]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Library/BrotliCustomDecompressLib/dec/huffman.c
MdeModulePkg: Update Brotli DecompressLib to the latest v1.0.6
[mirror_edk2.git] / MdeModulePkg / Library / BrotliCustomDecompressLib / dec / huffman.c
1 /* Copyright 2013 Google Inc. All Rights Reserved.
2
3 Distributed under MIT license.
4 See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
5 */
6
7 /* Utilities for building Huffman decoding tables. */
8
9 #include "./huffman.h"
10
11 //#include <string.h> /* memcpy, memset */
12
13 #include "../common/constants.h"
14 #include "../common/platform.h"
15 #include <brotli/types.h>
16
17 #if defined(__cplusplus) || defined(c_plusplus)
18 extern "C" {
19 #endif
20
21 #define BROTLI_REVERSE_BITS_MAX 8
22
23 #if defined(BROTLI_RBIT)
24 #define BROTLI_REVERSE_BITS_BASE \
25 ((sizeof(brotli_reg_t) << 3) - BROTLI_REVERSE_BITS_MAX)
26 #else
27 #define BROTLI_REVERSE_BITS_BASE 0
28 static uint8_t kReverseBits[1 << BROTLI_REVERSE_BITS_MAX] = {
29 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0,
30 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
31 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8,
32 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
33 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4,
34 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
35 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC,
36 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
37 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2,
38 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
39 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA,
40 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
41 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6,
42 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
43 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE,
44 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
45 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1,
46 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
47 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9,
48 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
49 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5,
50 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
51 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED,
52 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
53 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3,
54 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
55 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB,
56 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
57 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7,
58 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
59 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF,
60 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
61 };
62 #endif /* BROTLI_RBIT */
63
64 #define BROTLI_REVERSE_BITS_LOWEST \
65 ((brotli_reg_t)1 << (BROTLI_REVERSE_BITS_MAX - 1 + BROTLI_REVERSE_BITS_BASE))
66
67 /* Returns reverse(num >> BROTLI_REVERSE_BITS_BASE, BROTLI_REVERSE_BITS_MAX),
68 where reverse(value, len) is the bit-wise reversal of the len least
69 significant bits of value. */
70 static BROTLI_INLINE brotli_reg_t BrotliReverseBits(brotli_reg_t num) {
71 #if defined(BROTLI_RBIT)
72 return BROTLI_RBIT(num);
73 #else
74 return kReverseBits[num];
75 #endif
76 }
77
78 /* Stores code in table[0], table[step], table[2*step], ..., table[end] */
79 /* Assumes that end is an integer multiple of step */
80 static BROTLI_INLINE void ReplicateValue(HuffmanCode* table,
81 int step, int end,
82 HuffmanCode code) {
83 do {
84 end -= step;
85 table[end] = code;
86 } while (end > 0);
87 }
88
89 /* Returns the table width of the next 2nd level table. |count| is the histogram
90 of bit lengths for the remaining symbols, |len| is the code length of the
91 next processed symbol. */
92 static BROTLI_INLINE int NextTableBitSize(const uint16_t* const count,
