]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Universal/Variable/RuntimeDxe/Variable.c
MdeModulePkg/Variable/RuntimeDxe: introduce PcdMaxVolatileVariableSize
[mirror_edk2.git] / MdeModulePkg / Universal / Variable / RuntimeDxe / Variable.c
1 /** @file
2 The common variable operation routines shared by DXE_RUNTIME variable
3 module and DXE_SMM variable module.
4
5 Caution: This module requires additional review when modified.
6 This driver will have external input - variable data. They may be input in SMM mode.
7 This external input must be validated carefully to avoid security issue like
8 buffer overflow, integer overflow.
9
10 VariableServiceGetNextVariableName () and VariableServiceQueryVariableInfo() are external API.
11 They need check input parameter.
12
13 VariableServiceGetVariable() and VariableServiceSetVariable() are external API
14 to receive datasize and data buffer. The size should be checked carefully.
15
16 VariableServiceSetVariable() should also check authenticate data to avoid buffer overflow,
17 integer overflow. It should also check attribute to avoid authentication bypass.
18
19 Copyright (c) 2006 - 2017, Intel Corporation. All rights reserved.<BR>
20 (C) Copyright 2015 Hewlett Packard Enterprise Development LP<BR>
21 This program and the accompanying materials
22 are licensed and made available under the terms and conditions of the BSD License
23 which accompanies this distribution. The full text of the license may be found at
24 http://opensource.org/licenses/bsd-license.php
25
26 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
27 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
28
29 **/
30
31 #include "Variable.h"
32
33 VARIABLE_MODULE_GLOBAL *mVariableModuleGlobal;
34
35 ///
36 /// Define a memory cache that improves the search performance for a variable.
37 ///
38 VARIABLE_STORE_HEADER *mNvVariableCache = NULL;
39
40 ///
41 /// Memory cache of Fv Header.
42 ///
43 EFI_FIRMWARE_VOLUME_HEADER *mNvFvHeaderCache = NULL;
44
45 ///
46 /// The memory entry used for variable statistics data.
47 ///
48 VARIABLE_INFO_ENTRY *gVariableInfo = NULL;
49
50 ///
51 /// The flag to indicate whether the platform has left the DXE phase of execution.
52 ///
53 BOOLEAN mEndOfDxe = FALSE;
54
55 ///
56 /// It indicates the var check request source.
57 /// In the implementation, DXE is regarded as untrusted, and SMM is trusted.
58 ///
59 VAR_CHECK_REQUEST_SOURCE mRequestSource = VarCheckFromUntrusted;
60
61 //
62 // It will record the current boot error flag before EndOfDxe.
63 //
64 VAR_ERROR_FLAG mCurrentBootVarErrFlag = VAR_ERROR_FLAG_NO_ERROR;
65
66 VARIABLE_ENTRY_PROPERTY mVariableEntryProperty[] = {
67 {
68 &gEdkiiVarErrorFlagGuid,
69 VAR_ERROR_FLAG_NAME,
70 {
71 VAR_CHECK_VARIABLE_PROPERTY_REVISION,
72 VAR_CHECK_VARIABLE_PROPERTY_READ_ONLY,
73 VARIABLE_ATTRIBUTE_NV_BS_RT,
74 sizeof (VAR_ERROR_FLAG),
75 sizeof (VAR_ERROR_FLAG)
76 }
77 },
78 };
79
80 AUTH_VAR_LIB_CONTEXT_IN mAuthContextIn = {
81 AUTH_VAR_LIB_CONTEXT_IN_STRUCT_VERSION,
82 //
83 // StructSize, TO BE FILLED
84 //
85 0,
86 //
87 // MaxAuthVariableSize, TO BE FILLED
88 //
89 0,
90 VariableExLibFindVariable,
91 VariableExLibFindNextVariable,
92 VariableExLibUpdateVariable,
93 VariableExLibGetScratchBuffer,
94 VariableExLibCheckRemainingSpaceForConsistency,
95 VariableExLibAtRuntime,
96 };
97
98 AUTH_VAR_LIB_CONTEXT_OUT mAuthContextOut;
99
100 /**
101 Routine used to track statistical information about variable usage.
102 The data is stored in the EFI system table so it can be accessed later.
103 VariableInfo.efi can dump out the table. Only Boot Services variable
104 accesses are tracked by this code. The PcdVariableCollectStatistics
105 build flag controls if this feature is enabled.
106
107 A read that hits in the cache will have Read and Cache true for
108 the transaction. Data is allocated by this routine, but never
109 freed.
110
111 @param[in] VariableName Name of the Variable to track.
112 @param[in] VendorGuid Guid of the Variable to track.
113 @param[in] Volatile TRUE if volatile FALSE if non-volatile.
114 @param[in] Read TRUE if GetVariable() was called.
115 @param[in] Write TRUE if SetVariable() was called.
116 @param[in] Delete TRUE if deleted via SetVariable().
117 @param[in] Cache TRUE for a cache hit.
118
119 **/
120 VOID
121 UpdateVariableInfo (
122 IN CHAR16 *VariableName,
123 IN EFI_GUID *VendorGuid,
124 IN BOOLEAN Volatile,
125 IN BOOLEAN Read,
126 IN BOOLEAN Write,
127 IN BOOLEAN Delete,
128 IN BOOLEAN Cache
129 )
130 {
131 VARIABLE_INFO_ENTRY *Entry;
132
133 if (FeaturePcdGet (PcdVariableCollectStatistics)) {
134
135 if (AtRuntime ()) {
136 // Don't collect statistics at runtime.
137 return;
138 }
139
140 if (gVariableInfo == NULL) {
141 //
142 // On the first call allocate a entry and place a pointer to it in
143 // the EFI System Table.
144 //
145 gVariableInfo = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY));
146 ASSERT (gVariableInfo != NULL);
147
148 CopyGuid (&gVariableInfo->VendorGuid, VendorGuid);
149 gVariableInfo->Name = AllocateZeroPool (StrSize (VariableName));
150 ASSERT (gVariableInfo->Name != NULL);
151 StrCpyS (gVariableInfo->Name, StrSize(VariableName)/sizeof(CHAR16), VariableName);
152 gVariableInfo->Volatile = Volatile;
153 }
154
155
156 for (Entry = gVariableInfo; Entry != NULL; Entry = Entry->Next) {
157 if (CompareGuid (VendorGuid, &Entry->VendorGuid)) {
158 if (StrCmp (VariableName, Entry->Name) == 0) {
159 if (Read) {
160 Entry->ReadCount++;
161 }
162 if (Write) {
163 Entry->WriteCount++;
164 }
165 if (Delete) {
166 Entry->DeleteCount++;
167 }
168 if (Cache) {
169 Entry->CacheCount++;
170 }
171
172 return;
173 }
174 }
175
176 if (Entry->Next == NULL) {
177 //
178 // If the entry is not in the table add it.
179 // Next iteration of the loop will fill in the data.
180 //
181 Entry->Next = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY));
182 ASSERT (Entry->Next != NULL);
183
184 CopyGuid (&Entry->Next->VendorGuid, VendorGuid);
185 Entry->Next->Name = AllocateZeroPool (StrSize (VariableName));
186 ASSERT (Entry->Next->Name != NULL);
187 StrCpyS (Entry->Next->Name, StrSize(VariableName)/sizeof(CHAR16), VariableName);
188 Entry->Next->Volatile = Volatile;
189 }
190
191 }
192 }
193 }
194
195
196 /**
197
198 This code checks if variable header is valid or not.
199
200 @param Variable Pointer to the Variable Header.
201 @param VariableStoreEnd Pointer to the Variable Store End.
202
203 @retval TRUE Variable header is valid.
204 @retval FALSE Variable header is not valid.
205
206 **/
207 BOOLEAN
208 IsValidVariableHeader (
209 IN VARIABLE_HEADER *Variable,
210 IN VARIABLE_HEADER *VariableStoreEnd
211 )
212 {
213 if ((Variable == NULL) || (Variable >= VariableStoreEnd) || (Variable->StartId != VARIABLE_DATA)) {
214 //
215 // Variable is NULL or has reached the end of variable store,
216 // or the StartId is not correct.
217 //
218 return FALSE;
219 }
220
221 return TRUE;
222 }
223
224
225 /**
226
227 This function writes data to the FWH at the correct LBA even if the LBAs
228 are fragmented.
229
230 @param Global Pointer to VARAIBLE_GLOBAL structure.
231 @param Volatile Point out the Variable is Volatile or Non-Volatile.
232 @param SetByIndex TRUE if target pointer is given as index.
233 FALSE if target pointer is absolute.
234 @param Fvb Pointer to the writable FVB protocol.
235 @param DataPtrIndex Pointer to the Data from the end of VARIABLE_STORE_HEADER
236 structure.
237 @param DataSize Size of data to be written.
238 @param Buffer Pointer to the buffer from which data is written.
239
240 @retval EFI_INVALID_PARAMETER Parameters not valid.
241 @retval EFI_SUCCESS Variable store successfully updated.
242
243 **/
244 EFI_STATUS
245 UpdateVariableStore (
246 IN VARIABLE_GLOBAL *Global,
247 IN BOOLEAN Volatile,
248 IN BOOLEAN SetByIndex,
249 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb,
250 IN UINTN DataPtrIndex,
251 IN UINT32 DataSize,
252 IN UINT8 *Buffer
253 )
254 {
255 EFI_FV_BLOCK_MAP_ENTRY *PtrBlockMapEntry;
256 UINTN BlockIndex2;
257 UINTN LinearOffset;
258 UINTN CurrWriteSize;
259 UINTN CurrWritePtr;
260 UINT8 *CurrBuffer;
261 EFI_LBA LbaNumber;
262 UINTN Size;
263 EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
264 VARIABLE_STORE_HEADER *VolatileBase;
265 EFI_PHYSICAL_ADDRESS FvVolHdr;
266 EFI_PHYSICAL_ADDRESS DataPtr;
267 EFI_STATUS Status;
268
269 FwVolHeader = NULL;
270 DataPtr = DataPtrIndex;
271
272 //
273 // Check if the Data is Volatile.
274 //
275 if (!Volatile) {
276 if (Fvb == NULL) {
277 return EFI_INVALID_PARAMETER;
278 }
279 Status = Fvb->GetPhysicalAddress(Fvb, &FvVolHdr);
280 ASSERT_EFI_ERROR (Status);
281
282 FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvVolHdr);
283 //
284 // Data Pointer should point to the actual Address where data is to be
285 // written.
286 //
287 if (SetByIndex) {
288 DataPtr += mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
289 }
290
291 if ((DataPtr + DataSize) >= ((EFI_PHYSICAL_ADDRESS) (UINTN) ((UINT8 *) FwVolHeader + FwVolHeader->FvLength))) {
292 return EFI_INVALID_PARAMETER;
293 }
294 } else {
295 //
296 // Data Pointer should point to the actual Address where data is to be
297 // written.
298 //
299 VolatileBase = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase);
300 if (SetByIndex) {
301 DataPtr += mVariableModuleGlobal->VariableGlobal.VolatileVariableBase;
302 }
303
304 if ((DataPtr + DataSize) >= ((UINTN) ((UINT8 *) VolatileBase + VolatileBase->Size))) {
305 return EFI_INVALID_PARAMETER;
306 }
307
308 //
309 // If Volatile Variable just do a simple mem copy.
310 //
311 CopyMem ((UINT8 *)(UINTN)DataPtr, Buffer, DataSize);
312 return EFI_SUCCESS;
313 }
314
315 //
316 // If we are here we are dealing with Non-Volatile Variables.
317 //
318 LinearOffset = (UINTN) FwVolHeader;
319 CurrWritePtr = (UINTN) DataPtr;
320 CurrWriteSize = DataSize;
321 CurrBuffer = Buffer;
322 LbaNumber = 0;
323
324 if (CurrWritePtr < LinearOffset) {
325 return EFI_INVALID_PARAMETER;
326 }
327
328 for (PtrBlockMapEntry = mNvFvHeaderCache->BlockMap; PtrBlockMapEntry->NumBlocks != 0; PtrBlockMapEntry++) {
329 for (BlockIndex2 = 0; BlockIndex2 < PtrBlockMapEntry->NumBlocks; BlockIndex2++) {
330 //
331 // Check to see if the Variable Writes are spanning through multiple
332 // blocks.
333 //
334 if ((CurrWritePtr >= LinearOffset) && (CurrWritePtr < LinearOffset + PtrBlockMapEntry->Length)) {
335 if ((CurrWritePtr + CurrWriteSize) <= (LinearOffset + PtrBlockMapEntry->Length)) {
336 Status = Fvb->Write (
337 Fvb,
338 LbaNumber,
339 (UINTN) (CurrWritePtr - LinearOffset),
340 &CurrWriteSize,
341 CurrBuffer
342 );
343 return Status;
344 } else {
345 Size = (UINT32) (LinearOffset + PtrBlockMapEntry->Length - CurrWritePtr);
346 Status = Fvb->Write (
347 Fvb,
348 LbaNumber,
349 (UINTN) (CurrWritePtr - LinearOffset),
350 &Size,
351 CurrBuffer
352 );
353 if (EFI_ERROR (Status)) {
354 return Status;
355 }
356
357 CurrWritePtr = LinearOffset + PtrBlockMapEntry->Length;
358 CurrBuffer = CurrBuffer + Size;
359 CurrWriteSize = CurrWriteSize - Size;
360 }
361 }
362
363 LinearOffset += PtrBlockMapEntry->Length;
364 LbaNumber++;
365 }
366 }
367
368 return EFI_SUCCESS;
369 }
370
371
372 /**
373
374 This code gets the current status of Variable Store.
375
376 @param VarStoreHeader Pointer to the Variable Store Header.
377
378 @retval EfiRaw Variable store status is raw.
379 @retval EfiValid Variable store status is valid.
380 @retval EfiInvalid Variable store status is invalid.
381
382 **/
383 VARIABLE_STORE_STATUS
384 GetVariableStoreStatus (
385 IN VARIABLE_STORE_HEADER *VarStoreHeader
386 )
387 {
388 if ((CompareGuid (&VarStoreHeader->Signature, &gEfiAuthenticatedVariableGuid) ||
389 CompareGuid (&VarStoreHeader->Signature, &gEfiVariableGuid)) &&
390 VarStoreHeader->Format == VARIABLE_STORE_FORMATTED &&
391 VarStoreHeader->State == VARIABLE_STORE_HEALTHY
392 ) {
393
394 return EfiValid;
395 } else if (((UINT32 *)(&VarStoreHeader->Signature))[0] == 0xffffffff &&
396 ((UINT32 *)(&VarStoreHeader->Signature))[1] == 0xffffffff &&
397 ((UINT32 *)(&VarStoreHeader->Signature))[2] == 0xffffffff &&
398 ((UINT32 *)(&VarStoreHeader->Signature))[3] == 0xffffffff &&
399 VarStoreHeader->Size == 0xffffffff &&
400 VarStoreHeader->Format == 0xff &&
401 VarStoreHeader->State == 0xff
402 ) {
403
404 return EfiRaw;
405 } else {
406 return EfiInvalid;
407 }
408 }
409
410 /**
411 This code gets the size of variable header.
412
413 @return Size of variable header in bytes in type UINTN.
414
415 **/
416 UINTN
417 GetVariableHeaderSize (
418 VOID
419 )
420 {
421 UINTN Value;
422
423 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
424 Value = sizeof (AUTHENTICATED_VARIABLE_HEADER);
425 } else {
426 Value = sizeof (VARIABLE_HEADER);
427 }
428
429 return Value;
430 }
431
432 /**
433
434 This code gets the size of name of variable.
435
436 @param Variable Pointer to the Variable Header.
437
438 @return UINTN Size of variable in bytes.
439
440 **/
441 UINTN
442 NameSizeOfVariable (
443 IN VARIABLE_HEADER *Variable
444 )
445 {
446 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
447
448 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) Variable;
449 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
450 if (AuthVariable->State == (UINT8) (-1) ||
451 AuthVariable->DataSize == (UINT32) (-1) ||
452 AuthVariable->NameSize == (UINT32) (-1) ||
453 AuthVariable->Attributes == (UINT32) (-1)) {
454 return 0;
455 }
456 return (UINTN) AuthVariable->NameSize;
457 } else {
458 if (Variable->State == (UINT8) (-1) ||
459 Variable->DataSize == (UINT32) (-1) ||
460 Variable->NameSize == (UINT32) (-1) ||
461 Variable->Attributes == (UINT32) (-1)) {
462 return 0;
463 }
464 return (UINTN) Variable->NameSize;
465 }
466 }
467
468 /**
469 This code sets the size of name of variable.
470
471 @param[in] Variable Pointer to the Variable Header.
472 @param[in] NameSize Name size to set.
473
474 **/
475 VOID
476 SetNameSizeOfVariable (
477 IN VARIABLE_HEADER *Variable,
478 IN UINTN NameSize
479 )
480 {
481 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
482
483 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) Variable;
484 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
485 AuthVariable->NameSize = (UINT32) NameSize;
486 } else {
487 Variable->NameSize = (UINT32) NameSize;
488 }
489 }
490
491 /**
492
493 This code gets the size of variable data.
494
495 @param Variable Pointer to the Variable Header.
496
497 @return Size of variable in bytes.
498
499 **/
500 UINTN
501 DataSizeOfVariable (
502 IN VARIABLE_HEADER *Variable
503 )
504 {
505 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
506
507 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) Variable;
508 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
509 if (AuthVariable->State == (UINT8) (-1) ||
510 AuthVariable->DataSize == (UINT32) (-1) ||
511 AuthVariable->NameSize == (UINT32) (-1) ||
512 AuthVariable->Attributes == (UINT32) (-1)) {
513 return 0;
514 }
515 return (UINTN) AuthVariable->DataSize;
516 } else {
517 if (Variable->State == (UINT8) (-1) ||
518 Variable->DataSize == (UINT32) (-1) ||
519 Variable->NameSize == (UINT32) (-1) ||
520 Variable->Attributes == (UINT32) (-1)) {
521 return 0;
522 }
523 return (UINTN) Variable->DataSize;
524 }
525 }
526
527 /**
528 This code sets the size of variable data.
529
530 @param[in] Variable Pointer to the Variable Header.
531 @param[in] DataSize Data size to set.
532
533 **/
534 VOID
535 SetDataSizeOfVariable (
536 IN VARIABLE_HEADER *Variable,
537 IN UINTN DataSize
538 )
539 {
540 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
541
542 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) Variable;
543 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
544 AuthVariable->DataSize = (UINT32) DataSize;
545 } else {
546 Variable->DataSize = (UINT32) DataSize;
547 }
548 }
549
550 /**
551
552 This code gets the pointer to the variable name.
553
554 @param Variable Pointer to the Variable Header.
555
556 @return Pointer to Variable Name which is Unicode encoding.
557
558 **/
559 CHAR16 *
560 GetVariableNamePtr (
561 IN VARIABLE_HEADER *Variable
562 )
563 {
564 return (CHAR16 *) ((UINTN) Variable + GetVariableHeaderSize ());
565 }
566
567 /**
568 This code gets the pointer to the variable guid.
569
570 @param Variable Pointer to the Variable Header.
571
572 @return A EFI_GUID* pointer to Vendor Guid.
573
574 **/
575 EFI_GUID *
576 GetVendorGuidPtr (
577 IN VARIABLE_HEADER *Variable
578 )
579 {
580 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
581
582 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) Variable;
583 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
584 return &AuthVariable->VendorGuid;
585 } else {
586 return &Variable->VendorGuid;
587 }
588 }
589
590 /**
591
592 This code gets the pointer to the variable data.
593
594 @param Variable Pointer to the Variable Header.
595
596 @return Pointer to Variable Data.
597
598 **/
599 UINT8 *
600 GetVariableDataPtr (
601 IN VARIABLE_HEADER *Variable
602 )
603 {
604 UINTN Value;
605
606 //
607 // Be careful about pad size for alignment.
608 //
609 Value = (UINTN) GetVariableNamePtr (Variable);
610 Value += NameSizeOfVariable (Variable);
611 Value += GET_PAD_SIZE (NameSizeOfVariable (Variable));
612
613 return (UINT8 *) Value;
614 }
615
616 /**
617 This code gets the variable data offset related to variable header.
618
619 @param Variable Pointer to the Variable Header.
620
621 @return Variable Data offset.
622
623 **/
624 UINTN
625 GetVariableDataOffset (
626 IN VARIABLE_HEADER *Variable
627 )
628 {
629 UINTN Value;
630
631 //
632 // Be careful about pad size for alignment
633 //
634 Value = GetVariableHeaderSize ();
635 Value += NameSizeOfVariable (Variable);
636 Value += GET_PAD_SIZE (NameSizeOfVariable (Variable));
637
638 return Value;
639 }
640
641 /**
642
643 This code gets the pointer to the next variable header.
644
645 @param Variable Pointer to the Variable Header.
646
647 @return Pointer to next variable header.
648
649 **/
650 VARIABLE_HEADER *
651 GetNextVariablePtr (
652 IN VARIABLE_HEADER *Variable
653 )
654 {
655 UINTN Value;
656
657 Value = (UINTN) GetVariableDataPtr (Variable);
658 Value += DataSizeOfVariable (Variable);
659 Value += GET_PAD_SIZE (DataSizeOfVariable (Variable));
660
661 //
662 // Be careful about pad size for alignment.
663 //
664 return (VARIABLE_HEADER *) HEADER_ALIGN (Value);
665 }
666
667 /**
668
669 Gets the pointer to the first variable header in given variable store area.
670
671 @param VarStoreHeader Pointer to the Variable Store Header.
