]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Include/Library/NetLib.h
MdeModulePkg: Add DNS QType and QClass values definition
[mirror_edk2.git] / MdeModulePkg / Include / Library / NetLib.h
1 /** @file
2 This library is only intended to be used by UEFI network stack modules.
3 It provides basic functions for the UEFI network stack.
4
5 Copyright (c) 2005 - 2016, Intel Corporation. All rights reserved.<BR>
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution. The full text of the license may be found at<BR>
9 http://opensource.org/licenses/bsd-license.php
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #ifndef _NET_LIB_H_
17 #define _NET_LIB_H_
18
19 #include <Protocol/Ip6.h>
20
21 #include <Library/BaseLib.h>
22 #include <Library/BaseMemoryLib.h>
23
24 typedef UINT32 IP4_ADDR;
25 typedef UINT32 TCP_SEQNO;
26 typedef UINT16 TCP_PORTNO;
27
28
29 #define NET_ETHER_ADDR_LEN 6
30 #define NET_IFTYPE_ETHERNET 0x01
31
32 #define NET_VLAN_TAG_LEN 4
33 #define ETHER_TYPE_VLAN 0x8100
34
35 #define EFI_IP_PROTO_UDP 0x11
36 #define EFI_IP_PROTO_TCP 0x06
37 #define EFI_IP_PROTO_ICMP 0x01
38 #define IP4_PROTO_IGMP 0x02
39 #define IP6_ICMP 58
40
41 //
42 // The address classification
43 //
44 #define IP4_ADDR_CLASSA 1
45 #define IP4_ADDR_CLASSB 2
46 #define IP4_ADDR_CLASSC 3
47 #define IP4_ADDR_CLASSD 4
48 #define IP4_ADDR_CLASSE 5
49
50 #define IP4_MASK_NUM 33
51 #define IP6_PREFIX_NUM 129
52
53 #define IP6_HOP_BY_HOP 0
54 #define IP6_DESTINATION 60
55 #define IP6_ROUTING 43
56 #define IP6_FRAGMENT 44
57 #define IP6_AH 51
58 #define IP6_ESP 50
59 #define IP6_NO_NEXT_HEADER 59
60
61 #define IP_VERSION_4 4
62 #define IP_VERSION_6 6
63
64 #define IP6_PREFIX_LENGTH 64
65
66 //
67 // DNS QTYPE values
68 //
69 #define DNS_TYPE_A 1
70 #define DNS_TYPE_NS 2
71 #define DNS_TYPE_CNAME 5
72 #define DNS_TYPE_SOA 6
73 #define DNS_TYPE_WKS 11
74 #define DNS_TYPE_PTR 12
75 #define DNS_TYPE_HINFO 13
76 #define DNS_TYPE_MINFO 14
77 #define DNS_TYPE_MX 15
78 #define DNS_TYPE_TXT 16
79 #define DNS_TYPE_AAAA 28
80 #define DNS_TYPE_SRV_RR 33
81 #define DNS_TYPE_AXFR 252
82 #define DNS_TYPE_MAILB 253
83 #define DNS_TYPE_ANY 255
84
85 //
86 // DNS QCLASS values
87 //
88 #define DNS_CLASS_INET 1
89 #define DNS_CLASS_CH 3
90 #define DNS_CLASS_HS 4
91 #define DNS_CLASS_ANY 255
92
93 #pragma pack(1)
94
95 //
96 // Ethernet head definition
97 //
98 typedef struct {
99 UINT8 DstMac [NET_ETHER_ADDR_LEN];
100 UINT8 SrcMac [NET_ETHER_ADDR_LEN];
101 UINT16 EtherType;
102 } ETHER_HEAD;
103
104 //
105 // 802.1Q VLAN Tag Control Information
106 //
107 typedef union {
108 struct {
109 UINT16 Vid : 12; // Unique VLAN identifier (0 to 4094)
110 UINT16 Cfi : 1; // Canonical Format Indicator
111 UINT16 Priority : 3; // 802.1Q priority level (0 to 7)
112 } Bits;
113 UINT16 Uint16;
114 } VLAN_TCI;
115
116 #define VLAN_TCI_CFI_CANONICAL_MAC 0
117 #define VLAN_TCI_CFI_NON_CANONICAL_MAC 1
118
119 //
120 // The EFI_IP4_HEADER is hard to use because the source and
121 // destination address are defined as EFI_IPv4_ADDRESS, which
122 // is a structure. Two structures can't be compared or masked
123 // directly. This is why there is an internal representation.
124 //
125 typedef struct {
126 UINT8 HeadLen : 4;
127 UINT8 Ver : 4;
128 UINT8 Tos;
129 UINT16 TotalLen;
130 UINT16 Id;
131 UINT16 Fragment;
132 UINT8 Ttl;
133 UINT8 Protocol;
134 UINT16 Checksum;
135 IP4_ADDR Src;
136 IP4_ADDR Dst;
137 } IP4_HEAD;
138
139
140 //
141 // ICMP head definition. Each ICMP message is categorized as either an error
142 // message or query message. Two message types have their own head format.
143 //
144 typedef struct {
145 UINT8 Type;
146 UINT8 Code;
147 UINT16 Checksum;
148 } IP4_ICMP_HEAD;
149
150 typedef struct {
151 IP4_ICMP_HEAD Head;
152 UINT32 Fourth; // 4th filed of the head, it depends on Type.
153 IP4_HEAD IpHead;
154 } IP4_ICMP_ERROR_HEAD;
155
156 typedef struct {
157 IP4_ICMP_HEAD Head;
158 UINT16 Id;
159 UINT16 Seq;
160 } IP4_ICMP_QUERY_HEAD;
161
162 typedef struct {
163 UINT8 Type;
164 UINT8 Code;
165 UINT16 Checksum;
166 } IP6_ICMP_HEAD;
167
168 typedef struct {
169 IP6_ICMP_HEAD Head;
170 UINT32 Fourth;
171 EFI_IP6_HEADER IpHead;
172 } IP6_ICMP_ERROR_HEAD;
173
174 typedef struct {
175 IP6_ICMP_HEAD Head;
176 UINT32 Fourth;
177 } IP6_ICMP_INFORMATION_HEAD;
178
179 //
180 // UDP header definition
181 //
182 typedef struct {
183 UINT16 SrcPort;
184 UINT16 DstPort;
185 UINT16 Length;
186 UINT16 Checksum;
187 } EFI_UDP_HEADER;
188
189 //
190 // TCP header definition
191 //
192 typedef struct {
193 TCP_PORTNO SrcPort;
194 TCP_PORTNO DstPort;
195 TCP_SEQNO Seq;
196 TCP_SEQNO Ack;
197 UINT8 Res : 4;
198 UINT8 HeadLen : 4;
199 UINT8 Flag;
200 UINT16 Wnd;
201 UINT16 Checksum;
202 UINT16 Urg;
203 } TCP_HEAD;
204
205 #pragma pack()
206
207 #define NET_MAC_EQUAL(pMac1, pMac2, Len) \
208 (CompareMem ((pMac1), (pMac2), Len) == 0)
209
210 #define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \
211 (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))
212
213 #define NTOHL(x) SwapBytes32 (x)
214
215 #define HTONL(x) NTOHL(x)
216
217 #define NTOHS(x) SwapBytes16 (x)
218
219 #define HTONS(x) NTOHS(x)
220 #define NTOHLL(x) SwapBytes64 (x)
221 #define HTONLL(x) NTOHLL(x)
222 #define NTOHLLL(x) Ip6Swap128 (x)
223 #define HTONLLL(x) NTOHLLL(x)
224
225 //
226 // Test the IP's attribute, All the IPs are in host byte order.
227 //
228 #define IP4_IS_MULTICAST(Ip) (((Ip) & 0xF0000000) == 0xE0000000)
229 #define IP4_IS_LOCAL_BROADCAST(Ip) ((Ip) == 0xFFFFFFFF)
230 #define IP4_NET_EQUAL(Ip1, Ip2, NetMask) (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))
231 #define IP4_IS_VALID_NETMASK(Ip) (NetGetMaskLength (Ip) != IP4_MASK_NUM)
232
233 #define IP6_IS_MULTICAST(Ip6) (((Ip6)->Addr[0]) == 0xFF)
234
235 //
236 // Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.
237 //
238 #define EFI_IP4(EfiIpAddr) (*(IP4_ADDR *) ((EfiIpAddr).Addr))
239 #define EFI_NTOHL(EfiIp) (NTOHL (EFI_IP4 ((EfiIp))))
240 #define EFI_IP4_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)
241
242 #define EFI_IP6_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0)
243
244 #define IP4_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv4_ADDRESS)))
245 #define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS)))
246 #define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS)))
247
248 //
249 // The debug level definition. This value is also used as the
250 // syslog's servity level. Don't change it.
251 //
252 #define NETDEBUG_LEVEL_TRACE 5
253 #define NETDEBUG_LEVEL_WARNING 4
254 #define NETDEBUG_LEVEL_ERROR 3
255
256 //
257 // Network debug message is sent out as syslog packet.
