]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Universal/FaultTolerantWriteDxe/FaultTolerantWriteSmm.c
UefiCpuPkg: Move AsmRelocateApLoopStart from Mpfuncs.nasm to AmdSev.nasm
[mirror_edk2.git] / MdeModulePkg / Universal / FaultTolerantWriteDxe / FaultTolerantWriteSmm.c
1 /** @file
2
3 This is a simple fault tolerant write driver that is intended to use in the SMM environment.
4
5 This boot service protocol only provides fault tolerant write capability for
6 block devices. The protocol has internal non-volatile intermediate storage
7 of the data and private information. It should be able to recover
8 automatically from a critical fault, such as power failure.
9
10 The implementation uses an FTW (Fault Tolerant Write) Work Space.
11 This work space is a memory copy of the work space on the Working Block,
12 the size of the work space is the FTW_WORK_SPACE_SIZE bytes.
13
14 The work space stores each write record as EFI_FTW_RECORD structure.
15 The spare block stores the write buffer before write to the target block.
16
17 The write record has three states to specify the different phase of write operation.
18 1) WRITE_ALLOCATED is that the record is allocated in write space.
19 The information of write operation is stored in write record structure.
20 2) SPARE_COMPLETED is that the data from write buffer is writed into the spare block as the backup.
21 3) WRITE_COMPLETED is that the data is copied from the spare block to the target block.
22
23 This driver operates the data as the whole size of spare block.
24 It first read the SpareAreaLength data from the target block into the spare memory buffer.
25 Then copy the write buffer data into the spare memory buffer.
26 Then write the spare memory buffer into the spare block.
27 Final copy the data from the spare block to the target block.
28
29 To make this drive work well, the following conditions must be satisfied:
30 1. The write NumBytes data must be fit within Spare area.
31 Offset + NumBytes <= SpareAreaLength
32 2. The whole flash range has the same block size.
33 3. Working block is an area which contains working space in its last block and has the same size as spare block.
34 4. Working Block area must be in the single one Firmware Volume Block range which FVB protocol is produced on.
35 5. Spare area must be in the single one Firmware Volume Block range which FVB protocol is produced on.
36 6. Any write data area (SpareAreaLength Area) which the data will be written into must be
37 in the single one Firmware Volume Block range which FVB protocol is produced on.
38 7. If write data area (such as Variable range) is enlarged, the spare area range must be enlarged.
39 The spare area must be enough large to store the write data before write them into the target range.
40 If one of them is not satisfied, FtwWrite may fail.
41 Usually, Spare area only takes one block. That's SpareAreaLength = BlockSize, NumberOfSpareBlock = 1.
42
43 Caution: This module requires additional review when modified.
44 This driver need to make sure the CommBuffer is not in the SMRAM range.
45
46 Copyright (c) 2010 - 2018, Intel Corporation. All rights reserved.<BR>
47 SPDX-License-Identifier: BSD-2-Clause-Patent
48
49 **/
50
51 #include <PiMm.h>
52 #include <Library/MmServicesTableLib.h>
53 #include <Library/BaseLib.h>
54 #include <Protocol/SmmSwapAddressRange.h>
55 #include "FaultTolerantWrite.h"
56 #include "FaultTolerantWriteSmmCommon.h"
57 #include <Protocol/MmEndOfDxe.h>
58
59 VOID *mFvbRegistration = NULL;
60 EFI_FTW_DEVICE *mFtwDevice = NULL;
61
62 ///
63 /// The flag to indicate whether the platform has left the DXE phase of execution.
64 ///
65 BOOLEAN mEndOfDxe = FALSE;
66
67 /**
68 Retrieve the SMM FVB protocol interface by HANDLE.
69
70 @param[in] FvBlockHandle The handle of SMM FVB protocol that provides services for
71 reading, writing, and erasing the target block.
72 @param[out] FvBlock The interface of SMM FVB protocol
73
74 @retval EFI_SUCCESS The interface information for the specified protocol was returned.
75 @retval EFI_UNSUPPORTED The device does not support the SMM FVB protocol.
76 @retval EFI_INVALID_PARAMETER FvBlockHandle is not a valid EFI_HANDLE or FvBlock is NULL.
