and
126 // destination address are defined as EFI_IPv4_ADDRESS, which
127 // is a structure. Two structures can't be compared or masked
128 // directly. This is why there is an internal representation.
129 //
130 typedef struct {
131 UINT8 HeadLen : 4;
132 UINT8 Ver : 4;
133 UINT8 Tos;
134 UINT16 TotalLen;
135 UINT16 Id;
136 UINT16 Fragment;
137 UINT8 Ttl;
138 UINT8 Protocol;
139 UINT16 Checksum;
140 IP4_ADDR Src;
141 IP4_ADDR Dst;
142 } IP4_HEAD;
143
144
145 //
146 // ICMP head definition. Each ICMP message is categorized as either an error
147 // message or query message. Two message types have their own head format.
148 //
149 typedef struct {
150 UINT8 Type;
151 UINT8 Code;
152 UINT16 Checksum;
153 } IP4_ICMP_HEAD;
154
155 typedef struct {
156 IP4_ICMP_HEAD Head;
157 UINT32 Fourth; // 4th filed of the head, it depends on Type.
158 IP4_HEAD IpHead;
159 } IP4_ICMP_ERROR_HEAD;
160
161 typedef struct {
162 IP4_ICMP_HEAD Head;
163 UINT16 Id;
164 UINT16 Seq;
165 } IP4_ICMP_QUERY_HEAD;
166
167 typedef struct {
168 UINT8 Type;
169 UINT8 Code;
170 UINT16 Checksum;
171 } IP6_ICMP_HEAD;
172
173 typedef struct {
174 IP6_ICMP_HEAD Head;
175 UINT32 Fourth;
176 EFI_IP6_HEADER IpHead;
177 } IP6_ICMP_ERROR_HEAD;
178
179 typedef struct {
180 IP6_ICMP_HEAD Head;
181 UINT32 Fourth;
182 } IP6_ICMP_INFORMATION_HEAD;
183
184 //
185 // UDP header definition
186 //
187 typedef struct {
188 UINT16 SrcPort;
189 UINT16 DstPort;
190 UINT16 Length;
191 UINT16 Checksum;
192 } EFI_UDP_HEADER;
193
194 //
195 // TCP header definition
196 //
197 typedef struct {
198 TCP_PORTNO SrcPort;
199 TCP_PORTNO DstPort;
200 TCP_SEQNO Seq;
201 TCP_SEQNO Ack;
202 UINT8 Res : 4;
203 UINT8 HeadLen : 4;
204 UINT8 Flag;
205 UINT16 Wnd;
206 UINT16 Checksum;
207 UINT16 Urg;
208 } TCP_HEAD;
209
210 #pragma pack()
211
212 #define NET_MAC_EQUAL(pMac1, pMac2, Len) \
213 (CompareMem ((pMac1), (pMac2), Len) == 0)
214
215 #define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \
216 (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))
217
218 #define NTOHL(x) SwapBytes32 (x)
219
220 #define HTONL(x) NTOHL(x)
221
222 #define NTOHS(x) SwapBytes16 (x)
223
224 #define HTONS(x) NTOHS(x)
225 #define NTOHLL(x) SwapBytes64 (x)
226 #define HTONLL(x) NTOHLL(x)
227 #define NTOHLLL(x) Ip6Swap128 (x)
228 #define HTONLLL(x) NTOHLLL(x)
229
230 //
231 // Test the IP's attribute, All the IPs are in host byte order.
232 //
233 #define IP4_IS_MULTICAST(Ip) (((Ip) & 0xF0000000) == 0xE0000000)
234 #define IP4_IS_UNSPECIFIED(Ip) ((Ip) == 0)
235 #define IP4_IS_LOCAL_BROADCAST(Ip) ((Ip) == 0xFFFFFFFF)
236 #define IP4_NET_EQUAL(Ip1, Ip2, NetMask) (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))
237 #define IP4_IS_VALID_NETMASK(Ip) (NetGetMaskLength (Ip) != (IP4_MASK_MAX + 1))
238
239 #define IP6_IS_MULTICAST(Ip6) (((Ip6)->Addr[0]) == 0xFF)
240
241 //
242 // Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.
243 //
244 #define EFI_IP4(EfiIpAddr) (*(IP4_ADDR *) ((EfiIpAddr).Addr))
245 #define EFI_NTOHL(EfiIp) (NTOHL (EFI_IP4 ((EfiIp))))
246 #define EFI_IP4_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)
247
248 #define EFI_IP6_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0)
249
250 #define IP4_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv4_ADDRESS)))
251 #define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS)))
252 #define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS)))
253
254 //
255 // The debug level definition. This value is also used as the
256 // syslog's severity level. Don't change it.
257 //
258 #define NETDEBUG_LEVEL_TRACE 5
259 #define NETDEBUG_LEVEL_WARNING 4
260 #define NETDEBUG_LEVEL_ERROR 3
261
262 //
263 // Network debug message is sent out as syslog packet.
264 //
265 #define NET_SYSLOG_FACILITY 16 // Syslog local facility local use
266 #define NET_SYSLOG_PACKET_LEN 512
267 #define NET_SYSLOG_TX_TIMEOUT (500 * 1000 * 10) // 500ms
268 #define NET_DEBUG_MSG_LEN 470 // 512 - (ether+ip4+udp4 head length)
269
270 //
271 // The debug output expects the ASCII format string, Use %a to print ASCII
272 // string, and %s to print UNICODE string. PrintArg must be enclosed in ().
273 // For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name));
274 //
275 #define NET_DEBUG_TRACE(Module, PrintArg) \
276 NetDebugOutput ( \
277 NETDEBUG_LEVEL_TRACE, \
278 Module, \
279 __FILE__, \
280 __LINE__, \
281 NetDebugASPrint PrintArg \
282 )
283
284 #define NET_DEBUG_WARNING(Module, PrintArg) \
285 NetDebugOutput ( \
286 NETDEBUG_LEVEL_WARNING, \
287 Module, \
288 __FILE__, \
289 __LINE__, \
290 NetDebugASPrint PrintArg \
291 )
292
293 #define NET_DEBUG_ERROR(Module, PrintArg) \
294 NetDebugOutput ( \
295 NETDEBUG_LEVEL_ERROR, \
296 Module, \
297 __FILE__, \
298 __LINE__, \
299 NetDebugASPrint PrintArg \
300 )
301
302 /**
303 Allocate a buffer, then format the message to it. This is a
304 help function for the NET_DEBUG_XXX macros. The PrintArg of
305 these macros treats the variable length print parameters as a
306 single parameter, and pass it to the NetDebugASPrint. For
307 example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))
308 if extracted to:
309
310 NetDebugOutput (
311 NETDEBUG_LEVEL_TRACE,
312 "Tcp",
313 __FILE__,
314 __LINE__,
315 NetDebugASPrint ("State transit to %a\n", Name)
316 )
317
318 @param Format The ASCII format string.
319 @param ... The variable length parameter whose format is determined
320 by the Format string.
321
322 @return The buffer containing the formatted message,
323 or NULL if memory allocation failed.
324
325 **/
326 CHAR8 *
327 EFIAPI
328 NetDebugASPrint (
329 IN CHAR8 *Format,
330 ...
331 );
332
333 /**
334 Builds an UDP4 syslog packet and send it using SNP.
335
336 This function will locate a instance of SNP then send the message through it.
337 Because it isn't open the SNP BY_DRIVER, apply caution when using it.
338
339 @param Level The severity level of the message.
340 @param Module The Module that generates the log.
341 @param File The file that contains the log.
342 @param Line The exact line that contains the log.
343 @param Message The user message to log.
344
345 @retval EFI_INVALID_PARAMETER Any input parameter is invalid.
346 @retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet
347 @retval EFI_SUCCESS The log is discard because that it is more verbose
348 than the mNetDebugLevelMax. Or, it has been sent out.
349 **/
350 EFI_STATUS
351 EFIAPI
352 NetDebugOutput (
353 IN UINT32 Level,
354 IN UINT8 *Module,
355 IN UINT8 *File,
356 IN UINT32 Line,
357 IN UINT8 *Message
358 );
359
360
361 /**
362 Return the length of the mask.
363
364 Return the length of the mask. Valid values are 0 to 32.
365 If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.
366 NetMask is in the host byte order.
367
368 @param[in] NetMask The netmask to get the length from.
369
370 @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid.