258 //
259 #define NET_SYSLOG_FACILITY 16 // Syslog local facility local use
260 #define NET_SYSLOG_PACKET_LEN 512
261 #define NET_SYSLOG_TX_TIMEOUT (500 * 1000 * 10) // 500ms
262 #define NET_DEBUG_MSG_LEN 470 // 512 - (ether+ip4+udp4 head length)
263
264 //
265 // The debug output expects the ASCII format string, Use %a to print ASCII
266 // string, and %s to print UNICODE string. PrintArg must be enclosed in ().
267 // For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name));
268 //
269 #define NET_DEBUG_TRACE(Module, PrintArg) \
270 NetDebugOutput ( \
271 NETDEBUG_LEVEL_TRACE, \
272 Module, \
273 __FILE__, \
274 __LINE__, \
275 NetDebugASPrint PrintArg \
276 )
277
278 #define NET_DEBUG_WARNING(Module, PrintArg) \
279 NetDebugOutput ( \
280 NETDEBUG_LEVEL_WARNING, \
281 Module, \
282 __FILE__, \
283 __LINE__, \
284 NetDebugASPrint PrintArg \
285 )
286
287 #define NET_DEBUG_ERROR(Module, PrintArg) \
288 NetDebugOutput ( \
289 NETDEBUG_LEVEL_ERROR, \
290 Module, \
291 __FILE__, \
292 __LINE__, \
293 NetDebugASPrint PrintArg \
294 )
295
296 /**
297 Allocate a buffer, then format the message to it. This is a
298 help function for the NET_DEBUG_XXX macros. The PrintArg of
299 these macros treats the variable length print parameters as a
300 single parameter, and pass it to the NetDebugASPrint. For
301 example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))
302 if extracted to:
303
304 NetDebugOutput (
305 NETDEBUG_LEVEL_TRACE,
306 "Tcp",
307 __FILE__,
308 __LINE__,
309 NetDebugASPrint ("State transit to %a\n", Name)
310 )
311
312 @param Format The ASCII format string.
313 @param ... The variable length parameter whose format is determined
314 by the Format string.
315
316 @return The buffer containing the formatted message,
317 or NULL if memory allocation failed.
318
319 **/
320 CHAR8 *
321 EFIAPI
322 NetDebugASPrint (
323 IN CHAR8 *Format,
324 ...
325 );
326
327 /**
328 Builds an UDP4 syslog packet and send it using SNP.
329
330 This function will locate a instance of SNP then send the message through it.
331 Because it isn't open the SNP BY_DRIVER, apply caution when using it.
332
333 @param Level The servity level of the message.
334 @param Module The Moudle that generates the log.
335 @param File The file that contains the log.
336 @param Line The exact line that contains the log.
337 @param Message The user message to log.
338
339 @retval EFI_INVALID_PARAMETER Any input parameter is invalid.
340 @retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet
341 @retval EFI_SUCCESS The log is discard because that it is more verbose
342 than the mNetDebugLevelMax. Or, it has been sent out.
343 **/
344 EFI_STATUS
345 EFIAPI
346 NetDebugOutput (
347 IN UINT32 Level,
348 IN UINT8 *Module,
349 IN UINT8 *File,
350 IN UINT32 Line,
351 IN UINT8 *Message
352 );
353
354
355 /**
356 Return the length of the mask.
357
358 Return the length of the mask. Valid values are 0 to 32.
359 If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.
360 NetMask is in the host byte order.
361
362 @param[in] NetMask The netmask to get the length from.
363
364 @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid.
365
366 **/
367 INTN
368 EFIAPI
369 NetGetMaskLength (
370 IN IP4_ADDR NetMask
371 );
372
373 /**
374 Return the class of the IP address, such as class A, B, C.
375 Addr is in host byte order.
376
377 The address of class A starts with 0.
378 If the address belong to class A, return IP4_ADDR_CLASSA.
379 The address of class B starts with 10.
380 If the address belong to class B, return IP4_ADDR_CLASSB.
381 The address of class C starts with 110.
382 If the address belong to class C, return IP4_ADDR_CLASSC.
383 The address of class D starts with 1110.
384 If the address belong to class D, return IP4_ADDR_CLASSD.
385 The address of class E starts with 1111.
386 If the address belong to class E, return IP4_ADDR_CLASSE.
387
388
389 @param[in] Addr The address to get the class from.
390
391 @return IP address class, such as IP4_ADDR_CLASSA.
392
393 **/
394 INTN
395 EFIAPI
396 NetGetIpClass (
397 IN IP4_ADDR Addr
398 );
399
400 /**
401 Check whether the IP is a valid unicast address according to
402 the netmask. If NetMask is zero, use the IP address's class to get the default mask.
403
404 If Ip is 0, IP is not a valid unicast address.
405 Class D address is used for multicasting and class E address is reserved for future. If Ip
406 belongs to class D or class E, Ip is not a valid unicast address.
407 If all bits of the host address of Ip are 0 or 1, Ip is not a valid unicast address.
408
409 @param[in] Ip The IP to check against.
410 @param[in] NetMask The mask of the IP.
411
412 @return TRUE if Ip is a valid unicast address on the network, otherwise FALSE.
413
414 **/
415 BOOLEAN
416 EFIAPI
417 NetIp4IsUnicast (
418 IN IP4_ADDR Ip,
419 IN IP4_ADDR NetMask
420 );
421
422 /**
423 Check whether the incoming IPv6 address is a valid unicast address.
424
425 If the address is a multicast address has binary 0xFF at the start, it is not
426 a valid unicast address. If the address is unspecified ::, it is not a valid
427 unicast address to be assigned to any node. If the address is loopback address
428 ::1, it is also not a valid unicast address to be assigned to any physical
429 interface.
430
431 @param[in] Ip6 The IPv6 address to check against.
432
433 @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.
434
435 **/
436 BOOLEAN
437 EFIAPI
438 NetIp6IsValidUnicast (
439 IN EFI_IPv6_ADDRESS *Ip6
440 );
441
442
443 /**
444 Check whether the incoming Ipv6 address is the unspecified address or not.
445
446 @param[in] Ip6 - Ip6 address, in network order.
447
448 @retval TRUE - Yes, incoming Ipv6 address is the unspecified address.
449 @retval FALSE - The incoming Ipv6 address is not the unspecified address
450
451 **/
452 BOOLEAN
453 EFIAPI
454 NetIp6IsUnspecifiedAddr (
455 IN EFI_IPv6_ADDRESS *Ip6
456 );
457
458 /**
459 Check whether the incoming Ipv6 address is a link-local address.
460
461 @param[in] Ip6 - Ip6 address, in network order.
462
463 @retval TRUE - The incoming Ipv6 address is a link-local address.
464 @retval FALSE - The incoming Ipv6 address is not a link-local address.
465
466 **/
467 BOOLEAN
468 EFIAPI
469 NetIp6IsLinkLocalAddr (
470 IN EFI_IPv6_ADDRESS *Ip6
471 );
472
473 /**
474 Check whether the Ipv6 address1 and address2 are on the connected network.
475
476 @param[in] Ip1 - Ip6 address1, in network order.
477 @param[in] Ip2 - Ip6 address2, in network order.
478 @param[in] PrefixLength - The prefix length of the checking net.
479
480 @retval TRUE - Yes, the Ipv6 address1 and address2 are connected.
481 @retval FALSE - No the Ipv6 address1 and address2 are not connected.
482
483 **/
484 BOOLEAN
485 EFIAPI
486 NetIp6IsNetEqual (
487 EFI_IPv6_ADDRESS *Ip1,
488 EFI_IPv6_ADDRESS *Ip2,
489 UINT8 PrefixLength
490 );
491
492 /**
493 Switches the endianess of an IPv6 address.
494
495 This function swaps the bytes in a 128-bit IPv6 address to switch the value
496 from little endian to big endian or vice versa. The byte swapped value is
497 returned.
498
499 @param Ip6 Points to an IPv6 address.
500
501 @return The byte swapped IPv6 address.
502
503 **/
504 EFI_IPv6_ADDRESS *
505 EFIAPI
506 Ip6Swap128 (
507 EFI_IPv6_ADDRESS *Ip6
508 );
509
510 extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM];
511
512
513 extern EFI_IPv4_ADDRESS mZeroIp4Addr;
514
515 #define NET_IS_DIGIT(Ch) (('0' <= (Ch)) && ((Ch) <= '9'))
516 #define NET_ROUNDUP(size, unit) (((size) + (unit) - 1) & (~((unit) - 1)))
517 #define NET_IS_LOWER_CASE_CHAR(Ch) (('a' <= (Ch)) && ((Ch) <= 'z'))
518 #define NET_IS_UPPER_CASE_CHAR(Ch) (('A' <= (Ch)) && ((Ch) <= 'Z'))
519
520 #define TICKS_PER_MS 10000U
521 #define TICKS_PER_SECOND 10000000U
522
523 #define NET_RANDOM(Seed) ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)
524
525 /**
526 Extract a UINT32 from a byte stream.
527
528 This function copies a UINT32 from a byte stream, and then converts it from Network
529 byte order to host byte order. Use this function to avoid alignment error.
530
531 @param[in] Buf The buffer to extract the UINT32.
532
533 @return The UINT32 extracted.
