]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Universal/DebugSupportDxe/Ipf/AsmFuncs.s
OptionRomPkg: Removing ipf which is no longer supported from edk2.
[mirror_edk2.git] / MdeModulePkg / Universal / DebugSupportDxe / Ipf / AsmFuncs.s
1 /// @file
2 /// Low level IPF routines used by the debug support driver
3 ///
4 /// Copyright (c) 2006 - 2008, Intel Corporation. All rights reserved.<BR>
5 /// This program and the accompanying materials
6 /// are licensed and made available under the terms and conditions of the BSD License
7 /// which accompanies this distribution. The full text of the license may be found at
8 /// http://opensource.org/licenses/bsd-license.php
9 ///
10 /// THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 /// WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12 ///
13 ///
14
15
16 #include "Common.i"
17 #include "Ds64Macros.i"
18
19 ASM_GLOBAL PatchSaveBuffer
20 ASM_GLOBAL IpfContextBuf
21 ASM_GLOBAL CommonHandler
22 ASM_GLOBAL ExternalInterruptCount
23
24
25 /////////////////////////////////////////////
26 //
27 // Name:
28 // InstructionCacheFlush
29 //
30 // Description:
31 // Flushes instruction cache for specified number of bytes
32 //
33 ASM_GLOBAL InstructionCacheFlush
34 .proc InstructionCacheFlush
35 .align 32
36 InstructionCacheFlush::
37 { .mii
38 alloc r3=2, 0, 0, 0
39 cmp4.leu p0,p6=32, r33;;
40 (p6) mov r33=32;;
41 }
42 { .mii
43 nop.m 0
44 zxt4 r29=r33;;
45 dep.z r30=r29, 0, 5;;
46 }
47 { .mii
48 cmp4.eq p0,p7=r0, r30
49 shr.u r28=r29, 5;;
50 (p7) adds r28=1, r28;;
51 }
52 { .mii
53 nop.m 0
54 shl r27=r28, 5;;
55 zxt4 r26=r27;;
56 }
57 { .mfb
58 add r31=r26, r32
59 nop.f 0
60 nop.b 0
61 }
62 LoopBack: // $L143:
63 { .mii
64 fc r32
65 adds r32=32, r32;;
66 cmp.ltu p14,p15=r32, r31
67 }
68 { .mfb
69 nop.m 0
70 nop.f 0
71 //(p14) br.cond.dptk.few $L143#;;
72 (p14) br.cond.dptk.few LoopBack;;
73 }
74 { .mmi
75 sync.i;;
76 srlz.i
77 nop.i 0;;
78 }
79 { .mfb
80 nop.m 0
81 nop.f 0
82 br.ret.sptk.few b0;;
83 }
84 .endp InstructionCacheFlush
85
86
87 /////////////////////////////////////////////
88 //
89 // Name:
90 // ChainHandler
91 //
92 // Description:
93 // Chains an interrupt handler
94 //
95 // The purpose of this function is to enable chaining of the external interrupt.
96 // Since there's no clean SAL abstraction for doing this, we must do it
97 // surreptitiously.
98 //
99 // The reserved IVT entry at offset 0x3400 is coopted for use by this handler.
100 // According to Itanium architecture, it is reserved. Strictly speaking, this is
101 // not safe, as we're cheating and violating the Itanium architecture. However,
102 // as long as we're the only ones cheating, we should be OK. Without hooks in
103 // the SAL to enable IVT management, there aren't many good options.
104 //
105 // The strategy is to replace the first bundle of the external interrupt handler
106 // with our own that will branch into a piece of code we've supplied and located
107 // in the reserved IVT entry. Only the first bundle of the external interrupt
108 // IVT entry is modified.
109 //
110 // The original bundle is moved and relocated to space
111 // allocated within the reserved IVT entry. The next bundle following is
112 // is generated to go a hard coded branch back to the second bundle of the
113 // external interrupt IVT entry just in case the first bundle had no branch.
114 //
115 // Our new code will execute our handler, and then fall through to the
116 // original bundle after restoring all context appropriately.
117 //
118 // The following is a representation of what the IVT memory map looks like with
119 // our chained handler installed:
120 //
121 //
122 //
123 //
124 //
125 // This IVT entry is Failsafe bundle
126 // reserved by the
127 // Itanium architecture Original bundle 0
128 // and is used for
129 // for locating our
130 // handler and the
131 // original bundle Patch code...
132 // zero of the ext
133 // interrupt handler
134 //
135 // RSVD (3400) Unused
136 //
137 //
138 //
139 //
140 //
141 //
142 //
143 //
144 //
145 //
146 //
147 //
148 // EXT_INT (3000) Bundle 0 Bundle zero - This one is
149 // modified, all other bundles
150 // in the EXT_INT entry are
151 // untouched.
152 //
153 //
154 // Arguments:
155 //
156 // Returns:
157 //
158 // Notes:
159 //
160 //
161 ASM_GLOBAL ChainHandler
162 .proc ChainHandler
163 ChainHandler:
164
165 NESTED_SETUP( 0,2+3,3,0 )
166
167 mov r8=1 // r8 = success
168 mov r2=cr.iva;;
169 //
170 // NOTE: There's a potential hazard here in that we're simply stealing a bunch of
171 // bundles (memory) from the IVT and assuming there's no catastrophic side effect.
172 //
173 // First, save IVT area we're taking over with the patch so we can restore it later
174 //
175 addl out0=PATCH_ENTRY_OFFSET, r2 // out0 = source buffer
176 movl out1=PatchSaveBuffer // out1 = destination buffer
177 mov out2=0x40;; // out2 = number of bundles to copy... save entire IDT entry
178 br.call.sptk.few b0 = CopyBundles
179
180 // Next, copy the patch code into the IVT
181 movl out0=PatchCode // out0 = source buffer of patch code
182 addl out1=PATCH_OFFSET, r2 // out1 = destination buffer - in IVT
183 mov out2=PATCH_CODE_SIZE;;
184 shr out2=out2, 4;; // out2 = number of bundles to copy
185 br.call.sptk.few b0 = CopyBundles
186
187
188 // copy original bundle 0 from the external interrupt handler to the
189 // appropriate place in the reserved IVT interrupt slot
190 addl out0=EXT_INT_ENTRY_OFFSET, r2 // out0 = source buffer
191 addl out1=RELOCATED_EXT_INT, r2 // out1 = destination buffer - in reserved IVT
192 mov out2=1;; // out2 = copy 1 bundle
193 br.call.sptk.few b0 = CopyBundles
194
195 // Now relocate it there because it very likely had a branch instruction that
196 // that must now be fixed up.