371
372 **/
373 INTN
374 EFIAPI
375 NetGetMaskLength (
376 IN IP4_ADDR NetMask
377 );
378
379 /**
380 Return the class of the IP address, such as class A, B, C.
381 Addr is in host byte order.
382
383 [ATTENTION]
384 Classful addressing (IP class A/B/C) has been deprecated according to RFC4632.
385 Caller of this function could only check the returned value against
386 IP4_ADDR_CLASSD (multicast) or IP4_ADDR_CLASSE (reserved) now.
387
388 The address of class A starts with 0.
389 If the address belong to class A, return IP4_ADDR_CLASSA.
390 The address of class B starts with 10.
391 If the address belong to class B, return IP4_ADDR_CLASSB.
392 The address of class C starts with 110.
393 If the address belong to class C, return IP4_ADDR_CLASSC.
394 The address of class D starts with 1110.
395 If the address belong to class D, return IP4_ADDR_CLASSD.
396 The address of class E starts with 1111.
397 If the address belong to class E, return IP4_ADDR_CLASSE.
398
399
400 @param[in] Addr The address to get the class from.
401
402 @return IP address class, such as IP4_ADDR_CLASSA.
403
404 **/
405 INTN
406 EFIAPI
407 NetGetIpClass (
408 IN IP4_ADDR Addr
409 );
410
411 /**
412 Check whether the IP is a valid unicast address according to
413 the netmask.
414
415 ASSERT if NetMask is zero.
416
417 If all bits of the host address of IP are 0 or 1, IP is also not a valid unicast address.
418
419 @param[in] Ip The IP to check against.
420 @param[in] NetMask The mask of the IP.
421
422 @return TRUE if IP is a valid unicast address on the network, otherwise FALSE.
423
424 **/
425 BOOLEAN
426 EFIAPI
427 NetIp4IsUnicast (
428 IN IP4_ADDR Ip,
429 IN IP4_ADDR NetMask
430 );
431
432 /**
433 Check whether the incoming IPv6 address is a valid unicast address.
434
435 If the address is a multicast address has binary 0xFF at the start, it is not
436 a valid unicast address. If the address is unspecified ::, it is not a valid
437 unicast address to be assigned to any node. If the address is loopback address
438 ::1, it is also not a valid unicast address to be assigned to any physical
439 interface.
440
441 @param[in] Ip6 The IPv6 address to check against.
442
443 @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.
444
445 **/
446 BOOLEAN
447 EFIAPI
448 NetIp6IsValidUnicast (
449 IN EFI_IPv6_ADDRESS *Ip6
450 );
451
452
453 /**
454 Check whether the incoming Ipv6 address is the unspecified address or not.
455
456 @param[in] Ip6 - Ip6 address, in network order.
457
458 @retval TRUE - Yes, incoming Ipv6 address is the unspecified address.
459 @retval FALSE - The incoming Ipv6 address is not the unspecified address
460
461 **/
462 BOOLEAN
463 EFIAPI
464 NetIp6IsUnspecifiedAddr (
465 IN EFI_IPv6_ADDRESS *Ip6
466 );
467
468 /**
469 Check whether the incoming Ipv6 address is a link-local address.
470
471 @param[in] Ip6 - Ip6 address, in network order.
472
473 @retval TRUE - The incoming Ipv6 address is a link-local address.
474 @retval FALSE - The incoming Ipv6 address is not a link-local address.
475
476 **/
477 BOOLEAN
478 EFIAPI
479 NetIp6IsLinkLocalAddr (
480 IN EFI_IPv6_ADDRESS *Ip6
481 );
482
483 /**
484 Check whether the Ipv6 address1 and address2 are on the connected network.
485
486 @param[in] Ip1 - Ip6 address1, in network order.
487 @param[in] Ip2 - Ip6 address2, in network order.
488 @param[in] PrefixLength - The prefix length of the checking net.
489
490 @retval TRUE - Yes, the Ipv6 address1 and address2 are connected.
491 @retval FALSE - No the Ipv6 address1 and address2 are not connected.
492
493 **/
494 BOOLEAN
495 EFIAPI
496 NetIp6IsNetEqual (
497 EFI_IPv6_ADDRESS *Ip1,
498 EFI_IPv6_ADDRESS *Ip2,
499 UINT8 PrefixLength
500 );
501
502 /**
503 Switches the endianess of an IPv6 address.
504
505 This function swaps the bytes in a 128-bit IPv6 address to switch the value
506 from little endian to big endian or vice versa. The byte swapped value is
507 returned.
508
509 @param Ip6 Points to an IPv6 address.
510
511 @return The byte swapped IPv6 address.
512
513 **/
514 EFI_IPv6_ADDRESS *
515 EFIAPI
516 Ip6Swap128 (
517 EFI_IPv6_ADDRESS *Ip6
518 );
519
520 extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM];
521
522
523 extern EFI_IPv4_ADDRESS mZeroIp4Addr;
524
525 #define NET_IS_DIGIT(Ch) (('0' <= (Ch)) && ((Ch) <= '9'))
526 #define NET_IS_HEX(Ch) ((('0' <= (Ch)) && ((Ch) <= '9')) || (('A' <= (Ch)) && ((Ch) <= 'F')) || (('a' <= (Ch)) && ((Ch) <= 'f')))
527 #define NET_ROUNDUP(size, unit) (((size) + (unit) - 1) & (~((unit) - 1)))
528 #define NET_IS_LOWER_CASE_CHAR(Ch) (('a' <= (Ch)) && ((Ch) <= 'z'))
529 #define NET_IS_UPPER_CASE_CHAR(Ch) (('A' <= (Ch)) && ((Ch) <= 'Z'))
530
531 #define TICKS_PER_MS 10000U
532 #define TICKS_PER_SECOND 10000000U
533
534 #define NET_RANDOM(Seed) ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)
535
536 /**
537 Extract a UINT32 from a byte stream.
538
539 This function copies a UINT32 from a byte stream, and then converts it from Network
540 byte order to host byte order. Use this function to avoid alignment error.
541
542 @param[in] Buf The buffer to extract the UINT32.
543
544 @return The UINT32 extracted.
545
546 **/
547 UINT32
548 EFIAPI
549 NetGetUint32 (
550 IN UINT8 *Buf
551 );
552
553 /**
554 Puts a UINT32 into the byte stream in network byte order.
555
556 Converts a UINT32 from host byte order to network byte order, then copies it to the
557 byte stream.
558
559 @param[in, out] Buf The buffer in which to put the UINT32.
560 @param[in] Data The data to be converted and put into the byte stream.
561
562 **/
563 VOID
564 EFIAPI
565 NetPutUint32 (
566 IN OUT UINT8 *Buf,
567 IN UINT32 Data
568 );
569
570 /**
571 Initialize a random seed using current time and monotonic count.
572
573 Get current time and monotonic count first. Then initialize a random seed
574 based on some basic mathematics operation on the hour, day, minute, second,
575 nanosecond and year of the current time and the monotonic count value.
576
577 @return The random seed initialized with current time.
578
579 **/
580 UINT32
581 EFIAPI
582 NetRandomInitSeed (
583 VOID
584 );
585
586
587 #define NET_LIST_USER_STRUCT(Entry, Type, Field) \
588 BASE_CR(Entry, Type, Field)
589
590 #define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig) \
591 CR(Entry, Type, Field, Sig)
592
593 //
594 // Iterate through the double linked list. It is NOT delete safe
595 //
596 #define NET_LIST_FOR_EACH(Entry, ListHead) \
597 for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)
598
599 //
600 // Iterate through the double linked list. This is delete-safe.
601 // Don't touch NextEntry. Also, don't use this macro if list
602 // entries other than the Entry may be deleted when processing
603 // the current Entry.
604 //
605 #define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \
606 for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \
607 Entry != (ListHead); \
608 Entry = NextEntry, NextEntry = Entry->ForwardLink \
609 )
610
611 //
612 // Make sure the list isn't empty before getting the first/last record.
613 //
614 #define NET_LIST_HEAD(ListHead, Type, Field) \
615 NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)
616
617 #define NET_LIST_TAIL(ListHead, Type, Field) \
618 NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)
619
620
621 /**
622 Remove the first node entry on the list, and return the removed node entry.
623
624 Removes the first node entry from a doubly linked list. It is up to the caller of
625 this function to release the memory used by the first node, if that is required. On
626 exit, the removed node is returned.
627
628 If Head is NULL, then ASSERT().
629 If Head was not initialized, then ASSERT().
630 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
631 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
632 then ASSERT().
633
634 @param[in, out] Head The list header.
635
636 @return The first node entry that is removed from the list, NULL if the list is empty.
637
638 **/
639 LIST_ENTRY *
640 EFIAPI
641 NetListRemoveHead (
642 IN OUT LIST_ENTRY *Head
643 );
644
645 /**
646 Remove the last node entry on the list and return the removed node entry.
647
648 Removes the last node entry from a doubly linked list. It is up to the caller of
649 this function to release the memory used by the first node, if that is required. On
650 exit, the removed node is returned.
651
652 If Head is NULL, then ASSERT().
653 If Head was not initialized, then ASSERT().
654 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
655 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
656 then ASSERT().
657
658 @param[in, out] Head The list head.
659
660 @return The last node entry that is removed from the list, NULL if the list is empty.