534
535 **/
536 UINT32
537 EFIAPI
538 NetGetUint32 (
539 IN UINT8 *Buf
540 );
541
542 /**
543 Puts a UINT32 into the byte stream in network byte order.
544
545 Converts a UINT32 from host byte order to network byte order, then copies it to the
546 byte stream.
547
548 @param[in, out] Buf The buffer in which to put the UINT32.
549 @param[in] Data The data to be converted and put into the byte stream.
550
551 **/
552 VOID
553 EFIAPI
554 NetPutUint32 (
555 IN OUT UINT8 *Buf,
556 IN UINT32 Data
557 );
558
559 /**
560 Initialize a random seed using current time and monotonic count.
561
562 Get current time and monotonic count first. Then initialize a random seed
563 based on some basic mathematics operation on the hour, day, minute, second,
564 nanosecond and year of the current time and the monotonic count value.
565
566 @return The random seed initialized with current time.
567
568 **/
569 UINT32
570 EFIAPI
571 NetRandomInitSeed (
572 VOID
573 );
574
575
576 #define NET_LIST_USER_STRUCT(Entry, Type, Field) \
577 BASE_CR(Entry, Type, Field)
578
579 #define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig) \
580 CR(Entry, Type, Field, Sig)
581
582 //
583 // Iterate through the double linked list. It is NOT delete safe
584 //
585 #define NET_LIST_FOR_EACH(Entry, ListHead) \
586 for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)
587
588 //
589 // Iterate through the double linked list. This is delete-safe.
590 // Don't touch NextEntry. Also, don't use this macro if list
591 // entries other than the Entry may be deleted when processing
592 // the current Entry.
593 //
594 #define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \
595 for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \
596 Entry != (ListHead); \
597 Entry = NextEntry, NextEntry = Entry->ForwardLink \
598 )
599
600 //
601 // Make sure the list isn't empty before getting the first/last record.
602 //
603 #define NET_LIST_HEAD(ListHead, Type, Field) \
604 NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)
605
606 #define NET_LIST_TAIL(ListHead, Type, Field) \
607 NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)
608
609
610 /**
611 Remove the first node entry on the list, and return the removed node entry.
612
613 Removes the first node entry from a doubly linked list. It is up to the caller of
614 this function to release the memory used by the first node, if that is required. On
615 exit, the removed node is returned.
616
617 If Head is NULL, then ASSERT().
618 If Head was not initialized, then ASSERT().
619 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
620 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
621 then ASSERT().
622
623 @param[in, out] Head The list header.
624
625 @return The first node entry that is removed from the list, NULL if the list is empty.
626
627 **/
628 LIST_ENTRY *
629 EFIAPI
630 NetListRemoveHead (
631 IN OUT LIST_ENTRY *Head
632 );
633
634 /**
635 Remove the last node entry on the list and return the removed node entry.
636
637 Removes the last node entry from a doubly linked list. It is up to the caller of
638 this function to release the memory used by the first node, if that is required. On
639 exit, the removed node is returned.
640
641 If Head is NULL, then ASSERT().
642 If Head was not initialized, then ASSERT().
643 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
644 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
645 then ASSERT().
646
647 @param[in, out] Head The list head.
648
649 @return The last node entry that is removed from the list, NULL if the list is empty.
650
651 **/
652 LIST_ENTRY *
653 EFIAPI
654 NetListRemoveTail (
655 IN OUT LIST_ENTRY *Head
656 );
657
658 /**
659 Insert a new node entry after a designated node entry of a doubly linked list.
660
661 Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry
662 of the doubly linked list.
663
664 @param[in, out] PrevEntry The entry after which to insert.
665 @param[in, out] NewEntry The new entry to insert.
666
667 **/
668 VOID
669 EFIAPI
670 NetListInsertAfter (
671 IN OUT LIST_ENTRY *PrevEntry,
672 IN OUT LIST_ENTRY *NewEntry
673 );
674
675 /**
676 Insert a new node entry before a designated node entry of a doubly linked list.
677
678 Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry
679 of the doubly linked list.
680
681 @param[in, out] PostEntry The entry to insert before.
682 @param[in, out] NewEntry The new entry to insert.
683
684 **/
685 VOID
686 EFIAPI
687 NetListInsertBefore (
688 IN OUT LIST_ENTRY *PostEntry,
689 IN OUT LIST_ENTRY *NewEntry
690 );
691
692 /**
693 Callback function which provided by user to remove one node in NetDestroyLinkList process.
694
695 @param[in] Entry The entry to be removed.
696 @param[in] Context Pointer to the callback context corresponds to the Context in NetDestroyLinkList.
697
698 @retval EFI_SUCCESS The entry has been removed successfully.
699 @retval Others Fail to remove the entry.
700
701 **/
702 typedef
703 EFI_STATUS
704 (EFIAPI *NET_DESTROY_LINK_LIST_CALLBACK) (
705 IN LIST_ENTRY *Entry,
706 IN VOID *Context OPTIONAL
707 );
708
709 /**
710 Safe destroy nodes in a linked list, and return the length of the list after all possible operations finished.
711
712 Destroy network children list by list traversals is not safe due to graph dependencies between nodes.
713 This function performs a safe traversal to destroy these nodes by checking to see if the node being destroyed
714 has been removed from the list or not.
715 If it has been removed, then restart the traversal from the head.
716 If it hasn't been removed, then continue with the next node directly.
717 This function will end the iterate and return the CallBack's last return value if error happens,
718 or retrun EFI_SUCCESS if 2 complete passes are made with no changes in the number of children in the list.
719
720 @param[in] List The head of the list.
721 @param[in] CallBack Pointer to the callback function to destroy one node in the list.
722 @param[in] Context Pointer to the callback function's context: corresponds to the
723 parameter Context in NET_DESTROY_LINK_LIST_CALLBACK.
724 @param[out] ListLength The length of the link list if the function returns successfully.
725
726 @retval EFI_SUCCESS Two complete passes are made with no changes in the number of children.
727 @retval EFI_INVALID_PARAMETER The input parameter is invalid.
728 @retval Others Return the CallBack's last return value.
729
730 **/
731 EFI_STATUS
732 EFIAPI
733 NetDestroyLinkList (
734 IN LIST_ENTRY *List,
735 IN NET_DESTROY_LINK_LIST_CALLBACK CallBack,
736 IN VOID *Context, OPTIONAL
737 OUT UINTN *ListLength OPTIONAL
738 );
739
740 /**
741 This function checks the input Handle to see if it's one of these handles in ChildHandleBuffer.
742
743 @param[in] Handle Handle to be checked.
744 @param[in] NumberOfChildren Number of Handles in ChildHandleBuffer.
745 @param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL
746 if NumberOfChildren is 0.
747
748 @retval TURE Found the input Handle in ChildHandleBuffer.
749 @retval FALSE Can't find the input Handle in ChildHandleBuffer.
750
751 **/
752 BOOLEAN
753 EFIAPI
754 NetIsInHandleBuffer (
755 IN EFI_HANDLE Handle,
756 IN UINTN NumberOfChildren,
757 IN EFI_HANDLE *ChildHandleBuffer OPTIONAL
758 );
759
760 //
761 // Object container: EFI network stack spec defines various kinds of
762 // tokens. The drivers can share code to manage those objects.
763 //
764 typedef struct {
765 LIST_ENTRY Link;
766 VOID *Key;
767 VOID *Value;
768 } NET_MAP_ITEM;
769
770 typedef struct {
771 LIST_ENTRY Used;
772 LIST_ENTRY Recycled;
773 UINTN Count;
774 } NET_MAP;
775
776 #define NET_MAP_INCREAMENT 64
777
778 /**
779 Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.
780
781 Initialize the forward and backward links of two head nodes donated by Map->Used
782 and Map->Recycled of two doubly linked lists.
783 Initializes the count of the <Key, Value> pairs in the netmap to zero.
784
785 If Map is NULL, then ASSERT().
786 If the address of Map->Used is NULL, then ASSERT().
787 If the address of Map->Recycled is NULl, then ASSERT().
788
789 @param[in, out] Map The netmap to initialize.
790
791 **/
792 VOID
793 EFIAPI
794 NetMapInit (
795 IN OUT NET_MAP *Map
796 );
797
798 /**
799 To clean up the netmap, that is, release allocated memories.
800
801 Removes all nodes of the Used doubly linked list and frees memory of all related netmap items.
802 Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.
803 The number of the <Key, Value> pairs in the netmap is set to zero.
804
805 If Map is NULL, then ASSERT().
806
807 @param[in, out] Map The netmap to clean up.
808
809 **/
810 VOID
811 EFIAPI
812 NetMapClean (
813 IN OUT NET_MAP *Map
814 );
815
816 /**
817 Test whether the netmap is empty and return true if it is.
818
819 If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.
820
821 If Map is NULL, then ASSERT().
822
823
824 @param[in] Map The net map to test.
825
826 @return TRUE if the netmap is empty, otherwise FALSE.
827
828 **/
829 BOOLEAN
830 EFIAPI
831 NetMapIsEmpty (
832 IN NET_MAP *Map
833 );
834
835 /**
836 Return the number of the <Key, Value> pairs in the netmap.
837
838 @param[in] Map The netmap to get the entry number.
839
840 @return The entry number in the netmap.