197 addl out0=RELOCATED_EXT_INT, r2 // out0 = new runtime address of bundle - in reserved IVT
198 addl out1=EXT_INT_ENTRY_OFFSET, r2;;// out1 = IP address of previous location
199 mov out2=out0;; // out2 = IP address of new location
200 br.call.sptk.few b0 = RelocateBundle
201
202 // Now copy into the failsafe branch into the next bundle just in case
203 // the original ext int bundle 0 bundle did not contain a branch instruction
204 movl out0=FailsafeBranch // out0 = source buffer
205 addl out1=FAILSAFE_BRANCH_OFFSET, r2 // out1 = destination buffer - in reserved IVT
206 mov out2=1;; // out2 = copy 1 bundle
207 br.call.sptk.few b0 = CopyBundles
208
209 // Last, copy in our replacement for the external interrupt IVT entry bundle 0
210 movl out0=PatchCodeNewBun0 // out0 = source buffer - our replacement bundle 0
211 addl out1=EXT_INT_ENTRY_OFFSET, r2 // out1 = destination buffer - bundle 0 of External interrupt entry
212 mov out2=1;; // out2 = copy 1 bundle
213 br.call.sptk.few b0 = CopyBundles
214
215 ChainHandlerDone:
216 NESTED_RETURN
217
218 .endp ChainHandler
219
220
221 /////////////////////////////////////////////
222 //
223 // Name:
224 // UnchainHandler
225 //
226 // Description:
227 // Unchains an interrupt handler
228 //
229 // Arguments:
230 //
231 // Returns:
232 //
233 // Notes:
234 //
235 //
236 ASM_GLOBAL UnchainHandler
237 .proc UnchainHandler
238
239 UnchainHandler:
240
241 NESTED_SETUP( 0,2+3,3,0 )
242
243 mov r8=1 // r8 = success
244 mov r2=cr.iva;; // r2 = interrupt vector address
245
246 // First copy original Ext Int bundle 0 back to it's proper home...
247 addl out0=RELOCATED_EXT_INT, r2 // out0 = source - in reserved IVT
248 addl out1=EXT_INT_ENTRY_OFFSET, r2 // out1 = destination buffer - first bundle of Ext Int entry
249 mov out2=1;; // out2 = copy 1 bundle
250 br.call.sptk.few b0 = CopyBundles
251
252 // Now, relocate it again...
253 addl out0=EXT_INT_ENTRY_OFFSET, r2 // out1 = New runtime address
254 addl out1=RELOCATED_EXT_INT, r2;; // out0 = IP address of previous location
255 mov out2=out0;; // out2 = IP address of new location
256 br.call.sptk.few b0 = RelocateBundle
257
258 // Last, restore the patch area
259 movl out0=PatchSaveBuffer // out0 = source buffer
260 addl out1=PATCH_ENTRY_OFFSET, r2 // out1 = destination buffer
261 mov out2=0x40;; // out2 = number of bundles to copy... save entire IDT entry
262 br.call.sptk.few b0 = CopyBundles
263
264 UnchainHandlerDone:
265 NESTED_RETURN
266
267 .endp UnchainHandler
268
269
270 /////////////////////////////////////////////
271 //
272 // Name:
273 // CopyBundles
274 //
275 // Description:
276 // Copies instruction bundles - flushes icache as necessary
277 //
278 // Arguments:
279 // in0 - Bundle source
280 // in1 - Bundle destination
281 // in2 - Bundle count
282 //
283 // Returns:
284 //
285 // Notes:
286 // This procedure is a leaf routine
287 //
288 .proc CopyBundles
289
290 CopyBundles:
291
292 NESTED_SETUP(3,2+1,0,0)
293
294 shl in2=in2, 1;; // in2 = count of 8 byte blocks to copy
295
296 CopyBundlesLoop:
297
298 cmp.eq p14, p15 = 0, in2;; // Check if done
299 (p14) br.sptk.few CopyBundlesDone;;
300
301 ld8 loc2=[in0], 0x8;; // loc2 = source bytes
302 st8 [in1]=loc2;; // [in1] = destination bytes
303 fc in1;; // Flush instruction cache
304 sync.i;; // Ensure local and remote data/inst caches in sync
305 srlz.i;; // Ensure sync has been observed
306 add in1=0x8, in1;; // in1 = next destination
307 add in2=-1, in2;; // in2 = decrement 8 bytes blocks to copy
308 br.sptk.few CopyBundlesLoop;;
309
310 CopyBundlesDone:
311 NESTED_RETURN
312
313 .endp CopyBundles
314
315
316 /////////////////////////////////////////////
317 //
318 // Name:
319 // RelocateBundle
320 //
321 // Description:
322 // Relocates an instruction bundle by updating any ip-relative branch instructions.
323 //
324 // Arguments:
325 // in0 - Runtime address of bundle
326 // in1 - IP address of previous location of bundle
327 // in2 - IP address of new location of bundle
328 //
329 // Returns:
330 // in0 - 1 if successful or 0 if unsuccessful
331 //
332 // Notes:
333 // This routine examines all slots in the given bundle that are destined for the
334 // branch execution unit. If any of these slots contain an IP-relative branch
335 // namely instructions B1, B2, B3, or B6, the slot is fixed-up with a new relative
336 // address. Errors can occur if a branch cannot be reached.
337 //
338 .proc RelocateBundle
339
340 RelocateBundle:
341
342 NESTED_SETUP(3,2+4,3,0)
343
344 mov loc2=SLOT0 // loc2 = slot index
345 mov loc5=in0;; // loc5 = runtime address of bundle
346 mov in0=1;; // in0 = success
347
348 RelocateBundleNextSlot:
349
350 cmp.ge p14, p15 = SLOT2, loc2;; // Check if maximum slot
351 (p15) br.sptk.few RelocateBundleDone
352
353 mov out0=loc5;; // out0 = runtime address of bundle
354 br.call.sptk.few b0 = GetTemplate
355 mov loc3=out0;; // loc3 = instruction template
356 mov out0=loc5 // out0 = runtime address of bundle
357 mov out1=loc2;; // out1 = instruction slot number
358 br.call.sptk.few b0 = GetSlot
359 mov loc4=out0;; // loc4 = instruction encoding
360 mov out0=loc4 // out0 = instuction encoding
361 mov out1=loc2 // out1 = instruction slot number
362 mov out2=loc3;; // out2 = instruction template
363 br.call.sptk.few b0 = IsSlotBranch
364 cmp.eq p14, p15 = 1, out0;; // Check if branch slot
365 (p15) add loc2=1,loc2 // Increment slot
366 (p15) br.sptk.few RelocateBundleNextSlot
367 mov out0=loc4 // out0 = instuction encoding
368 mov out1=in1 // out1 = IP address of previous location
369 mov out2=in2;; // out2 = IP address of new location
370 br.call.sptk.few b0 = RelocateSlot
371 cmp.eq p14, p15 = 1, out1;; // Check if relocated slot
372 (p15) mov in0=0 // in0 = failure
373 (p15) br.sptk.few RelocateBundleDone
374 mov out2=out0;; // out2 = instruction encoding
375 mov out0=loc5 // out0 = runtime address of bundle
376 mov out1=loc2;; // out1 = instruction slot number
377 br.call.sptk.few b0 = SetSlot
378 add loc2=1,loc2;; // Increment slot
379 br.sptk.few RelocateBundleNextSlot
380
381 RelocateBundleDone:
382 NESTED_RETURN
383
384 .endp RelocateBundle
385
386
387 /////////////////////////////////////////////
388 //
389 // Name:
390 // RelocateSlot
391 //
392 // Description:
393 // Relocates an instruction bundle by updating any ip-relative branch instructions.