661
662 **/
663 LIST_ENTRY *
664 EFIAPI
665 NetListRemoveTail (
666 IN OUT LIST_ENTRY *Head
667 );
668
669 /**
670 Insert a new node entry after a designated node entry of a doubly linked list.
671
672 Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry
673 of the doubly linked list.
674
675 @param[in, out] PrevEntry The entry after which to insert.
676 @param[in, out] NewEntry The new entry to insert.
677
678 **/
679 VOID
680 EFIAPI
681 NetListInsertAfter (
682 IN OUT LIST_ENTRY *PrevEntry,
683 IN OUT LIST_ENTRY *NewEntry
684 );
685
686 /**
687 Insert a new node entry before a designated node entry of a doubly linked list.
688
689 Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry
690 of the doubly linked list.
691
692 @param[in, out] PostEntry The entry to insert before.
693 @param[in, out] NewEntry The new entry to insert.
694
695 **/
696 VOID
697 EFIAPI
698 NetListInsertBefore (
699 IN OUT LIST_ENTRY *PostEntry,
700 IN OUT LIST_ENTRY *NewEntry
701 );
702
703 /**
704 Callback function which provided by user to remove one node in NetDestroyLinkList process.
705
706 @param[in] Entry The entry to be removed.
707 @param[in] Context Pointer to the callback context corresponds to the Context in NetDestroyLinkList.
708
709 @retval EFI_SUCCESS The entry has been removed successfully.
710 @retval Others Fail to remove the entry.
711
712 **/
713 typedef
714 EFI_STATUS
715 (EFIAPI *NET_DESTROY_LINK_LIST_CALLBACK) (
716 IN LIST_ENTRY *Entry,
717 IN VOID *Context OPTIONAL
718 );
719
720 /**
721 Safe destroy nodes in a linked list, and return the length of the list after all possible operations finished.
722
723 Destroy network children list by list traversals is not safe due to graph dependencies between nodes.
724 This function performs a safe traversal to destroy these nodes by checking to see if the node being destroyed
725 has been removed from the list or not.
726 If it has been removed, then restart the traversal from the head.
727 If it hasn't been removed, then continue with the next node directly.
728 This function will end the iterate and return the CallBack's last return value if error happens,
729 or retrun EFI_SUCCESS if 2 complete passes are made with no changes in the number of children in the list.
730
731 @param[in] List The head of the list.
732 @param[in] CallBack Pointer to the callback function to destroy one node in the list.
733 @param[in] Context Pointer to the callback function's context: corresponds to the
734 parameter Context in NET_DESTROY_LINK_LIST_CALLBACK.
735 @param[out] ListLength The length of the link list if the function returns successfully.
736
737 @retval EFI_SUCCESS Two complete passes are made with no changes in the number of children.
738 @retval EFI_INVALID_PARAMETER The input parameter is invalid.
739 @retval Others Return the CallBack's last return value.
740
741 **/
742 EFI_STATUS
743 EFIAPI
744 NetDestroyLinkList (
745 IN LIST_ENTRY *List,
746 IN NET_DESTROY_LINK_LIST_CALLBACK CallBack,
747 IN VOID *Context, OPTIONAL
748 OUT UINTN *ListLength OPTIONAL
749 );
750
751 /**
752 This function checks the input Handle to see if it's one of these handles in ChildHandleBuffer.
753
754 @param[in] Handle Handle to be checked.
755 @param[in] NumberOfChildren Number of Handles in ChildHandleBuffer.
756 @param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL
757 if NumberOfChildren is 0.
758
759 @retval TRUE Found the input Handle in ChildHandleBuffer.
760 @retval FALSE Can't find the input Handle in ChildHandleBuffer.
761
762 **/
763 BOOLEAN
764 EFIAPI
765 NetIsInHandleBuffer (
766 IN EFI_HANDLE Handle,
767 IN UINTN NumberOfChildren,
768 IN EFI_HANDLE *ChildHandleBuffer OPTIONAL
769 );
770
771 //
772 // Object container: EFI network stack spec defines various kinds of
773 // tokens. The drivers can share code to manage those objects.
774 //
775 typedef struct {
776 LIST_ENTRY Link;
777 VOID *Key;
778 VOID *Value;
779 } NET_MAP_ITEM;
780
781 typedef struct {
782 LIST_ENTRY Used;
783 LIST_ENTRY Recycled;
784 UINTN Count;
785 } NET_MAP;
786
787 #define NET_MAP_INCREAMENT 64
788
789 /**
790 Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.
791
792 Initialize the forward and backward links of two head nodes donated by Map->Used
793 and Map->Recycled of two doubly linked lists.
794 Initializes the count of the <Key, Value> pairs in the netmap to zero.
795
796 If Map is NULL, then ASSERT().
797 If the address of Map->Used is NULL, then ASSERT().
798 If the address of Map->Recycled is NULl, then ASSERT().
799
800 @param[in, out] Map The netmap to initialize.
801
802 **/
803 VOID
804 EFIAPI
805 NetMapInit (
806 IN OUT NET_MAP *Map
807 );
808
809 /**
810 To clean up the netmap, that is, release allocated memories.
811
812 Removes all nodes of the Used doubly linked list and frees memory of all related netmap items.
813 Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.
814 The number of the <Key, Value> pairs in the netmap is set to zero.
815
816 If Map is NULL, then ASSERT().
817
818 @param[in, out] Map The netmap to clean up.
819
820 **/
821 VOID
822 EFIAPI
823 NetMapClean (
824 IN OUT NET_MAP *Map
825 );
826
827 /**
828 Test whether the netmap is empty and return true if it is.
829
830 If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.
831
832 If Map is NULL, then ASSERT().
833
834
835 @param[in] Map The net map to test.
836
837 @return TRUE if the netmap is empty, otherwise FALSE.
838
839 **/
840 BOOLEAN
841 EFIAPI
842 NetMapIsEmpty (
843 IN NET_MAP *Map
844 );
845
846 /**
847 Return the number of the <Key, Value> pairs in the netmap.
848
849 @param[in] Map The netmap to get the entry number.
850
851 @return The entry number in the netmap.
852
853 **/
854 UINTN
855 EFIAPI
856 NetMapGetCount (
857 IN NET_MAP *Map
858 );
859
860 /**
861 Allocate an item to save the <Key, Value> pair to the head of the netmap.
862
863 Allocate an item to save the <Key, Value> pair and add corresponding node entry
864 to the beginning of the Used doubly linked list. The number of the <Key, Value>
865 pairs in the netmap increase by 1.
866
867 If Map is NULL, then ASSERT().
868
869 @param[in, out] Map The netmap to insert into.
870 @param[in] Key The user's key.
871 @param[in] Value The user's value for the key.
872
873 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
874 @retval EFI_SUCCESS The item is inserted to the head.
875
876 **/
877 EFI_STATUS
878 EFIAPI
879 NetMapInsertHead (
880 IN OUT NET_MAP *Map,
881 IN VOID *Key,
882 IN VOID *Value OPTIONAL
883 );
884
885 /**
886 Allocate an item to save the <Key, Value> pair to the tail of the netmap.
887
888 Allocate an item to save the <Key, Value> pair and add corresponding node entry
889 to the tail of the Used doubly linked list. The number of the <Key, Value>
890 pairs in the netmap increase by 1.
891
892 If Map is NULL, then ASSERT().
893
894 @param[in, out] Map The netmap to insert into.
895 @param[in] Key The user's key.
896 @param[in] Value The user's value for the key.
897
898 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
899 @retval EFI_SUCCESS The item is inserted to the tail.
900
901 **/
902 EFI_STATUS
903 EFIAPI
904 NetMapInsertTail (
905 IN OUT NET_MAP *Map,
906 IN VOID *Key,
907 IN VOID *Value OPTIONAL
908 );
909
910 /**
911 Finds the key in the netmap and returns the point to the item containing the Key.
912
913 Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every
914 item with the key to search. It returns the point to the item contains the Key if found.
915
916 If Map is NULL, then ASSERT().
917
918 @param[in] Map The netmap to search within.
919 @param[in] Key The key to search.
920
921 @return The point to the item contains the Key, or NULL if Key isn't in the map.
922
923 **/
924 NET_MAP_ITEM *
925 EFIAPI
926 NetMapFindKey (
927 IN NET_MAP *Map,
928 IN VOID *Key
929 );
930
931 /**
932 Remove the node entry of the item from the netmap and return the key of the removed item.
933
934 Remove the node entry of the item from the Used doubly linked list of the netmap.
935 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
936 entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,
937 Value will point to the value of the item. It returns the key of the removed item.
938
939 If Map is NULL, then ASSERT().
940 If Item is NULL, then ASSERT().
941 if item in not in the netmap, then ASSERT().
942
943 @param[in, out] Map The netmap to remove the item from.
944 @param[in, out] Item The item to remove.