841
842 **/
843 UINTN
844 EFIAPI
845 NetMapGetCount (
846 IN NET_MAP *Map
847 );
848
849 /**
850 Allocate an item to save the <Key, Value> pair to the head of the netmap.
851
852 Allocate an item to save the <Key, Value> pair and add corresponding node entry
853 to the beginning of the Used doubly linked list. The number of the <Key, Value>
854 pairs in the netmap increase by 1.
855
856 If Map is NULL, then ASSERT().
857
858 @param[in, out] Map The netmap to insert into.
859 @param[in] Key The user's key.
860 @param[in] Value The user's value for the key.
861
862 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
863 @retval EFI_SUCCESS The item is inserted to the head.
864
865 **/
866 EFI_STATUS
867 EFIAPI
868 NetMapInsertHead (
869 IN OUT NET_MAP *Map,
870 IN VOID *Key,
871 IN VOID *Value OPTIONAL
872 );
873
874 /**
875 Allocate an item to save the <Key, Value> pair to the tail of the netmap.
876
877 Allocate an item to save the <Key, Value> pair and add corresponding node entry
878 to the tail of the Used doubly linked list. The number of the <Key, Value>
879 pairs in the netmap increase by 1.
880
881 If Map is NULL, then ASSERT().
882
883 @param[in, out] Map The netmap to insert into.
884 @param[in] Key The user's key.
885 @param[in] Value The user's value for the key.
886
887 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item.
888 @retval EFI_SUCCESS The item is inserted to the tail.
889
890 **/
891 EFI_STATUS
892 EFIAPI
893 NetMapInsertTail (
894 IN OUT NET_MAP *Map,
895 IN VOID *Key,
896 IN VOID *Value OPTIONAL
897 );
898
899 /**
900 Finds the key in the netmap and returns the point to the item containing the Key.
901
902 Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every
903 item with the key to search. It returns the point to the item contains the Key if found.
904
905 If Map is NULL, then ASSERT().
906
907 @param[in] Map The netmap to search within.
908 @param[in] Key The key to search.
909
910 @return The point to the item contains the Key, or NULL if Key isn't in the map.
911
912 **/
913 NET_MAP_ITEM *
914 EFIAPI
915 NetMapFindKey (
916 IN NET_MAP *Map,
917 IN VOID *Key
918 );
919
920 /**
921 Remove the node entry of the item from the netmap and return the key of the removed item.
922
923 Remove the node entry of the item from the Used doubly linked list of the netmap.
924 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
925 entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,
926 Value will point to the value of the item. It returns the key of the removed item.
927
928 If Map is NULL, then ASSERT().
929 If Item is NULL, then ASSERT().
930 if item in not in the netmap, then ASSERT().
931
932 @param[in, out] Map The netmap to remove the item from.
933 @param[in, out] Item The item to remove.
934 @param[out] Value The variable to receive the value if not NULL.
935
936 @return The key of the removed item.
937
938 **/
939 VOID *
940 EFIAPI
941 NetMapRemoveItem (
942 IN OUT NET_MAP *Map,
943 IN OUT NET_MAP_ITEM *Item,
944 OUT VOID **Value OPTIONAL
945 );
946
947 /**
948 Remove the first node entry on the netmap and return the key of the removed item.
949
950 Remove the first node entry from the Used doubly linked list of the netmap.
951 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
952 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
953 parameter Value will point to the value of the item. It returns the key of the removed item.
954
955 If Map is NULL, then ASSERT().
956 If the Used doubly linked list is empty, then ASSERT().
957
958 @param[in, out] Map The netmap to remove the head from.
959 @param[out] Value The variable to receive the value if not NULL.
960
961 @return The key of the item removed.
962
963 **/
964 VOID *
965 EFIAPI
966 NetMapRemoveHead (
967 IN OUT NET_MAP *Map,
968 OUT VOID **Value OPTIONAL
969 );
970
971 /**
972 Remove the last node entry on the netmap and return the key of the removed item.
973
974 Remove the last node entry from the Used doubly linked list of the netmap.
975 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
976 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
977 parameter Value will point to the value of the item. It returns the key of the removed item.
978
979 If Map is NULL, then ASSERT().
980 If the Used doubly linked list is empty, then ASSERT().
981
982 @param[in, out] Map The netmap to remove the tail from.
983 @param[out] Value The variable to receive the value if not NULL.
984
985 @return The key of the item removed.
986
987 **/
988 VOID *
989 EFIAPI
990 NetMapRemoveTail (
991 IN OUT NET_MAP *Map,
992 OUT VOID **Value OPTIONAL
993 );
994
995 typedef
996 EFI_STATUS
997 (EFIAPI *NET_MAP_CALLBACK) (
998 IN NET_MAP *Map,
999 IN NET_MAP_ITEM *Item,
1000 IN VOID *Arg
1001 );
1002
1003 /**
1004 Iterate through the netmap and call CallBack for each item.
1005
1006 It will contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break
1007 from the loop. It returns the CallBack's last return value. This function is
1008 delete safe for the current item.
1009
1010 If Map is NULL, then ASSERT().
1011 If CallBack is NULL, then ASSERT().
1012
1013 @param[in] Map The Map to iterate through.
1014 @param[in] CallBack The callback function to call for each item.
1015 @param[in] Arg The opaque parameter to the callback.
1016
1017 @retval EFI_SUCCESS There is no item in the netmap, or CallBack for each item
1018 returns EFI_SUCCESS.
1019 @retval Others It returns the CallBack's last return value.
1020
1021 **/
1022 EFI_STATUS
1023 EFIAPI
1024 NetMapIterate (
1025 IN NET_MAP *Map,
1026 IN NET_MAP_CALLBACK CallBack,
1027 IN VOID *Arg OPTIONAL
1028 );
1029
1030
1031 //
1032 // Helper functions to implement driver binding and service binding protocols.
1033 //
1034 /**
1035 Create a child of the service that is identified by ServiceBindingGuid.
1036
1037 Get the ServiceBinding Protocol first, then use it to create a child.
1038
1039 If ServiceBindingGuid is NULL, then ASSERT().
1040 If ChildHandle is NULL, then ASSERT().
1041
1042 @param[in] Controller The controller which has the service installed.
1043 @param[in] Image The image handle used to open service.
1044 @param[in] ServiceBindingGuid The service's Guid.
1045 @param[in, out] ChildHandle The handle to receive the created child.
1046
1047 @retval EFI_SUCCESS The child was successfully created.
1048 @retval Others Failed to create the child.
1049
1050 **/
1051 EFI_STATUS
1052 EFIAPI
1053 NetLibCreateServiceChild (
1054 IN EFI_HANDLE Controller,
1055 IN EFI_HANDLE Image,
1056 IN EFI_GUID *ServiceBindingGuid,
1057 IN OUT EFI_HANDLE *ChildHandle
1058 );
1059
1060 /**
1061 Destroy a child of the service that is identified by ServiceBindingGuid.
1062
1063 Get the ServiceBinding Protocol first, then use it to destroy a child.
1064
1065 If ServiceBindingGuid is NULL, then ASSERT().
1066
1067 @param[in] Controller The controller which has the service installed.
1068 @param[in] Image The image handle used to open service.
1069 @param[in] ServiceBindingGuid The service's Guid.
1070 @param[in] ChildHandle The child to destroy.
1071
1072 @retval EFI_SUCCESS The child was destroyed.
1073 @retval Others Failed to destroy the child.
1074
1075 **/
1076 EFI_STATUS
1077 EFIAPI
1078 NetLibDestroyServiceChild (
1079 IN EFI_HANDLE Controller,
1080 IN EFI_HANDLE Image,
1081 IN EFI_GUID *ServiceBindingGuid,
1082 IN EFI_HANDLE ChildHandle
1083 );
1084
1085 /**
1086 Get handle with Simple Network Protocol installed on it.
1087
1088 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1089 If Simple Network Protocol is already installed on the ServiceHandle, the
1090 ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,
1091 try to find its parent handle with SNP installed.
1092
1093 @param[in] ServiceHandle The handle where network service binding protocols are
1094 installed on.
1095 @param[out] Snp The pointer to store the address of the SNP instance.
1096 This is an optional parameter that may be NULL.
1097
1098 @return The SNP handle, or NULL if not found.
1099
1100 **/
1101 EFI_HANDLE
1102 EFIAPI
1103 NetLibGetSnpHandle (
1104 IN EFI_HANDLE ServiceHandle,
1105 OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL
1106 );
1107
1108 /**
1109 Retrieve VLAN ID of a VLAN device handle.
1110
1111 Search VLAN device path node in Device Path of specified ServiceHandle and
1112 return its VLAN ID. If no VLAN device path node found, then this ServiceHandle
1113 is not a VLAN device handle, and 0 will be returned.
1114
1115 @param[in] ServiceHandle The handle where network service binding protocols are
1116 installed on.
1117
1118 @return VLAN ID of the device handle, or 0 if not a VLAN device.
1119
1120 **/
1121 UINT16
1122 EFIAPI
1123 NetLibGetVlanId (
1124 IN EFI_HANDLE ServiceHandle
1125 );
1126
1127 /**
1128 Find VLAN device handle with specified VLAN ID.
1129
1130 The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.
1131 This function will append VLAN device path node to the parent device path,
1132 and then use LocateDevicePath() to find the correct VLAN device handle.