394 //
395 // Arguments:
396 // in0 - Instruction encoding (41-bits, right justified)
397 // in1 - IP address of previous location of bundle
398 // in2 - IP address of new location of bundle
399 //
400 // Returns:
401 // in0 - Instruction encoding (41-bits, right justified)
402 // in1 - 1 if successful otherwise 0
403 //
404 // Notes:
405 // This procedure is a leaf routine
406 //
407 .proc RelocateSlot
408
409 RelocateSlot:
410 NESTED_SETUP(3,2+5,0,0)
411 extr.u loc2=in0, 37, 4;; // loc2 = instruction opcode
412 cmp.eq p14, p15 = 4, loc2;; // IP-relative branch (B1) or
413 // IP-relative counted branch (B2)
414 (p15) cmp.eq p14, p15 = 5, loc2;; // IP-relative call (B3)
415 (p15) cmp.eq p14, p15 = 7, loc2;; // IP-relative predict (B6)
416 (p15) mov in1=1 // Instruction did not need to be reencoded
417 (p15) br.sptk.few RelocateSlotDone
418 tbit.nz p14, p15 = in0, 36;; // put relative offset sign bit in p14
419 extr.u loc2=in0, 13, 20;; // loc2 = relative offset in instruction
420 (p14) movl loc3=0xfffffffffff00000;; // extend sign
421 (p14) or loc2=loc2, loc3;;
422 shl loc2=loc2,4;; // convert to byte offset instead of bundle offset
423 add loc3=loc2, in1;; // loc3 = physical address of branch target
424 (p14) sub loc2=r0,loc2;; // flip sign in loc2 if offset is negative
425 sub loc4=loc3,in2;; // loc4 = relative offset from new ip to branch target
426 cmp.lt p15, p14 = 0, loc4;; // get new sign bit
427 (p14) sub loc5=r0,loc4 // get absolute value of offset
428 (p15) mov loc5=loc4;;
429 movl loc6=0x0FFFFFF;; // maximum offset in bytes for ip-rel branch
430 cmp.gt p14, p15 = loc5, loc6;; // check to see we're not out of range for an ip-relative branch
431 (p14) br.sptk.few RelocateSlotError
432 cmp.lt p15, p14 = 0, loc4;; // store sign in p14 again
433 (p14) dep in0=-1,in0,36,1 // store sign bit in instruction
434 (p15) dep in0=0,in0,36,1
435 shr loc4=loc4, 4;; // convert back to bundle offset
436 dep in0=loc4,in0,13,16;; // put first 16 bits of new offset into instruction
437 shr loc4=loc4,16;;
438 dep in0=loc4,in0,13+16,4 // put last 4 bits of new offset into instruction
439 mov in1=1;; // in1 = success
440 br.sptk.few RelocateSlotDone;;
441
442 RelocateSlotError:
443 mov in1=0;; // in1 = failure
444
445 RelocateSlotDone:
446 NESTED_RETURN
447
448 .endp RelocateSlot
449
450
451 /////////////////////////////////////////////
452 //
453 // Name:
454 // IsSlotBranch
455 //
456 // Description:
457 // Determines if the given instruction is a branch instruction.
458 //
459 // Arguments:
460 // in0 - Instruction encoding (41-bits, right justified)
461 // in1 - Instruction slot number
462 // in2 - Bundle template
463 //
464 // Returns:
465 // in0 - 1 if branch or 0 if not branch
466 //
467 // Notes:
468 // This procedure is a leaf routine
469 //
470 // IsSlotBranch recognizes all branch instructions by looking at the provided template.
471 // The instruction encoding is only passed to this routine for future expansion.
472 //
473 .proc IsSlotBranch
474
475 IsSlotBranch:
476
477 NESTED_SETUP (3,2+0,0,0)
478
479 mov in0=1;; // in0 = 1 which destroys the instruction
480 andcm in2=in2,in0;; // in2 = even template to reduce compares
481 mov in0=0;; // in0 = not a branch
482 cmp.eq p14, p15 = 0x16, in2;; // Template 0x16 is BBB
483 (p14) br.sptk.few IsSlotBranchTrue
484 cmp.eq p14, p15 = SLOT0, in1;; // Slot 0 has no other possiblities
485 (p14) br.sptk.few IsSlotBranchDone
486 cmp.eq p14, p15 = 0x12, in2;; // Template 0x12 is MBB
487 (p14) br.sptk.few IsSlotBranchTrue
488 cmp.eq p14, p15 = SLOT1, in1;; // Slot 1 has no other possiblities
489 (p14) br.sptk.few IsSlotBranchDone
490 cmp.eq p14, p15 = 0x10, in2;; // Template 0x10 is MIB
491 (p14) br.sptk.few IsSlotBranchTrue
492 cmp.eq p14, p15 = 0x18, in2;; // Template 0x18 is MMB
493 (p14) br.sptk.few IsSlotBranchTrue
494 cmp.eq p14, p15 = 0x1C, in2;; // Template 0x1C is MFB
495 (p14) br.sptk.few IsSlotBranchTrue
496 br.sptk.few IsSlotBranchDone
497
498 IsSlotBranchTrue:
499 mov in0=1;; // in0 = branch
500
501 IsSlotBranchDone:
502 NESTED_RETURN
503
504 .endp IsSlotBranch
505
506
507 /////////////////////////////////////////////
508 //
509 // Name:
510 // GetTemplate
511 //
512 // Description:
513 // Retrieves the instruction template for an instruction bundle
514 //
515 // Arguments:
516 // in0 - Runtime address of bundle
517 //
518 // Returns:
519 // in0 - Instruction template (5-bits, right-justified)
520 //
521 // Notes:
522 // This procedure is a leaf routine
523 //
524 .proc GetTemplate
525
526 GetTemplate:
527
528 NESTED_SETUP (1,2+2,0,0)
529
530 ld8 loc2=[in0], 0x8 // loc2 = first 8 bytes of branch bundle
531 movl loc3=MASK_0_4;; // loc3 = template mask
532 and loc2=loc2,loc3;; // loc2 = template, right justified
533 mov in0=loc2;; // in0 = template, right justified
534
535 NESTED_RETURN
536
537 .endp GetTemplate
538
539
540 /////////////////////////////////////////////
541 //
542 // Name:
543 // GetSlot
544 //
545 // Description:
546 // Gets the instruction encoding for an instruction slot and bundle
547 //
548 // Arguments:
549 // in0 - Runtime address of bundle
550 // in1 - Instruction slot (either 0, 1, or 2)
551 //
552 // Returns:
553 // in0 - Instruction encoding (41-bits, right justified)
554 //
555 // Notes:
556 // This procedure is a leaf routine
557 //
558 // Slot0 - [in0 + 0x8] Bits 45-5
559 // Slot1 - [in0 + 0x8] Bits 63-46 and [in0] Bits 22-0
560 // Slot2 - [in0] Bits 63-23
561 //
562 .proc GetSlot
563
564 GetSlot:
565 NESTED_SETUP (2,2+3,0,0)
566