672
673 @return Pointer to the first variable header.
674
675 **/
676 VARIABLE_HEADER *
677 GetStartPointer (
678 IN VARIABLE_STORE_HEADER *VarStoreHeader
679 )
680 {
681 //
682 // The end of variable store.
683 //
684 return (VARIABLE_HEADER *) HEADER_ALIGN (VarStoreHeader + 1);
685 }
686
687 /**
688
689 Gets the pointer to the end of the variable storage area.
690
691 This function gets pointer to the end of the variable storage
692 area, according to the input variable store header.
693
694 @param VarStoreHeader Pointer to the Variable Store Header.
695
696 @return Pointer to the end of the variable storage area.
697
698 **/
699 VARIABLE_HEADER *
700 GetEndPointer (
701 IN VARIABLE_STORE_HEADER *VarStoreHeader
702 )
703 {
704 //
705 // The end of variable store
706 //
707 return (VARIABLE_HEADER *) HEADER_ALIGN ((UINTN) VarStoreHeader + VarStoreHeader->Size);
708 }
709
710 /**
711 Record variable error flag.
712
713 @param[in] Flag Variable error flag to record.
714 @param[in] VariableName Name of variable.
715 @param[in] VendorGuid Guid of variable.
716 @param[in] Attributes Attributes of the variable.
717 @param[in] VariableSize Size of the variable.
718
719 **/
720 VOID
721 RecordVarErrorFlag (
722 IN VAR_ERROR_FLAG Flag,
723 IN CHAR16 *VariableName,
724 IN EFI_GUID *VendorGuid,
725 IN UINT32 Attributes,
726 IN UINTN VariableSize
727 )
728 {
729 EFI_STATUS Status;
730 VARIABLE_POINTER_TRACK Variable;
731 VAR_ERROR_FLAG *VarErrFlag;
732 VAR_ERROR_FLAG TempFlag;
733
734 DEBUG_CODE (
735 DEBUG ((EFI_D_ERROR, "RecordVarErrorFlag (0x%02x) %s:%g - 0x%08x - 0x%x\n", Flag, VariableName, VendorGuid, Attributes, VariableSize));
736 if (Flag == VAR_ERROR_FLAG_SYSTEM_ERROR) {
737 if (AtRuntime ()) {
738 DEBUG ((EFI_D_ERROR, "CommonRuntimeVariableSpace = 0x%x - CommonVariableTotalSize = 0x%x\n", mVariableModuleGlobal->CommonRuntimeVariableSpace, mVariableModuleGlobal->CommonVariableTotalSize));
739 } else {
740 DEBUG ((EFI_D_ERROR, "CommonVariableSpace = 0x%x - CommonVariableTotalSize = 0x%x\n", mVariableModuleGlobal->CommonVariableSpace, mVariableModuleGlobal->CommonVariableTotalSize));
741 }
742 } else {
743 DEBUG ((EFI_D_ERROR, "CommonMaxUserVariableSpace = 0x%x - CommonUserVariableTotalSize = 0x%x\n", mVariableModuleGlobal->CommonMaxUserVariableSpace, mVariableModuleGlobal->CommonUserVariableTotalSize));
744 }
745 );
746
747 if (!mEndOfDxe) {
748 //
749 // Before EndOfDxe, just record the current boot variable error flag to local variable,
750 // and leave the variable error flag in NV flash as the last boot variable error flag.
751 // After EndOfDxe in InitializeVarErrorFlag (), the variable error flag in NV flash
752 // will be initialized to this local current boot variable error flag.
753 //
754 mCurrentBootVarErrFlag &= Flag;
755 return;
756 }
757
758 //
759 // Record error flag (it should have be initialized).
760 //
761 Status = FindVariable (
762 VAR_ERROR_FLAG_NAME,
763 &gEdkiiVarErrorFlagGuid,
764 &Variable,
765 &mVariableModuleGlobal->VariableGlobal,
766 FALSE
767 );
768 if (!EFI_ERROR (Status)) {
769 VarErrFlag = (VAR_ERROR_FLAG *) GetVariableDataPtr (Variable.CurrPtr);
770 TempFlag = *VarErrFlag;
771 TempFlag &= Flag;
772 if (TempFlag == *VarErrFlag) {
773 return;
774 }
775 Status = UpdateVariableStore (
776 &mVariableModuleGlobal->VariableGlobal,
777 FALSE,
778 FALSE,
779 mVariableModuleGlobal->FvbInstance,
780 (UINTN) VarErrFlag - (UINTN) mNvVariableCache + (UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
781 sizeof (TempFlag),
782 &TempFlag
783 );
784 if (!EFI_ERROR (Status)) {
785 //
786 // Update the data in NV cache.
787 //
788 *VarErrFlag = TempFlag;
789 }
790 }
791 }
792
793 /**
794 Initialize variable error flag.
795
796 Before EndOfDxe, the variable indicates the last boot variable error flag,
797 then it means the last boot variable error flag must be got before EndOfDxe.
798 After EndOfDxe, the variable indicates the current boot variable error flag,
799 then it means the current boot variable error flag must be got after EndOfDxe.
800
801 **/
802 VOID
803 InitializeVarErrorFlag (
804 VOID
805 )
806 {
807 EFI_STATUS Status;
808 VARIABLE_POINTER_TRACK Variable;
809 VAR_ERROR_FLAG Flag;
810 VAR_ERROR_FLAG VarErrFlag;
811
812 if (!mEndOfDxe) {
813 return;
814 }
815
816 Flag = mCurrentBootVarErrFlag;
817 DEBUG ((EFI_D_INFO, "Initialize variable error flag (%02x)\n", Flag));
818
819 Status = FindVariable (
820 VAR_ERROR_FLAG_NAME,
821 &gEdkiiVarErrorFlagGuid,
822 &Variable,
823 &mVariableModuleGlobal->VariableGlobal,
824 FALSE
825 );
826 if (!EFI_ERROR (Status)) {
827 VarErrFlag = *((VAR_ERROR_FLAG *) GetVariableDataPtr (Variable.CurrPtr));
828 if (VarErrFlag == Flag) {
829 return;
830 }
831 }
832
833 UpdateVariable (
834 VAR_ERROR_FLAG_NAME,
835 &gEdkiiVarErrorFlagGuid,
836 &Flag,
837 sizeof (Flag),
838 VARIABLE_ATTRIBUTE_NV_BS_RT,
839 0,
840 0,
841 &Variable,
842 NULL
843 );
844 }
845
846 /**
847 Is user variable?
848
849 @param[in] Variable Pointer to variable header.
850
851 @retval TRUE User variable.
852 @retval FALSE System variable.
853
854 **/
855 BOOLEAN
856 IsUserVariable (
857 IN VARIABLE_HEADER *Variable
858 )
859 {
860 VAR_CHECK_VARIABLE_PROPERTY Property;
861
862 //
863 // Only after End Of Dxe, the variables belong to system variable are fixed.
864 // If PcdMaxUserNvStorageVariableSize is 0, it means user variable share the same NV storage with system variable,
865 // then no need to check if the variable is user variable or not specially.
866 //
867 if (mEndOfDxe && (mVariableModuleGlobal->CommonMaxUserVariableSpace != mVariableModuleGlobal->CommonVariableSpace)) {
868 if (VarCheckLibVariablePropertyGet (GetVariableNamePtr (Variable), GetVendorGuidPtr (Variable), &Property) == EFI_NOT_FOUND) {
869 return TRUE;
870 }
871 }
872 return FALSE;
873 }
874
875 /**
876 Calculate common user variable total size.
877
878 **/
879 VOID
880 CalculateCommonUserVariableTotalSize (
881 VOID
882 )
883 {
884 VARIABLE_HEADER *Variable;
885 VARIABLE_HEADER *NextVariable;
886 UINTN VariableSize;
887 VAR_CHECK_VARIABLE_PROPERTY Property;
888
889 //
890 // Only after End Of Dxe, the variables belong to system variable are fixed.
891 // If PcdMaxUserNvStorageVariableSize is 0, it means user variable share the same NV storage with system variable,
892 // then no need to calculate the common user variable total size specially.
893 //
894 if (mEndOfDxe && (mVariableModuleGlobal->CommonMaxUserVariableSpace != mVariableModuleGlobal->CommonVariableSpace)) {
895 Variable = GetStartPointer (mNvVariableCache);
896 while (IsValidVariableHeader (Variable, GetEndPointer (mNvVariableCache))) {
897 NextVariable = GetNextVariablePtr (Variable);
898 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
899 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
900 if (VarCheckLibVariablePropertyGet (GetVariableNamePtr (Variable), GetVendorGuidPtr (Variable), &Property) == EFI_NOT_FOUND) {
901 //
902 // No property, it is user variable.
903 //
904 mVariableModuleGlobal->CommonUserVariableTotalSize += VariableSize;
905 }
906 }
907
908 Variable = NextVariable;
909 }
910 }
911 }
912
913 /**
914 Initialize variable quota.
915
916 **/
917 VOID
918 InitializeVariableQuota (
919 VOID
920 )
921 {
922 if (!mEndOfDxe) {
923 return;
924 }
925
926 InitializeVarErrorFlag ();
927 CalculateCommonUserVariableTotalSize ();
928 }
929
930 /**
931
932 Variable store garbage collection and reclaim operation.
933
934 @param[in] VariableBase Base address of variable store.
935 @param[out] LastVariableOffset Offset of last variable.
936 @param[in] IsVolatile The variable store is volatile or not;
937 if it is non-volatile, need FTW.
938 @param[in, out] UpdatingPtrTrack Pointer to updating variable pointer track structure.
939 @param[in] NewVariable Pointer to new variable.
940 @param[in] NewVariableSize New variable size.
941
942 @return EFI_SUCCESS Reclaim operation has finished successfully.
943 @return EFI_OUT_OF_RESOURCES No enough memory resources or variable space.
944 @return Others Unexpect error happened during reclaim operation.
945
946 **/
947 EFI_STATUS
948 Reclaim (
949 IN EFI_PHYSICAL_ADDRESS VariableBase,
950 OUT UINTN *LastVariableOffset,
951 IN BOOLEAN IsVolatile,
952 IN OUT VARIABLE_POINTER_TRACK *UpdatingPtrTrack,
953 IN VARIABLE_HEADER *NewVariable,
954 IN UINTN NewVariableSize
955 )
956 {
957 VARIABLE_HEADER *Variable;
958 VARIABLE_HEADER *AddedVariable;
959 VARIABLE_HEADER *NextVariable;
960 VARIABLE_HEADER *NextAddedVariable;
961 VARIABLE_STORE_HEADER *VariableStoreHeader;
962 UINT8 *ValidBuffer;
963 UINTN MaximumBufferSize;
964 UINTN VariableSize;
965 UINTN NameSize;
966 UINT8 *CurrPtr;
967 VOID *Point0;
968 VOID *Point1;
969 BOOLEAN FoundAdded;
970 EFI_STATUS Status;
971 UINTN CommonVariableTotalSize;
972 UINTN CommonUserVariableTotalSize;
973 UINTN HwErrVariableTotalSize;
974 VARIABLE_HEADER *UpdatingVariable;
975 VARIABLE_HEADER *UpdatingInDeletedTransition;
976
977 UpdatingVariable = NULL;
978 UpdatingInDeletedTransition = NULL;
979 if (UpdatingPtrTrack != NULL) {
980 UpdatingVariable = UpdatingPtrTrack->CurrPtr;
981 UpdatingInDeletedTransition = UpdatingPtrTrack->InDeletedTransitionPtr;
982 }
983
984 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) VariableBase);
985
986 CommonVariableTotalSize = 0;
987 CommonUserVariableTotalSize = 0;
988 HwErrVariableTotalSize = 0;
989
990 if (IsVolatile) {
991 //
992 // Start Pointers for the variable.
993 //
994 Variable = GetStartPointer (VariableStoreHeader);
995 MaximumBufferSize = sizeof (VARIABLE_STORE_HEADER);
996
997 while (IsValidVariableHeader (Variable, GetEndPointer (VariableStoreHeader))) {
998 NextVariable = GetNextVariablePtr (Variable);
999 if ((Variable->State == VAR_ADDED || Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) &&
1000 Variable != UpdatingVariable &&
1001 Variable != UpdatingInDeletedTransition
1002 ) {
1003 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
1004 MaximumBufferSize += VariableSize;
1005 }
1006
1007 Variable = NextVariable;
1008 }
1009
1010 if (NewVariable != NULL) {
1011 //
1012 // Add the new variable size.
1013 //
1014 MaximumBufferSize += NewVariableSize;
1015 }
1016
1017 //
1018 // Reserve the 1 Bytes with Oxff to identify the
1019 // end of the variable buffer.
1020 //
1021 MaximumBufferSize += 1;
1022 ValidBuffer = AllocatePool (MaximumBufferSize);
1023 if (ValidBuffer == NULL) {
1024 return EFI_OUT_OF_RESOURCES;
1025 }
1026 } else {
1027 //
1028 // For NV variable reclaim, don't allocate pool here and just use mNvVariableCache
1029 // as the buffer to reduce SMRAM consumption for SMM variable driver.
1030 //
1031 MaximumBufferSize = mNvVariableCache->Size;
1032 ValidBuffer = (UINT8 *) mNvVariableCache;
1033 }
1034
1035 SetMem (ValidBuffer, MaximumBufferSize, 0xff);
1036
1037 //
1038 // Copy variable store header.
1039 //
1040 CopyMem (ValidBuffer, VariableStoreHeader, sizeof (VARIABLE_STORE_HEADER));
1041 CurrPtr = (UINT8 *) GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer);
1042
1043 //
1044 // Reinstall all ADDED variables as long as they are not identical to Updating Variable.
1045 //
1046 Variable = GetStartPointer (VariableStoreHeader);
1047 while (IsValidVariableHeader (Variable, GetEndPointer (VariableStoreHeader))) {
1048 NextVariable = GetNextVariablePtr (Variable);
1049 if (Variable != UpdatingVariable && Variable->State == VAR_ADDED) {
1050 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
1051 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
1052 CurrPtr += VariableSize;
1053 if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
1054 HwErrVariableTotalSize += VariableSize;
1055 } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
1056 CommonVariableTotalSize += VariableSize;
1057 if (IsUserVariable (Variable)) {
1058 CommonUserVariableTotalSize += VariableSize;
1059 }
1060 }
1061 }
1062 Variable = NextVariable;
1063 }
1064
1065 //
1066 // Reinstall all in delete transition variables.
1067 //
1068 Variable = GetStartPointer (VariableStoreHeader);
1069 while (IsValidVariableHeader (Variable, GetEndPointer (VariableStoreHeader))) {
1070 NextVariable = GetNextVariablePtr (Variable);
1071 if (Variable != UpdatingVariable && Variable != UpdatingInDeletedTransition && Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
1072
1073 //
1074 // Buffer has cached all ADDED variable.
1075 // Per IN_DELETED variable, we have to guarantee that
1076 // no ADDED one in previous buffer.
1077 //
1078
1079 FoundAdded = FALSE;
1080 AddedVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer);
1081 while (IsValidVariableHeader (AddedVariable, GetEndPointer ((VARIABLE_STORE_HEADER *) ValidBuffer))) {
1082 NextAddedVariable = GetNextVariablePtr (AddedVariable);
1083 NameSize = NameSizeOfVariable (AddedVariable);
1084 if (CompareGuid (GetVendorGuidPtr (AddedVariable), GetVendorGuidPtr (Variable)) &&
1085 NameSize == NameSizeOfVariable (Variable)
1086 ) {
1087 Point0 = (VOID *) GetVariableNamePtr (AddedVariable);
1088 Point1 = (VOID *) GetVariableNamePtr (Variable);
1089 if (CompareMem (Point0, Point1, NameSize) == 0) {
1090 FoundAdded = TRUE;
1091 break;
1092 }
1093 }
1094 AddedVariable = NextAddedVariable;
1095 }
1096 if (!FoundAdded) {
1097 //
1098 // Promote VAR_IN_DELETED_TRANSITION to VAR_ADDED.
1099 //
1100 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
1101 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
1102 ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED;
1103 CurrPtr += VariableSize;
1104 if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
1105 HwErrVariableTotalSize += VariableSize;
1106 } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
1107 CommonVariableTotalSize += VariableSize;
1108 if (IsUserVariable (Variable)) {
1109 CommonUserVariableTotalSize += VariableSize;
1110 }
1111 }
1112 }
1113 }
1114
1115 Variable = NextVariable;
1116 }
1117
1118 //
1119 // Install the new variable if it is not NULL.
1120 //
1121 if (NewVariable != NULL) {
1122 if (((UINTN) CurrPtr - (UINTN) ValidBuffer) + NewVariableSize > VariableStoreHeader->Size) {
1123 //
1124 // No enough space to store the new variable.
1125 //
1126 Status = EFI_OUT_OF_RESOURCES;
1127 goto Done;
1128 }
1129 if (!IsVolatile) {
1130 if ((NewVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1131 HwErrVariableTotalSize += NewVariableSize;
1132 } else if ((NewVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1133 CommonVariableTotalSize += NewVariableSize;
1134 if (IsUserVariable (NewVariable)) {
1135 CommonUserVariableTotalSize += NewVariableSize;
1136 }
1137 }
1138 if ((HwErrVariableTotalSize > PcdGet32 (PcdHwErrStorageSize)) ||
1139 (CommonVariableTotalSize > mVariableModuleGlobal->CommonVariableSpace) ||
1140 (CommonUserVariableTotalSize > mVariableModuleGlobal->CommonMaxUserVariableSpace)) {
1141 //
1142 // No enough space to store the new variable by NV or NV+HR attribute.
1143 //
1144 Status = EFI_OUT_OF_RESOURCES;
1145 goto Done;
1146 }
1147 }
1148
1149 CopyMem (CurrPtr, (UINT8 *) NewVariable, NewVariableSize);
1150 ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED;
1151 if (UpdatingVariable != NULL) {
1152 UpdatingPtrTrack->CurrPtr = (VARIABLE_HEADER *)((UINTN)UpdatingPtrTrack->StartPtr + ((UINTN)CurrPtr - (UINTN)GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer)));
1153 UpdatingPtrTrack->InDeletedTransitionPtr = NULL;
1154 }
1155 CurrPtr += NewVariableSize;
1156 }
1157
1158 if (IsVolatile) {
1159 //
1160 // If volatile variable store, just copy valid buffer.
1161 //
1162 SetMem ((UINT8 *) (UINTN) VariableBase, VariableStoreHeader->Size, 0xff);
1163 CopyMem ((UINT8 *) (UINTN) VariableBase, ValidBuffer, (UINTN) CurrPtr - (UINTN) ValidBuffer);
1164 *LastVariableOffset = (UINTN) CurrPtr - (UINTN) ValidBuffer;
1165 Status = EFI_SUCCESS;
1166 } else {
1167 //
1168 // If non-volatile variable store, perform FTW here.
1169 //
1170 Status = FtwVariableSpace (
1171 VariableBase,
1172 (VARIABLE_STORE_HEADER *) ValidBuffer
1173 );
1174 if (!EFI_ERROR (Status)) {
1175 *LastVariableOffset = (UINTN) CurrPtr - (UINTN) ValidBuffer;
1176 mVariableModuleGlobal->HwErrVariableTotalSize = HwErrVariableTotalSize;
1177 mVariableModuleGlobal->CommonVariableTotalSize = CommonVariableTotalSize;
1178 mVariableModuleGlobal->CommonUserVariableTotalSize = CommonUserVariableTotalSize;
1179 } else {
1180 mVariableModuleGlobal->HwErrVariableTotalSize = 0;
1181 mVariableModuleGlobal->CommonVariableTotalSize = 0;
1182 mVariableModuleGlobal->CommonUserVariableTotalSize = 0;
1183 Variable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableBase);
1184 while (IsValidVariableHeader (Variable, GetEndPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableBase))) {
1185 NextVariable = GetNextVariablePtr (Variable);
1186 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
1187 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1188 mVariableModuleGlobal->HwErrVariableTotalSize += VariableSize;
1189 } else if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1190 mVariableModuleGlobal->CommonVariableTotalSize += VariableSize;
1191 if (IsUserVariable (Variable)) {
1192 mVariableModuleGlobal->CommonUserVariableTotalSize += VariableSize;
1193 }
1194 }
1195
1196 Variable = NextVariable;
1197 }
1198 *LastVariableOffset = (UINTN) Variable - (UINTN) VariableBase;
1199 }
1200 }
1201
1202 Done:
1203 if (IsVolatile) {
1204 FreePool (ValidBuffer);
1205 } else {
1206 //
1207 // For NV variable reclaim, we use mNvVariableCache as the buffer, so copy the data back.
1208 //
1209 CopyMem (mNvVariableCache, (UINT8 *)(UINTN)VariableBase, VariableStoreHeader->Size);
1210 }
1211
1212 return Status;
1213 }
1214
1215 /**
1216 Find the variable in the specified variable store.
1217
1218 @param[in] VariableName Name of the variable to be found
1219 @param[in] VendorGuid Vendor GUID to be found.
1220 @param[in] IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute
1221 check at runtime when searching variable.
1222 @param[in, out] PtrTrack Variable Track Pointer structure that contains Variable Information.