1133
1134 @param[in] ControllerHandle The handle where network service binding protocols are
1135 installed on.
1136 @param[in] VlanId The configured VLAN ID for the VLAN device.
1137
1138 @return The VLAN device handle, or NULL if not found.
1139
1140 **/
1141 EFI_HANDLE
1142 EFIAPI
1143 NetLibGetVlanHandle (
1144 IN EFI_HANDLE ControllerHandle,
1145 IN UINT16 VlanId
1146 );
1147
1148 /**
1149 Get MAC address associated with the network service handle.
1150
1151 There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1152 If SNP is installed on the ServiceHandle or its parent handle, MAC address will
1153 be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.
1154
1155 @param[in] ServiceHandle The handle where network service binding protocols are
1156 installed on.
1157 @param[out] MacAddress The pointer to store the returned MAC address.
1158 @param[out] AddressSize The length of returned MAC address.
1159
1160 @retval EFI_SUCCESS MAC address was returned successfully.
1161 @retval Others Failed to get SNP mode data.
1162
1163 **/
1164 EFI_STATUS
1165 EFIAPI
1166 NetLibGetMacAddress (
1167 IN EFI_HANDLE ServiceHandle,
1168 OUT EFI_MAC_ADDRESS *MacAddress,
1169 OUT UINTN *AddressSize
1170 );
1171
1172 /**
1173 Convert MAC address of the NIC associated with specified Service Binding Handle
1174 to a unicode string. Callers are responsible for freeing the string storage.
1175
1176 Locate simple network protocol associated with the Service Binding Handle and
1177 get the mac address from SNP. Then convert the mac address into a unicode
1178 string. It takes 2 unicode characters to represent a 1 byte binary buffer.
1179 Plus one unicode character for the null-terminator.
1180
1181 @param[in] ServiceHandle The handle where network service binding protocol is
1182 installed.
1183 @param[in] ImageHandle The image handle used to act as the agent handle to
1184 get the simple network protocol. This parameter is
1185 optional and may be NULL.
1186 @param[out] MacString The pointer to store the address of the string
1187 representation of the mac address.
1188
1189 @retval EFI_SUCCESS Converted the mac address a unicode string successfully.
1190 @retval EFI_OUT_OF_RESOURCES There are not enough memory resources.
1191 @retval Others Failed to open the simple network protocol.
1192
1193 **/
1194 EFI_STATUS
1195 EFIAPI
1196 NetLibGetMacString (
1197 IN EFI_HANDLE ServiceHandle,
1198 IN EFI_HANDLE ImageHandle, OPTIONAL
1199 OUT CHAR16 **MacString
1200 );
1201
1202 /**
1203 Detect media status for specified network device.
1204
1205 The underlying UNDI driver may or may not support reporting media status from
1206 GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine
1207 will try to invoke Snp->GetStatus() to get the media status. If media is already
1208 present, it returns directly. If media is not present, it will stop SNP and then
1209 restart SNP to get the latest media status. This provides an opportunity to get
1210 the correct media status for old UNDI driver, which doesn't support reporting
1211 media status from GET_STATUS command.
1212 Note: there are two limitations for the current algorithm:
1213 1) For UNDI with this capability, when the cable is not attached, there will
1214 be an redundant Stop/Start() process.
1215 2) for UNDI without this capability, in case that network cable is attached when
1216 Snp->Initialize() is invoked while network cable is unattached later,
1217 NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer
1218 apps to wait for timeout time.
1219
1220 @param[in] ServiceHandle The handle where network service binding protocols are
1221 installed.
1222 @param[out] MediaPresent The pointer to store the media status.
1223
1224 @retval EFI_SUCCESS Media detection success.
1225 @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle.
1226 @retval EFI_UNSUPPORTED The network device does not support media detection.
1227 @retval EFI_DEVICE_ERROR SNP is in an unknown state.
1228
1229 **/
1230 EFI_STATUS
1231 EFIAPI
1232 NetLibDetectMedia (
1233 IN EFI_HANDLE ServiceHandle,
1234 OUT BOOLEAN *MediaPresent
1235 );
1236
1237 /**
1238 Create an IPv4 device path node.
1239
1240 The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.
1241 The header subtype of IPv4 device path node is MSG_IPv4_DP.
1242 The length of the IPv4 device path node in bytes is 19.
1243 Get other information from parameters to make up the whole IPv4 device path node.
1244
1245 @param[in, out] Node The pointer to the IPv4 device path node.
1246 @param[in] Controller The controller handle.
1247 @param[in] LocalIp The local IPv4 address.
1248 @param[in] LocalPort The local port.
1249 @param[in] RemoteIp The remote IPv4 address.
1250 @param[in] RemotePort The remote port.
1251 @param[in] Protocol The protocol type in the IP header.
1252 @param[in] UseDefaultAddress Whether this instance is using default address or not.
1253
1254 **/
1255 VOID
1256 EFIAPI
1257 NetLibCreateIPv4DPathNode (
1258 IN OUT IPv4_DEVICE_PATH *Node,
1259 IN EFI_HANDLE Controller,
1260 IN IP4_ADDR LocalIp,
1261 IN UINT16 LocalPort,
1262 IN IP4_ADDR RemoteIp,
1263 IN UINT16 RemotePort,
1264 IN UINT16 Protocol,
1265 IN BOOLEAN UseDefaultAddress
1266 );
1267
1268 /**
1269 Create an IPv6 device path node.
1270
1271 The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.
1272 The header subtype of IPv6 device path node is MSG_IPv6_DP.
1273 The length of the IPv6 device path node in bytes is 43.
1274 Get other information from parameters to make up the whole IPv6 device path node.
1275
1276 @param[in, out] Node The pointer to the IPv6 device path node.
1277 @param[in] Controller The controller handle.
1278 @param[in] LocalIp The local IPv6 address.
1279 @param[in] LocalPort The local port.
1280 @param[in] RemoteIp The remote IPv6 address.
1281 @param[in] RemotePort The remote port.
1282 @param[in] Protocol The protocol type in the IP header.
1283
1284 **/
1285 VOID
1286 EFIAPI
1287 NetLibCreateIPv6DPathNode (
1288 IN OUT IPv6_DEVICE_PATH *Node,
1289 IN EFI_HANDLE Controller,
1290 IN EFI_IPv6_ADDRESS *LocalIp,
1291 IN UINT16 LocalPort,
1292 IN EFI_IPv6_ADDRESS *RemoteIp,
1293 IN UINT16 RemotePort,
1294 IN UINT16 Protocol
1295 );
1296
1297
1298 /**
1299 Find the UNDI/SNP handle from controller and protocol GUID.
1300
1301 For example, IP will open an MNP child to transmit/receive
1302 packets. When MNP is stopped, IP should also be stopped. IP
1303 needs to find its own private data that is related the IP's
1304 service binding instance that is installed on the UNDI/SNP handle.
1305 The controller is then either an MNP or an ARP child handle. Note that
1306 IP opens these handles using BY_DRIVER. Use that infomation to get the
1307 UNDI/SNP handle.
1308
1309 @param[in] Controller The protocol handle to check.
1310 @param[in] ProtocolGuid The protocol that is related with the handle.
1311
1312 @return The UNDI/SNP handle or NULL for errors.
1313
1314 **/
1315 EFI_HANDLE
1316 EFIAPI
1317 NetLibGetNicHandle (
1318 IN EFI_HANDLE Controller,
1319 IN EFI_GUID *ProtocolGuid
1320 );
1321
1322 /**
1323 This is the default unload handle for all the network drivers.
1324
1325 Disconnect the driver specified by ImageHandle from all the devices in the handle database.
1326 Uninstall all the protocols installed in the driver entry point.
1327
1328 @param[in] ImageHandle The drivers' driver image.
1329
1330 @retval EFI_SUCCESS The image is unloaded.
1331 @retval Others Failed to unload the image.
1332
1333 **/
1334 EFI_STATUS
1335 EFIAPI
1336 NetLibDefaultUnload (
1337 IN EFI_HANDLE ImageHandle
1338 );
1339
1340 /**
1341 Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.
1342
1343 @param[in] String The pointer to the Ascii string.
1344 @param[out] Ip4Address The pointer to the converted IPv4 address.
1345
1346 @retval EFI_SUCCESS Converted to an IPv4 address successfully.
1347 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip4Address is NULL.
1348
1349 **/
1350 EFI_STATUS
1351 EFIAPI
1352 NetLibAsciiStrToIp4 (
1353 IN CONST CHAR8 *String,
1354 OUT EFI_IPv4_ADDRESS *Ip4Address
1355 );
1356
1357 /**
1358 Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the
1359 string is defined in RFC 4291 - Text Pepresentation of Addresses.
1360
1361 @param[in] String The pointer to the Ascii string.
1362 @param[out] Ip6Address The pointer to the converted IPv6 address.
1363
1364 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1365 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip6Address is NULL.
1366
1367 **/
1368 EFI_STATUS
1369 EFIAPI
1370 NetLibAsciiStrToIp6 (
1371 IN CONST CHAR8 *String,
1372 OUT EFI_IPv6_ADDRESS *Ip6Address
1373 );
1374
1375 /**
1376 Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.