567 ld8 loc2=[in0], 0x8;; // loc2 = first 8 bytes of branch bundle
568 ld8 loc3=[in0];; // loc3 = second 8 bytes of branch bundle
569 cmp.eq p14, p15 = 2, in1;; // check if slot 2 specified
570 (p14) br.cond.sptk.few GetSlot2;; // get slot 2
571 cmp.eq p14, p15 = 1, in1;; // check if slot 1 specified
572 (p14) br.cond.sptk.few GetSlot1;; // get slot 1
573
574 GetSlot0:
575 extr.u in0=loc2, 5, 45 // in0 = extracted slot 0
576 br.sptk.few GetSlotDone;;
577
578 GetSlot1:
579 extr.u in0=loc2, 46, 18 // in0 = bits 63-46 of loc2 right-justified
580 extr.u loc4=loc3, 0, 23;; // loc4 = bits 22-0 of loc3 right-justified
581 dep in0=loc4, in0, 18, 15;;
582 shr.u loc4=loc4,15;;
583 dep in0=loc4, in0, 33, 8;; // in0 = extracted slot 1
584 br.sptk.few GetSlotDone;;
585
586 GetSlot2:
587 extr.u in0=loc3, 23, 41;; // in0 = extracted slot 2
588
589 GetSlotDone:
590 NESTED_RETURN
591
592 .endp GetSlot
593
594
595 /////////////////////////////////////////////
596 //
597 // Name:
598 // SetSlot
599 //
600 // Description:
601 // Sets the instruction encoding for an instruction slot and bundle
602 //
603 // Arguments:
604 // in0 - Runtime address of bundle
605 // in1 - Instruction slot (either 0, 1, or 2)
606 // in2 - Instruction encoding (41-bits, right justified)
607 //
608 // Returns:
609 //
610 // Notes:
611 // This procedure is a leaf routine
612 //
613 .proc SetSlot
614
615 SetSlot:
616 NESTED_SETUP (3,2+3,0,0)
617
618 ld8 loc2=[in0], 0x8;; // loc2 = first 8 bytes of bundle
619 ld8 loc3=[in0];; // loc3 = second 8 bytes of bundle
620 cmp.eq p14, p15 = 2, in1;; // check if slot 2 specified
621 (p14) br.cond.sptk.few SetSlot2;; // set slot 2
622 cmp.eq p14, p15 = 1, in1;; // check if slot 1 specified
623 (p14) br.cond.sptk.few SetSlot1;; // set slot 1
624
625 SetSlot0:
626 dep loc2=0, loc2, 5, 41;; // remove old instruction from slot 0
627 shl loc4=in2, 5;; // loc4 = new instruction ready to be inserted
628 or loc2=loc2, loc4;; // loc2 = updated first 8 bytes of bundle
629 add loc4=0x8,in0;; // loc4 = address to store first 8 bytes of bundle
630 st8 [loc4]=loc2 // [loc4] = updated bundle
631 br.sptk.few SetSlotDone;;
632 ;;
633
634 SetSlot1:
635 dep loc2=0, loc2, 46, 18 // remove old instruction from slot 1
636 dep loc3=0, loc3, 0, 23;;
637 shl loc4=in2, 46;; // loc4 = partial instruction ready to be inserted
638 or loc2=loc2, loc4;; // loc2 = updated first 8 bytes of bundle
639 add loc4=0x8,in0;; // loc4 = address to store first 8 bytes of bundle
640 st8 [loc4]=loc2;; // [loc4] = updated bundle
641 shr.u loc4=in2, 18;; // loc4 = partial instruction ready to be inserted
642 or loc3=loc3, loc4;; // loc3 = updated second 8 bytes of bundle
643 st8 [in0]=loc3;; // [in0] = updated bundle
644 br.sptk.few SetSlotDone;;
645
646 SetSlot2:
647 dep loc3=0, loc3, 23, 41;; // remove old instruction from slot 2
648 shl loc4=in2, 23;; // loc4 = instruction ready to be inserted
649 or loc3=loc3, loc4;; // loc3 = updated second 8 bytes of bundle
650 st8 [in0]=loc3;; // [in0] = updated bundle
651
652 SetSlotDone:
653
654 NESTED_RETURN
655 .endp SetSlot
656
657
658 /////////////////////////////////////////////
659 //
660 // Name:
661 // GetIva
662 //
663 // Description:
664 // C callable function to obtain the current value of IVA
665 //
666 // Returns:
667 // Current value if IVA
668
669 ASM_GLOBAL GetIva
670 .proc GetIva
671 GetIva:
672 mov r8=cr2;;
673 br.ret.sptk.many b0
674
675 .endp GetIva
676
677
678 /////////////////////////////////////////////
679 //
680 // Name:
681 // ProgramInterruptFlags
682 //
683 // Description:
684 // C callable function to enable/disable interrupts
685 //
686 // Returns:
687 // Previous state of psr.ic
688 //
689 ASM_GLOBAL ProgramInterruptFlags
690 .proc ProgramInterruptFlags
691 ProgramInterruptFlags:
692 alloc loc0=1,2,0,0;;
693 mov loc0=psr
694 mov loc1=0x6000;;
695 and r8=loc0, loc1 // obtain current psr.ic and psr.i state
696 and in0=in0, loc1 // insure no extra bits set in input
697 andcm loc0=loc0,loc1;; // clear original psr.i and psr.ic
698 or loc0=loc0,in0;; // OR in new psr.ic value
699 mov psr.l=loc0;; // write new psr
700 srlz.d
701 br.ret.sptk.many b0 // return
702
703 .endp ProgramInterruptFlags
704
705
706 /////////////////////////////////////////////
707 //
708 // Name:
709 // SpillContext
710 //
711 // Description:
712 // Saves system context to context record.
713 //
714 // Arguments:
715 // in0 = 512 byte aligned context record address
716 // in1 = original B0
717 // in2 = original ar.bsp
718 // in3 = original ar.bspstore
719 // in4 = original ar.rnat
720 // in5 = original ar.pfs
721 //
722 // Notes:
723 // loc0 - scratch
724 // loc1 - scratch
725 // loc2 - temporary application unat storage
726 // loc3 - temporary exception handler unat storage
727
728 .proc SpillContext
729
730 SpillContext:
731 alloc loc0=6,4,0,0;; // alloc 6 input, 4 locals, 0 outs
732 mov loc2=ar.unat;; // save application context unat (spilled later)
733 mov ar.unat=r0;; // set UNAT=0
734 st8.spill [in0]=r0,8;;
735 st8.spill [in0]=r1,8;; // save R1 - R31
736 st8.spill [in0]=r2,8;;
737 st8.spill [in0]=r3,8;;
738 st8.spill [in0]=r4,8;;
739 st8.spill [in0]=r5,8;;
740 st8.spill [in0]=r6,8;;
741 st8.spill [in0]=r7,8;;
742 st8.spill [in0]=r8,8;;
743 st8.spill [in0]=r9,8;;
744 st8.spill [in0]=r10,8;;
745 st8.spill [in0]=r11,8;;
746 st8.spill [in0]=r12,8;;
747 st8.spill [in0]=r13,8;;
748 st8.spill [in0]=r14,8;;
749 st8.spill [in0]=r15,8;;
750 st8.spill [in0]=r16,8;;
751 st8.spill [in0]=r17,8;;
752 st8.spill [in0]=r18,8;;