945 @param[out] Value The variable to receive the value if not NULL.
946
947 @return The key of the removed item.
948
949 **/
950 VOID *
951 EFIAPI
952 NetMapRemoveItem (
953 IN OUT NET_MAP *Map,
954 IN OUT NET_MAP_ITEM *Item,
955 OUT VOID **Value OPTIONAL
956 );
957
958 /**
959 Remove the first node entry on the netmap and return the key of the removed item.
960
961 Remove the first node entry from the Used doubly linked list of the netmap.
962 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
963 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
964 parameter Value will point to the value of the item. It returns the key of the removed item.
965
966 If Map is NULL, then ASSERT().
967 If the Used doubly linked list is empty, then ASSERT().
968
969 @param[in, out] Map The netmap to remove the head from.
970 @param[out] Value The variable to receive the value if not NULL.
971
972 @return The key of the item removed.
973
974 **/
975 VOID *
976 EFIAPI
977 NetMapRemoveHead (
978 IN OUT NET_MAP *Map,
979 OUT VOID **Value OPTIONAL
980 );
981
982 /**
983 Remove the last node entry on the netmap and return the key of the removed item.
984
985 Remove the last node entry from the Used doubly linked list of the netmap.
986 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
987 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
988 parameter Value will point to the value of the item. It returns the key of the removed item.
989
990 If Map is NULL, then ASSERT().
991 If the Used doubly linked list is empty, then ASSERT().
992
993 @param[in, out] Map The netmap to remove the tail from.
994 @param[out] Value The variable to receive the value if not NULL.
995
996 @return The key of the item removed.
997
998 **/
999 VOID *
1000 EFIAPI
1001 NetMapRemoveTail (
1002 IN OUT NET_MAP *Map,
1003 OUT VOID **Value OPTIONAL
1004 );
1005
1006 typedef
1007 EFI_STATUS
1008 (EFIAPI *NET_MAP_CALLBACK) (
1009 IN NET_MAP *Map,
1010 IN NET_MAP_ITEM *Item,
1011 IN VOID *Arg
1012 );
1013
1014 /**
1015 Iterate through the netmap and call CallBack for each item.
1016
1017 It will continue the traverse if CallBack returns EFI_SUCCESS, otherwise, break
1018 from the loop. It returns the CallBack's last return value. This function is
1019 delete safe for the current item.
1020
1021 If Map is NULL, then ASSERT().
1022 If CallBack is NULL, then ASSERT().
1023
1024 @param[in] Map The Map to iterate through.
1025 @param[in] CallBack The callback function to call for each item.
1026 @param[in] Arg The opaque parameter to the callback.
1027
1028 @retval EFI_SUCCESS There is no item in the netmap, or CallBack for each item
1029 returns EFI_SUCCESS.
1030 @retval Others It returns the CallBack's last return value.
1031
1032 **/
1033 EFI_STATUS
1034 EFIAPI
1035 NetMapIterate (
1036 IN NET_MAP *Map,
1037 IN NET_MAP_CALLBACK CallBack,
1038 IN VOID *Arg OPTIONAL
1039 );
1040
1041
1042 //
1043 // Helper functions to implement driver binding and service binding protocols.
1044 //
1045 /**
1046 Create a child of the service that is identified by ServiceBindingGuid.
1047
1048 Get the ServiceBinding Protocol first, then use it to create a child.
1049
1050 If ServiceBindingGuid is NULL, then ASSERT().
1051 If ChildHandle is NULL, then ASSERT().
1052
1053 @param[in] Controller The controller which has the service installed.
1054 @param[in] Image The image handle used to open service.
1055 @param[in] ServiceBindingGuid The service's Guid.
1056 @param[in, out] ChildHandle The handle to receive the created child.
1057
1058 @retval EFI_SUCCESS The child was successfully created.
1059 @retval Others Failed to create the child.
1060
1061 **/
1062 EFI_STATUS
1063 EFIAPI
1064 NetLibCreateServiceChild (
1065 IN EFI_HANDLE Controller,
1066 IN EFI_HANDLE Image,
1067 IN EFI_GUID *ServiceBindingGuid,
1068 IN OUT EFI_HANDLE *ChildHandle
1069 );
1070
1071 /**
1072 Destroy a child of the service that is identified by ServiceBindingGuid.
1073
1074 Get the ServiceBinding Protocol first, then use it to destroy a child.
1075
1076 If ServiceBindingGuid is NULL, then ASSERT().
1077
1078 @param[in] Controller The controller which has the service installed.
1079 @param[in] Image The image handle used to open service.
1080 @param[in] ServiceBindingGuid The service's Guid.
1081 @param[in] ChildHandle The child to destroy.
1082
1083 @retval EFI_SUCCESS The child was destroyed.
1084 @retval Others Failed to destroy the child.
1085
1086 **/
1087 EFI_STATUS
1088 EFIAPI
1089 NetLibDestroyServiceChild (
1090 IN EFI_HANDLE Controller,
1091 IN EFI_HANDLE Image,
1092 IN EFI_GUID *ServiceBindingGuid,
1093 IN EFI_HANDLE ChildHandle
1094 );
1095
1096 /**
1097 Get handle with Simple Network Protocol installed on it.
1098
1099 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1100 If Simple Network Protocol is already installed on the ServiceHandle, the
1101 ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,
1102 try to find its parent handle with SNP installed.
1103
1104 @param[in] ServiceHandle The handle where network service binding protocols are
1105 installed on.
1106 @param[out] Snp The pointer to store the address of the SNP instance.
1107 This is an optional parameter that may be NULL.
1108
1109 @return The SNP handle, or NULL if not found.
1110
1111 **/
1112 EFI_HANDLE
1113 EFIAPI
1114 NetLibGetSnpHandle (
1115 IN EFI_HANDLE ServiceHandle,
1116 OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL
1117 );
1118
1119 /**
1120 Retrieve VLAN ID of a VLAN device handle.
1121
1122 Search VLAN device path node in Device Path of specified ServiceHandle and
1123 return its VLAN ID. If no VLAN device path node found, then this ServiceHandle
1124 is not a VLAN device handle, and 0 will be returned.
1125
1126 @param[in] ServiceHandle The handle where network service binding protocols are
1127 installed on.
1128
1129 @return VLAN ID of the device handle, or 0 if not a VLAN device.
1130
1131 **/
1132 UINT16
1133 EFIAPI
1134 NetLibGetVlanId (
1135 IN EFI_HANDLE ServiceHandle
1136 );
1137
1138 /**
1139 Find VLAN device handle with specified VLAN ID.
1140
1141 The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.
1142 This function will append VLAN device path node to the parent device path,
1143 and then use LocateDevicePath() to find the correct VLAN device handle.
1144
1145 @param[in] ControllerHandle The handle where network service binding protocols are
1146 installed on.
1147 @param[in] VlanId The configured VLAN ID for the VLAN device.
1148
1149 @return The VLAN device handle, or NULL if not found.
1150
1151 **/
1152 EFI_HANDLE
1153 EFIAPI
1154 NetLibGetVlanHandle (
1155 IN EFI_HANDLE ControllerHandle,
1156 IN UINT16 VlanId
1157 );
1158
1159 /**
1160 Get MAC address associated with the network service handle.
1161
1162 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1163 If SNP is installed on the ServiceHandle or its parent handle, MAC address will
1164 be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.
1165
1166 @param[in] ServiceHandle The handle where network service binding protocols are
1167 installed on.
1168 @param[out] MacAddress The pointer to store the returned MAC address.
1169 @param[out] AddressSize The length of returned MAC address.
1170
1171 @retval EFI_SUCCESS MAC address was returned successfully.
1172 @retval Others Failed to get SNP mode data.
1173
1174 **/
1175 EFI_STATUS
1176 EFIAPI
1177 NetLibGetMacAddress (
1178 IN EFI_HANDLE ServiceHandle,
1179 OUT EFI_MAC_ADDRESS *MacAddress,
1180 OUT UINTN *AddressSize
1181 );
1182
1183 /**
1184 Convert MAC address of the NIC associated with specified Service Binding Handle
1185 to a unicode string. Callers are responsible for freeing the string storage.
1186
1187 Locate simple network protocol associated with the Service Binding Handle and
1188 get the mac address from SNP. Then convert the mac address into a unicode
1189 string. It takes 2 unicode characters to represent a 1 byte binary buffer.
1190 Plus one unicode character for the null-terminator.
1191
1192 @param[in] ServiceHandle The handle where network service binding protocol is
1193 installed.
1194 @param[in] ImageHandle The image handle used to act as the agent handle to
1195 get the simple network protocol. This parameter is
1196 optional and may be NULL.
1197 @param[out] MacString The pointer to store the address of the string
1198 representation of the mac address.
1199
1200 @retval EFI_SUCCESS Converted the mac address a unicode string successfully.