77
78 **/
79 EFI_STATUS
80 FtwGetFvbByHandle (
81 IN EFI_HANDLE FvBlockHandle,
82 OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvBlock
83 )
84 {
85 //
86 // To get the SMM FVB protocol interface on the handle
87 //
88 return gMmst->MmHandleProtocol (
89 FvBlockHandle,
90 &gEfiSmmFirmwareVolumeBlockProtocolGuid,
91 (VOID **) FvBlock
92 );
93 }
94
95 /**
96 Retrieve the SMM Swap Address Range protocol interface.
97
98 @param[out] SarProtocol The interface of SMM SAR protocol
99
100 @retval EFI_SUCCESS The SMM SAR protocol instance was found and returned in SarProtocol.
101 @retval EFI_NOT_FOUND The SMM SAR protocol instance was not found.
102 @retval EFI_INVALID_PARAMETER SarProtocol is NULL.
103
104 **/
105 EFI_STATUS
106 FtwGetSarProtocol (
107 OUT VOID **SarProtocol
108 )
109 {
110 EFI_STATUS Status;
111
112 //
113 // Locate Smm Swap Address Range protocol
114 //
115 Status = gMmst->MmLocateProtocol (
116 &gEfiSmmSwapAddressRangeProtocolGuid,
117 NULL,
118 SarProtocol
119 );
120 return Status;
121 }
122
123 /**
124 Function returns an array of handles that support the SMM FVB protocol
125 in a buffer allocated from pool.
126
127 @param[out] NumberHandles The number of handles returned in Buffer.
128 @param[out] Buffer A pointer to the buffer to return the requested
129 array of handles that support SMM FVB protocol.
130
131 @retval EFI_SUCCESS The array of handles was returned in Buffer, and the number of
132 handles in Buffer was returned in NumberHandles.
133 @retval EFI_NOT_FOUND No SMM FVB handle was found.
134 @retval EFI_OUT_OF_RESOURCES There is not enough pool memory to store the matching results.
135 @retval EFI_INVALID_PARAMETER NumberHandles is NULL or Buffer is NULL.
136
137 **/
138 EFI_STATUS
139 GetFvbCountAndBuffer (
140 OUT UINTN *NumberHandles,
141 OUT EFI_HANDLE **Buffer
142 )
143 {
144 EFI_STATUS Status;
145 UINTN BufferSize;
146
147 if ((NumberHandles == NULL) || (Buffer == NULL)) {
148 return EFI_INVALID_PARAMETER;
149 }
150
151 BufferSize = 0;
152 *NumberHandles = 0;
153 *Buffer = NULL;
154 Status = gMmst->MmLocateHandle (
155 ByProtocol,
156 &gEfiSmmFirmwareVolumeBlockProtocolGuid,
157 NULL,
158 &BufferSize,
159 *Buffer
160 );
161 if (EFI_ERROR(Status) && Status != EFI_BUFFER_TOO_SMALL) {
162 return EFI_NOT_FOUND;
163 }
164
165 *Buffer = AllocatePool (BufferSize);
166 if (*Buffer == NULL) {
167 return EFI_OUT_OF_RESOURCES;
168 }
169
170 Status = gMmst->MmLocateHandle (
171 ByProtocol,
172 &gEfiSmmFirmwareVolumeBlockProtocolGuid,
173 NULL,
174 &BufferSize,
175 *Buffer
176 );
177
178 *NumberHandles = BufferSize / sizeof(EFI_HANDLE);
179 if (EFI_ERROR(Status)) {
180 *NumberHandles = 0;
181 FreePool (*Buffer);
182 *Buffer = NULL;
183 }
184
185 return Status;
186 }
187
188
189 /**
190 Get the handle of the SMM FVB protocol by the FVB base address and attributes.
191
192 @param[in] Address The base address of SMM FVB protocol.
193 @param[in] Attributes The attributes of the SMM FVB protocol.
194 @param[out] SmmFvbHandle The handle of the SMM FVB protocol.
195
196 @retval EFI_SUCCESS The FVB handle is found.
197 @retval EFI_ABORTED The FVB protocol is not found.
198
199 **/
200 EFI_STATUS
201 GetFvbByAddressAndAttribute (
202 IN EFI_PHYSICAL_ADDRESS Address,
203 IN EFI_FVB_ATTRIBUTES_2 Attributes,
204 OUT EFI_HANDLE *SmmFvbHandle
205 )
206 {
207 EFI_STATUS Status;
208 EFI_HANDLE *HandleBuffer;
209 UINTN HandleCount;
210 UINTN Index;
211 EFI_PHYSICAL_ADDRESS FvbBaseAddress;
212 EFI_FVB_ATTRIBUTES_2 FvbAttributes;
213 EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
214
215 HandleBuffer = NULL;
216
217 //
218 // Locate all handles of SMM Fvb protocol.