753 st8.spill [in0]=r19,8;;
754 st8.spill [in0]=r20,8;;
755 st8.spill [in0]=r21,8;;
756 st8.spill [in0]=r22,8;;
757 st8.spill [in0]=r23,8;;
758 st8.spill [in0]=r24,8;;
759 st8.spill [in0]=r25,8;;
760 st8.spill [in0]=r26,8;;
761 st8.spill [in0]=r27,8;;
762 st8.spill [in0]=r28,8;;
763 st8.spill [in0]=r29,8;;
764 st8.spill [in0]=r30,8;;
765 st8.spill [in0]=r31,8;;
766 mov loc3=ar.unat;; // save debugger context unat (spilled later)
767 stf.spill [in0]=f2,16;; // save f2 - f31
768 stf.spill [in0]=f3,16;;
769 stf.spill [in0]=f4,16;;
770 stf.spill [in0]=f5,16;;
771 stf.spill [in0]=f6,16;;
772 stf.spill [in0]=f7,16;;
773 stf.spill [in0]=f8,16;;
774 stf.spill [in0]=f9,16;;
775 stf.spill [in0]=f10,16;;
776 stf.spill [in0]=f11,16;;
777 stf.spill [in0]=f12,16;;
778 stf.spill [in0]=f13,16;;
779 stf.spill [in0]=f14,16;;
780 stf.spill [in0]=f15,16;;
781 stf.spill [in0]=f16,16;;
782 stf.spill [in0]=f17,16;;
783 stf.spill [in0]=f18,16;;
784 stf.spill [in0]=f19,16;;
785 stf.spill [in0]=f20,16;;
786 stf.spill [in0]=f21,16;;
787 stf.spill [in0]=f22,16;;
788 stf.spill [in0]=f23,16;;
789 stf.spill [in0]=f24,16;;
790 stf.spill [in0]=f25,16;;
791 stf.spill [in0]=f26,16;;
792 stf.spill [in0]=f27,16;;
793 stf.spill [in0]=f28,16;;
794 stf.spill [in0]=f29,16;;
795 stf.spill [in0]=f30,16;;
796 stf.spill [in0]=f31,16;;
797 mov loc0=pr;; // save predicates
798 st8.spill [in0]=loc0,8;;
799 st8.spill [in0]=in1,8;; // save b0 - b7... in1 already equals saved b0
800 mov loc0=b1;;
801 st8.spill [in0]=loc0,8;;
802 mov loc0=b2;;
803 st8.spill [in0]=loc0,8;;
804 mov loc0=b3;;
805 st8.spill [in0]=loc0,8;;
806 mov loc0=b4;;
807 st8.spill [in0]=loc0,8;;
808 mov loc0=b5;;
809 st8.spill [in0]=loc0,8;;
810 mov loc0=b6;;
811 st8.spill [in0]=loc0,8;;
812 mov loc0=b7;;
813 st8.spill [in0]=loc0,8;;
814 mov loc0=ar.rsc;; // save ar.rsc
815 st8.spill [in0]=loc0,8;;
816 st8.spill [in0]=in2,8;; // save ar.bsp (in2)
817 st8.spill [in0]=in3,8;; // save ar.bspstore (in3)
818 st8.spill [in0]=in4,8;; // save ar.rnat (in4)
819 mov loc0=ar.fcr;; // save ar.fcr (ar21 - IA32 floating-point control register)
820 st8.spill [in0]=loc0,8;;
821 mov loc0=ar.eflag;; // save ar.eflag (ar24)
822 st8.spill [in0]=loc0,8;;
823 mov loc0=ar.csd;; // save ar.csd (ar25 - ia32 CS descriptor)
824 st8.spill [in0]=loc0,8;;
825 mov loc0=ar.ssd;; // save ar.ssd (ar26 - ia32 ss descriptor)
826 st8.spill [in0]=loc0,8;;
827 mov loc0=ar.cflg;; // save ar.cflg (ar27 - ia32 cr0 and cr4)
828 st8.spill [in0]=loc0,8;;
829 mov loc0=ar.fsr;; // save ar.fsr (ar28 - ia32 floating-point status register)
830 st8.spill [in0]=loc0,8;;
831 mov loc0=ar.fir;; // save ar.fir (ar29 - ia32 floating-point instruction register)
832 st8.spill [in0]=loc0,8;;
833 mov loc0=ar.fdr;; // save ar.fdr (ar30 - ia32 floating-point data register)
834 st8.spill [in0]=loc0,8;;
835 mov loc0=ar.ccv;; // save ar.ccv
836 st8.spill [in0]=loc0,8;;
837 st8.spill [in0]=loc2,8;; // save ar.unat (saved to loc2 earlier)
838 mov loc0=ar.fpsr;; // save floating point status register
839 st8.spill [in0]=loc0,8;;
840 st8.spill [in0]=in5,8;; // save ar.pfs
841 mov loc0=ar.lc;; // save ar.lc
842 st8.spill [in0]=loc0,8;;
843 mov loc0=ar.ec;; // save ar.ec
844 st8.spill [in0]=loc0,8;;
845
846 // save control registers
847 mov loc0=cr.dcr;; // save dcr
848 st8.spill [in0]=loc0,8;;
849 mov loc0=cr.itm;; // save itm
850 st8.spill [in0]=loc0,8;;
851 mov loc0=cr.iva;; // save iva
852 st8.spill [in0]=loc0,8;;
853 mov loc0=cr.pta;; // save pta
854 st8.spill [in0]=loc0,8;;
855 mov loc0=cr.ipsr;; // save ipsr
856 st8.spill [in0]=loc0,8;;
857 mov loc0=cr.isr;; // save isr
858 st8.spill [in0]=loc0,8;;
859 mov loc0=cr.iip;; // save iip
860 st8.spill [in0]=loc0,8;;
861 mov loc0=cr.ifa;; // save ifa
862 st8.spill [in0]=loc0,8;;
863 mov loc0=cr.itir;; // save itir
864 st8.spill [in0]=loc0,8;;
865 mov loc0=cr.iipa;; // save iipa
866 st8.spill [in0]=loc0,8;;
867 mov loc0=cr.ifs;; // save ifs
868 st8.spill [in0]=loc0,8;;
869 mov loc0=cr.iim;; // save iim
870 st8.spill [in0]=loc0,8;;
871 mov loc0=cr.iha;; // save iha
872 st8.spill [in0]=loc0,8;;
873
874 // save debug registers
875 mov loc0=dbr[r0];; // save dbr0 - dbr7
876 st8.spill [in0]=loc0,8;;
877 movl loc1=1;;
878 mov loc0=dbr[loc1];;
879 st8.spill [in0]=loc0,8;;
880 movl loc1=2;;
881 mov loc0=dbr[loc1];;
882 st8.spill [in0]=loc0,8;;
883 movl loc1=3;;
884 mov loc0=dbr[loc1];;
885 st8.spill [in0]=loc0,8;;
886 movl loc1=4;;
887 mov loc0=dbr[loc1];;
888 st8.spill [in0]=loc0,8;;
889 movl loc1=5;;
890 mov loc0=dbr[loc1];;
891 st8.spill [in0]=loc0,8;;
892 movl loc1=6;;
893 mov loc0=dbr[loc1];;
894 st8.spill [in0]=loc0,8;;
895 movl loc1=7;;
896 mov loc0=dbr[loc1];;
897 st8.spill [in0]=loc0,8;;
898 mov loc0=ibr[r0];; // save ibr0 - ibr7
899 st8.spill [in0]=loc0,8;;
900 movl loc1=1;;
901 mov loc0=ibr[loc1];;
902 st8.spill [in0]=loc0,8;;
903 movl loc1=2;;
904 mov loc0=ibr[loc1];;
905 st8.spill [in0]=loc0,8;;
906 movl loc1=3;;
907 mov loc0=ibr[loc1];;
908 st8.spill [in0]=loc0,8;;
909 movl loc1=4;;
910 mov loc0=ibr[loc1];;
911 st8.spill [in0]=loc0,8;;
912 movl loc1=5;;
913 mov loc0=ibr[loc1];;
914 st8.spill [in0]=loc0,8;;
915 movl loc1=6;;
916 mov loc0=ibr[loc1];;
917 st8.spill [in0]=loc0,8;;
918 movl loc1=7;;
919 mov loc0=ibr[loc1];;
920 st8.spill [in0]=loc0,8;;
921 st8.spill [in0]=loc3;;
922
923 br.ret.sptk.few b0
924
925 .endp SpillContext
926
927
928 /////////////////////////////////////////////
929 //
930 // Name:
931 // FillContext
932 //
933 // Description:
934 // Restores register context from context record.