1377
1378 @param[in] String The pointer to the Ascii string.
1379 @param[out] Ip4Address The pointer to the converted IPv4 address.
1380
1381 @retval EFI_SUCCESS Converted to an IPv4 address successfully.
1382 @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip4Address is NULL.
1383 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to lack of resources.
1384
1385 **/
1386 EFI_STATUS
1387 EFIAPI
1388 NetLibStrToIp4 (
1389 IN CONST CHAR16 *String,
1390 OUT EFI_IPv4_ADDRESS *Ip4Address
1391 );
1392
1393 /**
1394 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS. The format of
1395 the string is defined in RFC 4291 - Text Pepresentation of Addresses.
1396
1397 @param[in] String The pointer to the Ascii string.
1398 @param[out] Ip6Address The pointer to the converted IPv6 address.
1399
1400 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1401 @retval EFI_INVALID_PARAMETER The string is malformated or Ip6Address is NULL.
1402 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to a lack of resources.
1403
1404 **/
1405 EFI_STATUS
1406 EFIAPI
1407 NetLibStrToIp6 (
1408 IN CONST CHAR16 *String,
1409 OUT EFI_IPv6_ADDRESS *Ip6Address
1410 );
1411
1412 /**
1413 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.
1414 The format of the string is defined in RFC 4291 - Text Pepresentation of Addresses
1415 Prefixes: ipv6-address/prefix-length.
1416
1417 @param[in] String The pointer to the Ascii string.
1418 @param[out] Ip6Address The pointer to the converted IPv6 address.
1419 @param[out] PrefixLength The pointer to the converted prefix length.
1420
1421 @retval EFI_SUCCESS Converted to an IPv6 address successfully.
1422 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip6Address is NULL.
1423 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to a lack of resources.
1424
1425 **/
1426 EFI_STATUS
1427 EFIAPI
1428 NetLibStrToIp6andPrefix (
1429 IN CONST CHAR16 *String,
1430 OUT EFI_IPv6_ADDRESS *Ip6Address,
1431 OUT UINT8 *PrefixLength
1432 );
1433
1434 /**
1435
1436 Convert one EFI_IPv6_ADDRESS to Null-terminated Unicode string.
1437 The text representation of address is defined in RFC 4291.
1438
1439 @param[in] Ip6Address The pointer to the IPv6 address.
1440 @param[out] String The buffer to return the converted string.
1441 @param[in] StringSize The length in bytes of the input String.
1442
1443 @retval EFI_SUCCESS Convert to string successfully.
1444 @retval EFI_INVALID_PARAMETER The input parameter is invalid.
1445 @retval EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result. BufferSize has been
1446 updated with the size needed to complete the request.
1447 **/
1448 EFI_STATUS
1449 EFIAPI
1450 NetLibIp6ToStr (
1451 IN EFI_IPv6_ADDRESS *Ip6Address,
1452 OUT CHAR16 *String,
1453 IN UINTN StringSize
1454 );
1455
1456 //
1457 // Various signatures
1458 //
1459 #define NET_BUF_SIGNATURE SIGNATURE_32 ('n', 'b', 'u', 'f')
1460 #define NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c')
1461 #define NET_QUE_SIGNATURE SIGNATURE_32 ('n', 'b', 'q', 'u')
1462
1463
1464 #define NET_PROTO_DATA 64 // Opaque buffer for protocols
1465 #define NET_BUF_HEAD 1 // Trim or allocate space from head
1466 #define NET_BUF_TAIL 0 // Trim or allocate space from tail
1467 #define NET_VECTOR_OWN_FIRST 0x01 // We allocated the 1st block in the vector
1468
1469 #define NET_CHECK_SIGNATURE(PData, SIGNATURE) \
1470 ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))
1471
1472 //
1473 // Single memory block in the vector.
1474 //
1475 typedef struct {
1476 UINT32 Len; // The block's length
1477 UINT8 *Bulk; // The block's Data
1478 } NET_BLOCK;
1479
1480 typedef VOID (EFIAPI *NET_VECTOR_EXT_FREE) (VOID *Arg);
1481
1482 //
1483 //NET_VECTOR contains several blocks to hold all packet's
1484 //fragments and other house-keeping stuff for sharing. It
1485 //doesn't specify the where actual packet fragment begins.
1486 //
1487 typedef struct {
1488 UINT32 Signature;
1489 INTN RefCnt; // Reference count to share NET_VECTOR.
1490 NET_VECTOR_EXT_FREE Free; // external function to free NET_VECTOR
1491 VOID *Arg; // opeque argument to Free
1492 UINT32 Flag; // Flags, NET_VECTOR_OWN_FIRST
1493 UINT32 Len; // Total length of the assocated BLOCKs
1494
1495 UINT32 BlockNum;
1496 NET_BLOCK Block[1];
1497 } NET_VECTOR;
1498
1499 //
1500 //NET_BLOCK_OP operates on the NET_BLOCK. It specifies
1501 //where the actual fragment begins and ends
1502 //
1503 typedef struct {
1504 UINT8 *BlockHead; // Block's head, or the smallest valid Head
1505 UINT8 *BlockTail; // Block's tail. BlockTail-BlockHead=block length
1506 UINT8 *Head; // 1st byte of the data in the block
1507 UINT8 *Tail; // Tail of the data in the block, Tail-Head=Size
1508 UINT32 Size; // The size of the data
1509 } NET_BLOCK_OP;
1510
1511 typedef union {
1512 IP4_HEAD *Ip4;
1513 EFI_IP6_HEADER *Ip6;
1514 } NET_IP_HEAD;
1515
1516 //
1517 //NET_BUF is the buffer manage structure used by the
1518 //network stack. Every network packet may be fragmented. The Vector points to
1519 //memory blocks used by each fragment, and BlockOp
1520 //specifies where each fragment begins and ends.
1521 //
1522 //It also contains an opaque area for the protocol to store
1523 //per-packet information. Protocol must be careful not
1524 //to overwrite the members after that.
1525 //
1526 typedef struct {
1527 UINT32 Signature;
1528 INTN RefCnt;
1529 LIST_ENTRY List; // The List this NET_BUF is on
1530
1531 NET_IP_HEAD Ip; // Network layer header, for fast access
1532 TCP_HEAD *Tcp; // Transport layer header, for fast access
1533 EFI_UDP_HEADER *Udp; // User Datagram Protocol header
1534 UINT8 ProtoData [NET_PROTO_DATA]; //Protocol specific data
1535
1536 NET_VECTOR *Vector; // The vector containing the packet
1537
1538 UINT32 BlockOpNum; // Total number of BlockOp in the buffer
1539 UINT32 TotalSize; // Total size of the actual packet
1540 NET_BLOCK_OP BlockOp[1]; // Specify the position of actual packet
1541 } NET_BUF;
1542
1543 //
1544 //A queue of NET_BUFs. It is a thin extension of
1545 //NET_BUF functions.
1546 //
1547 typedef struct {
1548 UINT32 Signature;
1549 INTN RefCnt;
1550 LIST_ENTRY List; // The List this buffer queue is on
1551
1552 LIST_ENTRY BufList; // list of queued buffers
1553 UINT32 BufSize; // total length of DATA in the buffers
1554 UINT32 BufNum; // total number of buffers on the chain
1555 } NET_BUF_QUEUE;
1556
1557 //
1558 // Pseudo header for TCP and UDP checksum
1559 //
1560 #pragma pack(1)
1561 typedef struct {
1562 IP4_ADDR SrcIp;
1563 IP4_ADDR DstIp;
1564 UINT8 Reserved;
1565 UINT8 Protocol;
1566 UINT16 Len;
1567 } NET_PSEUDO_HDR;
1568
1569 typedef struct {
1570 EFI_IPv6_ADDRESS SrcIp;
1571 EFI_IPv6_ADDRESS DstIp;
1572 UINT32 Len;
1573 UINT32 Reserved:24;
1574 UINT32 NextHeader:8;
1575 } NET_IP6_PSEUDO_HDR;
1576 #pragma pack()
1577
1578 //
1579 // The fragment entry table used in network interfaces. This is
1580 // the same as NET_BLOCK now. Use two different to distinguish
1581 // the two in case that NET_BLOCK be enhanced later.
1582 //
1583 typedef struct {
1584 UINT32 Len;
1585 UINT8 *Bulk;
1586 } NET_FRAGMENT;
1587
1588 #define NET_GET_REF(PData) ((PData)->RefCnt++)
1589 #define NET_PUT_REF(PData) ((PData)->RefCnt--)
1590 #define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)
1591
1592 #define NET_BUF_SHARED(Buf) \
1593 (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))
1594
1595 #define NET_VECTOR_SIZE(BlockNum) \
1596 (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))
1597
1598 #define NET_BUF_SIZE(BlockOpNum) \
1599 (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))
1600
1601 #define NET_HEADSPACE(BlockOp) \
1602 (UINTN)((BlockOp)->Head - (BlockOp)->BlockHead)
1603
1604 #define NET_TAILSPACE(BlockOp) \
1605 (UINTN)((BlockOp)->BlockTail - (BlockOp)->Tail)
1606
1607 /**
1608 Allocate a single block NET_BUF. Upon allocation, all the
1609 free space is in the tail room.