1201 @retval EFI_OUT_OF_RESOURCES There are not enough memory resources.
1202 @retval Others Failed to open the simple network protocol.
1203
1204 **/
1205 EFI_STATUS
1206 EFIAPI
1207 NetLibGetMacString (
1208 IN EFI_HANDLE ServiceHandle,
1209 IN EFI_HANDLE ImageHandle, OPTIONAL
1210 OUT CHAR16 **MacString
1211 );
1212
1213 /**
1214 Detect media status for specified network device.
1215
1216 The underlying UNDI driver may or may not support reporting media status from
1217 GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine
1218 will try to invoke Snp->GetStatus() to get the media status. If media is already
1219 present, it returns directly. If media is not present, it will stop SNP and then
1220 restart SNP to get the latest media status. This provides an opportunity to get
1221 the correct media status for old UNDI driver, which doesn't support reporting
1222 media status from GET_STATUS command.
1223 Note: there are two limitations for the current algorithm:
1224 1) For UNDI with this capability, when the cable is not attached, there will
1225 be an redundant Stop/Start() process.
1226 2) for UNDI without this capability, in case that network cable is attached when
1227 Snp->Initialize() is invoked while network cable is unattached later,
1228 NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer
1229 apps to wait for timeout time.
1230
1231 @param[in] ServiceHandle The handle where network service binding protocols are
1232 installed.
1233 @param[out] MediaPresent The pointer to store the media status.
1234
1235 @retval EFI_SUCCESS Media detection success.
1236 @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle.
1237 @retval EFI_UNSUPPORTED The network device does not support media detection.
1238 @retval EFI_DEVICE_ERROR SNP is in an unknown state.
1239
1240 **/
1241 EFI_STATUS
1242 EFIAPI
1243 NetLibDetectMedia (
1244 IN EFI_HANDLE ServiceHandle,
1245 OUT BOOLEAN *MediaPresent
1246 );
1247
1248 /**
1249 Create an IPv4 device path node.
1250
1251 The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.
1252 The header subtype of IPv4 device path node is MSG_IPv4_DP.
1253 The length of the IPv4 device path node in bytes is 19.
1254 Get other information from parameters to make up the whole IPv4 device path node.
1255
1256 @param[in, out] Node The pointer to the IPv4 device path node.
1257 @param[in] Controller The controller handle.
1258 @param[in] LocalIp The local IPv4 address.
1259 @param[in] LocalPort The local port.
1260 @param[in] RemoteIp The remote IPv4 address.
1261 @param[in] RemotePort The remote port.
1262 @param[in] Protocol The protocol type in the IP header.
1263 @param[in] UseDefaultAddress Whether this instance is using default address or not.
1264
1265 **/
1266 VOID
1267 EFIAPI
1268 NetLibCreateIPv4DPathNode (
1269 IN OUT IPv4_DEVICE_PATH *Node,
1270 IN EFI_HANDLE Controller,
1271 IN IP4_ADDR LocalIp,
1272 IN UINT16 LocalPort,
1273 IN IP4_ADDR RemoteIp,
1274 IN UINT16 RemotePort,
1275 IN UINT16 Protocol,
1276 IN BOOLEAN UseDefaultAddress
1277 );
1278
1279 /**
1280 Create an IPv6 device path node.
1281
1282 The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.
1283 The header subtype of IPv6 device path node is MSG_IPv6_DP.
1284 The length of the IPv6 device path node in bytes is 43.
1285 Get other information from parameters to make up the whole IPv6 device path node.
1286
1287 @param[in, out] Node The pointer to the IPv6 device path node.
1288 @param[in] Controller The controller handle.
1289 @param[in] LocalIp The local IPv6 address.
1290 @param[in] LocalPort The local port.
1291 @param[in] RemoteIp The remote IPv6 address.
1292 @param[in] RemotePort The remote port.
1293 @param[in] Protocol The protocol type in the IP header.
1294
1295 **/
1296 VOID
1297 EFIAPI
1298 NetLibCreateIPv6DPathNode (
1299 IN OUT IPv6_DEVICE_PATH *Node,
1300 IN EFI_HANDLE Controller,
1301 IN EFI_IPv6_ADDRESS *LocalIp,
1302 IN UINT16 LocalPort,
1303 IN EFI_IPv6_ADDRESS *RemoteIp,
1304 IN UINT16 RemotePort,
1305 IN UINT16 Protocol
1306 );
1307
1308
1309 /**
1310 Find the UNDI/SNP handle from controller and protocol GUID.
1311
1312 For example, IP will open an MNP child to transmit/receive
1313 packets. When MNP is stopped, IP should also be stopped. IP
1314 needs to find its own private data that is related the IP's
1315 service binding instance that is installed on the UNDI/SNP handle.
1316 The controller is then either an MNP or an ARP child handle. Note that
1317 IP opens these handles using BY_DRIVER. Use that information to get the
1318 UNDI/SNP handle.
1319
1320 @param[in] Controller The protocol handle to check.
1321 @param[in] ProtocolGuid The protocol that is related with the handle.
1322
1323 @return The UNDI/SNP handle or NULL for errors.
1324
1325 **/
1326 EFI_HANDLE
1327 EFIAPI
1328 NetLibGetNicHandle (
1329 IN EFI_HANDLE Controller,
1330 IN EFI_GUID *ProtocolGuid
1331 );
1332
1333 /**
1334 This is the default unload handle for all the network drivers.
1335
1336 Disconnect the driver specified by ImageHandle from all the devices in the handle database.
1337 Uninstall all the protocols installed in the driver entry point.
1338
1339 @param[in] ImageHandle The drivers' driver image.
1340
1341 @retval EFI_SUCCESS The image is unloaded.
1342 @retval Others Failed to unload the image.
1343
1344 **/
1345 EFI_STATUS
1346 EFIAPI
1347 NetLibDefaultUnload (
1348 IN EFI_HANDLE ImageHandle
1349 );
1350
1351 /**
1352 Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.
1353
1354 @param[in] String The pointer to the Ascii string.
1355 @param[out] Ip4Address The pointer to the converted IPv4 address.
1356
1357 @retval EFI_SUCCESS Converted to an IPv4 address successfully.
1358 @retval EFI_INVALID_PARAMETER The string is malformatted, or Ip4Address is NULL.
1359
1360 **/
1361 EFI_STATUS
1362 EFIAPI
1363 NetLibAsciiStrToIp4 (
1364 IN CONST CHAR8 *String,
1365 OUT EFI_IPv4_ADDRESS *Ip4Address
1366 );
1367
1368 /**
1369 Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the
1370 string is defined in RFC 4291 - Text Representation of Addresses.
1371
1372 @param[in] String The pointer to the Ascii string.
1373 @param[out] Ip6Address The pointer to the converted IPv6 address.
1374
1375 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1376 @retval EFI_INVALID_PARAMETER The string is malformatted, or Ip6Address is NULL.
1377
1378 **/
1379 EFI_STATUS
1380 EFIAPI
1381 NetLibAsciiStrToIp6 (
1382 IN CONST CHAR8 *String,
1383 OUT EFI_IPv6_ADDRESS *Ip6Address
1384 );
1385
1386 /**
1387 Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.
1388
1389 @param[in] String The pointer to the Ascii string.
1390 @param[out] Ip4Address The pointer to the converted IPv4 address.
1391
1392 @retval EFI_SUCCESS Converted to an IPv4 address successfully.
1393 @retval EFI_INVALID_PARAMETER The string is mal-formatted or Ip4Address is NULL.
1394
1395 **/
1396 EFI_STATUS
1397 EFIAPI
1398 NetLibStrToIp4 (
1399 IN CONST CHAR16 *String,
1400 OUT EFI_IPv4_ADDRESS *Ip4Address
1401 );
1402
1403 /**
1404 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS. The format of
1405 the string is defined in RFC 4291 - Text Representation of Addresses.
1406
1407 @param[in] String The pointer to the Ascii string.
1408 @param[out] Ip6Address The pointer to the converted IPv6 address.
1409
1410 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1411 @retval EFI_INVALID_PARAMETER The string is malformatted or Ip6Address is NULL.
1412
1413 **/
1414 EFI_STATUS
1415 EFIAPI
1416 NetLibStrToIp6 (
1417 IN CONST CHAR16 *String,
1418 OUT EFI_IPv6_ADDRESS *Ip6Address
1419 );
1420
1421 /**
1422 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.
1423 The format of the string is defined in RFC 4291 - Text Representation of Addresses
1424 Prefixes: ipv6-address/prefix-length.
1425
1426 @param[in] String The pointer to the Ascii string.
1427 @param[out] Ip6Address The pointer to the converted IPv6 address.
1428 @param[out] PrefixLength The pointer to the converted prefix length.
1429
1430 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1431 @retval EFI_INVALID_PARAMETER The string is malformatted, or Ip6Address is NULL.