935 //
936 // Arguments:
937 // in0 = address of last element 512 byte aligned context record address
938 // in1 = modified B0
939 // in2 = modified ar.bsp
940 // in3 = modified ar.bspstore
941 // in4 = modified ar.rnat
942 // in5 = modified ar.pfs
943 //
944 // Notes:
945 // loc0 - scratch
946 // loc1 - scratch
947 // loc2 - temporary application unat storage
948 // loc3 - temporary exception handler unat storage
949
950 .proc FillContext
951 FillContext:
952 alloc loc0=6,4,0,0;; // alloc 6 inputs, 4 locals, 0 outs
953 ld8.fill loc3=[in0],-8;; // int_nat (nat bits for R1-31)
954 movl loc1=7;; // ibr7
955 ld8.fill loc0=[in0],-8;;
956 mov ibr[loc1]=loc0;;
957 movl loc1=6;; // ibr6
958 ld8.fill loc0=[in0],-8;;
959 mov ibr[loc1]=loc0;;
960 movl loc1=5;; // ibr5
961 ld8.fill loc0=[in0],-8;;
962 mov ibr[loc1]=loc0;;
963 movl loc1=4;; // ibr4
964 ld8.fill loc0=[in0],-8;;
965 mov ibr[loc1]=loc0;;
966 movl loc1=3;; // ibr3
967 ld8.fill loc0=[in0],-8;;
968 mov ibr[loc1]=loc0;;
969 movl loc1=2;; // ibr2
970 ld8.fill loc0=[in0],-8;;
971 mov ibr[loc1]=loc0;;
972 movl loc1=1;; // ibr1
973 ld8.fill loc0=[in0],-8;;
974 mov ibr[loc1]=loc0;;
975 ld8.fill loc0=[in0],-8;; // ibr0
976 mov ibr[r0]=loc0;;
977 movl loc1=7;; // dbr7
978 ld8.fill loc0=[in0],-8;;
979 mov dbr[loc1]=loc0;;
980 movl loc1=6;; // dbr6
981 ld8.fill loc0=[in0],-8;;
982 mov dbr[loc1]=loc0;;
983 movl loc1=5;; // dbr5
984 ld8.fill loc0=[in0],-8;;
985 mov dbr[loc1]=loc0;;
986 movl loc1=4;; // dbr4
987 ld8.fill loc0=[in0],-8;;
988 mov dbr[loc1]=loc0;;
989 movl loc1=3;; // dbr3
990 ld8.fill loc0=[in0],-8;;
991 mov dbr[loc1]=loc0;;
992 movl loc1=2;; // dbr2
993 ld8.fill loc0=[in0],-8;;
994 mov dbr[loc1]=loc0;;
995 movl loc1=1;; // dbr1
996 ld8.fill loc0=[in0],-8;;
997 mov dbr[loc1]=loc0;;
998 ld8.fill loc0=[in0],-8;; // dbr0
999 mov dbr[r0]=loc0;;
1000 ld8.fill loc0=[in0],-8;; // iha
1001 mov cr.iha=loc0;;
1002 ld8.fill loc0=[in0],-8;; // iim
1003 mov cr.iim=loc0;;
1004 ld8.fill loc0=[in0],-8;; // ifs
1005 mov cr.ifs=loc0;;
1006 ld8.fill loc0=[in0],-8;; // iipa
1007 mov cr.iipa=loc0;;
1008 ld8.fill loc0=[in0],-8;; // itir
1009 mov cr.itir=loc0;;
1010 ld8.fill loc0=[in0],-8;; // ifa
1011 mov cr.ifa=loc0;;
1012 ld8.fill loc0=[in0],-8;; // iip
1013 mov cr.iip=loc0;;
1014 ld8.fill loc0=[in0],-8;; // isr
1015 mov cr.isr=loc0;;
1016 ld8.fill loc0=[in0],-8;; // ipsr
1017 mov cr.ipsr=loc0;;
1018 ld8.fill loc0=[in0],-8;; // pta
1019 mov cr.pta=loc0;;
1020 ld8.fill loc0=[in0],-8;; // iva
1021 mov cr.iva=loc0;;
1022 ld8.fill loc0=[in0],-8;; // itm
1023 mov cr.itm=loc0;;
1024 ld8.fill loc0=[in0],-8;; // dcr
1025 mov cr.dcr=loc0;;
1026 ld8.fill loc0=[in0],-8;; // ec
1027 mov ar.ec=loc0;;
1028 ld8.fill loc0=[in0],-8;; // lc
1029 mov ar.lc=loc0;;
1030 ld8.fill in5=[in0],-8;; // ar.pfs
1031 ld8.fill loc0=[in0],-8;; // ar.fpsr
1032 mov ar.fpsr=loc0;;
1033 ld8.fill loc2=[in0],-8;; // ar.unat - restored later...