1223
1224 @retval EFI_SUCCESS Variable found successfully
1225 @retval EFI_NOT_FOUND Variable not found
1226 **/
1227 EFI_STATUS
1228 FindVariableEx (
1229 IN CHAR16 *VariableName,
1230 IN EFI_GUID *VendorGuid,
1231 IN BOOLEAN IgnoreRtCheck,
1232 IN OUT VARIABLE_POINTER_TRACK *PtrTrack
1233 )
1234 {
1235 VARIABLE_HEADER *InDeletedVariable;
1236 VOID *Point;
1237
1238 PtrTrack->InDeletedTransitionPtr = NULL;
1239
1240 //
1241 // Find the variable by walk through HOB, volatile and non-volatile variable store.
1242 //
1243 InDeletedVariable = NULL;
1244
1245 for ( PtrTrack->CurrPtr = PtrTrack->StartPtr
1246 ; IsValidVariableHeader (PtrTrack->CurrPtr, PtrTrack->EndPtr)
1247 ; PtrTrack->CurrPtr = GetNextVariablePtr (PtrTrack->CurrPtr)
1248 ) {
1249 if (PtrTrack->CurrPtr->State == VAR_ADDED ||
1250 PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)
1251 ) {
1252 if (IgnoreRtCheck || !AtRuntime () || ((PtrTrack->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) {
1253 if (VariableName[0] == 0) {
1254 if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
1255 InDeletedVariable = PtrTrack->CurrPtr;
1256 } else {
1257 PtrTrack->InDeletedTransitionPtr = InDeletedVariable;
1258 return EFI_SUCCESS;
1259 }
1260 } else {
1261 if (CompareGuid (VendorGuid, GetVendorGuidPtr (PtrTrack->CurrPtr))) {
1262 Point = (VOID *) GetVariableNamePtr (PtrTrack->CurrPtr);
1263
1264 ASSERT (NameSizeOfVariable (PtrTrack->CurrPtr) != 0);
1265 if (CompareMem (VariableName, Point, NameSizeOfVariable (PtrTrack->CurrPtr)) == 0) {
1266 if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
1267 InDeletedVariable = PtrTrack->CurrPtr;
1268 } else {
1269 PtrTrack->InDeletedTransitionPtr = InDeletedVariable;
1270 return EFI_SUCCESS;
1271 }
1272 }
1273 }
1274 }
1275 }
1276 }
1277 }
1278
1279 PtrTrack->CurrPtr = InDeletedVariable;
1280 return (PtrTrack->CurrPtr == NULL) ? EFI_NOT_FOUND : EFI_SUCCESS;
1281 }
1282
1283
1284 /**
1285 Finds variable in storage blocks of volatile and non-volatile storage areas.
1286
1287 This code finds variable in storage blocks of volatile and non-volatile storage areas.
1288 If VariableName is an empty string, then we just return the first
1289 qualified variable without comparing VariableName and VendorGuid.
1290 If IgnoreRtCheck is TRUE, then we ignore the EFI_VARIABLE_RUNTIME_ACCESS attribute check
1291 at runtime when searching existing variable, only VariableName and VendorGuid are compared.
1292 Otherwise, variables without EFI_VARIABLE_RUNTIME_ACCESS are not visible at runtime.
1293
1294 @param[in] VariableName Name of the variable to be found.
1295 @param[in] VendorGuid Vendor GUID to be found.
1296 @param[out] PtrTrack VARIABLE_POINTER_TRACK structure for output,
1297 including the range searched and the target position.
1298 @param[in] Global Pointer to VARIABLE_GLOBAL structure, including
1299 base of volatile variable storage area, base of
1300 NV variable storage area, and a lock.
1301 @param[in] IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute
1302 check at runtime when searching variable.
1303
1304 @retval EFI_INVALID_PARAMETER If VariableName is not an empty string, while
1305 VendorGuid is NULL.
1306 @retval EFI_SUCCESS Variable successfully found.
1307 @retval EFI_NOT_FOUND Variable not found
1308
1309 **/
1310 EFI_STATUS
1311 FindVariable (
1312 IN CHAR16 *VariableName,
1313 IN EFI_GUID *VendorGuid,
1314 OUT VARIABLE_POINTER_TRACK *PtrTrack,
1315 IN VARIABLE_GLOBAL *Global,
1316 IN BOOLEAN IgnoreRtCheck
1317 )
1318 {
1319 EFI_STATUS Status;
1320 VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax];
1321 VARIABLE_STORE_TYPE Type;
1322
1323 if (VariableName[0] != 0 && VendorGuid == NULL) {
1324 return EFI_INVALID_PARAMETER;
1325 }
1326
1327 //
1328 // 0: Volatile, 1: HOB, 2: Non-Volatile.
1329 // The index and attributes mapping must be kept in this order as RuntimeServiceGetNextVariableName
1330 // make use of this mapping to implement search algorithm.
1331 //
1332 VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) Global->VolatileVariableBase;
1333 VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) Global->HobVariableBase;
1334 VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache;
1335
1336 //
1337 // Find the variable by walk through HOB, volatile and non-volatile variable store.
1338 //
1339 for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) {
1340 if (VariableStoreHeader[Type] == NULL) {
1341 continue;
1342 }
1343
1344 PtrTrack->StartPtr = GetStartPointer (VariableStoreHeader[Type]);
1345 PtrTrack->EndPtr = GetEndPointer (VariableStoreHeader[Type]);
1346 PtrTrack->Volatile = (BOOLEAN) (Type == VariableStoreTypeVolatile);
1347
1348 Status = FindVariableEx (VariableName, VendorGuid, IgnoreRtCheck, PtrTrack);
1349 if (!EFI_ERROR (Status)) {
1350 return Status;
1351 }
1352 }
1353 return EFI_NOT_FOUND;
1354 }
1355
1356 /**
1357 Get index from supported language codes according to language string.
1358
1359 This code is used to get corresponding index in supported language codes. It can handle
1360 RFC4646 and ISO639 language tags.
1361 In ISO639 language tags, take 3-characters as a delimitation to find matched string and calculate the index.
1362 In RFC4646 language tags, take semicolon as a delimitation to find matched string and calculate the index.
1363
1364 For example:
1365 SupportedLang = "engfraengfra"
1366 Lang = "eng"
1367 Iso639Language = TRUE
1368 The return value is "0".
1369 Another example:
1370 SupportedLang = "en;fr;en-US;fr-FR"
1371 Lang = "fr-FR"
1372 Iso639Language = FALSE
1373 The return value is "3".
1374
1375 @param SupportedLang Platform supported language codes.
1376 @param Lang Configured language.
1377 @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
1378
1379 @retval The index of language in the language codes.
1380
1381 **/
1382 UINTN
1383 GetIndexFromSupportedLangCodes(
1384 IN CHAR8 *SupportedLang,
1385 IN CHAR8 *Lang,
1386 IN BOOLEAN Iso639Language
1387 )
1388 {
1389 UINTN Index;
1390 UINTN CompareLength;
1391 UINTN LanguageLength;
1392
1393 if (Iso639Language) {
1394 CompareLength = ISO_639_2_ENTRY_SIZE;
1395 for (Index = 0; Index < AsciiStrLen (SupportedLang); Index += CompareLength) {
1396 if (AsciiStrnCmp (Lang, SupportedLang + Index, CompareLength) == 0) {
1397 //
1398 // Successfully find the index of Lang string in SupportedLang string.
1399 //
1400 Index = Index / CompareLength;
1401 return Index;
1402 }
1403 }
1404 ASSERT (FALSE);
1405 return 0;
1406 } else {
1407 //
1408 // Compare RFC4646 language code
1409 //
1410 Index = 0;
1411 for (LanguageLength = 0; Lang[LanguageLength] != '\0'; LanguageLength++);
1412
1413 for (Index = 0; *SupportedLang != '\0'; Index++, SupportedLang += CompareLength) {
1414 //
1415 // Skip ';' characters in SupportedLang
1416 //
1417 for (; *SupportedLang != '\0' && *SupportedLang == ';'; SupportedLang++);
1418 //
1419 // Determine the length of the next language code in SupportedLang
1420 //
1421 for (CompareLength = 0; SupportedLang[CompareLength] != '\0' && SupportedLang[CompareLength] != ';'; CompareLength++);
1422
1423 if ((CompareLength == LanguageLength) &&
1424 (AsciiStrnCmp (Lang, SupportedLang, CompareLength) == 0)) {
1425 //
1426 // Successfully find the index of Lang string in SupportedLang string.
1427 //
1428 return Index;
1429 }
1430 }
1431 ASSERT (FALSE);
1432 return 0;
1433 }
1434 }
1435
1436 /**
1437 Get language string from supported language codes according to index.
1438
1439 This code is used to get corresponding language strings in supported language codes. It can handle
1440 RFC4646 and ISO639 language tags.
1441 In ISO639 language tags, take 3-characters as a delimitation. Find language string according to the index.
1442 In RFC4646 language tags, take semicolon as a delimitation. Find language string according to the index.
1443
1444 For example:
1445 SupportedLang = "engfraengfra"
1446 Index = "1"
1447 Iso639Language = TRUE
1448 The return value is "fra".
1449 Another example:
1450 SupportedLang = "en;fr;en-US;fr-FR"
1451 Index = "1"
1452 Iso639Language = FALSE
1453 The return value is "fr".
1454
1455 @param SupportedLang Platform supported language codes.
1456 @param Index The index in supported language codes.
1457 @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
1458
1459 @retval The language string in the language codes.
1460
1461 **/
1462 CHAR8 *
1463 GetLangFromSupportedLangCodes (
1464 IN CHAR8 *SupportedLang,
1465 IN UINTN Index,
1466 IN BOOLEAN Iso639Language
1467 )
1468 {
1469 UINTN SubIndex;
1470 UINTN CompareLength;
1471 CHAR8 *Supported;
1472
1473 SubIndex = 0;
1474 Supported = SupportedLang;
1475 if (Iso639Language) {
1476 //
1477 // According to the index of Lang string in SupportedLang string to get the language.
1478 // This code will be invoked in RUNTIME, therefore there is not a memory allocate/free operation.
1479 // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
1480 //
1481 CompareLength = ISO_639_2_ENTRY_SIZE;
1482 mVariableModuleGlobal->Lang[CompareLength] = '\0';
1483 return CopyMem (mVariableModuleGlobal->Lang, SupportedLang + Index * CompareLength, CompareLength);
1484
1485 } else {
1486 while (TRUE) {
1487 //
1488 // Take semicolon as delimitation, sequentially traverse supported language codes.
1489 //
1490 for (CompareLength = 0; *Supported != ';' && *Supported != '\0'; CompareLength++) {
1491 Supported++;
1492 }
1493 if ((*Supported == '\0') && (SubIndex != Index)) {
1494 //
1495 // Have completed the traverse, but not find corrsponding string.
1496 // This case is not allowed to happen.
1497 //
1498 ASSERT(FALSE);
1499 return NULL;
1500 }
1501 if (SubIndex == Index) {
1502 //
1503 // According to the index of Lang string in SupportedLang string to get the language.
1504 // As this code will be invoked in RUNTIME, therefore there is not memory allocate/free operation.
1505 // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
1506 //
1507 mVariableModuleGlobal->PlatformLang[CompareLength] = '\0';
1508 return CopyMem (mVariableModuleGlobal->PlatformLang, Supported - CompareLength, CompareLength);
1509 }
1510 SubIndex++;
1511
1512 //
1513 // Skip ';' characters in Supported
1514 //
1515 for (; *Supported != '\0' && *Supported == ';'; Supported++);
1516 }
1517 }
1518 }
1519
1520 /**
1521 Returns a pointer to an allocated buffer that contains the best matching language
1522 from a set of supported languages.
1523
1524 This function supports both ISO 639-2 and RFC 4646 language codes, but language
1525 code types may not be mixed in a single call to this function. This function
1526 supports a variable argument list that allows the caller to pass in a prioritized
1527 list of language codes to test against all the language codes in SupportedLanguages.
1528
1529 If SupportedLanguages is NULL, then ASSERT().
1530
1531 @param[in] SupportedLanguages A pointer to a Null-terminated ASCII string that
1532 contains a set of language codes in the format
1533 specified by Iso639Language.
1534 @param[in] Iso639Language If TRUE, then all language codes are assumed to be
1535 in ISO 639-2 format. If FALSE, then all language
1536 codes are assumed to be in RFC 4646 language format
1537 @param[in] ... A variable argument list that contains pointers to
1538 Null-terminated ASCII strings that contain one or more
1539 language codes in the format specified by Iso639Language.
1540 The first language code from each of these language
1541 code lists is used to determine if it is an exact or
1542 close match to any of the language codes in
1543 SupportedLanguages. Close matches only apply to RFC 4646
1544 language codes, and the matching algorithm from RFC 4647
1545 is used to determine if a close match is present. If
1546 an exact or close match is found, then the matching
1547 language code from SupportedLanguages is returned. If
1548 no matches are found, then the next variable argument
1549 parameter is evaluated. The variable argument list
1550 is terminated by a NULL.
1551
1552 @retval NULL The best matching language could not be found in SupportedLanguages.
1553 @retval NULL There are not enough resources available to return the best matching
1554 language.
1555 @retval Other A pointer to a Null-terminated ASCII string that is the best matching
1556 language in SupportedLanguages.
1557
1558 **/
1559 CHAR8 *
1560 EFIAPI
1561 VariableGetBestLanguage (
1562 IN CONST CHAR8 *SupportedLanguages,
1563 IN BOOLEAN Iso639Language,
1564 ...
1565 )
1566 {
1567 VA_LIST Args;
1568 CHAR8 *Language;
1569 UINTN CompareLength;
1570 UINTN LanguageLength;
1571 CONST CHAR8 *Supported;
1572 CHAR8 *Buffer;
1573
1574 if (SupportedLanguages == NULL) {
1575 return NULL;
1576 }
1577
1578 VA_START (Args, Iso639Language);
1579 while ((Language = VA_ARG (Args, CHAR8 *)) != NULL) {
1580 //
1581 // Default to ISO 639-2 mode
1582 //
1583 CompareLength = 3;
1584 LanguageLength = MIN (3, AsciiStrLen (Language));
1585
1586 //
1587 // If in RFC 4646 mode, then determine the length of the first RFC 4646 language code in Language
1588 //
1589 if (!Iso639Language) {
1590 for (LanguageLength = 0; Language[LanguageLength] != 0 && Language[LanguageLength] != ';'; LanguageLength++);
1591 }
1592
1593 //
1594 // Trim back the length of Language used until it is empty
1595 //
1596 while (LanguageLength > 0) {
1597 //
1598 // Loop through all language codes in SupportedLanguages
1599 //
1600 for (Supported = SupportedLanguages; *Supported != '\0'; Supported += CompareLength) {
1601 //
1602 // In RFC 4646 mode, then Loop through all language codes in SupportedLanguages
1603 //
1604 if (!Iso639Language) {
1605 //
1606 // Skip ';' characters in Supported
1607 //
1608 for (; *Supported != '\0' && *Supported == ';'; Supported++);
1609 //
1610 // Determine the length of the next language code in Supported
1611 //
1612 for (CompareLength = 0; Supported[CompareLength] != 0 && Supported[CompareLength] != ';'; CompareLength++);
1613 //
1614 // If Language is longer than the Supported, then skip to the next language
1615 //
1616 if (LanguageLength > CompareLength) {
1617 continue;
1618 }
1619 }
1620 //
1621 // See if the first LanguageLength characters in Supported match Language
1622 //
1623 if (AsciiStrnCmp (Supported, Language, LanguageLength) == 0) {
1624 VA_END (Args);
1625
1626 Buffer = Iso639Language ? mVariableModuleGlobal->Lang : mVariableModuleGlobal->PlatformLang;
1627 Buffer[CompareLength] = '\0';
1628 return CopyMem (Buffer, Supported, CompareLength);
1629 }
1630 }
1631
1632 if (Iso639Language) {
1633 //
1634 // If ISO 639 mode, then each language can only be tested once
1635 //
1636 LanguageLength = 0;
1637 } else {
1638 //
1639 // If RFC 4646 mode, then trim Language from the right to the next '-' character
1640 //
1641 for (LanguageLength--; LanguageLength > 0 && Language[LanguageLength] != '-'; LanguageLength--);
1642 }
1643 }
1644 }
1645 VA_END (Args);
1646
1647 //
1648 // No matches were found
1649 //
1650 return NULL;
1651 }
1652
1653 /**
1654 This function is to check if the remaining variable space is enough to set
1655 all Variables from argument list successfully. The purpose of the check
1656 is to keep the consistency of the Variables to be in variable storage.
1657
1658 Note: Variables are assumed to be in same storage.
1659 The set sequence of Variables will be same with the sequence of VariableEntry from argument list,
1660 so follow the argument sequence to check the Variables.
1661
1662 @param[in] Attributes Variable attributes for Variable entries.
1663 @param[in] Marker VA_LIST style variable argument list.
1664 The variable argument list with type VARIABLE_ENTRY_CONSISTENCY *.
1665 A NULL terminates the list. The VariableSize of
1666 VARIABLE_ENTRY_CONSISTENCY is the variable data size as input.
1667 It will be changed to variable total size as output.
1668
1669 @retval TRUE Have enough variable space to set the Variables successfully.
1670 @retval FALSE No enough variable space to set the Variables successfully.
1671
1672 **/
1673 BOOLEAN
1674 EFIAPI
1675 CheckRemainingSpaceForConsistencyInternal (
1676 IN UINT32 Attributes,
1677 IN VA_LIST Marker
1678 )
1679 {
1680 EFI_STATUS Status;
1681 VA_LIST Args;
1682 VARIABLE_ENTRY_CONSISTENCY *VariableEntry;
1683 UINT64 MaximumVariableStorageSize;
1684 UINT64 RemainingVariableStorageSize;
1685 UINT64 MaximumVariableSize;
1686 UINTN TotalNeededSize;
1687 UINTN OriginalVarSize;
1688 VARIABLE_STORE_HEADER *VariableStoreHeader;
1689 VARIABLE_POINTER_TRACK VariablePtrTrack;
1690 VARIABLE_HEADER *NextVariable;
1691 UINTN VarNameSize;
1692 UINTN VarDataSize;
1693
1694 //
1695 // Non-Volatile related.
1696 //
1697 VariableStoreHeader = mNvVariableCache;
1698
1699 Status = VariableServiceQueryVariableInfoInternal (
1700 Attributes,
1701 &MaximumVariableStorageSize,
1702 &RemainingVariableStorageSize,
1703 &MaximumVariableSize
1704 );
1705 ASSERT_EFI_ERROR (Status);
1706
1707 TotalNeededSize = 0;
1708 VA_COPY (Args, Marker);
1709 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1710 while (VariableEntry != NULL) {
1711 //
1712 // Calculate variable total size.
1713 //
1714 VarNameSize = StrSize (VariableEntry->Name);
1715 VarNameSize += GET_PAD_SIZE (VarNameSize);
1716 VarDataSize = VariableEntry->VariableSize;
1717 VarDataSize += GET_PAD_SIZE (VarDataSize);
1718 VariableEntry->VariableSize = HEADER_ALIGN (GetVariableHeaderSize () + VarNameSize + VarDataSize);
1719
1720 TotalNeededSize += VariableEntry->VariableSize;
1721 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1722 }
1723 VA_END (Args);
1724
1725 if (RemainingVariableStorageSize >= TotalNeededSize) {
1726 //
1727 // Already have enough space.
1728 //
1729 return TRUE;
1730 } else if (AtRuntime ()) {
1731 //
1732 // At runtime, no reclaim.
1733 // The original variable space of Variables can't be reused.
1734 //
1735 return FALSE;
1736 }
1737
1738 VA_COPY (Args, Marker);
1739 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1740 while (VariableEntry != NULL) {
1741 //
1742 // Check if Variable[Index] has been present and get its size.
1743 //
1744 OriginalVarSize = 0;
1745 VariablePtrTrack.StartPtr = GetStartPointer (VariableStoreHeader);
1746 VariablePtrTrack.EndPtr = GetEndPointer (VariableStoreHeader);
1747 Status = FindVariableEx (
1748 VariableEntry->Name,
1749 VariableEntry->Guid,
1750 FALSE,
1751 &VariablePtrTrack
1752 );
1753 if (!EFI_ERROR (Status)) {
1754 //
1755 // Get size of Variable[Index].
1756 //
1757 NextVariable = GetNextVariablePtr (VariablePtrTrack.CurrPtr);
1758 OriginalVarSize = (UINTN) NextVariable - (UINTN) VariablePtrTrack.CurrPtr;
1759 //
1760 // Add the original size of Variable[Index] to remaining variable storage size.
1761 //
1762 RemainingVariableStorageSize += OriginalVarSize;
1763 }
1764 if (VariableEntry->VariableSize > RemainingVariableStorageSize) {
1765 //
1766 // No enough space for Variable[Index].
1767 //
1768 VA_END (Args);
1769 return FALSE;
1770 }
1771 //
1772 // Sub the (new) size of Variable[Index] from remaining variable storage size.
1773 //
1774 RemainingVariableStorageSize -= VariableEntry->VariableSize;
1775 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1776 }
1777 VA_END (Args);
1778
1779 return TRUE;
1780 }
1781
1782 /**
1783 This function is to check if the remaining variable space is enough to set
1784 all Variables from argument list successfully. The purpose of the check
1785 is to keep the consistency of the Variables to be in variable storage.
1786
1787 Note: Variables are assumed to be in same storage.
1788 The set sequence of Variables will be same with the sequence of VariableEntry from argument list,
1789 so follow the argument sequence to check the Variables.
1790
1791 @param[in] Attributes Variable attributes for Variable entries.
1792 @param ... The variable argument list with type VARIABLE_ENTRY_CONSISTENCY *.