1432
1433 **/
1434 EFI_STATUS
1435 EFIAPI
1436 NetLibStrToIp6andPrefix (
1437 IN CONST CHAR16 *String,
1438 OUT EFI_IPv6_ADDRESS *Ip6Address,
1439 OUT UINT8 *PrefixLength
1440 );
1441
1442 /**
1443
1444 Convert one EFI_IPv6_ADDRESS to Null-terminated Unicode string.
1445 The text representation of address is defined in RFC 4291.
1446
1447 @param[in] Ip6Address The pointer to the IPv6 address.
1448 @param[out] String The buffer to return the converted string.
1449 @param[in] StringSize The length in bytes of the input String.
1450
1451 @retval EFI_SUCCESS Convert to string successfully.
1452 @retval EFI_INVALID_PARAMETER The input parameter is invalid.
1453 @retval EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result. BufferSize has been
1454 updated with the size needed to complete the request.
1455 **/
1456 EFI_STATUS
1457 EFIAPI
1458 NetLibIp6ToStr (
1459 IN EFI_IPv6_ADDRESS *Ip6Address,
1460 OUT CHAR16 *String,
1461 IN UINTN StringSize
1462 );
1463
1464 //
1465 // Various signatures
1466 //
1467 #define NET_BUF_SIGNATURE SIGNATURE_32 ('n', 'b', 'u', 'f')
1468 #define NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c')
1469 #define NET_QUE_SIGNATURE SIGNATURE_32 ('n', 'b', 'q', 'u')
1470
1471
1472 #define NET_PROTO_DATA 64 // Opaque buffer for protocols
1473 #define NET_BUF_HEAD 1 // Trim or allocate space from head
1474 #define NET_BUF_TAIL 0 // Trim or allocate space from tail
1475 #define NET_VECTOR_OWN_FIRST 0x01 // We allocated the 1st block in the vector
1476
1477 #define NET_CHECK_SIGNATURE(PData, SIGNATURE) \
1478 ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))
1479
1480 //
1481 // Single memory block in the vector.
1482 //
1483 typedef struct {
1484 UINT32 Len; // The block's length
1485 UINT8 *Bulk; // The block's Data
1486 } NET_BLOCK;
1487
1488 typedef VOID (EFIAPI *NET_VECTOR_EXT_FREE) (VOID *Arg);
1489
1490 //
1491 //NET_VECTOR contains several blocks to hold all packet's
1492 //fragments and other house-keeping stuff for sharing. It
1493 //doesn't specify the where actual packet fragment begins.
1494 //
1495 typedef struct {
1496 UINT32 Signature;
1497 INTN RefCnt; // Reference count to share NET_VECTOR.
1498 NET_VECTOR_EXT_FREE Free; // external function to free NET_VECTOR
1499 VOID *Arg; // opaque argument to Free
1500 UINT32 Flag; // Flags, NET_VECTOR_OWN_FIRST
1501 UINT32 Len; // Total length of the associated BLOCKs
1502
1503 UINT32 BlockNum;
1504 NET_BLOCK Block[1];
1505 } NET_VECTOR;
1506
1507 //
1508 //NET_BLOCK_OP operates on the NET_BLOCK. It specifies
1509 //where the actual fragment begins and ends
1510 //
1511 typedef struct {
1512 UINT8 *BlockHead; // Block's head, or the smallest valid Head
1513 UINT8 *BlockTail; // Block's tail. BlockTail-BlockHead=block length
1514 UINT8 *Head; // 1st byte of the data in the block
1515 UINT8 *Tail; // Tail of the data in the block, Tail-Head=Size
1516 UINT32 Size; // The size of the data
1517 } NET_BLOCK_OP;
1518
1519 typedef union {
1520 IP4_HEAD *Ip4;
1521 EFI_IP6_HEADER *Ip6;
1522 } NET_IP_HEAD;
1523
1524 //
1525 //NET_BUF is the buffer manage structure used by the
1526 //network stack. Every network packet may be fragmented. The Vector points to
1527 //memory blocks used by each fragment, and BlockOp
1528 //specifies where each fragment begins and ends.
1529 //
1530 //It also contains an opaque area for the protocol to store
1531 //per-packet information. Protocol must be careful not
1532 //to overwrite the members after that.
1533 //
1534 typedef struct {
1535 UINT32 Signature;
1536 INTN RefCnt;
1537 LIST_ENTRY List; // The List this NET_BUF is on
1538
1539 NET_IP_HEAD Ip; // Network layer header, for fast access
1540 TCP_HEAD *Tcp; // Transport layer header, for fast access
1541 EFI_UDP_HEADER *Udp; // User Datagram Protocol header
1542 UINT8 ProtoData [NET_PROTO_DATA]; //Protocol specific data
1543
1544 NET_VECTOR *Vector; // The vector containing the packet
1545
1546 UINT32 BlockOpNum; // Total number of BlockOp in the buffer
1547 UINT32 TotalSize; // Total size of the actual packet
1548 NET_BLOCK_OP BlockOp[1]; // Specify the position of actual packet
1549 } NET_BUF;
1550
1551 //
1552 //A queue of NET_BUFs. It is a thin extension of
1553 //NET_BUF functions.
1554 //
1555 typedef struct {
1556 UINT32 Signature;
1557 INTN RefCnt;
1558 LIST_ENTRY List; // The List this buffer queue is on
1559
1560 LIST_ENTRY BufList; // list of queued buffers
1561 UINT32 BufSize; // total length of DATA in the buffers
1562 UINT32 BufNum; // total number of buffers on the chain
1563 } NET_BUF_QUEUE;
1564
1565 //
1566 // Pseudo header for TCP and UDP checksum
1567 //
1568 #pragma pack(1)
1569 typedef struct {
1570 IP4_ADDR SrcIp;
1571 IP4_ADDR DstIp;
1572 UINT8 Reserved;
1573 UINT8 Protocol;
1574 UINT16 Len;
1575 } NET_PSEUDO_HDR;
1576
1577 typedef struct {
1578 EFI_IPv6_ADDRESS SrcIp;
1579 EFI_IPv6_ADDRESS DstIp;
1580 UINT32 Len;
1581 UINT32 Reserved:24;
1582 UINT32 NextHeader:8;
1583 } NET_IP6_PSEUDO_HDR;
1584 #pragma pack()
1585
1586 //
1587 // The fragment entry table used in network interfaces. This is
1588 // the same as NET_BLOCK now. Use two different to distinguish
1589 // the two in case that NET_BLOCK be enhanced later.
1590 //
1591 typedef struct {
1592 UINT32 Len;
1593 UINT8 *Bulk;
1594 } NET_FRAGMENT;
1595
1596 #define NET_GET_REF(PData) ((PData)->RefCnt++)
1597 #define NET_PUT_REF(PData) ((PData)->RefCnt--)
1598 #define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)
1599
1600 #define NET_BUF_SHARED(Buf) \
1601 (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))
1602
1603 #define NET_VECTOR_SIZE(BlockNum) \
1604 (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))
1605
1606 #define NET_BUF_SIZE(BlockOpNum) \
1607 (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))
1608
1609 #define NET_HEADSPACE(BlockOp) \
1610 ((UINTN)((BlockOp)->Head) - (UINTN)((BlockOp)->BlockHead))
1611
1612 #define NET_TAILSPACE(BlockOp) \
1613 ((UINTN)((BlockOp)->BlockTail) - (UINTN)((BlockOp)->Tail))
1614
1615 /**
1616 Allocate a single block NET_BUF. Upon allocation, all the
1617 free space is in the tail room.
1618
1619 @param[in] Len The length of the block.
1620
1621 @return The pointer to the allocated NET_BUF, or NULL if the
1622 allocation failed due to resource limitations.
1623
1624 **/
1625 NET_BUF *
1626 EFIAPI
1627 NetbufAlloc (
1628 IN UINT32 Len
1629 );
1630
1631 /**
1632 Free the net buffer and its associated NET_VECTOR.
1633
1634 Decrease the reference count of the net buffer by one. Free the associated net
1635 vector and itself if the reference count of the net buffer is decreased to 0.
1636 The net vector free operation decreases the reference count of the net
1637 vector by one, and performs the resource free operation when the reference count
1638 of the net vector is 0.
1639
1640 @param[in] Nbuf The pointer to the NET_BUF to be freed.
1641
1642 **/
1643 VOID
1644 EFIAPI
1645 NetbufFree (
1646 IN NET_BUF *Nbuf
1647 );
1648
1649 /**
1650 Get the index of NET_BLOCK_OP that contains the byte at Offset in the net
1651 buffer.
1652
1653 For example, this function can be used to retrieve the IP header in the packet. It
1654 also can be used to get the fragment that contains the byte used
1655 mainly by the library implementation itself.
1656
1657 @param[in] Nbuf The pointer to the net buffer.