219 //
220 Status = GetFvbCountAndBuffer (&HandleCount, &HandleBuffer);
221 if (EFI_ERROR (Status)) {
222 return EFI_ABORTED;
223 }
224
225 //
226 // Find the proper SMM Fvb handle by the address and attributes.
227 //
228 for (Index = 0; Index < HandleCount; Index++) {
229 Status = FtwGetFvbByHandle (HandleBuffer[Index], &Fvb);
230 if (EFI_ERROR (Status)) {
231 break;
232 }
233 //
234 // Compare the address.
235 //
236 Status = Fvb->GetPhysicalAddress (Fvb, &FvbBaseAddress);
237 if (EFI_ERROR (Status)) {
238 continue;
239 }
240 if (Address != FvbBaseAddress) {
241 continue;
242 }
243
244 //
245 // Compare the attribute.
246 //
247 Status = Fvb->GetAttributes (Fvb, &FvbAttributes);
248 if (EFI_ERROR (Status)) {
249 continue;
250 }
251 if (Attributes != FvbAttributes) {
252 continue;
253 }
254
255 //
256 // Found the proper FVB handle.
257 //
258 *SmmFvbHandle = HandleBuffer[Index];
259 FreePool (HandleBuffer);
260 return EFI_SUCCESS;
261 }
262
263 FreePool (HandleBuffer);
264 return EFI_ABORTED;
265 }
266
267 /**
268 Communication service SMI Handler entry.
269
270 This SMI handler provides services for the fault tolerant write wrapper driver.
271
272 Caution: This function requires additional review when modified.
273 This driver need to make sure the CommBuffer is not in the SMRAM range.
274 Also in FTW_FUNCTION_GET_LAST_WRITE case, check SmmFtwGetLastWriteHeader->Data +
275 SmmFtwGetLastWriteHeader->PrivateDataSize within communication buffer.
276
277 @param[in] DispatchHandle The unique handle assigned to this handler by SmiHandlerRegister().
278 @param[in] RegisterContext Points to an optional handler context which was specified when the
279 handler was registered.
280 @param[in, out] CommBuffer A pointer to a collection of data in memory that will be conveyed
281 from a non-SMM environment into an SMM environment.
282 @param[in, out] CommBufferSize The size of the CommBuffer.
283
284 @retval EFI_SUCCESS The interrupt was handled and quiesced. No other handlers
285 should still be called.
286 @retval EFI_WARN_INTERRUPT_SOURCE_QUIESCED The interrupt has been quiesced but other handlers should
287 still be called.
288 @retval EFI_WARN_INTERRUPT_SOURCE_PENDING The interrupt is still pending and other handlers should still
289 be called.
290 @retval EFI_INTERRUPT_PENDING The interrupt could not be quiesced.
291
292 **/
293 EFI_STATUS
294 EFIAPI
295 SmmFaultTolerantWriteHandler (
296 IN EFI_HANDLE DispatchHandle,
297 IN CONST VOID *RegisterContext,
298 IN OUT VOID *CommBuffer,
299 IN OUT UINTN *CommBufferSize
300 )
301 {
302 EFI_STATUS Status;
303 SMM_FTW_COMMUNICATE_FUNCTION_HEADER *SmmFtwFunctionHeader;
304 SMM_FTW_GET_MAX_BLOCK_SIZE_HEADER *SmmGetMaxBlockSizeHeader;
305 SMM_FTW_ALLOCATE_HEADER *SmmFtwAllocateHeader;
306 SMM_FTW_WRITE_HEADER *SmmFtwWriteHeader;
307 SMM_FTW_RESTART_HEADER *SmmFtwRestartHeader;
308 SMM_FTW_GET_LAST_WRITE_HEADER *SmmFtwGetLastWriteHeader;
309 VOID *PrivateData;
310 EFI_HANDLE SmmFvbHandle;
311 UINTN InfoSize;
312 UINTN CommBufferPayloadSize;
313 UINTN PrivateDataSize;
314 UINTN Length;
315 UINTN TempCommBufferSize;
316
317 //
318 // If input is invalid, stop processing this SMI
319 //
320 if (CommBuffer == NULL || CommBufferSize == NULL) {
321 return EFI_SUCCESS;
322 }
323
324 TempCommBufferSize = *CommBufferSize;
325
326 if (TempCommBufferSize < SMM_FTW_COMMUNICATE_HEADER_SIZE) {
327 DEBUG ((EFI_D_ERROR, "SmmFtwHandler: SMM communication buffer size invalid!\n"));
328 return EFI_SUCCESS;
329 }
330 CommBufferPayloadSize = TempCommBufferSize - SMM_FTW_COMMUNICATE_HEADER_SIZE;
331
332 if (!FtwSmmIsBufferOutsideSmmValid ((UINTN)CommBuffer, TempCommBufferSize)) {
333 DEBUG ((EFI_D_ERROR, "SmmFtwHandler: SMM communication buffer in SMRAM or overflow!\n"));
334 return EFI_SUCCESS;
335 }
336
337 SmmFtwFunctionHeader = (SMM_FTW_COMMUNICATE_FUNCTION_HEADER *)CommBuffer;
338
339 if (mEndOfDxe) {
340 //
341 // It will be not safe to expose the operations after End Of Dxe.