1793 A NULL terminates the list. The VariableSize of
1794 VARIABLE_ENTRY_CONSISTENCY is the variable data size as input.
1795 It will be changed to variable total size as output.
1796
1797 @retval TRUE Have enough variable space to set the Variables successfully.
1798 @retval FALSE No enough variable space to set the Variables successfully.
1799
1800 **/
1801 BOOLEAN
1802 EFIAPI
1803 CheckRemainingSpaceForConsistency (
1804 IN UINT32 Attributes,
1805 ...
1806 )
1807 {
1808 VA_LIST Marker;
1809 BOOLEAN Return;
1810
1811 VA_START (Marker, Attributes);
1812
1813 Return = CheckRemainingSpaceForConsistencyInternal (Attributes, Marker);
1814
1815 VA_END (Marker);
1816
1817 return Return;
1818 }
1819
1820 /**
1821 Hook the operations in PlatformLangCodes, LangCodes, PlatformLang and Lang.
1822
1823 When setting Lang/LangCodes, simultaneously update PlatformLang/PlatformLangCodes.
1824
1825 According to UEFI spec, PlatformLangCodes/LangCodes are only set once in firmware initialization,
1826 and are read-only. Therefore, in variable driver, only store the original value for other use.
1827
1828 @param[in] VariableName Name of variable.
1829
1830 @param[in] Data Variable data.
1831
1832 @param[in] DataSize Size of data. 0 means delete.
1833
1834 @retval EFI_SUCCESS The update operation is successful or ignored.
1835 @retval EFI_WRITE_PROTECTED Update PlatformLangCodes/LangCodes at runtime.
1836 @retval EFI_OUT_OF_RESOURCES No enough variable space to do the update operation.
1837 @retval Others Other errors happened during the update operation.
1838
1839 **/
1840 EFI_STATUS
1841 AutoUpdateLangVariable (
1842 IN CHAR16 *VariableName,
1843 IN VOID *Data,
1844 IN UINTN DataSize
1845 )
1846 {
1847 EFI_STATUS Status;
1848 CHAR8 *BestPlatformLang;
1849 CHAR8 *BestLang;
1850 UINTN Index;
1851 UINT32 Attributes;
1852 VARIABLE_POINTER_TRACK Variable;
1853 BOOLEAN SetLanguageCodes;
1854 VARIABLE_ENTRY_CONSISTENCY VariableEntry[2];
1855
1856 //
1857 // Don't do updates for delete operation
1858 //
1859 if (DataSize == 0) {
1860 return EFI_SUCCESS;
1861 }
1862
1863 SetLanguageCodes = FALSE;
1864
1865 if (StrCmp (VariableName, EFI_PLATFORM_LANG_CODES_VARIABLE_NAME) == 0) {
1866 //
1867 // PlatformLangCodes is a volatile variable, so it can not be updated at runtime.
1868 //
1869 if (AtRuntime ()) {
1870 return EFI_WRITE_PROTECTED;
1871 }
1872
1873 SetLanguageCodes = TRUE;
1874
1875 //
1876 // According to UEFI spec, PlatformLangCodes is only set once in firmware initialization, and is read-only
1877 // Therefore, in variable driver, only store the original value for other use.
1878 //
1879 if (mVariableModuleGlobal->PlatformLangCodes != NULL) {
1880 FreePool (mVariableModuleGlobal->PlatformLangCodes);
1881 }
1882 mVariableModuleGlobal->PlatformLangCodes = AllocateRuntimeCopyPool (DataSize, Data);
1883 ASSERT (mVariableModuleGlobal->PlatformLangCodes != NULL);
1884
1885 //
1886 // PlatformLang holds a single language from PlatformLangCodes,
1887 // so the size of PlatformLangCodes is enough for the PlatformLang.
1888 //
1889 if (mVariableModuleGlobal->PlatformLang != NULL) {
1890 FreePool (mVariableModuleGlobal->PlatformLang);
1891 }
1892 mVariableModuleGlobal->PlatformLang = AllocateRuntimePool (DataSize);
1893 ASSERT (mVariableModuleGlobal->PlatformLang != NULL);
1894
1895 } else if (StrCmp (VariableName, EFI_LANG_CODES_VARIABLE_NAME) == 0) {
1896 //
1897 // LangCodes is a volatile variable, so it can not be updated at runtime.
1898 //
1899 if (AtRuntime ()) {
1900 return EFI_WRITE_PROTECTED;
1901 }
1902
1903 SetLanguageCodes = TRUE;
1904
1905 //
1906 // According to UEFI spec, LangCodes is only set once in firmware initialization, and is read-only
1907 // Therefore, in variable driver, only store the original value for other use.
1908 //
1909 if (mVariableModuleGlobal->LangCodes != NULL) {
1910 FreePool (mVariableModuleGlobal->LangCodes);
1911 }
1912 mVariableModuleGlobal->LangCodes = AllocateRuntimeCopyPool (DataSize, Data);
1913 ASSERT (mVariableModuleGlobal->LangCodes != NULL);
1914 }
1915
1916 if (SetLanguageCodes
1917 && (mVariableModuleGlobal->PlatformLangCodes != NULL)
1918 && (mVariableModuleGlobal->LangCodes != NULL)) {
1919 //
1920 // Update Lang if PlatformLang is already set
1921 // Update PlatformLang if Lang is already set
1922 //
1923 Status = FindVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1924 if (!EFI_ERROR (Status)) {
1925 //
1926 // Update Lang
1927 //
1928 VariableName = EFI_PLATFORM_LANG_VARIABLE_NAME;
1929 Data = GetVariableDataPtr (Variable.CurrPtr);
1930 DataSize = DataSizeOfVariable (Variable.CurrPtr);
1931 } else {
1932 Status = FindVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1933 if (!EFI_ERROR (Status)) {
1934 //
1935 // Update PlatformLang
1936 //
1937 VariableName = EFI_LANG_VARIABLE_NAME;
1938 Data = GetVariableDataPtr (Variable.CurrPtr);
1939 DataSize = DataSizeOfVariable (Variable.CurrPtr);
1940 } else {
1941 //
1942 // Neither PlatformLang nor Lang is set, directly return
1943 //
1944 return EFI_SUCCESS;
1945 }
1946 }
1947 }
1948
1949 Status = EFI_SUCCESS;
1950
1951 //
1952 // According to UEFI spec, "Lang" and "PlatformLang" is NV|BS|RT attributions.
1953 //
1954 Attributes = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS;
1955
1956 if (StrCmp (VariableName, EFI_PLATFORM_LANG_VARIABLE_NAME) == 0) {
1957 //
1958 // Update Lang when PlatformLangCodes/LangCodes were set.
1959 //
1960 if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) {
1961 //
1962 // When setting PlatformLang, firstly get most matched language string from supported language codes.
1963 //
1964 BestPlatformLang = VariableGetBestLanguage (mVariableModuleGlobal->PlatformLangCodes, FALSE, Data, NULL);
1965 if (BestPlatformLang != NULL) {
1966 //
1967 // Get the corresponding index in language codes.
1968 //
1969 Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, BestPlatformLang, FALSE);
1970
1971 //
1972 // Get the corresponding ISO639 language tag according to RFC4646 language tag.
1973 //
1974 BestLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, Index, TRUE);
1975
1976 //
1977 // Check the variable space for both Lang and PlatformLang variable.
1978 //
1979 VariableEntry[0].VariableSize = ISO_639_2_ENTRY_SIZE + 1;
1980 VariableEntry[0].Guid = &gEfiGlobalVariableGuid;
1981 VariableEntry[0].Name = EFI_LANG_VARIABLE_NAME;
1982
1983 VariableEntry[1].VariableSize = AsciiStrSize (BestPlatformLang);
1984 VariableEntry[1].Guid = &gEfiGlobalVariableGuid;
1985 VariableEntry[1].Name = EFI_PLATFORM_LANG_VARIABLE_NAME;
1986 if (!CheckRemainingSpaceForConsistency (VARIABLE_ATTRIBUTE_NV_BS_RT, &VariableEntry[0], &VariableEntry[1], NULL)) {
1987 //
1988 // No enough variable space to set both Lang and PlatformLang successfully.
1989 //
1990 Status = EFI_OUT_OF_RESOURCES;
1991 } else {
1992 //
1993 // Successfully convert PlatformLang to Lang, and set the BestLang value into Lang variable simultaneously.
1994 //
1995 FindVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1996
1997 Status = UpdateVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, BestLang,
1998 ISO_639_2_ENTRY_SIZE + 1, Attributes, 0, 0, &Variable, NULL);
1999 }
2000
2001 DEBUG ((EFI_D_INFO, "Variable Driver Auto Update PlatformLang, PlatformLang:%a, Lang:%a Status: %r\n", BestPlatformLang, BestLang, Status));
2002 }
2003 }
2004
2005 } else if (StrCmp (VariableName, EFI_LANG_VARIABLE_NAME) == 0) {
2006 //
2007 // Update PlatformLang when PlatformLangCodes/LangCodes were set.
2008 //
2009 if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) {
2010 //
2011 // When setting Lang, firstly get most matched language string from supported language codes.
2012 //
2013 BestLang = VariableGetBestLanguage (mVariableModuleGlobal->LangCodes, TRUE, Data, NULL);
2014 if (BestLang != NULL) {
2015 //
2016 // Get the corresponding index in language codes.
2017 //
2018 Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, BestLang, TRUE);
2019
2020 //
2021 // Get the corresponding RFC4646 language tag according to ISO639 language tag.
2022 //
2023 BestPlatformLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, Index, FALSE);
2024
2025 //
2026 // Check the variable space for both PlatformLang and Lang variable.
2027 //
2028 VariableEntry[0].VariableSize = AsciiStrSize (BestPlatformLang);
2029 VariableEntry[0].Guid = &gEfiGlobalVariableGuid;
2030 VariableEntry[0].Name = EFI_PLATFORM_LANG_VARIABLE_NAME;
2031
2032 VariableEntry[1].VariableSize = ISO_639_2_ENTRY_SIZE + 1;
2033 VariableEntry[1].Guid = &gEfiGlobalVariableGuid;
2034 VariableEntry[1].Name = EFI_LANG_VARIABLE_NAME;
2035 if (!CheckRemainingSpaceForConsistency (VARIABLE_ATTRIBUTE_NV_BS_RT, &VariableEntry[0], &VariableEntry[1], NULL)) {
2036 //
2037 // No enough variable space to set both PlatformLang and Lang successfully.
2038 //
2039 Status = EFI_OUT_OF_RESOURCES;
2040 } else {
2041 //
2042 // Successfully convert Lang to PlatformLang, and set the BestPlatformLang value into PlatformLang variable simultaneously.
2043 //
2044 FindVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
2045
2046 Status = UpdateVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, BestPlatformLang,
2047 AsciiStrSize (BestPlatformLang), Attributes, 0, 0, &Variable, NULL);
2048 }
2049
2050 DEBUG ((EFI_D_INFO, "Variable Driver Auto Update Lang, Lang:%a, PlatformLang:%a Status: %r\n", BestLang, BestPlatformLang, Status));
2051 }
2052 }
2053 }
2054
2055 if (SetLanguageCodes) {
2056 //
2057 // Continue to set PlatformLangCodes or LangCodes.
2058 //
2059 return EFI_SUCCESS;
2060 } else {
2061 return Status;
2062 }
2063 }
2064
2065 /**
2066 Compare two EFI_TIME data.
2067
2068
2069 @param FirstTime A pointer to the first EFI_TIME data.
2070 @param SecondTime A pointer to the second EFI_TIME data.
2071
2072 @retval TRUE The FirstTime is not later than the SecondTime.
2073 @retval FALSE The FirstTime is later than the SecondTime.
2074
2075 **/
2076 BOOLEAN
2077 VariableCompareTimeStampInternal (
2078 IN EFI_TIME *FirstTime,
2079 IN EFI_TIME *SecondTime
2080 )
2081 {
2082 if (FirstTime->Year != SecondTime->Year) {
2083 return (BOOLEAN) (FirstTime->Year < SecondTime->Year);
2084 } else if (FirstTime->Month != SecondTime->Month) {
2085 return (BOOLEAN) (FirstTime->Month < SecondTime->Month);
2086 } else if (FirstTime->Day != SecondTime->Day) {
2087 return (BOOLEAN) (FirstTime->Day < SecondTime->Day);
2088 } else if (FirstTime->Hour != SecondTime->Hour) {
2089 return (BOOLEAN) (FirstTime->Hour < SecondTime->Hour);
2090 } else if (FirstTime->Minute != SecondTime->Minute) {
2091 return (BOOLEAN) (FirstTime->Minute < SecondTime->Minute);
2092 }
2093
2094 return (BOOLEAN) (FirstTime->Second <= SecondTime->Second);
2095 }
2096
2097 /**
2098 Update the variable region with Variable information. If EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS is set,
2099 index of associated public key is needed.
2100
2101 @param[in] VariableName Name of variable.
2102 @param[in] VendorGuid Guid of variable.
2103 @param[in] Data Variable data.
2104 @param[in] DataSize Size of data. 0 means delete.
2105 @param[in] Attributes Attributes of the variable.
2106 @param[in] KeyIndex Index of associated public key.
2107 @param[in] MonotonicCount Value of associated monotonic count.
2108 @param[in, out] CacheVariable The variable information which is used to keep track of variable usage.
2109 @param[in] TimeStamp Value of associated TimeStamp.
2110
2111 @retval EFI_SUCCESS The update operation is success.
2112 @retval EFI_OUT_OF_RESOURCES Variable region is full, can not write other data into this region.
2113
2114 **/
2115 EFI_STATUS
2116 UpdateVariable (
2117 IN CHAR16 *VariableName,
2118 IN EFI_GUID *VendorGuid,
2119 IN VOID *Data,
2120 IN UINTN DataSize,
2121 IN UINT32 Attributes OPTIONAL,
2122 IN UINT32 KeyIndex OPTIONAL,
2123 IN UINT64 MonotonicCount OPTIONAL,
2124 IN OUT VARIABLE_POINTER_TRACK *CacheVariable,
2125 IN EFI_TIME *TimeStamp OPTIONAL
2126 )
2127 {
2128 EFI_STATUS Status;
2129 VARIABLE_HEADER *NextVariable;
2130 UINTN ScratchSize;
2131 UINTN MaxDataSize;
2132 UINTN VarNameOffset;
2133 UINTN VarDataOffset;
2134 UINTN VarNameSize;
2135 UINTN VarSize;
2136 BOOLEAN Volatile;
2137 EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
2138 UINT8 State;
2139 VARIABLE_POINTER_TRACK *Variable;
2140 VARIABLE_POINTER_TRACK NvVariable;
2141 VARIABLE_STORE_HEADER *VariableStoreHeader;
2142 UINTN CacheOffset;
2143 UINT8 *BufferForMerge;
2144 UINTN MergedBufSize;
2145 BOOLEAN DataReady;
2146 UINTN DataOffset;
2147 BOOLEAN IsCommonVariable;
2148 BOOLEAN IsCommonUserVariable;
2149 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
2150
2151 if (mVariableModuleGlobal->FvbInstance == NULL) {
2152 //
2153 // The FVB protocol is not ready, so the EFI_VARIABLE_WRITE_ARCH_PROTOCOL is not installed.
2154 //
2155 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
2156 //
2157 // Trying to update NV variable prior to the installation of EFI_VARIABLE_WRITE_ARCH_PROTOCOL
2158 //
2159 DEBUG ((EFI_D_ERROR, "Update NV variable before EFI_VARIABLE_WRITE_ARCH_PROTOCOL ready - %r\n", EFI_NOT_AVAILABLE_YET));
2160 return EFI_NOT_AVAILABLE_YET;
2161 } else if ((Attributes & VARIABLE_ATTRIBUTE_AT_AW) != 0) {
2162 //
2163 // Trying to update volatile authenticated variable prior to the installation of EFI_VARIABLE_WRITE_ARCH_PROTOCOL
2164 // The authenticated variable perhaps is not initialized, just return here.
2165 //
2166 DEBUG ((EFI_D_ERROR, "Update AUTH variable before EFI_VARIABLE_WRITE_ARCH_PROTOCOL ready - %r\n", EFI_NOT_AVAILABLE_YET));
2167 return EFI_NOT_AVAILABLE_YET;
2168 }
2169 }
2170
2171 //
2172 // Check if CacheVariable points to the variable in variable HOB.
2173 // If yes, let CacheVariable points to the variable in NV variable cache.
2174 //
2175 if ((CacheVariable->CurrPtr != NULL) &&
2176 (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) &&
2177 (CacheVariable->StartPtr == GetStartPointer ((VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase))
2178 ) {
2179 CacheVariable->StartPtr = GetStartPointer (mNvVariableCache);
2180 CacheVariable->EndPtr = GetEndPointer (mNvVariableCache);
2181 CacheVariable->Volatile = FALSE;
2182 Status = FindVariableEx (VariableName, VendorGuid, FALSE, CacheVariable);
2183 if (CacheVariable->CurrPtr == NULL || EFI_ERROR (Status)) {
2184 //
2185 // There is no matched variable in NV variable cache.
2186 //
2187 if ((((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) && (DataSize == 0)) || (Attributes == 0)) {
2188 //
2189 // It is to delete variable,
2190 // go to delete this variable in variable HOB and
2191 // try to flush other variables from HOB to flash.
2192 //
2193 UpdateVariableInfo (VariableName, VendorGuid, FALSE, FALSE, FALSE, TRUE, FALSE);
2194 FlushHobVariableToFlash (VariableName, VendorGuid);
2195 return EFI_SUCCESS;
2196 }
2197 }
2198 }
2199
2200 if ((CacheVariable->CurrPtr == NULL) || CacheVariable->Volatile) {
2201 Variable = CacheVariable;
2202 } else {
2203 //
2204 // Update/Delete existing NV variable.
2205 // CacheVariable points to the variable in the memory copy of Flash area
2206 // Now let Variable points to the same variable in Flash area.
2207 //
2208 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase);
2209 Variable = &NvVariable;
2210 Variable->StartPtr = GetStartPointer (VariableStoreHeader);
2211 Variable->EndPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->EndPtr - (UINTN)CacheVariable->StartPtr));
2212
2213 Variable->CurrPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->CurrPtr - (UINTN)CacheVariable->StartPtr));
2214 if (CacheVariable->InDeletedTransitionPtr != NULL) {
2215 Variable->InDeletedTransitionPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->InDeletedTransitionPtr - (UINTN)CacheVariable->StartPtr));
2216 } else {
2217 Variable->InDeletedTransitionPtr = NULL;
2218 }
2219 Variable->Volatile = FALSE;
2220 }
2221
2222 Fvb = mVariableModuleGlobal->FvbInstance;
2223
2224 //
2225 // Tricky part: Use scratch data area at the end of volatile variable store
2226 // as a temporary storage.
2227 //
2228 NextVariable = GetEndPointer ((VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase));
2229 ScratchSize = mVariableModuleGlobal->ScratchBufferSize;
2230 SetMem (NextVariable, ScratchSize, 0xff);
2231 DataReady = FALSE;
2232
2233 if (Variable->CurrPtr != NULL) {
2234 //
2235 // Update/Delete existing variable.
2236 //
2237 if (AtRuntime ()) {
2238 //
2239 // If AtRuntime and the variable is Volatile and Runtime Access,
2240 // the volatile is ReadOnly, and SetVariable should be aborted and
2241 // return EFI_WRITE_PROTECTED.
2242 //
2243 if (Variable->Volatile) {
2244 Status = EFI_WRITE_PROTECTED;
2245 goto Done;
2246 }
2247 //
2248 // Only variable that have NV attributes can be updated/deleted in Runtime.
2249 //
2250 if ((CacheVariable->CurrPtr->Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) {
2251 Status = EFI_INVALID_PARAMETER;
2252 goto Done;
2253 }
2254
2255 //
2256 // Only variable that have RT attributes can be updated/deleted in Runtime.
2257 //
2258 if ((CacheVariable->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) {
2259 Status = EFI_INVALID_PARAMETER;
2260 goto Done;
2261 }
2262 }
2263
2264 //
2265 // Setting a data variable with no access, or zero DataSize attributes
2266 // causes it to be deleted.
2267 // When the EFI_VARIABLE_APPEND_WRITE attribute is set, DataSize of zero will
2268 // not delete the variable.
2269 //
2270 if ((((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) && (DataSize == 0))|| ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0)) {
2271 if (Variable->InDeletedTransitionPtr != NULL) {
2272 //
2273 // Both ADDED and IN_DELETED_TRANSITION variable are present,
2274 // set IN_DELETED_TRANSITION one to DELETED state first.
2275 //
2276 ASSERT (CacheVariable->InDeletedTransitionPtr != NULL);
2277 State = CacheVariable->InDeletedTransitionPtr->State;
2278 State &= VAR_DELETED;
2279 Status = UpdateVariableStore (
2280 &mVariableModuleGlobal->VariableGlobal,
2281 Variable->Volatile,
2282 FALSE,
2283 Fvb,
2284 (UINTN) &Variable->InDeletedTransitionPtr->State,
2285 sizeof (UINT8),
2286 &State
2287 );
2288 if (!EFI_ERROR (Status)) {
2289 if (!Variable->Volatile) {
2290 CacheVariable->InDeletedTransitionPtr->State = State;
2291 }
2292 } else {
2293 goto Done;
2294 }
2295 }
2296
2297 State = CacheVariable->CurrPtr->State;
2298 State &= VAR_DELETED;
2299
2300 Status = UpdateVariableStore (
2301 &mVariableModuleGlobal->VariableGlobal,
2302 Variable->Volatile,
2303 FALSE,
2304 Fvb,
2305 (UINTN) &Variable->CurrPtr->State,
2306 sizeof (UINT8),
2307 &State
2308 );
2309 if (!EFI_ERROR (Status)) {
2310 UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, FALSE, TRUE, FALSE);
2311 if (!Variable->Volatile) {
2312 CacheVariable->CurrPtr->State = State;
2313 FlushHobVariableToFlash (VariableName, VendorGuid);
2314 }
2315 }
2316 goto Done;
2317 }
2318 //
2319 // If the variable is marked valid, and the same data has been passed in,
2320 // then return to the caller immediately.