1658 @param[in] Offset The offset of the byte.
1659 @param[out] Index Index of the NET_BLOCK_OP that contains the byte at
1660 Offset.
1661
1662 @return The pointer to the Offset'th byte of data in the net buffer, or NULL
1663 if there is no such data in the net buffer.
1664
1665 **/
1666 UINT8 *
1667 EFIAPI
1668 NetbufGetByte (
1669 IN NET_BUF *Nbuf,
1670 IN UINT32 Offset,
1671 OUT UINT32 *Index OPTIONAL
1672 );
1673
1674 /**
1675 Create a copy of the net buffer that shares the associated net vector.
1676
1677 The reference count of the newly created net buffer is set to 1. The reference
1678 count of the associated net vector is increased by one.
1679
1680 @param[in] Nbuf The pointer to the net buffer to be cloned.
1681
1682 @return The pointer to the cloned net buffer, or NULL if the
1683 allocation failed due to resource limitations.
1684
1685 **/
1686 NET_BUF *
1687 EFIAPI
1688 NetbufClone (
1689 IN NET_BUF *Nbuf
1690 );
1691
1692 /**
1693 Create a duplicated copy of the net buffer with data copied and HeadSpace
1694 bytes of head space reserved.
1695
1696 The duplicated net buffer will allocate its own memory to hold the data of the
1697 source net buffer.
1698
1699 @param[in] Nbuf The pointer to the net buffer to be duplicated from.
1700 @param[in, out] Duplicate The pointer to the net buffer to duplicate to. If
1701 NULL, a new net buffer is allocated.
1702 @param[in] HeadSpace The length of the head space to reserve.
1703
1704 @return The pointer to the duplicated net buffer, or NULL if
1705 the allocation failed due to resource limitations.
1706
1707 **/
1708 NET_BUF *
1709 EFIAPI
1710 NetbufDuplicate (
1711 IN NET_BUF *Nbuf,
1712 IN OUT NET_BUF *Duplicate OPTIONAL,
1713 IN UINT32 HeadSpace
1714 );
1715
1716 /**
1717 Create a NET_BUF structure which contains Len byte data of Nbuf starting from
1718 Offset.
1719
1720 A new NET_BUF structure will be created but the associated data in NET_VECTOR
1721 is shared. This function exists to perform IP packet fragmentation.
1722
1723 @param[in] Nbuf The pointer to the net buffer to be extracted.
1724 @param[in] Offset Starting point of the data to be included in the new
1725 net buffer.
1726 @param[in] Len The bytes of data to be included in the new net buffer.
1727 @param[in] HeadSpace The bytes of the head space to reserve for the protocol header.
1728
1729 @return The pointer to the cloned net buffer, or NULL if the
1730 allocation failed due to resource limitations.
1731
1732 **/
1733 NET_BUF *
1734 EFIAPI
1735 NetbufGetFragment (
1736 IN NET_BUF *Nbuf,
1737 IN UINT32 Offset,
1738 IN UINT32 Len,
1739 IN UINT32 HeadSpace
1740 );
1741
1742 /**
1743 Reserve some space in the header room of the net buffer.
1744
1745 Upon allocation, all the space is in the tail room of the buffer. Call this
1746 function to move space to the header room. This function is quite limited
1747 in that it can only reserve space from the first block of an empty NET_BUF not
1748 built from the external. However, it should be enough for the network stack.
1749
1750 @param[in, out] Nbuf The pointer to the net buffer.
1751 @param[in] Len The length of buffer to be reserved from the header.
1752
1753 **/
1754 VOID
1755 EFIAPI
1756 NetbufReserve (
1757 IN OUT NET_BUF *Nbuf,
1758 IN UINT32 Len
1759 );
1760
1761 /**
1762 Allocate Len bytes of space from the header or tail of the buffer.
1763
1764 @param[in, out] Nbuf The pointer to the net buffer.
1765 @param[in] Len The length of the buffer to be allocated.
1766 @param[in] FromHead The flag to indicate whether to reserve the data
1767 from head (TRUE) or tail (FALSE).
1768
1769 @return The pointer to the first byte of the allocated buffer,
1770 or NULL, if there is no sufficient space.
1771
1772 **/
1773 UINT8*
1774 EFIAPI
1775 NetbufAllocSpace (
1776 IN OUT NET_BUF *Nbuf,
1777 IN UINT32 Len,
1778 IN BOOLEAN FromHead
1779 );
1780
1781 /**
1782 Trim Len bytes from the header or the tail of the net buffer.
1783
1784 @param[in, out] Nbuf The pointer to the net buffer.
1785 @param[in] Len The length of the data to be trimmed.
1786 @param[in] FromHead The flag to indicate whether trim data is from the
1787 head (TRUE) or the tail (FALSE).
1788
1789 @return The length of the actual trimmed data, which may be less
1790 than Len if the TotalSize of Nbuf is less than Len.
1791
1792 **/
1793 UINT32
1794 EFIAPI
1795 NetbufTrim (
1796 IN OUT NET_BUF *Nbuf,
1797 IN UINT32 Len,
1798 IN BOOLEAN FromHead
1799 );
1800
1801 /**
1802 Copy Len bytes of data from the specific offset of the net buffer to the
1803 destination memory.
1804
1805 The Len bytes of data may cross several fragments of the net buffer.
1806
1807 @param[in] Nbuf The pointer to the net buffer.
1808 @param[in] Offset The sequence number of the first byte to copy.
1809 @param[in] Len The length of the data to copy.
1810 @param[in] Dest The destination of the data to copy to.
1811
1812 @return The length of the actual copied data, or 0 if the offset
1813 specified exceeds the total size of net buffer.
1814
1815 **/
1816 UINT32
1817 EFIAPI
1818 NetbufCopy (
1819 IN NET_BUF *Nbuf,
1820 IN UINT32 Offset,
1821 IN UINT32 Len,
1822 IN UINT8 *Dest
1823 );
1824
1825 /**
1826 Build a NET_BUF from external blocks.
1827
1828 A new NET_BUF structure will be created from external blocks. An additional block
1829 of memory will be allocated to hold reserved HeadSpace bytes of header room
1830 and existing HeadLen bytes of header, but the external blocks are shared by the
1831 net buffer to avoid data copying.
1832
1833 @param[in] ExtFragment The pointer to the data block.
1834 @param[in] ExtNum The number of the data blocks.
1835 @param[in] HeadSpace The head space to be reserved.
1836 @param[in] HeadLen The length of the protocol header. The function
1837 pulls this amount of data into a linear block.
1838 @param[in] ExtFree The pointer to the caller-provided free function.
1839 @param[in] Arg The argument passed to ExtFree when ExtFree is
1840 called.
1841
1842 @return The pointer to the net buffer built from the data blocks,
1843 or NULL if the allocation failed due to resource
1844 limit.
1845
1846 **/
1847 NET_BUF *
1848 EFIAPI
1849 NetbufFromExt (
1850 IN NET_FRAGMENT *ExtFragment,
1851 IN UINT32 ExtNum,
1852 IN UINT32 HeadSpace,
1853 IN UINT32 HeadLen,
1854 IN NET_VECTOR_EXT_FREE ExtFree,
1855 IN VOID *Arg OPTIONAL
1856 );
1857
1858 /**
1859 Build a fragment table to contain the fragments in the net buffer. This is the
1860 opposite operation of the NetbufFromExt.
1861
1862 @param[in] Nbuf Points to the net buffer.
1863 @param[in, out] ExtFragment The pointer to the data block.
1864 @param[in, out] ExtNum The number of the data blocks.
1865
1866 @retval EFI_BUFFER_TOO_SMALL The number of non-empty blocks is bigger than
1867 ExtNum.
1868 @retval EFI_SUCCESS The fragment table was built successfully.
1869
1870 **/
1871 EFI_STATUS
1872 EFIAPI
1873 NetbufBuildExt (
1874 IN NET_BUF *Nbuf,
1875 IN OUT NET_FRAGMENT *ExtFragment,
1876 IN OUT UINT32 *ExtNum
1877 );
1878
1879 /**
1880 Build a net buffer from a list of net buffers.
1881
1882 All the fragments will be collected from the list of NEW_BUF, and then a new
1883 net buffer will be created through NetbufFromExt.
1884
1885 @param[in] BufList A List of the net buffer.
1886 @param[in] HeadSpace The head space to be reserved.
1887 @param[in] HeaderLen The length of the protocol header. The function
1888 pulls this amount of data into a linear block.
1889 @param[in] ExtFree The pointer to the caller provided free function.
1890 @param[in] Arg The argument passed to ExtFree when ExtFree is called.
1891
1892 @return The pointer to the net buffer built from the list of net
1893 buffers.