1610
1611 @param[in] Len The length of the block.
1612
1613 @return The pointer to the allocated NET_BUF, or NULL if the
1614 allocation failed due to resource limitations.
1615
1616 **/
1617 NET_BUF *
1618 EFIAPI
1619 NetbufAlloc (
1620 IN UINT32 Len
1621 );
1622
1623 /**
1624 Free the net buffer and its associated NET_VECTOR.
1625
1626 Decrease the reference count of the net buffer by one. Free the associated net
1627 vector and itself if the reference count of the net buffer is decreased to 0.
1628 The net vector free operation decreases the reference count of the net
1629 vector by one, and performs the resource free operation when the reference count
1630 of the net vector is 0.
1631
1632 @param[in] Nbuf The pointer to the NET_BUF to be freed.
1633
1634 **/
1635 VOID
1636 EFIAPI
1637 NetbufFree (
1638 IN NET_BUF *Nbuf
1639 );
1640
1641 /**
1642 Get the index of NET_BLOCK_OP that contains the byte at Offset in the net
1643 buffer.
1644
1645 For example, this function can be used to retrieve the IP header in the packet. It
1646 also can be used to get the fragment that contains the byte used
1647 mainly by the library implementation itself.
1648
1649 @param[in] Nbuf The pointer to the net buffer.
1650 @param[in] Offset The offset of the byte.
1651 @param[out] Index Index of the NET_BLOCK_OP that contains the byte at
1652 Offset.
1653
1654 @return The pointer to the Offset'th byte of data in the net buffer, or NULL
1655 if there is no such data in the net buffer.
1656
1657 **/
1658 UINT8 *
1659 EFIAPI
1660 NetbufGetByte (
1661 IN NET_BUF *Nbuf,
1662 IN UINT32 Offset,
1663 OUT UINT32 *Index OPTIONAL
1664 );
1665
1666 /**
1667 Create a copy of the net buffer that shares the associated net vector.
1668
1669 The reference count of the newly created net buffer is set to 1. The reference
1670 count of the associated net vector is increased by one.
1671
1672 @param[in] Nbuf The pointer to the net buffer to be cloned.
1673
1674 @return The pointer to the cloned net buffer, or NULL if the
1675 allocation failed due to resource limitations.
1676
1677 **/
1678 NET_BUF *
1679 EFIAPI
1680 NetbufClone (
1681 IN NET_BUF *Nbuf
1682 );
1683
1684 /**
1685 Create a duplicated copy of the net buffer with data copied and HeadSpace
1686 bytes of head space reserved.
1687
1688 The duplicated net buffer will allocate its own memory to hold the data of the
1689 source net buffer.
1690
1691 @param[in] Nbuf The pointer to the net buffer to be duplicated from.
1692 @param[in, out] Duplicate The pointer to the net buffer to duplicate to. If
1693 NULL, a new net buffer is allocated.
1694 @param[in] HeadSpace The length of the head space to reserve.
1695
1696 @return The pointer to the duplicated net buffer, or NULL if
1697 the allocation failed due to resource limitations.
1698
1699 **/
1700 NET_BUF *
1701 EFIAPI
1702 NetbufDuplicate (
1703 IN NET_BUF *Nbuf,
1704 IN OUT NET_BUF *Duplicate OPTIONAL,
1705 IN UINT32 HeadSpace
1706 );
1707
1708 /**
1709 Create a NET_BUF structure which contains Len byte data of Nbuf starting from
1710 Offset.
1711
1712 A new NET_BUF structure will be created but the associated data in NET_VECTOR
1713 is shared. This function exists to perform IP packet fragmentation.
1714
1715 @param[in] Nbuf The pointer to the net buffer to be extracted.
1716 @param[in] Offset Starting point of the data to be included in the new
1717 net buffer.
1718 @param[in] Len The bytes of data to be included in the new net buffer.
1719 @param[in] HeadSpace The bytes of the head space to reserve for the protocol header.
1720
1721 @return The pointer to the cloned net buffer, or NULL if the
1722 allocation failed due to resource limitations.
1723
1724 **/
1725 NET_BUF *
1726 EFIAPI
1727 NetbufGetFragment (
1728 IN NET_BUF *Nbuf,
1729 IN UINT32 Offset,
1730 IN UINT32 Len,
1731 IN UINT32 HeadSpace
1732 );
1733
1734 /**
1735 Reserve some space in the header room of the net buffer.
1736
1737 Upon allocation, all the space is in the tail room of the buffer. Call this
1738 function to move space to the header room. This function is quite limited
1739 in that it can only reserve space from the first block of an empty NET_BUF not
1740 built from the external. However, it should be enough for the network stack.
1741
1742 @param[in, out] Nbuf The pointer to the net buffer.
1743 @param[in] Len The length of buffer to be reserved from the header.
1744
1745 **/
1746 VOID
1747 EFIAPI
1748 NetbufReserve (
1749 IN OUT NET_BUF *Nbuf,
1750 IN UINT32 Len
1751 );
1752
1753 /**
1754 Allocate Len bytes of space from the header or tail of the buffer.
1755
1756 @param[in, out] Nbuf The pointer to the net buffer.
1757 @param[in] Len The length of the buffer to be allocated.
1758 @param[in] FromHead The flag to indicate whether to reserve the data
1759 from head (TRUE) or tail (FALSE).
1760
1761 @return The pointer to the first byte of the allocated buffer,
1762 or NULL, if there is no sufficient space.
1763
1764 **/
1765 UINT8*
1766 EFIAPI
1767 NetbufAllocSpace (
1768 IN OUT NET_BUF *Nbuf,
1769 IN UINT32 Len,
1770 IN BOOLEAN FromHead
1771 );
1772
1773 /**
1774 Trim Len bytes from the header or the tail of the net buffer.
1775
1776 @param[in, out] Nbuf The pointer to the net buffer.
1777 @param[in] Len The length of the data to be trimmed.
1778 @param[in] FromHead The flag to indicate whether trim data is from the
1779 head (TRUE) or the tail (FALSE).
1780
1781 @return The length of the actual trimmed data, which may be less
1782 than Len if the TotalSize of Nbuf is less than Len.
1783
1784 **/
1785 UINT32
1786 EFIAPI
1787 NetbufTrim (
1788 IN OUT NET_BUF *Nbuf,
1789 IN UINT32 Len,
1790 IN BOOLEAN FromHead
1791 );
1792
1793 /**
1794 Copy Len bytes of data from the specific offset of the net buffer to the
1795 destination memory.
1796
1797 The Len bytes of data may cross several fragments of the net buffer.
1798
1799 @param[in] Nbuf The pointer to the net buffer.
1800 @param[in] Offset The sequence number of the first byte to copy.
1801 @param[in] Len The length of the data to copy.
1802 @param[in] Dest The destination of the data to copy to.
1803
1804 @return The length of the actual copied data, or 0 if the offset
1805 specified exceeds the total size of net buffer.
1806
1807 **/
1808 UINT32
1809 EFIAPI
1810 NetbufCopy (
1811 IN NET_BUF *Nbuf,
1812 IN UINT32 Offset,
1813 IN UINT32 Len,
1814 IN UINT8 *Dest
1815 );
1816
1817 /**
1818 Build a NET_BUF from external blocks.
1819
1820 A new NET_BUF structure will be created from external blocks. An additional block
1821 of memory will be allocated to hold reserved HeadSpace bytes of header room
1822 and existing HeadLen bytes of header, but the external blocks are shared by the
1823 net buffer to avoid data copying.
1824
1825 @param[in] ExtFragment The pointer to the data block.
1826 @param[in] ExtNum The number of the data blocks.
1827 @param[in] HeadSpace The head space to be reserved.
1828 @param[in] HeadLen The length of the protocol header. The function
1829 pulls this amount of data into a linear block.
1830 @param[in] ExtFree The pointer to the caller-provided free function.
1831 @param[in] Arg The argument passed to ExtFree when ExtFree is
1832 called.
1833
1834 @return The pointer to the net buffer built from the data blocks,
1835 or NULL if the allocation failed due to resource
1836 limit.
1837
1838 **/
1839 NET_BUF *
1840 EFIAPI
1841 NetbufFromExt (
1842 IN NET_FRAGMENT *ExtFragment,
1843 IN UINT32 ExtNum,
1844 IN UINT32 HeadSpace,
1845 IN UINT32 HeadLen,
1846 IN NET_VECTOR_EXT_FREE ExtFree,
1847 IN VOID *Arg OPTIONAL
1848 );
1849
1850 /**
1851 Build a fragment table to contain the fragments in the net buffer. This is the
1852 opposite operation of the NetbufFromExt.
1853
1854 @param[in] Nbuf Points to the net buffer.
1855 @param[in, out] ExtFragment The pointer to the data block.
1856 @param[in, out] ExtNum The number of the data blocks.
1857
1858 @retval EFI_BUFFER_TOO_SMALL The number of non-empty blocks is bigger than
1859 ExtNum.
1860 @retval EFI_SUCCESS The fragment table was built successfully.