93 int len, int root_bits) {
94 int left = 1 << (len - root_bits);
95 while (len < BROTLI_HUFFMAN_MAX_CODE_LENGTH) {
96 left -= count[len];
97 if (left <= 0) break;
98 ++len;
99 left <<= 1;
100 }
101 return len - root_bits;
102 }
103
104 void BrotliBuildCodeLengthsHuffmanTable(HuffmanCode* table,
105 const uint8_t* const code_lengths,
106 uint16_t* count) {
107 HuffmanCode code; /* current table entry */
108 int symbol; /* symbol index in original or sorted table */
109 brotli_reg_t key; /* prefix code */
110 brotli_reg_t key_step; /* prefix code addend */
111 int step; /* step size to replicate values in current table */
112 int table_size; /* size of current table */
113 int sorted[BROTLI_CODE_LENGTH_CODES]; /* symbols sorted by code length */
114 /* offsets in sorted table for each length */
115 int offset[BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH + 1];
116 int bits;
117 int bits_count;
118 BROTLI_DCHECK(BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH <=
119 BROTLI_REVERSE_BITS_MAX);
120
121 /* Generate offsets into sorted symbol table by code length. */
122 symbol = -1;
123 bits = 1;
124 BROTLI_REPEAT(BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH, {
125 symbol += count[bits];
126 offset[bits] = symbol;
127 bits++;
128 });
129 /* Symbols with code length 0 are placed after all other symbols. */
130 offset[0] = BROTLI_CODE_LENGTH_CODES - 1;
131
132 /* Sort symbols by length, by symbol order within each length. */
133 symbol = BROTLI_CODE_LENGTH_CODES;
134 do {
135 BROTLI_REPEAT(6, {
136 symbol--;
137 sorted[offset[code_lengths[symbol]]--] = symbol;
138 });
139 } while (symbol != 0);
140
141 table_size = 1 << BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH;
142
143 /* Special case: all symbols but one have 0 code length. */
144 if (offset[0] == 0) {
145 code.bits = 0;
146 code.value = (uint16_t)sorted[0];
147 for (key = 0; key < (brotli_reg_t)table_size; ++key) {
148 table[key] = code;
149 }
150 return;
151 }
152
153 /* Fill in table. */
154 key = 0;
155 key_step = BROTLI_REVERSE_BITS_LOWEST;
156 symbol = 0;
157 bits = 1;
158 step = 2;
159 do {
160 code.bits = (uint8_t)bits;
161 for (bits_count = count[bits]; bits_count != 0; --bits_count) {
162 code.value = (uint16_t)sorted[symbol++];
163 ReplicateValue(&table[BrotliReverseBits(key)], step, table_size, code);
164 key += key_step;
165 }
166 step <<= 1;
167 key_step >>= 1;
168 } while (++bits <= BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH);
169 }
170
171 uint32_t BrotliBuildHuffmanTable(HuffmanCode* root_table,
172 int root_bits,
173 const uint16_t* const symbol_lists,
174 uint16_t* count) {
175 HuffmanCode code; /* current table entry */
176 HuffmanCode* table; /* next available space in table */
177 int len; /* current code length */
178 int symbol; /* symbol index in original or sorted table */
179 brotli_reg_t key; /* prefix code */
180 brotli_reg_t key_step; /* prefix code addend */
181 brotli_reg_t sub_key; /* 2nd level table prefix code */
182 brotli_reg_t sub_key_step; /* 2nd level table prefix code addend */
183 int step; /* step size to replicate values in current table */
184 int table_bits; /* key length of current table */
185 int table_size; /* size of current table */
186 int total_size; /* sum of root table size and 2nd level table sizes */
187 int max_length = -1;
188 int bits;
189 int bits_count;
190
191 BROTLI_DCHECK(root_bits <= BROTLI_REVERSE_BITS_MAX);
192 BROTLI_DCHECK(BROTLI_HUFFMAN_MAX_CODE_LENGTH - root_bits <=
193 BROTLI_REVERSE_BITS_MAX);
194
195 while (symbol_lists[max_length] == 0xFFFF) max_length--;
196 max_length += BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1;
197
198 table = root_table;
199 table_bits = root_bits;
200 table_size = 1 << table_bits;
201 total_size = table_size;
202
203 /* Fill in the root table. Reduce the table size to if possible,
204 and create the repetitions by memcpy. */
205 if (table_bits > max_length) {
206 table_bits = max_length;
207 table_size = 1 << table_bits;