1894
1895 **/
1896 NET_BUF *
1897 EFIAPI
1898 NetbufFromBufList (
1899 IN LIST_ENTRY *BufList,
1900 IN UINT32 HeadSpace,
1901 IN UINT32 HeaderLen,
1902 IN NET_VECTOR_EXT_FREE ExtFree,
1903 IN VOID *Arg OPTIONAL
1904 );
1905
1906 /**
1907 Free a list of net buffers.
1908
1909 @param[in, out] Head The pointer to the head of linked net buffers.
1910
1911 **/
1912 VOID
1913 EFIAPI
1914 NetbufFreeList (
1915 IN OUT LIST_ENTRY *Head
1916 );
1917
1918 /**
1919 Initiate the net buffer queue.
1920
1921 @param[in, out] NbufQue The pointer to the net buffer queue to be initialized.
1922
1923 **/
1924 VOID
1925 EFIAPI
1926 NetbufQueInit (
1927 IN OUT NET_BUF_QUEUE *NbufQue
1928 );
1929
1930 /**
1931 Allocate and initialize a net buffer queue.
1932
1933 @return The pointer to the allocated net buffer queue, or NULL if the
1934 allocation failed due to resource limit.
1935
1936 **/
1937 NET_BUF_QUEUE *
1938 EFIAPI
1939 NetbufQueAlloc (
1940 VOID
1941 );
1942
1943 /**
1944 Free a net buffer queue.
1945
1946 Decrease the reference count of the net buffer queue by one. The real resource
1947 free operation isn't performed until the reference count of the net buffer
1948 queue is decreased to 0.
1949
1950 @param[in] NbufQue The pointer to the net buffer queue to be freed.
1951
1952 **/
1953 VOID
1954 EFIAPI
1955 NetbufQueFree (
1956 IN NET_BUF_QUEUE *NbufQue
1957 );
1958
1959 /**
1960 Remove a net buffer from the head in the specific queue and return it.
1961
1962 @param[in, out] NbufQue The pointer to the net buffer queue.
1963
1964 @return The pointer to the net buffer removed from the specific queue,
1965 or NULL if there is no net buffer in the specific queue.
1966
1967 **/
1968 NET_BUF *
1969 EFIAPI
1970 NetbufQueRemove (
1971 IN OUT NET_BUF_QUEUE *NbufQue
1972 );
1973
1974 /**
1975 Append a net buffer to the net buffer queue.
1976
1977 @param[in, out] NbufQue The pointer to the net buffer queue.
1978 @param[in, out] Nbuf The pointer to the net buffer to be appended.
1979
1980 **/
1981 VOID
1982 EFIAPI
1983 NetbufQueAppend (
1984 IN OUT NET_BUF_QUEUE *NbufQue,
1985 IN OUT NET_BUF *Nbuf
1986 );
1987
1988 /**
1989 Copy Len bytes of data from the net buffer queue at the specific offset to the
1990 destination memory.
1991
1992 The copying operation is the same as NetbufCopy, but applies to the net buffer
1993 queue instead of the net buffer.
1994
1995 @param[in] NbufQue The pointer to the net buffer queue.
1996 @param[in] Offset The sequence number of the first byte to copy.
1997 @param[in] Len The length of the data to copy.
1998 @param[out] Dest The destination of the data to copy to.
1999
2000 @return The length of the actual copied data, or 0 if the offset
2001 specified exceeds the total size of net buffer queue.
2002
2003 **/
2004 UINT32
2005 EFIAPI
2006 NetbufQueCopy (
2007 IN NET_BUF_QUEUE *NbufQue,
2008 IN UINT32 Offset,
2009 IN UINT32 Len,
2010 OUT UINT8 *Dest
2011 );
2012
2013 /**
2014 Trim Len bytes of data from the buffer queue and free any net buffer
2015 that is completely trimmed.
2016
2017 The trimming operation is the same as NetbufTrim but applies to the net buffer
2018 queue instead of the net buffer.
2019
2020 @param[in, out] NbufQue The pointer to the net buffer queue.
2021 @param[in] Len The length of the data to trim.
2022
2023 @return The actual length of the data trimmed.
2024
2025 **/
2026 UINT32
2027 EFIAPI
2028 NetbufQueTrim (
2029 IN OUT NET_BUF_QUEUE *NbufQue,
2030 IN UINT32 Len
2031 );
2032
2033
2034 /**
2035 Flush the net buffer queue.
2036
2037 @param[in, out] NbufQue The pointer to the queue to be flushed.
2038
2039 **/
2040 VOID
2041 EFIAPI
2042 NetbufQueFlush (
2043 IN OUT NET_BUF_QUEUE *NbufQue
2044 );
2045
2046 /**
2047 Compute the checksum for a bulk of data.
2048
2049 @param[in] Bulk The pointer to the data.
2050 @param[in] Len The length of the data, in bytes.
2051
2052 @return The computed checksum.
2053
2054 **/
2055 UINT16
2056 EFIAPI
2057 NetblockChecksum (
2058 IN UINT8 *Bulk,
2059 IN UINT32 Len
2060 );
2061
2062 /**
2063 Add two checksums.
2064
2065 @param[in] Checksum1 The first checksum to be added.
2066 @param[in] Checksum2 The second checksum to be added.
2067
2068 @return The new checksum.
2069
2070 **/
2071 UINT16
2072 EFIAPI
2073 NetAddChecksum (
2074 IN UINT16 Checksum1,
2075 IN UINT16 Checksum2
2076 );
2077
2078 /**
2079 Compute the checksum for a NET_BUF.
2080
2081 @param[in] Nbuf The pointer to the net buffer.
2082
2083 @return The computed checksum.
2084
2085 **/
2086 UINT16
2087 EFIAPI
2088 NetbufChecksum (
2089 IN NET_BUF *Nbuf
2090 );
2091
2092 /**
2093 Compute the checksum for TCP/UDP pseudo header.
2094
2095 Src and Dst are in network byte order, and Len is in host byte order.
2096
2097 @param[in] Src The source address of the packet.
2098 @param[in] Dst The destination address of the packet.
2099 @param[in] Proto The protocol type of the packet.
2100 @param[in] Len The length of the packet.
2101
2102 @return The computed checksum.
2103
2104 **/
2105 UINT16
2106 EFIAPI
2107 NetPseudoHeadChecksum (
2108 IN IP4_ADDR Src,
2109 IN IP4_ADDR Dst,
2110 IN UINT8 Proto,
2111 IN UINT16 Len
2112 );
2113
2114 /**
2115 Compute the checksum for the TCP6/UDP6 pseudo header.
2116
2117 Src and Dst are in network byte order, and Len is in host byte order.
2118
2119 @param[in] Src The source address of the packet.
2120 @param[in] Dst The destination address of the packet.
2121 @param[in] NextHeader The protocol type of the packet.
2122 @param[in] Len The length of the packet.
2123
2124 @return The computed checksum.
2125
2126 **/
2127 UINT16
2128 EFIAPI
2129 NetIp6PseudoHeadChecksum (
2130 IN EFI_IPv6_ADDRESS *Src,
2131 IN EFI_IPv6_ADDRESS *Dst,
2132 IN UINT8 NextHeader,
2133 IN UINT32 Len
2134 );
2135
2136 /**
2137 The function frees the net buffer which allocated by the IP protocol. It releases
2138 only the net buffer and doesn't call the external free function.
2139
2140 This function should be called after finishing the process of mIpSec->ProcessExt()
2141 for outbound traffic. The (EFI_IPSEC2_PROTOCOL)->ProcessExt() allocates a new
2142 buffer for the ESP, so there needs a function to free the old net buffer.
2143
2144 @param[in] Nbuf The network buffer to be freed.
2145
2146 **/
2147 VOID
2148 NetIpSecNetbufFree (
2149 NET_BUF *Nbuf
2150 );
2151
2152 /**
2153 This function obtains the system guid from the smbios table.
2154
2155 @param[out] SystemGuid The pointer of the returned system guid.
2156
2157 @retval EFI_SUCCESS Successfully obtained the system guid.
2158 @retval EFI_NOT_FOUND Did not find the SMBIOS table.
2159
2160 **/
2161 EFI_STATUS
2162 EFIAPI
2163 NetLibGetSystemGuid (
2164 OUT EFI_GUID *SystemGuid
2165 );
2166
2167 /**
2168 Create Dns QName according the queried domain name.
2169 QName is a domain name represented as a sequence of labels,
2170 where each label consists of a length octet followed by that
2171 number of octets. The QName terminates with the zero
2172 length octet for the null label of the root. Caller should
2173 take responsibility to free the buffer in returned pointer.
2174
2175 @param DomainName The pointer to the queried domain name string.
2176
2177 @retval NULL Failed to fill QName.
2178 @return QName filled successfully.
2179
2180 **/
2181 CHAR8 *
2182 EFIAPI
2183 NetLibCreateDnsQName (
2184 IN CHAR16 *DomainName
2185 );
2186
2187 #endif