2321 //
2322 if (DataSizeOfVariable (CacheVariable->CurrPtr) == DataSize &&
2323 (CompareMem (Data, GetVariableDataPtr (CacheVariable->CurrPtr), DataSize) == 0) &&
2324 ((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) &&
2325 (TimeStamp == NULL)) {
2326 //
2327 // Variable content unchanged and no need to update timestamp, just return.
2328 //
2329 UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, TRUE, FALSE, FALSE);
2330 Status = EFI_SUCCESS;
2331 goto Done;
2332 } else if ((CacheVariable->CurrPtr->State == VAR_ADDED) ||
2333 (CacheVariable->CurrPtr->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) {
2334
2335 //
2336 // EFI_VARIABLE_APPEND_WRITE attribute only effects for existing variable.
2337 //
2338 if ((Attributes & EFI_VARIABLE_APPEND_WRITE) != 0) {
2339 //
2340 // NOTE: From 0 to DataOffset of NextVariable is reserved for Variable Header and Name.
2341 // From DataOffset of NextVariable is to save the existing variable data.
2342 //
2343 DataOffset = GetVariableDataOffset (CacheVariable->CurrPtr);
2344 BufferForMerge = (UINT8 *) ((UINTN) NextVariable + DataOffset);
2345 CopyMem (BufferForMerge, (UINT8 *) ((UINTN) CacheVariable->CurrPtr + DataOffset), DataSizeOfVariable (CacheVariable->CurrPtr));
2346
2347 //
2348 // Set Max Auth/Non-Volatile/Volatile Variable Data Size as default MaxDataSize.
2349 //
2350 if ((Attributes & VARIABLE_ATTRIBUTE_AT_AW) != 0) {
2351 MaxDataSize = mVariableModuleGlobal->MaxAuthVariableSize - DataOffset;
2352 } else if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
2353 MaxDataSize = mVariableModuleGlobal->MaxVariableSize - DataOffset;
2354 } else {
2355 MaxDataSize = mVariableModuleGlobal->MaxVolatileVariableSize - DataOffset;
2356 }
2357
2358 //
2359 // Append the new data to the end of existing data.
2360 // Max Harware error record variable data size is different from common/auth variable.
2361 //
2362 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
2363 MaxDataSize = PcdGet32 (PcdMaxHardwareErrorVariableSize) - DataOffset;
2364 }
2365
2366 if (DataSizeOfVariable (CacheVariable->CurrPtr) + DataSize > MaxDataSize) {
2367 //
2368 // Existing data size + new data size exceed maximum variable size limitation.
2369 //
2370 Status = EFI_INVALID_PARAMETER;
2371 goto Done;
2372 }
2373 CopyMem ((UINT8*) ((UINTN) BufferForMerge + DataSizeOfVariable (CacheVariable->CurrPtr)), Data, DataSize);
2374 MergedBufSize = DataSizeOfVariable (CacheVariable->CurrPtr) + DataSize;
2375
2376 //
2377 // BufferForMerge(from DataOffset of NextVariable) has included the merged existing and new data.
2378 //
2379 Data = BufferForMerge;
2380 DataSize = MergedBufSize;
2381 DataReady = TRUE;
2382 }
2383
2384 //
2385 // Mark the old variable as in delete transition.
2386 //
2387 State = CacheVariable->CurrPtr->State;
2388 State &= VAR_IN_DELETED_TRANSITION;
2389
2390 Status = UpdateVariableStore (
2391 &mVariableModuleGlobal->VariableGlobal,
2392 Variable->Volatile,
2393 FALSE,
2394 Fvb,
2395 (UINTN) &Variable->CurrPtr->State,
2396 sizeof (UINT8),
2397 &State
2398 );
2399 if (EFI_ERROR (Status)) {
2400 goto Done;
2401 }
2402 if (!Variable->Volatile) {
2403 CacheVariable->CurrPtr->State = State;
2404 }
2405 }
2406 } else {
2407 //
2408 // Not found existing variable. Create a new variable.
2409 //
2410
2411 if ((DataSize == 0) && ((Attributes & EFI_VARIABLE_APPEND_WRITE) != 0)) {
2412 Status = EFI_SUCCESS;
2413 goto Done;
2414 }
2415
2416 //
2417 // Make sure we are trying to create a new variable.
2418 // Setting a data variable with zero DataSize or no access attributes means to delete it.
2419 //
2420 if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) {
2421 Status = EFI_NOT_FOUND;
2422 goto Done;
2423 }
2424
2425 //
2426 // Only variable have NV|RT attribute can be created in Runtime.
2427 //
2428 if (AtRuntime () &&
2429 (((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) || ((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0))) {
2430 Status = EFI_INVALID_PARAMETER;
2431 goto Done;
2432 }
2433 }
2434
2435 //
2436 // Function part - create a new variable and copy the data.
2437 // Both update a variable and create a variable will come here.
2438 //
2439 NextVariable->StartId = VARIABLE_DATA;
2440 //
2441 // NextVariable->State = VAR_ADDED;
2442 //
2443 NextVariable->Reserved = 0;
2444 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
2445 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) NextVariable;
2446 AuthVariable->PubKeyIndex = KeyIndex;
2447 AuthVariable->MonotonicCount = MonotonicCount;
2448 ZeroMem (&AuthVariable->TimeStamp, sizeof (EFI_TIME));
2449
2450 if (((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) != 0) &&
2451 (TimeStamp != NULL)) {
2452 if ((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) {
2453 CopyMem (&AuthVariable->TimeStamp, TimeStamp, sizeof (EFI_TIME));
2454 } else {
2455 //
2456 // In the case when the EFI_VARIABLE_APPEND_WRITE attribute is set, only
2457 // when the new TimeStamp value is later than the current timestamp associated
2458 // with the variable, we need associate the new timestamp with the updated value.
2459 //
2460 if (Variable->CurrPtr != NULL) {
2461 if (VariableCompareTimeStampInternal (&(((AUTHENTICATED_VARIABLE_HEADER *) CacheVariable->CurrPtr)->TimeStamp), TimeStamp)) {
2462 CopyMem (&AuthVariable->TimeStamp, TimeStamp, sizeof (EFI_TIME));
2463 }
2464 }
2465 }
2466 }
2467 }
2468
2469 //
2470 // The EFI_VARIABLE_APPEND_WRITE attribute will never be set in the returned
2471 // Attributes bitmask parameter of a GetVariable() call.
2472 //
2473 NextVariable->Attributes = Attributes & (~EFI_VARIABLE_APPEND_WRITE);
2474
2475 VarNameOffset = GetVariableHeaderSize ();
2476 VarNameSize = StrSize (VariableName);
2477 CopyMem (
2478 (UINT8 *) ((UINTN) NextVariable + VarNameOffset),
2479 VariableName,
2480 VarNameSize
2481 );
2482 VarDataOffset = VarNameOffset + VarNameSize + GET_PAD_SIZE (VarNameSize);
2483
2484 //
2485 // If DataReady is TRUE, it means the variable data has been saved into
2486 // NextVariable during EFI_VARIABLE_APPEND_WRITE operation preparation.
2487 //
2488 if (!DataReady) {
2489 CopyMem (
2490 (UINT8 *) ((UINTN) NextVariable + VarDataOffset),
2491 Data,
2492 DataSize
2493 );
2494 }
2495
2496 CopyMem (GetVendorGuidPtr (NextVariable), VendorGuid, sizeof (EFI_GUID));
2497 //
2498 // There will be pad bytes after Data, the NextVariable->NameSize and
2499 // NextVariable->DataSize should not include pad size so that variable
2500 // service can get actual size in GetVariable.
2501 //
2502 SetNameSizeOfVariable (NextVariable, VarNameSize);
2503 SetDataSizeOfVariable (NextVariable, DataSize);
2504
2505 //
2506 // The actual size of the variable that stores in storage should
2507 // include pad size.
2508 //
2509 VarSize = VarDataOffset + DataSize + GET_PAD_SIZE (DataSize);
2510 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
2511 //
2512 // Create a nonvolatile variable.
2513 //
2514 Volatile = FALSE;
2515
2516 IsCommonVariable = FALSE;
2517 IsCommonUserVariable = FALSE;
2518 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == 0) {
2519 IsCommonVariable = TRUE;
2520 IsCommonUserVariable = IsUserVariable (NextVariable);
2521 }
2522 if ((((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0)
2523 && ((VarSize + mVariableModuleGlobal->HwErrVariableTotalSize) > PcdGet32 (PcdHwErrStorageSize)))
2524 || (IsCommonVariable && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > mVariableModuleGlobal->CommonVariableSpace))
2525 || (IsCommonVariable && AtRuntime () && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > mVariableModuleGlobal->CommonRuntimeVariableSpace))
2526 || (IsCommonUserVariable && ((VarSize + mVariableModuleGlobal->CommonUserVariableTotalSize) > mVariableModuleGlobal->CommonMaxUserVariableSpace))) {
2527 if (AtRuntime ()) {
2528 if (IsCommonUserVariable && ((VarSize + mVariableModuleGlobal->CommonUserVariableTotalSize) > mVariableModuleGlobal->CommonMaxUserVariableSpace)) {
2529 RecordVarErrorFlag (VAR_ERROR_FLAG_USER_ERROR, VariableName, VendorGuid, Attributes, VarSize);
2530 }
2531 if (IsCommonVariable && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > mVariableModuleGlobal->CommonRuntimeVariableSpace)) {
2532 RecordVarErrorFlag (VAR_ERROR_FLAG_SYSTEM_ERROR, VariableName, VendorGuid, Attributes, VarSize);
2533 }
2534 Status = EFI_OUT_OF_RESOURCES;
2535 goto Done;
2536 }
2537 //
2538 // Perform garbage collection & reclaim operation, and integrate the new variable at the same time.
2539 //
2540 Status = Reclaim (
2541 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
2542 &mVariableModuleGlobal->NonVolatileLastVariableOffset,
2543 FALSE,
2544 Variable,
2545 NextVariable,
2546 HEADER_ALIGN (VarSize)
2547 );
2548 if (!EFI_ERROR (Status)) {
2549 //
2550 // The new variable has been integrated successfully during reclaiming.
2551 //
2552 if (Variable->CurrPtr != NULL) {
2553 CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr));
2554 CacheVariable->InDeletedTransitionPtr = NULL;
2555 }
2556 UpdateVariableInfo (VariableName, VendorGuid, FALSE, FALSE, TRUE, FALSE, FALSE);
2557 FlushHobVariableToFlash (VariableName, VendorGuid);
2558 } else {
2559 if (IsCommonUserVariable && ((VarSize + mVariableModuleGlobal->CommonUserVariableTotalSize) > mVariableModuleGlobal->CommonMaxUserVariableSpace)) {
2560 RecordVarErrorFlag (VAR_ERROR_FLAG_USER_ERROR, VariableName, VendorGuid, Attributes, VarSize);
2561 }
2562 if (IsCommonVariable && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > mVariableModuleGlobal->CommonVariableSpace)) {
2563 RecordVarErrorFlag (VAR_ERROR_FLAG_SYSTEM_ERROR, VariableName, VendorGuid, Attributes, VarSize);
2564 }
2565 }
2566 goto Done;
2567 }
2568 //
2569 // Four steps
2570 // 1. Write variable header
2571 // 2. Set variable state to header valid
2572 // 3. Write variable data
2573 // 4. Set variable state to valid
2574 //
2575 //
2576 // Step 1:
2577 //
2578 CacheOffset = mVariableModuleGlobal->NonVolatileLastVariableOffset;
2579 Status = UpdateVariableStore (
2580 &mVariableModuleGlobal->VariableGlobal,
2581 FALSE,
2582 TRUE,
2583 Fvb,
2584 mVariableModuleGlobal->NonVolatileLastVariableOffset,
2585 (UINT32) GetVariableHeaderSize (),
2586 (UINT8 *) NextVariable
2587 );
2588
2589 if (EFI_ERROR (Status)) {
2590 goto Done;
2591 }
2592
2593 //
2594 // Step 2:
2595 //
2596 NextVariable->State = VAR_HEADER_VALID_ONLY;
2597 Status = UpdateVariableStore (
2598 &mVariableModuleGlobal->VariableGlobal,
2599 FALSE,
2600 TRUE,
2601 Fvb,
2602 mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State),
2603 sizeof (UINT8),
2604 &NextVariable->State
2605 );
2606
2607 if (EFI_ERROR (Status)) {
2608 goto Done;
2609 }
2610 //
2611 // Step 3:
2612 //
2613 Status = UpdateVariableStore (
2614 &mVariableModuleGlobal->VariableGlobal,
2615 FALSE,
2616 TRUE,
2617 Fvb,
2618 mVariableModuleGlobal->NonVolatileLastVariableOffset + GetVariableHeaderSize (),
2619 (UINT32) (VarSize - GetVariableHeaderSize ()),
2620 (UINT8 *) NextVariable + GetVariableHeaderSize ()
2621 );
2622
2623 if (EFI_ERROR (Status)) {
2624 goto Done;
2625 }
2626 //
2627 // Step 4:
2628 //
2629 NextVariable->State = VAR_ADDED;
2630 Status = UpdateVariableStore (
2631 &mVariableModuleGlobal->VariableGlobal,
2632 FALSE,
2633 TRUE,
2634 Fvb,
2635 mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State),
2636 sizeof (UINT8),
2637 &NextVariable->State
2638 );
2639
2640 if (EFI_ERROR (Status)) {
2641 goto Done;
2642 }
2643
2644 mVariableModuleGlobal->NonVolatileLastVariableOffset += HEADER_ALIGN (VarSize);
2645
2646 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) {
2647 mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VarSize);
2648 } else {
2649 mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VarSize);
2650 if (IsCommonUserVariable) {
2651 mVariableModuleGlobal->CommonUserVariableTotalSize += HEADER_ALIGN (VarSize);
2652 }
2653 }
2654 //
2655 // update the memory copy of Flash region.
2656 //
2657 CopyMem ((UINT8 *)mNvVariableCache + CacheOffset, (UINT8 *)NextVariable, VarSize);
2658 } else {
2659 //
2660 // Create a volatile variable.
2661 //
2662 Volatile = TRUE;
2663
2664 if ((UINT32) (VarSize + mVariableModuleGlobal->VolatileLastVariableOffset) >
2665 ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase)))->Size) {
2666 //
2667 // Perform garbage collection & reclaim operation, and integrate the new variable at the same time.
2668 //
2669 Status = Reclaim (
2670 mVariableModuleGlobal->VariableGlobal.VolatileVariableBase,
2671 &mVariableModuleGlobal->VolatileLastVariableOffset,
2672 TRUE,
2673 Variable,
2674 NextVariable,
2675 HEADER_ALIGN (VarSize)
2676 );
2677 if (!EFI_ERROR (Status)) {
2678 //
2679 // The new variable has been integrated successfully during reclaiming.
2680 //
2681 if (Variable->CurrPtr != NULL) {
2682 CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr));
2683 CacheVariable->InDeletedTransitionPtr = NULL;
2684 }
2685 UpdateVariableInfo (VariableName, VendorGuid, TRUE, FALSE, TRUE, FALSE, FALSE);
2686 }
2687 goto Done;
2688 }
2689
2690 NextVariable->State = VAR_ADDED;
2691 Status = UpdateVariableStore (
2692 &mVariableModuleGlobal->VariableGlobal,
2693 TRUE,
2694 TRUE,
2695 Fvb,
2696 mVariableModuleGlobal->VolatileLastVariableOffset,
2697 (UINT32) VarSize,
2698 (UINT8 *) NextVariable
2699 );
2700
2701 if (EFI_ERROR (Status)) {
2702 goto Done;
2703 }
2704
2705 mVariableModuleGlobal->VolatileLastVariableOffset += HEADER_ALIGN (VarSize);
2706 }
2707
2708 //
2709 // Mark the old variable as deleted.
2710 //
2711 if (!EFI_ERROR (Status) && Variable->CurrPtr != NULL) {
2712 if (Variable->InDeletedTransitionPtr != NULL) {
2713 //
2714 // Both ADDED and IN_DELETED_TRANSITION old variable are present,
2715 // set IN_DELETED_TRANSITION one to DELETED state first.
2716 //
2717 ASSERT (CacheVariable->InDeletedTransitionPtr != NULL);
2718 State = CacheVariable->InDeletedTransitionPtr->State;
2719 State &= VAR_DELETED;
2720 Status = UpdateVariableStore (
2721 &mVariableModuleGlobal->VariableGlobal,
2722 Variable->Volatile,
2723 FALSE,
2724 Fvb,
2725 (UINTN) &Variable->InDeletedTransitionPtr->State,
2726 sizeof (UINT8),
2727 &State
2728 );
2729 if (!EFI_ERROR (Status)) {
2730 if (!Variable->Volatile) {
2731 CacheVariable->InDeletedTransitionPtr->State = State;
2732 }
2733 } else {
2734 goto Done;
2735 }
2736 }
2737
2738 State = Variable->CurrPtr->State;
2739 State &= VAR_DELETED;
2740
2741 Status = UpdateVariableStore (
2742 &mVariableModuleGlobal->VariableGlobal,
2743 Variable->Volatile,
2744 FALSE,
2745 Fvb,
2746 (UINTN) &Variable->CurrPtr->State,
2747 sizeof (UINT8),
2748 &State
2749 );
2750 if (!EFI_ERROR (Status) && !Variable->Volatile) {
2751 CacheVariable->CurrPtr->State = State;
2752 }
2753 }
2754
2755 if (!EFI_ERROR (Status)) {
2756 UpdateVariableInfo (VariableName, VendorGuid, Volatile, FALSE, TRUE, FALSE, FALSE);
2757 if (!Volatile) {
2758 FlushHobVariableToFlash (VariableName, VendorGuid);
2759 }
2760 }
2761
2762 Done:
2763 return Status;
2764 }
2765
2766 /**
2767
2768 This code finds variable in storage blocks (Volatile or Non-Volatile).
2769
2770 Caution: This function may receive untrusted input.
2771 This function may be invoked in SMM mode, and datasize is external input.
2772 This function will do basic validation, before parse the data.
2773
2774 @param VariableName Name of Variable to be found.
2775 @param VendorGuid Variable vendor GUID.
2776 @param Attributes Attribute value of the variable found.
2777 @param DataSize Size of Data found. If size is less than the
2778 data, this value contains the required size.
2779 @param Data The buffer to return the contents of the variable. May be NULL
2780 with a zero DataSize in order to determine the size buffer needed.
2781
2782 @return EFI_INVALID_PARAMETER Invalid parameter.
2783 @return EFI_SUCCESS Find the specified variable.
2784 @return EFI_NOT_FOUND Not found.
2785 @return EFI_BUFFER_TO_SMALL DataSize is too small for the result.
2786
2787 **/
2788 EFI_STATUS
2789 EFIAPI
2790 VariableServiceGetVariable (
2791 IN CHAR16 *VariableName,
2792 IN EFI_GUID *VendorGuid,
2793 OUT UINT32 *Attributes OPTIONAL,
2794 IN OUT UINTN *DataSize,
2795 OUT VOID *Data OPTIONAL
2796 )
2797 {
2798 EFI_STATUS Status;
2799 VARIABLE_POINTER_TRACK Variable;
2800 UINTN VarDataSize;
2801
2802 if (VariableName == NULL || VendorGuid == NULL || DataSize == NULL) {
2803 return EFI_INVALID_PARAMETER;
2804 }
2805
2806 if (VariableName[0] == 0) {
2807 return EFI_NOT_FOUND;
2808 }
2809
2810 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2811
2812 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
2813 if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
2814 goto Done;
2815 }
2816
2817 //
2818 // Get data size
2819 //
2820 VarDataSize = DataSizeOfVariable (Variable.CurrPtr);
2821 ASSERT (VarDataSize != 0);
2822
2823 if (*DataSize >= VarDataSize) {
2824 if (Data == NULL) {
2825 Status = EFI_INVALID_PARAMETER;
2826 goto Done;
2827 }
2828
2829 CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize);
2830 if (Attributes != NULL) {
2831 *Attributes = Variable.CurrPtr->Attributes;
2832 }
2833
2834 *DataSize = VarDataSize;
2835 UpdateVariableInfo (VariableName, VendorGuid, Variable.Volatile, TRUE, FALSE, FALSE, FALSE);
2836
2837 Status = EFI_SUCCESS;
2838 goto Done;
2839 } else {
2840 *DataSize = VarDataSize;
2841 Status = EFI_BUFFER_TOO_SMALL;
2842 goto Done;
2843 }
2844
2845 Done:
2846 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2847 return Status;
2848 }
2849
2850 /**
2851 This code Finds the Next available variable.
2852
2853 Caution: This function may receive untrusted input.
2854 This function may be invoked in SMM mode. This function will do basic validation, before parse the data.
2855
2856 @param[in] VariableName Pointer to variable name.
2857 @param[in] VendorGuid Variable Vendor Guid.
2858 @param[out] VariablePtr Pointer to variable header address.
2859
2860 @retval EFI_SUCCESS The function completed successfully.