208 }
209 key = 0;
210 key_step = BROTLI_REVERSE_BITS_LOWEST;
211 bits = 1;
212 step = 2;
213 do {
214 code.bits = (uint8_t)bits;
215 symbol = bits - (BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1);
216 for (bits_count = count[bits]; bits_count != 0; --bits_count) {
217 symbol = symbol_lists[symbol];
218 code.value = (uint16_t)symbol;
219 ReplicateValue(&table[BrotliReverseBits(key)], step, table_size, code);
220 key += key_step;
221 }
222 step <<= 1;
223 key_step >>= 1;
224 } while (++bits <= table_bits);
225
226 /* If root_bits != table_bits then replicate to fill the remaining slots. */
227 while (total_size != table_size) {
228 memcpy(&table[table_size], &table[0],
229 (size_t)table_size * sizeof(table[0]));
230 table_size <<= 1;
231 }
232
233 /* Fill in 2nd level tables and add pointers to root table. */
234 key_step = BROTLI_REVERSE_BITS_LOWEST >> (root_bits - 1);
235 sub_key = (BROTLI_REVERSE_BITS_LOWEST << 1);
236 sub_key_step = BROTLI_REVERSE_BITS_LOWEST;
237 for (len = root_bits + 1, step = 2; len <= max_length; ++len) {
238 symbol = len - (BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1);
239 for (; count[len] != 0; --count[len]) {
240 if (sub_key == (BROTLI_REVERSE_BITS_LOWEST << 1U)) {
241 table += table_size;
242 table_bits = NextTableBitSize(count, len, root_bits);
243 table_size = 1 << table_bits;
244 total_size += table_size;
245 sub_key = BrotliReverseBits(key);
246 key += key_step;
247 root_table[sub_key].bits = (uint8_t)(table_bits + root_bits);
248 root_table[sub_key].value =
249 (uint16_t)(((size_t)(table - root_table)) - sub_key);
250 sub_key = 0;
251 }
252 code.bits = (uint8_t)(len - root_bits);
253 symbol = symbol_lists[symbol];
254 code.value = (uint16_t)symbol;
255 ReplicateValue(
256 &table[BrotliReverseBits(sub_key)], step, table_size, code);
257 sub_key += sub_key_step;
258 }
259 step <<= 1;
260 sub_key_step >>= 1;
261 }
262 return (uint32_t)total_size;
263 }
264
265 uint32_t BrotliBuildSimpleHuffmanTable(HuffmanCode* table,
266 int root_bits,
267 uint16_t* val,
268 uint32_t num_symbols) {
269 uint32_t table_size = 1;
270 const uint32_t goal_size = 1U << root_bits;
271 switch (num_symbols) {
272 case 0:
273 table[0].bits = 0;
274 table[0].value = val[0];
275 break;
276 case 1:
277 table[0].bits = 1;
278 table[1].bits = 1;
279 if (val[1] > val[0]) {
280 table[0].value = val[0];
281 table[1].value = val[1];
282 } else {
283 table[0].value = val[1];
284 table[1].value = val[0];
285 }
286 table_size = 2;
287 break;
288 case 2:
289 table[0].bits = 1;
290 table[0].value = val[0];
291 table[2].bits = 1;
292 table[2].value = val[0];
293 if (val[2] > val[1]) {
294 table[1].value = val[1];
295 table[3].value = val[2];
296 } else {
297 table[1].value = val[2];
298 table[3].value = val[1];
299 }
300 table[1].bits = 2;
301 table[3].bits = 2;
302 table_size = 4;
303 break;
304 case 3: {
305 int i, k;
306 for (i = 0; i < 3; ++i) {
307 for (k = i + 1; k < 4; ++k) {
308 if (val[k] < val[i]) {
309 uint16_t t = val[k];
310 val[k] = val[i];
311 val[i] = t;
312 }
313 }
314 }
315 for (i = 0; i < 4; ++i) {
316 table[i].bits = 2;
317 }
318 table[0].value = val[0];
319 table[2].value = val[1];
320 table[1].value = val[2];
321 table[3].value = val[3];
322 table_size = 4;
323 break;
324 }
325 case 4: {
326 int i;
327 if (val[3] < val[2]) {
328 uint16_t t = val[3];
329 val[3] = val[2];
330 val[2] = t;
331 }
332 for (i = 0; i < 7; ++i) {
333 table[i].value = val[0];
334 table[i].bits = (uint8_t)(1 + (i & 1));
335 }
336 table[1].value = val[1];
337 table[3].value = val[2];
338 table[5].value = val[1];
339 table[7].value = val[3];
340 table[3].bits = 3;
341 table[7].bits = 3;
342 table_size = 8;
343 break;
344 }
345 }
346 while (table_size != goal_size) {
347 memcpy(&table[table_size], &table[0],
348 (size_t)table_size * sizeof(table[0]));
349 table_size <<= 1;
350 }
351 return goal_size;
352 }
353
354 #if defined(__cplusplus) || defined(c_plusplus)
355 } /* extern "C" */
356 #endif