342 //
343 DEBUG ((EFI_D_ERROR, "SmmFtwHandler: Not safe to do the operation: %x after End Of Dxe, so access denied!\n", SmmFtwFunctionHeader->Function));
344 SmmFtwFunctionHeader->ReturnStatus = EFI_ACCESS_DENIED;
345 return EFI_SUCCESS;
346 }
347
348 switch (SmmFtwFunctionHeader->Function) {
349 case FTW_FUNCTION_GET_MAX_BLOCK_SIZE:
350 if (CommBufferPayloadSize < sizeof (SMM_FTW_GET_MAX_BLOCK_SIZE_HEADER)) {
351 DEBUG ((EFI_D_ERROR, "GetMaxBlockSize: SMM communication buffer size invalid!\n"));
352 return EFI_SUCCESS;
353 }
354 SmmGetMaxBlockSizeHeader = (SMM_FTW_GET_MAX_BLOCK_SIZE_HEADER *) SmmFtwFunctionHeader->Data;
355
356 Status = FtwGetMaxBlockSize (
357 &mFtwDevice->FtwInstance,
358 &SmmGetMaxBlockSizeHeader->BlockSize
359 );
360 break;
361
362 case FTW_FUNCTION_ALLOCATE:
363 if (CommBufferPayloadSize < sizeof (SMM_FTW_ALLOCATE_HEADER)) {
364 DEBUG ((EFI_D_ERROR, "Allocate: SMM communication buffer size invalid!\n"));
365 return EFI_SUCCESS;
366 }
367 SmmFtwAllocateHeader = (SMM_FTW_ALLOCATE_HEADER *) SmmFtwFunctionHeader->Data;
368 Status = FtwAllocate (
369 &mFtwDevice->FtwInstance,
370 &SmmFtwAllocateHeader->CallerId,
371 SmmFtwAllocateHeader->PrivateDataSize,
372 SmmFtwAllocateHeader->NumberOfWrites
373 );
374 break;
375
376 case FTW_FUNCTION_WRITE:
377 if (CommBufferPayloadSize < OFFSET_OF (SMM_FTW_WRITE_HEADER, Data)) {
378 DEBUG ((EFI_D_ERROR, "Write: SMM communication buffer size invalid!\n"));
379 return EFI_SUCCESS;
380 }
381 SmmFtwWriteHeader = (SMM_FTW_WRITE_HEADER *) SmmFtwFunctionHeader->Data;
382 Length = SmmFtwWriteHeader->Length;
383 PrivateDataSize = SmmFtwWriteHeader->PrivateDataSize;
384 if (((UINTN)(~0) - Length < OFFSET_OF (SMM_FTW_WRITE_HEADER, Data)) ||
385 ((UINTN)(~0) - PrivateDataSize < OFFSET_OF (SMM_FTW_WRITE_HEADER, Data) + Length)) {
386 //
387 // Prevent InfoSize overflow
388 //
389 Status = EFI_ACCESS_DENIED;
390 break;
391 }
392 InfoSize = OFFSET_OF (SMM_FTW_WRITE_HEADER, Data) + Length + PrivateDataSize;
393
394 //
395 // SMRAM range check already covered before
396 //
397 if (InfoSize > CommBufferPayloadSize) {
398 DEBUG ((EFI_D_ERROR, "Write: Data size exceed communication buffer size limit!\n"));
399 Status = EFI_ACCESS_DENIED;
400 break;
401 }
402
403 if (PrivateDataSize == 0) {
404 PrivateData = NULL;
405 } else {
406 PrivateData = (VOID *)&SmmFtwWriteHeader->Data[Length];
407 }
408 Status = GetFvbByAddressAndAttribute (
409 SmmFtwWriteHeader->FvbBaseAddress,
410 SmmFtwWriteHeader->FvbAttributes,
411 &SmmFvbHandle
412 );
413 if (!EFI_ERROR (Status)) {
414 //
415 // The SpeculationBarrier() call here is to ensure the previous
416 // range/content checks for the CommBuffer have been completed before
417 // calling into FtwWrite().