2861 @retval EFI_NOT_FOUND The next variable was not found.
2862 @retval EFI_INVALID_PARAMETER If VariableName is not an empty string, while VendorGuid is NULL.
2863 @retval EFI_INVALID_PARAMETER The input values of VariableName and VendorGuid are not a name and
2864 GUID of an existing variable.
2865
2866 **/
2867 EFI_STATUS
2868 EFIAPI
2869 VariableServiceGetNextVariableInternal (
2870 IN CHAR16 *VariableName,
2871 IN EFI_GUID *VendorGuid,
2872 OUT VARIABLE_HEADER **VariablePtr
2873 )
2874 {
2875 VARIABLE_STORE_TYPE Type;
2876 VARIABLE_POINTER_TRACK Variable;
2877 VARIABLE_POINTER_TRACK VariableInHob;
2878 VARIABLE_POINTER_TRACK VariablePtrTrack;
2879 EFI_STATUS Status;
2880 VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax];
2881
2882 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
2883 if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
2884 //
2885 // For VariableName is an empty string, FindVariable() will try to find and return
2886 // the first qualified variable, and if FindVariable() returns error (EFI_NOT_FOUND)
2887 // as no any variable is found, still go to return the error (EFI_NOT_FOUND).
2888 //
2889 if (VariableName[0] != 0) {
2890 //
2891 // For VariableName is not an empty string, and FindVariable() returns error as
2892 // VariableName and VendorGuid are not a name and GUID of an existing variable,
2893 // there is no way to get next variable, follow spec to return EFI_INVALID_PARAMETER.
2894 //
2895 Status = EFI_INVALID_PARAMETER;
2896 }
2897 goto Done;
2898 }
2899
2900 if (VariableName[0] != 0) {
2901 //
2902 // If variable name is not NULL, get next variable.
2903 //
2904 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2905 }
2906
2907 //
2908 // 0: Volatile, 1: HOB, 2: Non-Volatile.
2909 // The index and attributes mapping must be kept in this order as FindVariable
2910 // makes use of this mapping to implement search algorithm.
2911 //
2912 VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase;
2913 VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase;
2914 VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache;
2915
2916 while (TRUE) {
2917 //
2918 // Switch from Volatile to HOB, to Non-Volatile.
2919 //
2920 while (!IsValidVariableHeader (Variable.CurrPtr, Variable.EndPtr)) {
2921 //
2922 // Find current storage index
2923 //
2924 for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) {
2925 if ((VariableStoreHeader[Type] != NULL) && (Variable.StartPtr == GetStartPointer (VariableStoreHeader[Type]))) {
2926 break;
2927 }
2928 }
2929 ASSERT (Type < VariableStoreTypeMax);
2930 //
2931 // Switch to next storage
2932 //
2933 for (Type++; Type < VariableStoreTypeMax; Type++) {
2934 if (VariableStoreHeader[Type] != NULL) {
2935 break;
2936 }
2937 }
2938 //
2939 // Capture the case that
2940 // 1. current storage is the last one, or
2941 // 2. no further storage
2942 //
2943 if (Type == VariableStoreTypeMax) {
2944 Status = EFI_NOT_FOUND;
2945 goto Done;
2946 }
2947 Variable.StartPtr = GetStartPointer (VariableStoreHeader[Type]);
2948 Variable.EndPtr = GetEndPointer (VariableStoreHeader[Type]);
2949 Variable.CurrPtr = Variable.StartPtr;
2950 }
2951
2952 //
2953 // Variable is found
2954 //
2955 if (Variable.CurrPtr->State == VAR_ADDED || Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
2956 if (!AtRuntime () || ((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) {
2957 if (Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
2958 //
2959 // If it is a IN_DELETED_TRANSITION variable,
2960 // and there is also a same ADDED one at the same time,
2961 // don't return it.
2962 //
2963 VariablePtrTrack.StartPtr = Variable.StartPtr;
2964 VariablePtrTrack.EndPtr = Variable.EndPtr;
2965 Status = FindVariableEx (
2966 GetVariableNamePtr (Variable.CurrPtr),
2967 GetVendorGuidPtr (Variable.CurrPtr),
2968 FALSE,
2969 &VariablePtrTrack
2970 );
2971 if (!EFI_ERROR (Status) && VariablePtrTrack.CurrPtr->State == VAR_ADDED) {
2972 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2973 continue;
2974 }
2975 }
2976
2977 //
2978 // Don't return NV variable when HOB overrides it
2979 //
2980 if ((VariableStoreHeader[VariableStoreTypeHob] != NULL) && (VariableStoreHeader[VariableStoreTypeNv] != NULL) &&
2981 (Variable.StartPtr == GetStartPointer (VariableStoreHeader[VariableStoreTypeNv]))
2982 ) {
2983 VariableInHob.StartPtr = GetStartPointer (VariableStoreHeader[VariableStoreTypeHob]);
2984 VariableInHob.EndPtr = GetEndPointer (VariableStoreHeader[VariableStoreTypeHob]);
2985 Status = FindVariableEx (
2986 GetVariableNamePtr (Variable.CurrPtr),
2987 GetVendorGuidPtr (Variable.CurrPtr),
2988 FALSE,
2989 &VariableInHob
2990 );
2991 if (!EFI_ERROR (Status)) {
2992 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2993 continue;
2994 }
2995 }
2996
2997 *VariablePtr = Variable.CurrPtr;
2998 Status = EFI_SUCCESS;
2999 goto Done;
3000 }
3001 }
3002
3003 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
3004 }
3005
3006 Done:
3007 return Status;
3008 }
3009
3010 /**
3011
3012 This code Finds the Next available variable.
3013
3014 Caution: This function may receive untrusted input.
3015 This function may be invoked in SMM mode. This function will do basic validation, before parse the data.
3016
3017 @param VariableNameSize The size of the VariableName buffer. The size must be large
3018 enough to fit input string supplied in VariableName buffer.
3019 @param VariableName Pointer to variable name.
3020 @param VendorGuid Variable Vendor Guid.
3021
3022 @retval EFI_SUCCESS The function completed successfully.
3023 @retval EFI_NOT_FOUND The next variable was not found.
3024 @retval EFI_BUFFER_TOO_SMALL The VariableNameSize is too small for the result.
3025 VariableNameSize has been updated with the size needed to complete the request.
3026 @retval EFI_INVALID_PARAMETER VariableNameSize is NULL.
3027 @retval EFI_INVALID_PARAMETER VariableName is NULL.
3028 @retval EFI_INVALID_PARAMETER VendorGuid is NULL.
3029 @retval EFI_INVALID_PARAMETER The input values of VariableName and VendorGuid are not a name and
3030 GUID of an existing variable.
3031 @retval EFI_INVALID_PARAMETER Null-terminator is not found in the first VariableNameSize bytes of
3032 the input VariableName buffer.
3033
3034 **/
3035 EFI_STATUS
3036 EFIAPI
3037 VariableServiceGetNextVariableName (
3038 IN OUT UINTN *VariableNameSize,
3039 IN OUT CHAR16 *VariableName,
3040 IN OUT EFI_GUID *VendorGuid
3041 )
3042 {
3043 EFI_STATUS Status;
3044 UINTN MaxLen;
3045 UINTN VarNameSize;
3046 VARIABLE_HEADER *VariablePtr;
3047
3048 if (VariableNameSize == NULL || VariableName == NULL || VendorGuid == NULL) {
3049 return EFI_INVALID_PARAMETER;
3050 }
3051
3052 //
3053 // Calculate the possible maximum length of name string, including the Null terminator.
3054 //
3055 MaxLen = *VariableNameSize / sizeof (CHAR16);
3056 if ((MaxLen == 0) || (StrnLenS (VariableName, MaxLen) == MaxLen)) {
3057 //
3058 // Null-terminator is not found in the first VariableNameSize bytes of the input VariableName buffer,
3059 // follow spec to return EFI_INVALID_PARAMETER.
3060 //
3061 return EFI_INVALID_PARAMETER;
3062 }
3063
3064 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3065
3066 Status = VariableServiceGetNextVariableInternal (VariableName, VendorGuid, &VariablePtr);
3067 if (!EFI_ERROR (Status)) {
3068 VarNameSize = NameSizeOfVariable (VariablePtr);
3069 ASSERT (VarNameSize != 0);
3070 if (VarNameSize <= *VariableNameSize) {
3071 CopyMem (VariableName, GetVariableNamePtr (VariablePtr), VarNameSize);
3072 CopyMem (VendorGuid, GetVendorGuidPtr (VariablePtr), sizeof (EFI_GUID));
3073 Status = EFI_SUCCESS;
3074 } else {
3075 Status = EFI_BUFFER_TOO_SMALL;
3076 }
3077
3078 *VariableNameSize = VarNameSize;
3079 }
3080
3081 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3082 return Status;
3083 }
3084
3085 /**
3086
3087 This code sets variable in storage blocks (Volatile or Non-Volatile).
3088
3089 Caution: This function may receive untrusted input.
3090 This function may be invoked in SMM mode, and datasize and data are external input.
3091 This function will do basic validation, before parse the data.
3092 This function will parse the authentication carefully to avoid security issues, like
3093 buffer overflow, integer overflow.
3094 This function will check attribute carefully to avoid authentication bypass.
3095
3096 @param VariableName Name of Variable to be found.
3097 @param VendorGuid Variable vendor GUID.
3098 @param Attributes Attribute value of the variable found
3099 @param DataSize Size of Data found. If size is less than the
3100 data, this value contains the required size.
3101 @param Data Data pointer.
3102
3103 @return EFI_INVALID_PARAMETER Invalid parameter.
3104 @return EFI_SUCCESS Set successfully.
3105 @return EFI_OUT_OF_RESOURCES Resource not enough to set variable.
3106 @return EFI_NOT_FOUND Not found.
3107 @return EFI_WRITE_PROTECTED Variable is read-only.
3108
3109 **/
3110 EFI_STATUS
3111 EFIAPI
3112 VariableServiceSetVariable (
3113 IN CHAR16 *VariableName,
3114 IN EFI_GUID *VendorGuid,
3115 IN UINT32 Attributes,
3116 IN UINTN DataSize,
3117 IN VOID *Data
3118 )
3119 {
3120 VARIABLE_POINTER_TRACK Variable;
3121 EFI_STATUS Status;
3122 VARIABLE_HEADER *NextVariable;
3123 EFI_PHYSICAL_ADDRESS Point;
3124 UINTN PayloadSize;
3125
3126 //
3127 // Check input parameters.
3128 //
3129 if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) {
3130 return EFI_INVALID_PARAMETER;
3131 }
3132
3133 if (DataSize != 0 && Data == NULL) {
3134 return EFI_INVALID_PARAMETER;
3135 }
3136
3137 //
3138 // Check for reserverd bit in variable attribute.
3139 // EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS is deprecated but we still allow
3140 // the delete operation of common authenticated variable at user physical presence.
3141 // So leave EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS attribute check to AuthVariableLib
3142 //
3143 if ((Attributes & (~(EFI_VARIABLE_ATTRIBUTES_MASK | EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS))) != 0) {
3144 return EFI_INVALID_PARAMETER;
3145 }
3146
3147 //
3148 // Make sure if runtime bit is set, boot service bit is set also.
3149 //
3150 if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
3151 if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0) {
3152 return EFI_UNSUPPORTED;
3153 } else {
3154 return EFI_INVALID_PARAMETER;
3155 }
3156 } else if ((Attributes & VARIABLE_ATTRIBUTE_AT_AW) != 0) {
3157 if (!mVariableModuleGlobal->VariableGlobal.AuthSupport) {
3158 //
3159 // Not support authenticated variable write.
3160 //
3161 return EFI_INVALID_PARAMETER;
3162 }
3163 } else if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) {
3164 if (PcdGet32 (PcdHwErrStorageSize) == 0) {
3165 //
3166 // Not support harware error record variable variable.
3167 //
3168 return EFI_INVALID_PARAMETER;
3169 }
3170 }
3171
3172 //
3173 // EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS and EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute
3174 // cannot be set both.
3175 //
3176 if (((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS)
3177 && ((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS)) {
3178 return EFI_UNSUPPORTED;
3179 }
3180
3181 if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) {
3182 //
3183 // If DataSize == AUTHINFO_SIZE and then PayloadSize is 0.
3184 // Maybe it's the delete operation of common authenticated variable at user physical presence.
3185 //
3186 if (DataSize != AUTHINFO_SIZE) {
3187 return EFI_UNSUPPORTED;
3188 }
3189 PayloadSize = DataSize - AUTHINFO_SIZE;
3190 } else if ((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) {
3191 //
3192 // Sanity check for EFI_VARIABLE_AUTHENTICATION_2 descriptor.
3193 //
3194 if (DataSize < OFFSET_OF_AUTHINFO2_CERT_DATA ||
3195 ((EFI_VARIABLE_AUTHENTICATION_2 *) Data)->AuthInfo.Hdr.dwLength > DataSize - (OFFSET_OF (EFI_VARIABLE_AUTHENTICATION_2, AuthInfo)) ||
3196 ((EFI_VARIABLE_AUTHENTICATION_2 *) Data)->AuthInfo.Hdr.dwLength < OFFSET_OF (WIN_CERTIFICATE_UEFI_GUID, CertData)) {
3197 return EFI_SECURITY_VIOLATION;
3198 }
3199 PayloadSize = DataSize - AUTHINFO2_SIZE (Data);
3200 } else {
3201 PayloadSize = DataSize;
3202 }
3203
3204 if ((UINTN)(~0) - PayloadSize < StrSize(VariableName)){
3205 //
3206 // Prevent whole variable size overflow
3207 //
3208 return EFI_INVALID_PARAMETER;
3209 }
3210
3211 //
3212 // The size of the VariableName, including the Unicode Null in bytes plus
3213 // the DataSize is limited to maximum size of PcdGet32 (PcdMaxHardwareErrorVariableSize)
3214 // bytes for HwErrRec#### variable.
3215 //
3216 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
3217 if (StrSize (VariableName) + PayloadSize > PcdGet32 (PcdMaxHardwareErrorVariableSize) - GetVariableHeaderSize ()) {
3218 return EFI_INVALID_PARAMETER;
3219 }
3220 } else {
3221 //
3222 // The size of the VariableName, including the Unicode Null in bytes plus
3223 // the DataSize is limited to maximum size of Max(Auth|Volatile)VariableSize bytes.
3224 //
3225 if ((Attributes & VARIABLE_ATTRIBUTE_AT_AW) != 0) {
3226 if (StrSize (VariableName) + PayloadSize > mVariableModuleGlobal->MaxAuthVariableSize - GetVariableHeaderSize ()) {
3227 return EFI_INVALID_PARAMETER;
3228 }
3229 } else if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
3230 if (StrSize (VariableName) + PayloadSize > mVariableModuleGlobal->MaxVariableSize - GetVariableHeaderSize ()) {
3231 return EFI_INVALID_PARAMETER;
3232 }
3233 } else {
3234 if (StrSize (VariableName) + PayloadSize > mVariableModuleGlobal->MaxVolatileVariableSize - GetVariableHeaderSize ()) {
3235 return EFI_INVALID_PARAMETER;
3236 }
3237 }
3238 }
3239
3240 //
3241 // Special Handling for MOR Lock variable.
3242 //
3243 Status = SetVariableCheckHandlerMor (VariableName, VendorGuid, Attributes, PayloadSize, (VOID *) ((UINTN) Data + DataSize - PayloadSize));
3244 if (Status == EFI_ALREADY_STARTED) {
3245 //
3246 // EFI_ALREADY_STARTED means the SetVariable() action is handled inside of SetVariableCheckHandlerMor().
3247 // Variable driver can just return SUCCESS.
3248 //
3249 return EFI_SUCCESS;
3250 }
3251 if (EFI_ERROR (Status)) {
3252 return Status;
3253 }
3254
3255 Status = VarCheckLibSetVariableCheck (VariableName, VendorGuid, Attributes, PayloadSize, (VOID *) ((UINTN) Data + DataSize - PayloadSize), mRequestSource);
3256 if (EFI_ERROR (Status)) {
3257 return Status;
3258 }
3259
3260 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3261
3262 //
3263 // Consider reentrant in MCA/INIT/NMI. It needs be reupdated.
3264 //
3265 if (1 < InterlockedIncrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState)) {
3266 Point = mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
3267 //
3268 // Parse non-volatile variable data and get last variable offset.
3269 //
3270 NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point);
3271 while (IsValidVariableHeader (NextVariable, GetEndPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point))) {
3272 NextVariable = GetNextVariablePtr (NextVariable);
3273 }
3274 mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) NextVariable - (UINTN) Point;
3275 }
3276
3277 //
3278 // Check whether the input variable is already existed.
3279 //
3280 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, TRUE);
3281 if (!EFI_ERROR (Status)) {
3282 if (((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) && AtRuntime ()) {
3283 Status = EFI_WRITE_PROTECTED;
3284 goto Done;
3285 }
3286 if (Attributes != 0 && (Attributes & (~EFI_VARIABLE_APPEND_WRITE)) != Variable.CurrPtr->Attributes) {
3287 //
3288 // If a preexisting variable is rewritten with different attributes, SetVariable() shall not
3289 // modify the variable and shall return EFI_INVALID_PARAMETER. Two exceptions to this rule:
3290 // 1. No access attributes specified
3291 // 2. The only attribute differing is EFI_VARIABLE_APPEND_WRITE
3292 //
3293 Status = EFI_INVALID_PARAMETER;
3294 DEBUG ((EFI_D_INFO, "[Variable]: Rewritten a preexisting variable(0x%08x) with different attributes(0x%08x) - %g:%s\n", Variable.CurrPtr->Attributes, Attributes, VendorGuid, VariableName));
3295 goto Done;
3296 }
3297 }
3298
3299 if (!FeaturePcdGet (PcdUefiVariableDefaultLangDeprecate)) {
3300 //
3301 // Hook the operation of setting PlatformLangCodes/PlatformLang and LangCodes/Lang.
3302 //
3303 Status = AutoUpdateLangVariable (VariableName, Data, DataSize);
3304 if (EFI_ERROR (Status)) {
3305 //
3306 // The auto update operation failed, directly return to avoid inconsistency between PlatformLang and Lang.
3307 //
3308 goto Done;
3309 }
3310 }
3311
3312 if (mVariableModuleGlobal->VariableGlobal.AuthSupport) {
3313 Status = AuthVariableLibProcessVariable (VariableName, VendorGuid, Data, DataSize, Attributes);
3314 } else {
3315 Status = UpdateVariable (VariableName, VendorGuid, Data, DataSize, Attributes, 0, 0, &Variable, NULL);
3316 }
3317
3318 Done:
3319 InterlockedDecrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState);
3320 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3321
3322 if (!AtRuntime ()) {
3323 if (!EFI_ERROR (Status)) {
3324 SecureBootHook (
3325 VariableName,
3326 VendorGuid
3327 );
3328 }
3329 }
3330
3331 return Status;
3332 }
3333
3334 /**
3335
3336 This code returns information about the EFI variables.
3337
3338 Caution: This function may receive untrusted input.
3339 This function may be invoked in SMM mode. This function will do basic validation, before parse the data.
3340
3341 @param Attributes Attributes bitmask to specify the type of variables
3342 on which to return information.
3343 @param MaximumVariableStorageSize Pointer to the maximum size of the storage space available
3344 for the EFI variables associated with the attributes specified.
3345 @param RemainingVariableStorageSize Pointer to the remaining size of the storage space available
3346 for EFI variables associated with the attributes specified.
3347 @param MaximumVariableSize Pointer to the maximum size of an individual EFI variables
3348 associated with the attributes specified.
3349
3350 @return EFI_SUCCESS Query successfully.
3351
3352 **/
3353 EFI_STATUS
3354 EFIAPI
3355 VariableServiceQueryVariableInfoInternal (
3356 IN UINT32 Attributes,
3357 OUT UINT64 *MaximumVariableStorageSize,
3358 OUT UINT64 *RemainingVariableStorageSize,
3359 OUT UINT64 *MaximumVariableSize
3360 )
3361 {
3362 VARIABLE_HEADER *Variable;
3363 VARIABLE_HEADER *NextVariable;
3364 UINT64 VariableSize;
3365 VARIABLE_STORE_HEADER *VariableStoreHeader;
3366 UINT64 CommonVariableTotalSize;
3367 UINT64 HwErrVariableTotalSize;
3368 EFI_STATUS Status;
3369 VARIABLE_POINTER_TRACK VariablePtrTrack;
3370
3371 CommonVariableTotalSize = 0;
3372 HwErrVariableTotalSize = 0;
3373
3374 if((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) {
3375 //
3376 // Query is Volatile related.
3377 //
3378 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase);
3379 } else {
3380 //
3381 // Query is Non-Volatile related.
3382 //
3383 VariableStoreHeader = mNvVariableCache;
3384 }
3385
3386 //
3387 // Now let's fill *MaximumVariableStorageSize *RemainingVariableStorageSize
3388 // with the storage size (excluding the storage header size).
3389 //
3390 *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER);
3391
3392 //
3393 // Harware error record variable needs larger size.
3394 //
3395 if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
3396 *MaximumVariableStorageSize = PcdGet32 (PcdHwErrStorageSize);
3397 *MaximumVariableSize = PcdGet32 (PcdMaxHardwareErrorVariableSize) - GetVariableHeaderSize ();
3398 } else {
3399 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
3400 if (AtRuntime ()) {
3401 *MaximumVariableStorageSize = mVariableModuleGlobal->CommonRuntimeVariableSpace;
3402 } else {
3403 *MaximumVariableStorageSize = mVariableModuleGlobal->CommonVariableSpace;
3404 }
3405 }
3406
3407 //
3408 // Let *MaximumVariableSize be Max(Auth|Volatile)VariableSize with the exception of the variable header size.