1861
1862 **/
1863 EFI_STATUS
1864 EFIAPI
1865 NetbufBuildExt (
1866 IN NET_BUF *Nbuf,
1867 IN OUT NET_FRAGMENT *ExtFragment,
1868 IN OUT UINT32 *ExtNum
1869 );
1870
1871 /**
1872 Build a net buffer from a list of net buffers.
1873
1874 All the fragments will be collected from the list of NEW_BUF, and then a new
1875 net buffer will be created through NetbufFromExt.
1876
1877 @param[in] BufList A List of the net buffer.
1878 @param[in] HeadSpace The head space to be reserved.
1879 @param[in] HeaderLen The length of the protocol header. The function
1880 pulls this amount of data into a linear block.
1881 @param[in] ExtFree The pointer to the caller provided free function.
1882 @param[in] Arg The argument passed to ExtFree when ExtFree is called.
1883
1884 @return The pointer to the net buffer built from the list of net
1885 buffers.
1886
1887 **/
1888 NET_BUF *
1889 EFIAPI
1890 NetbufFromBufList (
1891 IN LIST_ENTRY *BufList,
1892 IN UINT32 HeadSpace,
1893 IN UINT32 HeaderLen,
1894 IN NET_VECTOR_EXT_FREE ExtFree,
1895 IN VOID *Arg OPTIONAL
1896 );
1897
1898 /**
1899 Free a list of net buffers.
1900
1901 @param[in, out] Head The pointer to the head of linked net buffers.
1902
1903 **/
1904 VOID
1905 EFIAPI
1906 NetbufFreeList (
1907 IN OUT LIST_ENTRY *Head
1908 );
1909
1910 /**
1911 Initiate the net buffer queue.
1912
1913 @param[in, out] NbufQue The pointer to the net buffer queue to be initialized.
1914
1915 **/
1916 VOID
1917 EFIAPI
1918 NetbufQueInit (
1919 IN OUT NET_BUF_QUEUE *NbufQue
1920 );
1921
1922 /**
1923 Allocate and initialize a net buffer queue.
1924
1925 @return The pointer to the allocated net buffer queue, or NULL if the
1926 allocation failed due to resource limit.
1927
1928 **/
1929 NET_BUF_QUEUE *
1930 EFIAPI
1931 NetbufQueAlloc (
1932 VOID
1933 );
1934
1935 /**
1936 Free a net buffer queue.
1937
1938 Decrease the reference count of the net buffer queue by one. The real resource
1939 free operation isn't performed until the reference count of the net buffer
1940 queue is decreased to 0.
1941
1942 @param[in] NbufQue The pointer to the net buffer queue to be freed.
1943
1944 **/
1945 VOID
1946 EFIAPI
1947 NetbufQueFree (
1948 IN NET_BUF_QUEUE *NbufQue
1949 );
1950
1951 /**
1952 Remove a net buffer from the head in the specific queue and return it.
1953
1954 @param[in, out] NbufQue The pointer to the net buffer queue.
1955
1956 @return The pointer to the net buffer removed from the specific queue,
1957 or NULL if there is no net buffer in the specific queue.
1958
1959 **/
1960 NET_BUF *
1961 EFIAPI
1962 NetbufQueRemove (
1963 IN OUT NET_BUF_QUEUE *NbufQue
1964 );
1965
1966 /**
1967 Append a net buffer to the net buffer queue.
1968
1969 @param[in, out] NbufQue The pointer to the net buffer queue.
1970 @param[in, out] Nbuf The pointer to the net buffer to be appended.
1971
1972 **/
1973 VOID
1974 EFIAPI
1975 NetbufQueAppend (
1976 IN OUT NET_BUF_QUEUE *NbufQue,
1977 IN OUT NET_BUF *Nbuf
1978 );
1979
1980 /**
1981 Copy Len bytes of data from the net buffer queue at the specific offset to the
1982 destination memory.
1983
1984 The copying operation is the same as NetbufCopy, but applies to the net buffer
1985 queue instead of the net buffer.
1986
1987 @param[in] NbufQue The pointer to the net buffer queue.
1988 @param[in] Offset The sequence number of the first byte to copy.
1989 @param[in] Len The length of the data to copy.
1990 @param[out] Dest The destination of the data to copy to.
1991
1992 @return The length of the actual copied data, or 0 if the offset
1993 specified exceeds the total size of net buffer queue.
1994
1995 **/
1996 UINT32
1997 EFIAPI
1998 NetbufQueCopy (
1999 IN NET_BUF_QUEUE *NbufQue,
2000 IN UINT32 Offset,
2001 IN UINT32 Len,
2002 OUT UINT8 *Dest
2003 );
2004
2005 /**
2006 Trim Len bytes of data from the buffer queue and free any net buffer
2007 that is completely trimmed.
2008
2009 The trimming operation is the same as NetbufTrim but applies to the net buffer
2010 queue instead of the net buffer.
2011
2012 @param[in, out] NbufQue The pointer to the net buffer queue.
2013 @param[in] Len The length of the data to trim.
2014
2015 @return The actual length of the data trimmed.
2016
2017 **/
2018 UINT32
2019 EFIAPI
2020 NetbufQueTrim (
2021 IN OUT NET_BUF_QUEUE *NbufQue,
2022 IN UINT32 Len
2023 );
2024
2025
2026 /**
2027 Flush the net buffer queue.
2028
2029 @param[in, out] NbufQue The pointer to the queue to be flushed.
2030
2031 **/
2032 VOID
2033 EFIAPI
2034 NetbufQueFlush (
2035 IN OUT NET_BUF_QUEUE *NbufQue
2036 );
2037
2038 /**
2039 Compute the checksum for a bulk of data.
2040
2041 @param[in] Bulk The pointer to the data.
2042 @param[in] Len The length of the data, in bytes.
2043
2044 @return The computed checksum.
2045
2046 **/
2047 UINT16
2048 EFIAPI
2049 NetblockChecksum (
2050 IN UINT8 *Bulk,
2051 IN UINT32 Len
2052 );
2053
2054 /**
2055 Add two checksums.
2056
2057 @param[in] Checksum1 The first checksum to be added.
2058 @param[in] Checksum2 The second checksum to be added.
2059
2060 @return The new checksum.
2061
2062 **/
2063 UINT16
2064 EFIAPI
2065 NetAddChecksum (
2066 IN UINT16 Checksum1,
2067 IN UINT16 Checksum2
2068 );
2069
2070 /**
2071 Compute the checksum for a NET_BUF.
2072
2073 @param[in] Nbuf The pointer to the net buffer.
2074
2075 @return The computed checksum.
2076
2077 **/
2078 UINT16
2079 EFIAPI
2080 NetbufChecksum (
2081 IN NET_BUF *Nbuf
2082 );
2083
2084 /**
2085 Compute the checksum for TCP/UDP pseudo header.
2086
2087 Src and Dst are in network byte order, and Len is in host byte order.
2088
2089 @param[in] Src The source address of the packet.
2090 @param[in] Dst The destination address of the packet.
2091 @param[in] Proto The protocol type of the packet.
2092 @param[in] Len The length of the packet.
2093
2094 @return The computed checksum.
2095
2096 **/
2097 UINT16
2098 EFIAPI
2099 NetPseudoHeadChecksum (
2100 IN IP4_ADDR Src,
2101 IN IP4_ADDR Dst,
2102 IN UINT8 Proto,
2103 IN UINT16 Len
2104 );
2105
2106 /**
2107 Compute the checksum for the TCP6/UDP6 pseudo header.
2108
2109 Src and Dst are in network byte order, and Len is in host byte order.
2110
2111 @param[in] Src The source address of the packet.
2112 @param[in] Dst The destination address of the packet.
2113 @param[in] NextHeader The protocol type of the packet.
2114 @param[in] Len The length of the packet.
2115
2116 @return The computed checksum.
2117
2118 **/
2119 UINT16
2120 EFIAPI
2121 NetIp6PseudoHeadChecksum (
2122 IN EFI_IPv6_ADDRESS *Src,
2123 IN EFI_IPv6_ADDRESS *Dst,
2124 IN UINT8 NextHeader,
2125 IN UINT32 Len
2126 );
2127
2128 /**
2129 The function frees the net buffer which allocated by the IP protocol. It releases
2130 only the net buffer and doesn't call the external free function.
2131
2132 This function should be called after finishing the process of mIpSec->ProcessExt()
2133 for outbound traffic. The (EFI_IPSEC2_PROTOCOL)->ProcessExt() allocates a new
2134 buffer for the ESP, so there needs a function to free the old net buffer.
2135
2136 @param[in] Nbuf The network buffer to be freed.
2137
2138 **/
2139 VOID
2140 NetIpSecNetbufFree (
2141 NET_BUF *Nbuf
2142 );
2143
2144 /**
2145 This function obtains the system guid from the smbios table.
2146
2147 @param[out] SystemGuid The pointer of the returned system guid.
2148
2149 @retval EFI_SUCCESS Successfully obtained the system guid.
2150 @retval EFI_NOT_FOUND Did not find the SMBIOS table.
2151
2152 **/
2153 EFI_STATUS
2154 EFIAPI
2155 NetLibGetSystemGuid (
2156 OUT EFI_GUID *SystemGuid
2157 );
2158
2159 #endif