1034 ld8.fill loc0=[in0],-8;; // ar.ccv
1035 mov ar.ccv=loc0;;
1036 ld8.fill loc0=[in0],-8;; // ar.fdr
1037 mov ar.fdr=loc0;;
1038 ld8.fill loc0=[in0],-8;; // ar.fir
1039 mov ar.fir=loc0;;
1040 ld8.fill loc0=[in0],-8;; // ar.fsr
1041 mov ar.fsr=loc0;;
1042 ld8.fill loc0=[in0],-8;; // ar.cflg
1043 mov ar.cflg=loc0;;
1044 ld8.fill loc0=[in0],-8;; // ar.ssd
1045 mov ar.ssd=loc0;;
1046 ld8.fill loc0=[in0],-8;; // ar.csd
1047 mov ar.csd=loc0;;
1048 ld8.fill loc0=[in0],-8;; // ar.eflag
1049 mov ar.eflag=loc0;;
1050 ld8.fill loc0=[in0],-8;; // ar.fcr
1051 mov ar.fcr=loc0;;
1052 ld8.fill in4=[in0],-8;; // ar.rnat
1053 ld8.fill in3=[in0],-8;; // bspstore
1054 ld8.fill in2=[in0],-8;; // bsp
1055 ld8.fill loc0=[in0],-8;; // ar.rsc
1056 mov ar.rsc=loc0;;
1057 ld8.fill loc0=[in0],-8;; // B7 - B0
1058 mov b7=loc0;;
1059 ld8.fill loc0=[in0],-8;;
1060 mov b6=loc0;;
1061 ld8.fill loc0=[in0],-8;;
1062 mov b5=loc0;;
1063 ld8.fill loc0=[in0],-8;;
1064 mov b4=loc0;;
1065 ld8.fill loc0=[in0],-8;;
1066 mov b3=loc0;;
1067 ld8.fill loc0=[in0],-8;;
1068 mov b2=loc0;;
1069 ld8.fill loc0=[in0],-8;;
1070 mov b1=loc0;;
1071 ld8.fill in1=[in0],-8;; // b0 is temporarily stored in in1
1072 ld8.fill loc0=[in0],-16;; // predicates
1073 mov pr=loc0;;
1074 ldf.fill f31=[in0],-16;;
1075 ldf.fill f30=[in0],-16;;
1076 ldf.fill f29=[in0],-16;;
1077 ldf.fill f28=[in0],-16;;
1078 ldf.fill f27=[in0],-16;;
1079 ldf.fill f26=[in0],-16;;
1080 ldf.fill f25=[in0],-16;;
1081 ldf.fill f24=[in0],-16;;
1082 ldf.fill f23=[in0],-16;;
1083 ldf.fill f22=[in0],-16;;
1084 ldf.fill f21=[in0],-16;;
1085 ldf.fill f20=[in0],-16;;
1086 ldf.fill f19=[in0],-16;;
1087 ldf.fill f18=[in0],-16;;
1088 ldf.fill f17=[in0],-16;;
1089 ldf.fill f16=[in0],-16;;
1090 ldf.fill f15=[in0],-16;;
1091 ldf.fill f14=[in0],-16;;
1092 ldf.fill f13=[in0],-16;;
1093 ldf.fill f12=[in0],-16;;
1094 ldf.fill f11=[in0],-16;;
1095 ldf.fill f10=[in0],-16;;
1096 ldf.fill f9=[in0],-16;;
1097 ldf.fill f8=[in0],-16;;
1098 ldf.fill f7=[in0],-16;;
1099 ldf.fill f6=[in0],-16;;
1100 ldf.fill f5=[in0],-16;;
1101 ldf.fill f4=[in0],-16;;
1102 ldf.fill f3=[in0],-16;;
1103 ldf.fill f2=[in0],-8;;
1104 mov ar.unat=loc3;; // restore unat (int_nat) before fill of general registers
1105 ld8.fill r31=[in0],-8;;
1106 ld8.fill r30=[in0],-8;;
1107 ld8.fill r29=[in0],-8;;
1108 ld8.fill r28=[in0],-8;;
1109 ld8.fill r27=[in0],-8;;
1110 ld8.fill r26=[in0],-8;;
1111 ld8.fill r25=[in0],-8;;
1112 ld8.fill r24=[in0],-8;;
1113 ld8.fill r23=[in0],-8;;
1114 ld8.fill r22=[in0],-8;;
1115 ld8.fill r21=[in0],-8;;
1116 ld8.fill r20=[in0],-8;;
1117 ld8.fill r19=[in0],-8;;
1118 ld8.fill r18=[in0],-8;;
1119 ld8.fill r17=[in0],-8;;
1120 ld8.fill r16=[in0],-8;;
1121 ld8.fill r15=[in0],-8;;
1122 ld8.fill r14=[in0],-8;;
1123 ld8.fill r13=[in0],-8;;
1124 ld8.fill r12=[in0],-8;;
1125 ld8.fill r11=[in0],-8;;
1126 ld8.fill r10=[in0],-8;;
1127 ld8.fill r9=[in0],-8;;
1128 ld8.fill r8=[in0],-8;;
1129 ld8.fill r7=[in0],-8;;
1130 ld8.fill r6=[in0],-8;;
1131 ld8.fill r5=[in0],-8;;
1132 ld8.fill r4=[in0],-8;;
1133 ld8.fill r3=[in0],-8;;
1134 ld8.fill r2=[in0],-8;;
1135 ld8.fill r1=[in0],-8;;
1136 mov ar.unat=loc2;; // restore application context unat
1137
1138 br.ret.sptk.many b0
1139
1140 .endp FillContext
1141
1142
1143 /////////////////////////////////////////////
1144 //
1145 // Name:
1146 // HookHandler
1147 //
1148 // Description:
1149 // Common branch target from hooked IVT entries. Runs in interrupt context.
1150 // Responsible for saving and restoring context and calling common C
1151 // handler. Banked registers running on bank 0 at entry.
1152 //
1153 // Arguments:
1154 // All arguments are passed in banked registers:
1155 // B0_REG = Original B0
1156 // SCRATCH_REG1 = IVT entry index
1157 //
1158 // Returns:
1159 // Returns via rfi
1160 //
1161 // Notes:
1162 // loc0 - scratch
1163 // loc1 - scratch
1164 // loc2 - vector number / mask
1165 // loc3 - 16 byte aligned context record address
1166 // loc4 - temporary storage of last address in context record
1167
1168 HookHandler:
1169 flushrs;; // Synch RSE with backing store
1170 mov SCRATCH_REG2=ar.bsp // save interrupted context bsp
1171 mov SCRATCH_REG3=ar.bspstore // save interrupted context bspstore
1172 mov SCRATCH_REG4=ar.rnat // save interrupted context rnat
1173 mov SCRATCH_REG6=cr.ifs;; // save IFS in case we need to chain...
1174 cover;; // creates new frame, moves old
1175 // CFM to IFS.
1176 alloc SCRATCH_REG5=0,5,6,0 // alloc 5 locals, 6 outs
1177 ;;
1178 // save banked registers to locals
1179 mov out1=B0_REG // out1 = Original B0
1180 mov out2=SCRATCH_REG2 // out2 = original ar.bsp
1181 mov out3=SCRATCH_REG3 // out3 = original ar.bspstore
1182 mov out4=SCRATCH_REG4 // out4 = original ar.rnat
1183 mov out5=SCRATCH_REG5 // out5 = original ar.pfs
1184 mov loc2=SCRATCH_REG1;; // loc2 = vector number + chain flag
1185 bsw.1;; // switch banked registers to bank 1
1186 srlz.d // explicit serialize required
1187 // now fill in context record structure
1188 movl loc3=IpfContextBuf // Insure context record is aligned
1189 add loc0=-0x200,r0;; // mask the lower 9 bits (align on 512 byte boundary)
1190 and loc3=loc3,loc0;;
1191 add loc3=0x200,loc3;; // move to next 512 byte boundary
1192 // loc3 now contains the 512 byte aligned context record
1193 // spill register context into context record
1194 mov out0=loc3;; // Context record base in out0
1195 // original B0 in out1 already
1196 // original ar.bsp in out2 already
1197 // original ar.bspstore in out3 already
1198 br.call.sptk.few b0=SpillContext;; // spill context
1199 mov loc4=out0 // save modified address
1200
1201 // At this point, the context has been saved to the context record and we're
1202 // ready to call the C part of the handler...
1203
1204 movl loc0=CommonHandler;; // obtain address of plabel
1205 ld8 loc1=[loc0];; // get entry point of CommonHandler
1206 mov b6=loc1;; // put it in a branch register
1207 adds loc1= 8, loc0;; // index to GP in plabel
1208 ld8 r1=[loc1];; // set up gp for C call
1209 mov loc1=0xfffff;; // mask off so only vector bits are present
1210 and out0=loc2,loc1;; // pass vector number (exception type)
1211 mov out1=loc3;; // pass context record address
1212 br.call.sptk.few b0=b6;; // call C handler
1213
1214 // We've returned from the C call, so restore the context and either rfi
1215 // back to interrupted thread, or chain into the SAL if this was an external interrupt
1216 mov out0=loc4;; // pass address of last element in context record
1217 br.call.sptk.few b0=FillContext;; // Fill context
1218 mov b0=out1 // fill in b0
1219 mov ar.rnat=out4
1220 mov ar.pfs=out5
1221
1222 // Loadrs is necessary because the debugger may have changed some values in
1223 // the backing store. The processor, however may not be aware that the
1224 // stacked registers need to be reloaded from the backing store. Therefore,
1225 // we explicitly cause the RSE to refresh the stacked register's contents
1226 // from the backing store.