3409 //
3410 if ((Attributes & VARIABLE_ATTRIBUTE_AT_AW) != 0) {
3411 *MaximumVariableSize = mVariableModuleGlobal->MaxAuthVariableSize - GetVariableHeaderSize ();
3412 } else if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
3413 *MaximumVariableSize = mVariableModuleGlobal->MaxVariableSize - GetVariableHeaderSize ();
3414 } else {
3415 *MaximumVariableSize = mVariableModuleGlobal->MaxVolatileVariableSize - GetVariableHeaderSize ();
3416 }
3417 }
3418
3419 //
3420 // Point to the starting address of the variables.
3421 //
3422 Variable = GetStartPointer (VariableStoreHeader);
3423
3424 //
3425 // Now walk through the related variable store.
3426 //
3427 while (IsValidVariableHeader (Variable, GetEndPointer (VariableStoreHeader))) {
3428 NextVariable = GetNextVariablePtr (Variable);
3429 VariableSize = (UINT64) (UINTN) NextVariable - (UINT64) (UINTN) Variable;
3430
3431 if (AtRuntime ()) {
3432 //
3433 // We don't take the state of the variables in mind
3434 // when calculating RemainingVariableStorageSize,
3435 // since the space occupied by variables not marked with
3436 // VAR_ADDED is not allowed to be reclaimed in Runtime.
3437 //
3438 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
3439 HwErrVariableTotalSize += VariableSize;
3440 } else {
3441 CommonVariableTotalSize += VariableSize;
3442 }
3443 } else {
3444 //
3445 // Only care about Variables with State VAR_ADDED, because
3446 // the space not marked as VAR_ADDED is reclaimable now.
3447 //
3448 if (Variable->State == VAR_ADDED) {
3449 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
3450 HwErrVariableTotalSize += VariableSize;
3451 } else {
3452 CommonVariableTotalSize += VariableSize;
3453 }
3454 } else if (Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
3455 //
3456 // If it is a IN_DELETED_TRANSITION variable,
3457 // and there is not also a same ADDED one at the same time,
3458 // this IN_DELETED_TRANSITION variable is valid.
3459 //
3460 VariablePtrTrack.StartPtr = GetStartPointer (VariableStoreHeader);
3461 VariablePtrTrack.EndPtr = GetEndPointer (VariableStoreHeader);
3462 Status = FindVariableEx (
3463 GetVariableNamePtr (Variable),
3464 GetVendorGuidPtr (Variable),
3465 FALSE,
3466 &VariablePtrTrack
3467 );
3468 if (!EFI_ERROR (Status) && VariablePtrTrack.CurrPtr->State != VAR_ADDED) {
3469 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
3470 HwErrVariableTotalSize += VariableSize;
3471 } else {
3472 CommonVariableTotalSize += VariableSize;
3473 }
3474 }
3475 }
3476 }
3477
3478 //
3479 // Go to the next one.
3480 //
3481 Variable = NextVariable;
3482 }
3483
3484 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD){
3485 *RemainingVariableStorageSize = *MaximumVariableStorageSize - HwErrVariableTotalSize;
3486 } else {
3487 if (*MaximumVariableStorageSize < CommonVariableTotalSize) {
3488 *RemainingVariableStorageSize = 0;
3489 } else {
3490 *RemainingVariableStorageSize = *MaximumVariableStorageSize - CommonVariableTotalSize;
3491 }
3492 }
3493
3494 if (*RemainingVariableStorageSize < GetVariableHeaderSize ()) {
3495 *MaximumVariableSize = 0;
3496 } else if ((*RemainingVariableStorageSize - GetVariableHeaderSize ()) < *MaximumVariableSize) {
3497 *MaximumVariableSize = *RemainingVariableStorageSize - GetVariableHeaderSize ();
3498 }
3499
3500 return EFI_SUCCESS;
3501 }
3502
3503 /**
3504
3505 This code returns information about the EFI variables.
3506
3507 Caution: This function may receive untrusted input.
3508 This function may be invoked in SMM mode. This function will do basic validation, before parse the data.
3509
3510 @param Attributes Attributes bitmask to specify the type of variables
3511 on which to return information.
3512 @param MaximumVariableStorageSize Pointer to the maximum size of the storage space available
3513 for the EFI variables associated with the attributes specified.
3514 @param RemainingVariableStorageSize Pointer to the remaining size of the storage space available
3515 for EFI variables associated with the attributes specified.
3516 @param MaximumVariableSize Pointer to the maximum size of an individual EFI variables
3517 associated with the attributes specified.
3518
3519 @return EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied.
3520 @return EFI_SUCCESS Query successfully.
3521 @return EFI_UNSUPPORTED The attribute is not supported on this platform.
3522
3523 **/
3524 EFI_STATUS
3525 EFIAPI
3526 VariableServiceQueryVariableInfo (
3527 IN UINT32 Attributes,
3528 OUT UINT64 *MaximumVariableStorageSize,
3529 OUT UINT64 *RemainingVariableStorageSize,
3530 OUT UINT64 *MaximumVariableSize
3531 )
3532 {
3533 EFI_STATUS Status;
3534
3535 if(MaximumVariableStorageSize == NULL || RemainingVariableStorageSize == NULL || MaximumVariableSize == NULL || Attributes == 0) {
3536 return EFI_INVALID_PARAMETER;
3537 }
3538
3539 if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0) {
3540 //
3541 // Deprecated attribute, make this check as highest priority.
3542 //
3543 return EFI_UNSUPPORTED;
3544 }
3545
3546 if ((Attributes & EFI_VARIABLE_ATTRIBUTES_MASK) == 0) {
3547 //
3548 // Make sure the Attributes combination is supported by the platform.
3549 //
3550 return EFI_UNSUPPORTED;
3551 } else if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
3552 //
3553 // Make sure if runtime bit is set, boot service bit is set also.
3554 //
3555 return EFI_INVALID_PARAMETER;
3556 } else if (AtRuntime () && ((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0)) {
3557 //
3558 // Make sure RT Attribute is set if we are in Runtime phase.
3559 //
3560 return EFI_INVALID_PARAMETER;
3561 } else if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
3562 //
3563 // Make sure Hw Attribute is set with NV.
3564 //
3565 return EFI_INVALID_PARAMETER;
3566 } else if ((Attributes & VARIABLE_ATTRIBUTE_AT_AW) != 0) {
3567 if (!mVariableModuleGlobal->VariableGlobal.AuthSupport) {
3568 //
3569 // Not support authenticated variable write.
3570 //
3571 return EFI_UNSUPPORTED;
3572 }
3573 } else if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) {
3574 if (PcdGet32 (PcdHwErrStorageSize) == 0) {
3575 //
3576 // Not support harware error record variable variable.
3577 //
3578 return EFI_UNSUPPORTED;
3579 }
3580 }
3581
3582 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3583
3584 Status = VariableServiceQueryVariableInfoInternal (
3585 Attributes,
3586 MaximumVariableStorageSize,
3587 RemainingVariableStorageSize,
3588 MaximumVariableSize
3589 );
3590
3591 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3592 return Status;
3593 }
3594
3595 /**
3596 This function reclaims variable storage if free size is below the threshold.
3597
3598 Caution: This function may be invoked at SMM mode.
3599 Care must be taken to make sure not security issue.
3600
3601 **/
3602 VOID
3603 ReclaimForOS(
3604 VOID
3605 )
3606 {
3607 EFI_STATUS Status;
3608 UINTN RemainingCommonRuntimeVariableSpace;
3609 UINTN RemainingHwErrVariableSpace;
3610 STATIC BOOLEAN Reclaimed;
3611
3612 //
3613 // This function will be called only once at EndOfDxe or ReadyToBoot event.
3614 //
3615 if (Reclaimed) {
3616 return;
3617 }
3618 Reclaimed = TRUE;
3619
3620 Status = EFI_SUCCESS;
3621
3622 if (mVariableModuleGlobal->CommonRuntimeVariableSpace < mVariableModuleGlobal->CommonVariableTotalSize) {
3623 RemainingCommonRuntimeVariableSpace = 0;
3624 } else {
3625 RemainingCommonRuntimeVariableSpace = mVariableModuleGlobal->CommonRuntimeVariableSpace - mVariableModuleGlobal->CommonVariableTotalSize;
3626 }
3627
3628 RemainingHwErrVariableSpace = PcdGet32 (PcdHwErrStorageSize) - mVariableModuleGlobal->HwErrVariableTotalSize;
3629
3630 //
3631 // Check if the free area is below a threshold.
3632 //
3633 if (((RemainingCommonRuntimeVariableSpace < mVariableModuleGlobal->MaxVariableSize) ||
3634 (RemainingCommonRuntimeVariableSpace < mVariableModuleGlobal->MaxAuthVariableSize)) ||
3635 ((PcdGet32 (PcdHwErrStorageSize) != 0) &&
3636 (RemainingHwErrVariableSpace < PcdGet32 (PcdMaxHardwareErrorVariableSize)))){
3637 Status = Reclaim (
3638 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
3639 &mVariableModuleGlobal->NonVolatileLastVariableOffset,
3640 FALSE,
3641 NULL,
3642 NULL,
3643 0
3644 );
3645 ASSERT_EFI_ERROR (Status);
3646 }
3647 }
3648
3649 /**
3650 Get non-volatile maximum variable size.
3651
3652 @return Non-volatile maximum variable size.
3653
3654 **/
3655 UINTN
3656 GetNonVolatileMaxVariableSize (
3657 VOID
3658 )
3659 {
3660 if (PcdGet32 (PcdHwErrStorageSize) != 0) {
3661 return MAX (MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxAuthVariableSize)),
3662 PcdGet32 (PcdMaxHardwareErrorVariableSize));
3663 } else {
3664 return MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxAuthVariableSize));
3665 }
3666 }
3667
3668 /**
3669 Get maximum variable size, covering both non-volatile and volatile variables.
3670
3671 @return Maximum variable size.
3672
3673 **/
3674 UINTN
3675 GetMaxVariableSize (
3676 VOID
3677 )
3678 {
3679 UINTN MaxVariableSize;
3680
3681 MaxVariableSize = GetNonVolatileMaxVariableSize();
3682 //
3683 // The condition below fails implicitly if PcdMaxVolatileVariableSize equals
3684 // the default zero value.
3685 //
3686 if (MaxVariableSize < PcdGet32 (PcdMaxVolatileVariableSize)) {
3687 MaxVariableSize = PcdGet32 (PcdMaxVolatileVariableSize);
3688 }
3689 return MaxVariableSize;
3690 }
3691
3692 /**
3693 Init non-volatile variable store.
3694
3695 @param[out] NvFvHeader Output pointer to non-volatile FV header address.
3696
3697 @retval EFI_SUCCESS Function successfully executed.
3698 @retval EFI_OUT_OF_RESOURCES Fail to allocate enough memory resource.
3699 @retval EFI_VOLUME_CORRUPTED Variable Store or Firmware Volume for Variable Store is corrupted.
3700
3701 **/
3702 EFI_STATUS
3703 InitNonVolatileVariableStore (
3704 OUT EFI_FIRMWARE_VOLUME_HEADER **NvFvHeader
3705 )
3706 {
3707 EFI_FIRMWARE_VOLUME_HEADER *FvHeader;
3708 VARIABLE_HEADER *Variable;
3709 VARIABLE_HEADER *NextVariable;
3710 EFI_PHYSICAL_ADDRESS VariableStoreBase;
3711 UINT64 VariableStoreLength;
3712 UINTN VariableSize;
3713 EFI_HOB_GUID_TYPE *GuidHob;
3714 EFI_PHYSICAL_ADDRESS NvStorageBase;
3715 UINT8 *NvStorageData;
3716 UINT32 NvStorageSize;
3717 FAULT_TOLERANT_WRITE_LAST_WRITE_DATA *FtwLastWriteData;
3718 UINT32 BackUpOffset;
3719 UINT32 BackUpSize;
3720 UINT32 HwErrStorageSize;
3721 UINT32 MaxUserNvVariableSpaceSize;
3722 UINT32 BoottimeReservedNvVariableSpaceSize;
3723 EFI_STATUS Status;
3724 VOID *FtwProtocol;
3725
3726 mVariableModuleGlobal->FvbInstance = NULL;
3727
3728 //
3729 // Allocate runtime memory used for a memory copy of the FLASH region.
3730 // Keep the memory and the FLASH in sync as updates occur.
3731 //
3732 NvStorageSize = PcdGet32 (PcdFlashNvStorageVariableSize);
3733 NvStorageData = AllocateRuntimeZeroPool (NvStorageSize);
3734 if (NvStorageData == NULL) {
3735 return EFI_OUT_OF_RESOURCES;
3736 }
3737
3738 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64);
3739 if (NvStorageBase == 0) {
3740 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase);
3741 }
3742 //
3743 // Copy NV storage data to the memory buffer.
3744 //
3745 CopyMem (NvStorageData, (UINT8 *) (UINTN) NvStorageBase, NvStorageSize);
3746
3747 Status = GetFtwProtocol ((VOID **)&FtwProtocol);
3748 //
3749 // If FTW protocol has been installed, no need to check FTW last write data hob.
3750 //
3751 if (EFI_ERROR (Status)) {
3752 //
3753 // Check the FTW last write data hob.
3754 //
3755 GuidHob = GetFirstGuidHob (&gEdkiiFaultTolerantWriteGuid);
3756 if (GuidHob != NULL) {
3757 FtwLastWriteData = (FAULT_TOLERANT_WRITE_LAST_WRITE_DATA *) GET_GUID_HOB_DATA (GuidHob);
3758 if (FtwLastWriteData->TargetAddress == NvStorageBase) {
3759 DEBUG ((EFI_D_INFO, "Variable: NV storage is backed up in spare block: 0x%x\n", (UINTN) FtwLastWriteData->SpareAddress));
3760 //
3761 // Copy the backed up NV storage data to the memory buffer from spare block.
3762 //
3763 CopyMem (NvStorageData, (UINT8 *) (UINTN) (FtwLastWriteData->SpareAddress), NvStorageSize);
3764 } else if ((FtwLastWriteData->TargetAddress > NvStorageBase) &&
3765 (FtwLastWriteData->TargetAddress < (NvStorageBase + NvStorageSize))) {
3766 //
3767 // Flash NV storage from the Offset is backed up in spare block.
3768 //
3769 BackUpOffset = (UINT32) (FtwLastWriteData->TargetAddress - NvStorageBase);
3770 BackUpSize = NvStorageSize - BackUpOffset;
3771 DEBUG ((EFI_D_INFO, "Variable: High partial NV storage from offset: %x is backed up in spare block: 0x%x\n", BackUpOffset, (UINTN) FtwLastWriteData->SpareAddress));
3772 //
3773 // Copy the partial backed up NV storage data to the memory buffer from spare block.
3774 //
3775 CopyMem (NvStorageData + BackUpOffset, (UINT8 *) (UINTN) FtwLastWriteData->SpareAddress, BackUpSize);
3776 }
3777 }
3778 }
3779
3780 FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) NvStorageData;
3781
3782 //
3783 // Check if the Firmware Volume is not corrupted
3784 //
3785 if ((FvHeader->Signature != EFI_FVH_SIGNATURE) || (!CompareGuid (&gEfiSystemNvDataFvGuid, &FvHeader->FileSystemGuid))) {
3786 FreePool (NvStorageData);
3787 DEBUG ((EFI_D_ERROR, "Firmware Volume for Variable Store is corrupted\n"));
3788 return EFI_VOLUME_CORRUPTED;
3789 }
3790
3791 VariableStoreBase = (UINTN) FvHeader + FvHeader->HeaderLength;
3792 VariableStoreLength = NvStorageSize - FvHeader->HeaderLength;
3793
3794 mNvFvHeaderCache = FvHeader;
3795 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase = VariableStoreBase;
3796 mNvVariableCache = (VARIABLE_STORE_HEADER *) (UINTN) VariableStoreBase;
3797 if (GetVariableStoreStatus (mNvVariableCache) != EfiValid) {
3798 FreePool (NvStorageData);
3799 mNvFvHeaderCache = NULL;
3800 mNvVariableCache = NULL;
3801 DEBUG((EFI_D_ERROR, "Variable Store header is corrupted\n"));
3802 return EFI_VOLUME_CORRUPTED;
3803 }
3804 ASSERT(mNvVariableCache->Size == VariableStoreLength);
3805
3806 ASSERT (sizeof (VARIABLE_STORE_HEADER) <= VariableStoreLength);
3807
3808 mVariableModuleGlobal->VariableGlobal.AuthFormat = (BOOLEAN)(CompareGuid (&mNvVariableCache->Signature, &gEfiAuthenticatedVariableGuid));
3809
3810 HwErrStorageSize = PcdGet32 (PcdHwErrStorageSize);
3811 MaxUserNvVariableSpaceSize = PcdGet32 (PcdMaxUserNvVariableSpaceSize);
3812 BoottimeReservedNvVariableSpaceSize = PcdGet32 (PcdBoottimeReservedNvVariableSpaceSize);
3813
3814 //
3815 // Note that in EdkII variable driver implementation, Hardware Error Record type variable
3816 // is stored with common variable in the same NV region. So the platform integrator should
3817 // ensure that the value of PcdHwErrStorageSize is less than the value of
3818 // (VariableStoreLength - sizeof (VARIABLE_STORE_HEADER)).
3819 //
3820 ASSERT (HwErrStorageSize < (VariableStoreLength - sizeof (VARIABLE_STORE_HEADER)));
3821 //
3822 // Ensure that the value of PcdMaxUserNvVariableSpaceSize is less than the value of
3823 // (VariableStoreLength - sizeof (VARIABLE_STORE_HEADER)) - PcdGet32 (PcdHwErrStorageSize).
3824 //
3825 ASSERT (MaxUserNvVariableSpaceSize < (VariableStoreLength - sizeof (VARIABLE_STORE_HEADER) - HwErrStorageSize));
3826 //
3827 // Ensure that the value of PcdBoottimeReservedNvVariableSpaceSize is less than the value of
3828 // (VariableStoreLength - sizeof (VARIABLE_STORE_HEADER)) - PcdGet32 (PcdHwErrStorageSize).
3829 //
3830 ASSERT (BoottimeReservedNvVariableSpaceSize < (VariableStoreLength - sizeof (VARIABLE_STORE_HEADER) - HwErrStorageSize));
3831
3832 mVariableModuleGlobal->CommonVariableSpace = ((UINTN) VariableStoreLength - sizeof (VARIABLE_STORE_HEADER) - HwErrStorageSize);
3833 mVariableModuleGlobal->CommonMaxUserVariableSpace = ((MaxUserNvVariableSpaceSize != 0) ? MaxUserNvVariableSpaceSize : mVariableModuleGlobal->CommonVariableSpace);
3834 mVariableModuleGlobal->CommonRuntimeVariableSpace = mVariableModuleGlobal->CommonVariableSpace - BoottimeReservedNvVariableSpaceSize;
3835
3836 DEBUG ((EFI_D_INFO, "Variable driver common space: 0x%x 0x%x 0x%x\n", mVariableModuleGlobal->CommonVariableSpace, mVariableModuleGlobal->CommonMaxUserVariableSpace, mVariableModuleGlobal->CommonRuntimeVariableSpace));
3837
3838 //
3839 // The max NV variable size should be < (VariableStoreLength - sizeof (VARIABLE_STORE_HEADER)).
3840 //
3841 ASSERT (GetNonVolatileMaxVariableSize () < (VariableStoreLength - sizeof (VARIABLE_STORE_HEADER)));
3842
3843 mVariableModuleGlobal->MaxVariableSize = PcdGet32 (PcdMaxVariableSize);
3844 mVariableModuleGlobal->MaxAuthVariableSize = ((PcdGet32 (PcdMaxAuthVariableSize) != 0) ? PcdGet32 (PcdMaxAuthVariableSize) : mVariableModuleGlobal->MaxVariableSize);
3845
3846 //
3847 // Parse non-volatile variable data and get last variable offset.
3848 //
3849 Variable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase);
3850 while (IsValidVariableHeader (Variable, GetEndPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase))) {
3851 NextVariable = GetNextVariablePtr (Variable);
3852 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
3853 if ((Variable->Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
3854 mVariableModuleGlobal->HwErrVariableTotalSize += VariableSize;
3855 } else {
3856 mVariableModuleGlobal->CommonVariableTotalSize += VariableSize;
3857 }
3858
3859 Variable = NextVariable;
3860 }
3861 mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) Variable - (UINTN) VariableStoreBase;
3862
3863 *NvFvHeader = FvHeader;
3864 return EFI_SUCCESS;
3865 }
3866
3867 /**
3868 Flush the HOB variable to flash.
3869
3870 @param[in] VariableName Name of variable has been updated or deleted.
3871 @param[in] VendorGuid Guid of variable has been updated or deleted.
3872
3873 **/
3874 VOID
3875 FlushHobVariableToFlash (
3876 IN CHAR16 *VariableName,
3877 IN EFI_GUID *VendorGuid
3878 )
3879 {
3880 EFI_STATUS Status;
3881 VARIABLE_STORE_HEADER *VariableStoreHeader;
3882 VARIABLE_HEADER *Variable;
3883 VOID *VariableData;
3884 VARIABLE_POINTER_TRACK VariablePtrTrack;
3885 BOOLEAN ErrorFlag;
3886
3887 ErrorFlag = FALSE;
3888
3889 //
3890 // Flush the HOB variable to flash.