418 //
419 SpeculationBarrier ();
420 Status = FtwWrite(
421 &mFtwDevice->FtwInstance,
422 SmmFtwWriteHeader->Lba,
423 SmmFtwWriteHeader->Offset,
424 Length,
425 PrivateData,
426 SmmFvbHandle,
427 SmmFtwWriteHeader->Data
428 );
429 }
430 break;
431
432 case FTW_FUNCTION_RESTART:
433 if (CommBufferPayloadSize < sizeof (SMM_FTW_RESTART_HEADER)) {
434 DEBUG ((EFI_D_ERROR, "Restart: SMM communication buffer size invalid!\n"));
435 return EFI_SUCCESS;
436 }
437 SmmFtwRestartHeader = (SMM_FTW_RESTART_HEADER *) SmmFtwFunctionHeader->Data;
438 Status = GetFvbByAddressAndAttribute (
439 SmmFtwRestartHeader->FvbBaseAddress,
440 SmmFtwRestartHeader->FvbAttributes,
441 &SmmFvbHandle
442 );
443 if (!EFI_ERROR (Status)) {
444 Status = FtwRestart (&mFtwDevice->FtwInstance, SmmFvbHandle);
445 }
446 break;
447
448 case FTW_FUNCTION_ABORT:
449 Status = FtwAbort (&mFtwDevice->FtwInstance);
450 break;
451
452 case FTW_FUNCTION_GET_LAST_WRITE:
453 if (CommBufferPayloadSize < OFFSET_OF (SMM_FTW_GET_LAST_WRITE_HEADER, Data)) {
454 DEBUG ((EFI_D_ERROR, "GetLastWrite: SMM communication buffer size invalid!\n"));
455 return EFI_SUCCESS;
456 }
457 SmmFtwGetLastWriteHeader = (SMM_FTW_GET_LAST_WRITE_HEADER *) SmmFtwFunctionHeader->Data;
458 PrivateDataSize = SmmFtwGetLastWriteHeader->PrivateDataSize;
459 if ((UINTN)(~0) - PrivateDataSize < OFFSET_OF (SMM_FTW_GET_LAST_WRITE_HEADER, Data)){
460 //
461 // Prevent InfoSize overflow
462 //
463 Status = EFI_ACCESS_DENIED;
464 break;
465 }
466 InfoSize = OFFSET_OF (SMM_FTW_GET_LAST_WRITE_HEADER, Data) + PrivateDataSize;
467
468 //
469 // SMRAM range check already covered before
470 //
471 if (InfoSize > CommBufferPayloadSize) {
472 DEBUG ((EFI_D_ERROR, "Data size exceed communication buffer size limit!\n"));
473 Status = EFI_ACCESS_DENIED;
474 break;
475 }
476
477 Status = FtwGetLastWrite (
478 &mFtwDevice->FtwInstance,
479 &SmmFtwGetLastWriteHeader->CallerId,
480 &SmmFtwGetLastWriteHeader->Lba,
481 &SmmFtwGetLastWriteHeader->Offset,
482 &SmmFtwGetLastWriteHeader->Length,
483 &PrivateDataSize,
484 (VOID *)SmmFtwGetLastWriteHeader->Data,
485 &SmmFtwGetLastWriteHeader->Complete
486 );
487 SmmFtwGetLastWriteHeader->PrivateDataSize = PrivateDataSize;
488 break;
489
490 default:
491 Status = EFI_UNSUPPORTED;
492 }
493
494 SmmFtwFunctionHeader->ReturnStatus = Status;
495
496 return EFI_SUCCESS;