1227 mov loc0=ar.rsc // get RSC value
1228 mov loc1=ar.rsc // save it so we can restore it
1229 movl loc3=0xffffffffc000ffff;; // create mask for clearing RSC.loadrs
1230 and loc0=loc0,loc3;; // create value for RSC with RSC.loadrs==0
1231 mov ar.rsc=loc0;; // modify RSC
1232 loadrs;; // invalidate register stack
1233 mov ar.rsc=loc1;; // restore original RSC
1234
1235 bsw.0;; // switch banked registers back to bank 0
1236 srlz.d;; // explicit serialize required
1237 mov PR_REG=pr // save predicates - to be restored after chaining decision
1238 mov B0_REG=b0 // save b0 - required by chain code
1239 mov loc2=EXCPT_EXTERNAL_INTERRUPT;;
1240 cmp.eq p7,p0=SCRATCH_REG1,loc2;; // check to see if this is the timer tick
1241 (p7) br.cond.dpnt.few DO_CHAIN;;
1242
1243 NO_CHAIN:
1244 mov pr=PR_REG;;
1245 rfi;; // we're outa here.
1246
1247 DO_CHAIN:
1248 mov pr=PR_REG
1249 mov SCRATCH_REG1=cr.iva
1250 mov SCRATCH_REG2=PATCH_RETURN_OFFSET;;
1251 add SCRATCH_REG1=SCRATCH_REG1, SCRATCH_REG2;;
1252 mov b0=SCRATCH_REG1;;
1253 br.cond.sptk.few b0;;
1254
1255 EndHookHandler:
1256
1257
1258 /////////////////////////////////////////////
1259 //
1260 // Name:
1261 // HookStub
1262 //
1263 // Description:
1264 // HookStub will be copied from it's loaded location into the IVT when
1265 // an IVT entry is hooked. The IVT entry does an indirect jump via B0 to
1266 // HookHandler, which in turn calls into the default C handler, which calls
1267 // the user-installed C handler. The calls return and HookHandler executes
1268 // an rfi.
1269 //
1270 // Notes:
1271 // Saves B0 to B0_REG
1272 // Saves IVT index to SCRATCH_REG1 (immediate value is fixed up when code is copied
1273 // to the IVT entry.
1274
1275 ASM_GLOBAL HookStub
1276 .proc HookStub
1277 HookStub:
1278
1279 mov B0_REG=b0
1280 movl SCRATCH_REG1=HookHandler;;
1281 mov b0=SCRATCH_REG1;;
1282 mov SCRATCH_REG1=0;;// immediate value is fixed up during install of handler to be the vector number
1283 br.cond.sptk.few b0
1284
1285 .endp HookStub
1286
1287
1288 /////////////////////////////////////////////
1289 // The following code is moved into IVT entry 14 (offset 3400) which is reserved
1290 // in the Itanium architecture. The patch code is located at the end of the
1291 // IVT entry.
1292
1293 PatchCode:
1294 mov SCRATCH_REG0=psr
1295 mov SCRATCH_REG6=cr.ipsr
1296 mov PR_REG=pr
1297 mov B0_REG=b0;;
1298
1299 // turn off any virtual translations
1300 movl SCRATCH_REG1 = ~( MASK(PSR_DT,1) | MASK(PSR_RT,1));;
1301 and SCRATCH_REG1 = SCRATCH_REG0, SCRATCH_REG1;;
1302 mov psr.l = SCRATCH_REG1;;
1303 srlz.d
1304 tbit.z p14, p15 = SCRATCH_REG6, PSR_IS;; // Check to see if we were
1305 // interrupted from IA32
1306 // context. If so, bail out
1307 // and chain to SAL immediately
1308 (p15) br.cond.sptk.few Stub_IVT_Passthru;;
1309 // we only want to take 1 out of 32 external interrupts to minimize the
1310 // impact to system performance. Check our interrupt count and bail
1311 // out if we're not up to 32
1312 movl SCRATCH_REG1=ExternalInterruptCount;;
1313 ld8 SCRATCH_REG2=[SCRATCH_REG1];; // ExternalInterruptCount
1314 tbit.z p14, p15 = SCRATCH_REG2, 5;; // bit 5 set?
1315 (p14) add SCRATCH_REG2=1, SCRATCH_REG2;; // No? Then increment
1316 // ExternalInterruptCount
1317 // and Chain to SAL
1318 // immediately
1319 (p14) st8 [SCRATCH_REG1]=SCRATCH_REG2;;
1320 (p14) br.cond.sptk.few Stub_IVT_Passthru;;
1321 (p15) mov SCRATCH_REG2=0;; // Yes? Then reset
1322 // ExternalInterruptCount
1323 // and branch to
1324 // HookHandler
1325 (p15) st8 [SCRATCH_REG1]=SCRATCH_REG2;;
1326 mov pr=PR_REG
1327 movl SCRATCH_REG1=HookHandler;; // SCRATCH_REG1 = entrypoint of HookHandler
1328 mov b0=SCRATCH_REG1;; // b0 = entrypoint of HookHandler
1329 mov SCRATCH_REG1=EXCPT_EXTERNAL_INTERRUPT;;
1330 br.sptk.few b0;; // branch to HookHandler
1331
1332 PatchCodeRet:
1333 // fake-up an rfi to get RSE back to being coherent and insure psr has
1334 // original contents when interrupt occured, then exit to SAL
1335 // at this point:
1336 // cr.ifs has been modified by previous "cover"
1337 // SCRATCH_REG6 has original cr.ifs
1338
1339 mov SCRATCH_REG5=cr.ipsr
1340 mov SCRATCH_REG4=cr.iip;;
1341 mov cr.ipsr=SCRATCH_REG0
1342 mov SCRATCH_REG1=ip;;
1343 add SCRATCH_REG1=0x30, SCRATCH_REG1;;
1344 mov cr.iip=SCRATCH_REG1;;
1345 rfi;; // rfi to next instruction
1346
1347 Stub_RfiTarget:
1348 mov cr.ifs=SCRATCH_REG6
1349 mov cr.ipsr=SCRATCH_REG5
1350 mov cr.iip=SCRATCH_REG4;;
1351
1352 Stub_IVT_Passthru:
1353 mov pr=PR_REG // pr = saved predicate registers
1354 mov b0=B0_REG;; // b0 = saved b0
1355 EndPatchCode:
1356
1357
1358 /////////////////////////////////////////////
1359 // The following bundle is moved into IVT entry 14 (offset 0x3400) which is reserved
1360 // in the Itanium architecture. This bundle will be the last bundle and will
1361 // be located at offset 0x37F0 in the IVT.
1362
1363 FailsafeBranch:
1364 {
1365 .mib
1366 nop.m 0
1367 nop.i 0
1368 br.sptk.few -(FAILSAFE_BRANCH_OFFSET - EXT_INT_ENTRY_OFFSET - 0x10)
1369 }
1370
1371
1372 /////////////////////////////////////////////
1373 // The following bundle is moved into IVT entry 13 (offset 0x3000) which is the
1374 // external interrupt. It branches to the patch code.
1375
1376 PatchCodeNewBun0:
1377 {
1378 .mib
1379 nop.m 0
1380 nop.i 0
1381 br.cond.sptk.few PATCH_BRANCH
1382 }