3891 //
3892 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) {
3893 VariableStoreHeader = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase;
3894 //
3895 // Set HobVariableBase to 0, it can avoid SetVariable to call back.
3896 //
3897 mVariableModuleGlobal->VariableGlobal.HobVariableBase = 0;
3898 for ( Variable = GetStartPointer (VariableStoreHeader)
3899 ; IsValidVariableHeader (Variable, GetEndPointer (VariableStoreHeader))
3900 ; Variable = GetNextVariablePtr (Variable)
3901 ) {
3902 if (Variable->State != VAR_ADDED) {
3903 //
3904 // The HOB variable has been set to DELETED state in local.
3905 //
3906 continue;
3907 }
3908 ASSERT ((Variable->Attributes & EFI_VARIABLE_NON_VOLATILE) != 0);
3909 if (VendorGuid == NULL || VariableName == NULL ||
3910 !CompareGuid (VendorGuid, GetVendorGuidPtr (Variable)) ||
3911 StrCmp (VariableName, GetVariableNamePtr (Variable)) != 0) {
3912 VariableData = GetVariableDataPtr (Variable);
3913 FindVariable (GetVariableNamePtr (Variable), GetVendorGuidPtr (Variable), &VariablePtrTrack, &mVariableModuleGlobal->VariableGlobal, FALSE);
3914 Status = UpdateVariable (
3915 GetVariableNamePtr (Variable),
3916 GetVendorGuidPtr (Variable),
3917 VariableData,
3918 DataSizeOfVariable (Variable),
3919 Variable->Attributes,
3920 0,
3921 0,
3922 &VariablePtrTrack,
3923 NULL
3924 );
3925 DEBUG ((EFI_D_INFO, "Variable driver flush the HOB variable to flash: %g %s %r\n", GetVendorGuidPtr (Variable), GetVariableNamePtr (Variable), Status));
3926 } else {
3927 //
3928 // The updated or deleted variable is matched with this HOB variable.
3929 // Don't break here because we will try to set other HOB variables
3930 // since this variable could be set successfully.
3931 //
3932 Status = EFI_SUCCESS;
3933 }
3934 if (!EFI_ERROR (Status)) {
3935 //
3936 // If set variable successful, or the updated or deleted variable is matched with the HOB variable,
3937 // set the HOB variable to DELETED state in local.
3938 //
3939 DEBUG ((EFI_D_INFO, "Variable driver set the HOB variable to DELETED state in local: %g %s\n", GetVendorGuidPtr (Variable), GetVariableNamePtr (Variable)));
3940 Variable->State &= VAR_DELETED;
3941 } else {
3942 ErrorFlag = TRUE;
3943 }
3944 }
3945 if (ErrorFlag) {
3946 //
3947 // We still have HOB variable(s) not flushed in flash.
3948 //
3949 mVariableModuleGlobal->VariableGlobal.HobVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VariableStoreHeader;
3950 } else {
3951 //
3952 // All HOB variables have been flushed in flash.
3953 //
3954 DEBUG ((EFI_D_INFO, "Variable driver: all HOB variables have been flushed in flash.\n"));
3955 if (!AtRuntime ()) {
3956 FreePool ((VOID *) VariableStoreHeader);
3957 }
3958 }
3959 }
3960
3961 }
3962
3963 /**
3964 Initializes variable write service after FTW was ready.
3965
3966 @retval EFI_SUCCESS Function successfully executed.
3967 @retval Others Fail to initialize the variable service.
3968
3969 **/
3970 EFI_STATUS
3971 VariableWriteServiceInitialize (
3972 VOID
3973 )
3974 {
3975 EFI_STATUS Status;
3976 UINTN Index;
3977 UINT8 Data;
3978 EFI_PHYSICAL_ADDRESS VariableStoreBase;
3979 EFI_PHYSICAL_ADDRESS NvStorageBase;
3980 VARIABLE_ENTRY_PROPERTY *VariableEntry;
3981
3982 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3983
3984 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64);
3985 if (NvStorageBase == 0) {
3986 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase);
3987 }
3988 VariableStoreBase = NvStorageBase + (mNvFvHeaderCache->HeaderLength);
3989
3990 //
3991 // Let NonVolatileVariableBase point to flash variable store base directly after FTW ready.
3992 //
3993 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase = VariableStoreBase;
3994
3995 //
3996 // Check if the free area is really free.
3997 //
3998 for (Index = mVariableModuleGlobal->NonVolatileLastVariableOffset; Index < mNvVariableCache->Size; Index++) {
3999 Data = ((UINT8 *) mNvVariableCache)[Index];
4000 if (Data != 0xff) {
4001 //
4002 // There must be something wrong in variable store, do reclaim operation.
4003 //
4004 Status = Reclaim (
4005 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
4006 &mVariableModuleGlobal->NonVolatileLastVariableOffset,
4007 FALSE,
4008 NULL,
4009 NULL,
4010 0
4011 );
4012 if (EFI_ERROR (Status)) {
4013 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
4014 return Status;
4015 }
4016 break;
4017 }
4018 }
4019
4020 FlushHobVariableToFlash (NULL, NULL);
4021
4022 Status = EFI_SUCCESS;
4023 ZeroMem (&mAuthContextOut, sizeof (mAuthContextOut));
4024 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
4025 //
4026 // Authenticated variable initialize.
4027 //
4028 mAuthContextIn.StructSize = sizeof (AUTH_VAR_LIB_CONTEXT_IN);
4029 mAuthContextIn.MaxAuthVariableSize = mVariableModuleGlobal->MaxAuthVariableSize - GetVariableHeaderSize ();
4030 Status = AuthVariableLibInitialize (&mAuthContextIn, &mAuthContextOut);
4031 if (!EFI_ERROR (Status)) {
4032 DEBUG ((EFI_D_INFO, "Variable driver will work with auth variable support!\n"));
4033 mVariableModuleGlobal->VariableGlobal.AuthSupport = TRUE;
4034 if (mAuthContextOut.AuthVarEntry != NULL) {
4035 for (Index = 0; Index < mAuthContextOut.AuthVarEntryCount; Index++) {
4036 VariableEntry = &mAuthContextOut.AuthVarEntry[Index];
4037 Status = VarCheckLibVariablePropertySet (
4038 VariableEntry->Name,
4039 VariableEntry->Guid,
4040 &VariableEntry->VariableProperty
4041 );
4042 ASSERT_EFI_ERROR (Status);
4043 }
4044 }
4045 } else if (Status == EFI_UNSUPPORTED) {
4046 DEBUG ((EFI_D_INFO, "NOTICE - AuthVariableLibInitialize() returns %r!\n", Status));
4047 DEBUG ((EFI_D_INFO, "Variable driver will continue to work without auth variable support!\n"));
4048 mVariableModuleGlobal->VariableGlobal.AuthSupport = FALSE;
4049 Status = EFI_SUCCESS;
4050 }
4051 }
4052
4053 if (!EFI_ERROR (Status)) {
4054 for (Index = 0; Index < ARRAY_SIZE (mVariableEntryProperty); Index++) {
4055 VariableEntry = &mVariableEntryProperty[Index];
4056 Status = VarCheckLibVariablePropertySet (VariableEntry->Name, VariableEntry->Guid, &VariableEntry->VariableProperty);
4057 ASSERT_EFI_ERROR (Status);
4058 }
4059 }
4060
4061 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
4062
4063 //
4064 // Initialize MOR Lock variable.
4065 //
4066 MorLockInit ();
4067
4068 return Status;
4069 }
4070
4071 /**
4072 Convert normal variable storage to the allocated auth variable storage.
4073
4074 @param[in] NormalVarStorage Pointer to the normal variable storage header
4075
4076 @retval the allocated auth variable storage
4077 **/
4078 VOID *
4079 ConvertNormalVarStorageToAuthVarStorage (
4080 VARIABLE_STORE_HEADER *NormalVarStorage
4081 )
4082 {
4083 VARIABLE_HEADER *StartPtr;
4084 UINT8 *NextPtr;
4085 VARIABLE_HEADER *EndPtr;
4086 UINTN AuthVarStroageSize;
4087 AUTHENTICATED_VARIABLE_HEADER *AuthStartPtr;
4088 VARIABLE_STORE_HEADER *AuthVarStorage;
4089
4090 AuthVarStroageSize = sizeof (VARIABLE_STORE_HEADER);
4091 //
4092 // Set AuthFormat as FALSE for normal variable storage
4093 //
4094 mVariableModuleGlobal->VariableGlobal.AuthFormat = FALSE;
4095
4096 //
4097 // Calculate Auth Variable Storage Size
4098 //
4099 StartPtr = GetStartPointer (NormalVarStorage);
4100 EndPtr = GetEndPointer (NormalVarStorage);
4101 while (StartPtr < EndPtr) {
4102 if (StartPtr->State == VAR_ADDED) {
4103 AuthVarStroageSize = HEADER_ALIGN (AuthVarStroageSize);
4104 AuthVarStroageSize += sizeof (AUTHENTICATED_VARIABLE_HEADER);
4105 AuthVarStroageSize += StartPtr->NameSize + GET_PAD_SIZE (StartPtr->NameSize);
4106 AuthVarStroageSize += StartPtr->DataSize + GET_PAD_SIZE (StartPtr->DataSize);
4107 }
4108 StartPtr = GetNextVariablePtr (StartPtr);
4109 }
4110
4111 //
4112 // Allocate Runtime memory for Auth Variable Storage
4113 //
4114 AuthVarStorage = AllocateRuntimeZeroPool (AuthVarStroageSize);
4115 ASSERT (AuthVarStorage != NULL);
4116 if (AuthVarStorage == NULL) {
4117 return NULL;
4118 }
4119
4120 //
4121 // Copy Variable from Normal storage to Auth storage
4122 //
4123 StartPtr = GetStartPointer (NormalVarStorage);
4124 EndPtr = GetEndPointer (NormalVarStorage);
4125 AuthStartPtr = (AUTHENTICATED_VARIABLE_HEADER *) GetStartPointer (AuthVarStorage);
4126 while (StartPtr < EndPtr) {
4127 if (StartPtr->State == VAR_ADDED) {
4128 AuthStartPtr = (AUTHENTICATED_VARIABLE_HEADER *) HEADER_ALIGN (AuthStartPtr);
4129 //
4130 // Copy Variable Header
4131 //
4132 AuthStartPtr->StartId = StartPtr->StartId;
4133 AuthStartPtr->State = StartPtr->State;
4134 AuthStartPtr->Attributes = StartPtr->Attributes;
4135 AuthStartPtr->NameSize = StartPtr->NameSize;
4136 AuthStartPtr->DataSize = StartPtr->DataSize;
4137 CopyGuid (&AuthStartPtr->VendorGuid, &StartPtr->VendorGuid);
4138 //
4139 // Copy Variable Name
4140 //
4141 NextPtr = (UINT8 *) (AuthStartPtr + 1);
4142 CopyMem (NextPtr, GetVariableNamePtr (StartPtr), AuthStartPtr->NameSize);
4143 //
4144 // Copy Variable Data
4145 //
4146 NextPtr = NextPtr + AuthStartPtr->NameSize + GET_PAD_SIZE (AuthStartPtr->NameSize);
4147 CopyMem (NextPtr, GetVariableDataPtr (StartPtr), AuthStartPtr->DataSize);
4148 //
4149 // Go to next variable
4150 //
4151 AuthStartPtr = (AUTHENTICATED_VARIABLE_HEADER *) (NextPtr + AuthStartPtr->DataSize + GET_PAD_SIZE (AuthStartPtr->DataSize));
4152 }
4153 StartPtr = GetNextVariablePtr (StartPtr);
4154 }
4155 //
4156 // Update Auth Storage Header
4157 //
4158 AuthVarStorage->Format = NormalVarStorage->Format;
4159 AuthVarStorage->State = NormalVarStorage->State;
4160 AuthVarStorage->Size = (UINT32)((UINTN)AuthStartPtr - (UINTN)AuthVarStorage);
4161 CopyGuid (&AuthVarStorage->Signature, &gEfiAuthenticatedVariableGuid);
4162 ASSERT (AuthVarStorage->Size <= AuthVarStroageSize);
4163
4164 //
4165 // Restore AuthFormat
4166 //
4167 mVariableModuleGlobal->VariableGlobal.AuthFormat = TRUE;
4168 return AuthVarStorage;
4169 }
4170 /**
4171 Initializes variable store area for non-volatile and volatile variable.
4172
4173 @retval EFI_SUCCESS Function successfully executed.
4174 @retval EFI_OUT_OF_RESOURCES Fail to allocate enough memory resource.
4175
4176 **/
4177 EFI_STATUS
4178 VariableCommonInitialize (
4179 VOID
4180 )
4181 {
4182 EFI_STATUS Status;
4183 VARIABLE_STORE_HEADER *VolatileVariableStore;
4184 VARIABLE_STORE_HEADER *VariableStoreHeader;
4185 UINT64 VariableStoreLength;
4186 UINTN ScratchSize;
4187 EFI_HOB_GUID_TYPE *GuidHob;
4188 EFI_GUID *VariableGuid;
4189 EFI_FIRMWARE_VOLUME_HEADER *NvFvHeader;
4190 BOOLEAN IsNormalVariableHob;
4191
4192 //
4193 // Allocate runtime memory for variable driver global structure.
4194 //
4195 mVariableModuleGlobal = AllocateRuntimeZeroPool (sizeof (VARIABLE_MODULE_GLOBAL));
4196 if (mVariableModuleGlobal == NULL) {
4197 return EFI_OUT_OF_RESOURCES;
4198 }
4199
4200 InitializeLock (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock, TPL_NOTIFY);
4201
4202 //
4203 // Init non-volatile variable store.
4204 //
4205 NvFvHeader = NULL;
4206 Status = InitNonVolatileVariableStore (&NvFvHeader);
4207 if (EFI_ERROR (Status)) {
4208 FreePool (mVariableModuleGlobal);
4209 return Status;
4210 }
4211
4212 //
4213 // mVariableModuleGlobal->VariableGlobal.AuthFormat
4214 // has been initialized in InitNonVolatileVariableStore().
4215 //
4216 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
4217 DEBUG ((EFI_D_INFO, "Variable driver will work with auth variable format!\n"));
4218 //
4219 // Set AuthSupport to FALSE first, VariableWriteServiceInitialize() will initialize it.
4220 //
4221 mVariableModuleGlobal->VariableGlobal.AuthSupport = FALSE;
4222 VariableGuid = &gEfiAuthenticatedVariableGuid;
4223 } else {
4224 DEBUG ((EFI_D_INFO, "Variable driver will work without auth variable support!\n"));
4225 mVariableModuleGlobal->VariableGlobal.AuthSupport = FALSE;
4226 VariableGuid = &gEfiVariableGuid;
4227 }
4228
4229 //
4230 // Get HOB variable store.
4231 //
4232 IsNormalVariableHob = FALSE;
4233 GuidHob = GetFirstGuidHob (VariableGuid);
4234 if (GuidHob == NULL && VariableGuid == &gEfiAuthenticatedVariableGuid) {
4235 //
4236 // Try getting it from normal variable HOB
4237 //
4238 GuidHob = GetFirstGuidHob (&gEfiVariableGuid);
4239 IsNormalVariableHob = TRUE;
4240 }
4241 if (GuidHob != NULL) {
4242 VariableStoreHeader = GET_GUID_HOB_DATA (GuidHob);
4243 VariableStoreLength = GuidHob->Header.HobLength - sizeof (EFI_HOB_GUID_TYPE);
4244 if (GetVariableStoreStatus (VariableStoreHeader) == EfiValid) {
4245 if (!IsNormalVariableHob) {
4246 mVariableModuleGlobal->VariableGlobal.HobVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) AllocateRuntimeCopyPool ((UINTN) VariableStoreLength, (VOID *) VariableStoreHeader);
4247 } else {
4248 mVariableModuleGlobal->VariableGlobal.HobVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) ConvertNormalVarStorageToAuthVarStorage ((VOID *) VariableStoreHeader);
4249 }
4250 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase == 0) {
4251 FreePool (NvFvHeader);
4252 FreePool (mVariableModuleGlobal);
4253 return EFI_OUT_OF_RESOURCES;
4254 }
4255 } else {
4256 DEBUG ((EFI_D_ERROR, "HOB Variable Store header is corrupted!\n"));
4257 }
4258 }
4259
4260 mVariableModuleGlobal->MaxVolatileVariableSize = ((PcdGet32 (PcdMaxVolatileVariableSize) != 0) ?
4261 PcdGet32 (PcdMaxVolatileVariableSize) :
4262 mVariableModuleGlobal->MaxVariableSize
4263 );
4264 //
4265 // Allocate memory for volatile variable store, note that there is a scratch space to store scratch data.
4266 //
4267 ScratchSize = GetMaxVariableSize ();
4268 mVariableModuleGlobal->ScratchBufferSize = ScratchSize;
4269 VolatileVariableStore = AllocateRuntimePool (PcdGet32 (PcdVariableStoreSize) + ScratchSize);
4270 if (VolatileVariableStore == NULL) {
4271 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) {
4272 FreePool ((VOID *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase);
4273 }
4274 FreePool (NvFvHeader);
4275 FreePool (mVariableModuleGlobal);
4276 return EFI_OUT_OF_RESOURCES;
4277 }
4278
4279 SetMem (VolatileVariableStore, PcdGet32 (PcdVariableStoreSize) + ScratchSize, 0xff);
4280
4281 //
4282 // Initialize Variable Specific Data.
4283 //
4284 mVariableModuleGlobal->VariableGlobal.VolatileVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VolatileVariableStore;
4285 mVariableModuleGlobal->VolatileLastVariableOffset = (UINTN) GetStartPointer (VolatileVariableStore) - (UINTN) VolatileVariableStore;
4286
4287 CopyGuid (&VolatileVariableStore->Signature, VariableGuid);
4288 VolatileVariableStore->Size = PcdGet32 (PcdVariableStoreSize);
4289 VolatileVariableStore->Format = VARIABLE_STORE_FORMATTED;
4290 VolatileVariableStore->State = VARIABLE_STORE_HEALTHY;
4291 VolatileVariableStore->Reserved = 0;
4292 VolatileVariableStore->Reserved1 = 0;
4293
4294 return EFI_SUCCESS;
4295 }
4296
4297
4298 /**
4299 Get the proper fvb handle and/or fvb protocol by the given Flash address.
4300
4301 @param[in] Address The Flash address.
4302 @param[out] FvbHandle In output, if it is not NULL, it points to the proper FVB handle.
4303 @param[out] FvbProtocol In output, if it is not NULL, it points to the proper FVB protocol.
4304
4305 **/
4306 EFI_STATUS
4307 GetFvbInfoByAddress (
4308 IN EFI_PHYSICAL_ADDRESS Address,
4309 OUT EFI_HANDLE *FvbHandle OPTIONAL,
4310 OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvbProtocol OPTIONAL
4311 )
4312 {
4313 EFI_STATUS Status;
4314 EFI_HANDLE *HandleBuffer;
4315 UINTN HandleCount;
4316 UINTN Index;
4317 EFI_PHYSICAL_ADDRESS FvbBaseAddress;
4318 EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
4319 EFI_FVB_ATTRIBUTES_2 Attributes;
4320 UINTN BlockSize;
4321 UINTN NumberOfBlocks;
4322
4323 HandleBuffer = NULL;
4324 //
4325 // Get all FVB handles.
4326 //
4327 Status = GetFvbCountAndBuffer (&HandleCount, &HandleBuffer);
4328 if (EFI_ERROR (Status)) {
4329 return EFI_NOT_FOUND;
4330 }
4331
4332 //
4333 // Get the FVB to access variable store.
4334 //
4335 Fvb = NULL;
4336 for (Index = 0; Index < HandleCount; Index += 1, Status = EFI_NOT_FOUND, Fvb = NULL) {
4337 Status = GetFvbByHandle (HandleBuffer[Index], &Fvb);
4338 if (EFI_ERROR (Status)) {
4339 Status = EFI_NOT_FOUND;
4340 break;
4341 }
4342
4343 //
4344 // Ensure this FVB protocol supported Write operation.
4345 //
4346 Status = Fvb->GetAttributes (Fvb, &Attributes);
4347 if (EFI_ERROR (Status) || ((Attributes & EFI_FVB2_WRITE_STATUS) == 0)) {
4348 continue;
4349 }
4350
4351 //
4352 // Compare the address and select the right one.
4353 //
4354 Status = Fvb->GetPhysicalAddress (Fvb, &FvbBaseAddress);
4355 if (EFI_ERROR (Status)) {
4356 continue;
4357 }
4358
4359 //
4360 // Assume one FVB has one type of BlockSize.
4361 //
4362 Status = Fvb->GetBlockSize (Fvb, 0, &BlockSize, &NumberOfBlocks);
4363 if (EFI_ERROR (Status)) {
4364 continue;
4365 }
4366
4367 if ((Address >= FvbBaseAddress) && (Address < (FvbBaseAddress + BlockSize * NumberOfBlocks))) {
4368 if (FvbHandle != NULL) {
4369 *FvbHandle = HandleBuffer[Index];
4370 }
4371 if (FvbProtocol != NULL) {
4372 *FvbProtocol = Fvb;
4373 }
4374 Status = EFI_SUCCESS;
4375 break;
4376 }
4377 }
4378 FreePool (HandleBuffer);
4379
4380 if (Fvb == NULL) {
4381 Status = EFI_NOT_FOUND;
4382 }
4383
4384 return Status;
4385 }
4386