497 }
498
499
500 /**
501 SMM Firmware Volume Block Protocol notification event handler.
502
503 @param[in] Protocol Points to the protocol's unique identifier
504 @param[in] Interface Points to the interface instance
505 @param[in] Handle The handle on which the interface was installed
506
507 @retval EFI_SUCCESS SmmEventCallback runs successfully
508
509 **/
510 EFI_STATUS
511 EFIAPI
512 FvbNotificationEvent (
513 IN CONST EFI_GUID *Protocol,
514 IN VOID *Interface,
515 IN EFI_HANDLE Handle
516 )
517 {
518 EFI_STATUS Status;
519 EFI_SMM_FAULT_TOLERANT_WRITE_PROTOCOL *FtwProtocol;
520 EFI_HANDLE SmmFtwHandle;
521
522 //
523 // Just return to avoid install SMM FaultTolerantWriteProtocol again
524 // if SMM Fault Tolerant Write protocol had been installed.
525 //
526 Status = gMmst->MmLocateProtocol (
527 &gEfiSmmFaultTolerantWriteProtocolGuid,
528 NULL,
529 (VOID **) &FtwProtocol
530 );
531 if (!EFI_ERROR (Status)) {
532 return EFI_SUCCESS;
533 }
534
535 //
536 // Found proper FVB protocol and initialize FtwDevice for protocol installation
537 //
538 Status = InitFtwProtocol (mFtwDevice);
539 if (EFI_ERROR(Status)) {
540 return Status;
541 }
542
543 //
544 // Install protocol interface
545 //
546 Status = gMmst->MmInstallProtocolInterface (
547 &mFtwDevice->Handle,
548 &gEfiSmmFaultTolerantWriteProtocolGuid,
549 EFI_NATIVE_INTERFACE,
550 &mFtwDevice->FtwInstance
551 );
552 ASSERT_EFI_ERROR (Status);
553
554 ///
555 /// Register SMM FTW SMI handler
556 ///
557 Status = gMmst->MmiHandlerRegister (SmmFaultTolerantWriteHandler, &gEfiSmmFaultTolerantWriteProtocolGuid, &SmmFtwHandle);
558 ASSERT_EFI_ERROR (Status);
559
560 //
561 // Notify the Ftw wrapper driver SMM Ftw is ready
562 //
563 FtwNotifySmmReady ();
564
565 return EFI_SUCCESS;
566 }
567
568 /**
569 SMM END_OF_DXE protocol notification event handler.
570
571 @param Protocol Points to the protocol's unique identifier
572 @param Interface Points to the interface instance
573 @param Handle The handle on which the interface was installed
574
575 @retval EFI_SUCCESS SmmEndOfDxeCallback runs successfully
576
577 **/
578 EFI_STATUS
579 EFIAPI
580 MmEndOfDxeCallback (
581 IN CONST EFI_GUID *Protocol,
582 IN VOID *Interface,
583 IN EFI_HANDLE Handle
584 )
585 {
586 mEndOfDxe = TRUE;
587 return EFI_SUCCESS;
588 }
589
590 /**
591 Shared entry point of the module
592
593 @retval EFI_SUCCESS The initialization finished successfully.
594 @retval EFI_OUT_OF_RESOURCES Allocate memory error
595 @retval EFI_INVALID_PARAMETER Workspace or Spare block does not exist
596 **/
597 EFI_STATUS
598 MmFaultTolerantWriteInitialize (
599 VOID
600 )
601 {
602 EFI_STATUS Status;
603 VOID *MmEndOfDxeRegistration;
604
605 //
606 // Allocate private data structure for SMM FTW protocol and do some initialization
607 //
608 Status = InitFtwDevice (&mFtwDevice);
609 if (EFI_ERROR(Status)) {
610 return Status;
611 }
612
613 //
614 // Register EFI_SMM_END_OF_DXE_PROTOCOL_GUID notify function.
615 //
616 Status = gMmst->MmRegisterProtocolNotify (
617 &gEfiMmEndOfDxeProtocolGuid,
618 MmEndOfDxeCallback,
619 &MmEndOfDxeRegistration
620 );
621 ASSERT_EFI_ERROR (Status);
622
623 //
624 // Register FvbNotificationEvent () notify function.
625 //
626 Status = gMmst->MmRegisterProtocolNotify (
627 &gEfiSmmFirmwareVolumeBlockProtocolGuid,
628 FvbNotificationEvent,
629 &mFvbRegistration
630 );
631 ASSERT_EFI_ERROR (Status);
632
633 FvbNotificationEvent (NULL, NULL, NULL);
634
635 return EFI_SUCCESS;
636 }